
Budapest University of Technology and Economics
Faculty of Electrical Engineering and Informatics

Department of Automation and Applied Informatics

Statistical Racing Crossover Based Genetic
Algorithm for Vehicle Routing Problem

Scientific Students’ Association Report

Author:

Ákos Holló-Szabó
Második Szerző

Advisor:

István Albert
dr. János Botzheim

2021

Contents

Kivonat i

Abstract ii

1 Introduction 1

2 Terms and Background 3
2.1 Graphs . 3
2.2 Big O notation . 3
2.3 Permutations . 4

2.3.1 Representations . 5
2.4 Logistiscs . 8

3 Problem Statement 10

4 Heuristic Approaches 12
4.1 Trip Construction Algorithms . 12
4.2 Trip OptimisationAlgorithms . 14

5 Proposed Algorithm 16
5.1 Genetic Algorithm . 16
5.2 Modified Genetic Algorithm . 18
5.3 Boost . 19
5.4 Maintaining Gene Diversity . 20
5.5 Selection Process . 21
5.6 Initialization . 22
5.7 Crossover Operators . 23
5.8 Mutation . 29

6 Statistical Racing Crossover 30

7 Implementation and Technologies 33
7.1 Kotlin . 33
7.2 React . 34
7.3 Client . 36
7.4 Server . 36

8 Statistics 39
8.1 Data sets . 39
8.2 Simulation Results . 40

9 Conclusions and Future Works 42

Acknowledgements 43

Bibliography 44

Kivonat

A genetikus algoritmusok moduláris metaheurisztikák, amik az evolúciós folyamatot szi-
mulálják egy megoldás halmaz felett. Az optimalizálás nagyon rugalmas, de lassú, ami
jelentősen nehezíti a kutatást a területen. A dolgozat terméke egy új variáns, ami más
variánsokat versenyeztet, miközben statisztikai adatot gyűjt. Eredményeink azt mutatják,
hogy az új variáns egy hatékony, önálló és még adaptívabb megoldás. Azok a variánsok,
amik gyorsabban konvergálnak vezetik a versenyt, de elakadnak lokális minimumokban.
Ezekben az esetekben a rugalmasabb kombinációk lassabb konvergenciával nagyobb futási
valószínűségre tesznek szert és jobb megoldásokat találnak távolabb a lokális minimumtól.
A hibrid gyorsabb konvergenciára képes minimális futási idő többlettel.

i

Abstract

Genetic algorithms are modular metaheuristics simulating the evolutionary process over
a solution set. The optimization is very adaptive but slow, making statistical research
difficult. An algorithm was designed where different variants are racing against each other
while statistics are gathered. Our results show that this algorithm is an efficient, stan-
dalone, and even more adaptive solution. Those variants that result in faster convergence
lead the race, but get stuck in local minima. In these cases, the more agile combinations
with slower convergence gain higher probability and find better solutions farther from
the local minimum. The hybrid is capable of faster convergence with minimal additional
runtime.

ii

Chapter 1

Introduction

Transport costs are a constant load on the economy, and present in the sales of all phys-
ical products. Goods are transported between producers, distributors, and consumers.
Reducing the cost leaves more profit at the producers and distributors and leaves more
money at the consumers. More money also means customers can buy more products, and
their money is worth more. Therefore reducing transport costs produces wealth from the
economy as a whole.
These days nonphysical products are common, but the need for transportation increases.
Physical products have a shorter lifespan, and people can buy more as technology becomes
cheaper. The current pandemic almost doubled the traffic of online shopping, which kept
increasing in the last decades. Since people prefer comfortable solutions and its easier to
collect data through the internet, this tendency probably remains.
Consumer satisfaction might be another goal. Quality management became customer fo-
cused and smooth delivery increases the experience of quality of shopping as a service.
Customers may return for the higher quality even if prices are higher. It is easier to sched-
ule delivery and arrive on time if transports are shorter. Constraints given by customers
are easier to build into iterative optimizations, and the efficiency decrease caused by said
constraints can be measured. Transport can be optimized to satisfy customer constraints
with minimal profit loss.
Optimal transportation has environmentally friendly effects too. Transportation is respon-
sible for a significant share of the CO2 emissions, which can be reduced by curbing fuel
consumption. Electronic vehicles are slowly gaining popularity, but it makes the produc-
tion of accumulators necessary. In-warehouse delivery is mostly electric already and usage
of accumulators can be avoided. That’s why we focus on cross-storage transportation,
where fossil fuels are dominant still.
A real-life transport has several agents and parameters like the drivers, vehicles, locations,
products, and packaging. Our goal is to plan the optimal transport from a center position
for multiple transport units, packages, and goal positions. The Vehicle Routing Problem
(VRP) is the most accurate model of transports with the right extensions. This is an
NP-hard problem because it is Karp reducible to the Travelling Salesman Problem (TSP),
which is NP-complete. We have to rely on heuristics and iterative optimizations to find
near-optimal solutions.
Genetic algorithms are a very popular and well-documented group of metaheuristics [9].
They are proven to be efficient for TSP and can be adapted for VRP too. The main
advantage of genetic algorithms is modularity. The phases of the iteration of the opti-

1

mization are fully separable. Every phase has several variants with significantly different
properties. This grows the field of possible combinations and makes selection very difficult.
Automation of this selection process is necessary.
During the research, our biggest challenge was the runtime of the genetic algorithm. Even
if it is still smaller with orders of magnitude than the runtime of a CNN (Convolutional
Neural Network), it would have taken years to test each combination. In this paper, an
algorithm is proposed where the variants of a phase are racing against each other. In each
cycle, a variant is chosen randomly, and statistics are gathered to measure its efficiency.
During later cycles, a higher probability is insured for more efficient combinations.
In the following chapters, I will introduce the algorithm, alternatives to it, and discuss
even some implementation details. In chapter 2 I will introduce the basic terms and
math that are necessary to understand the algorithm, design decisions, and context. In
chapter 3 I will introduce the mathematical problem and its variants. In chapter 4 I will
introduce the most known heuristics to the problem as alternatives and modular extensions
of the algorithm. The algorithm will be introduced in chapter 5 with all modules and
design decisions. The crossover itself will be introduced in a separate chapter 6. I will
detail the implementation and used technologies in chapter 7. Finally, I will present some
measurements in chapter 8 and draw conclusions in chapter 9.

2

Chapter 2

Terms and Background

2.1 Graphs

Any set can be interpreted as vertices. Edges are nothing else but the pairing of these
vertices. Every graph consists of a set of vertices and a set of edges interpreted on them.
We mark this as G(V, E), where G is the graph, V is the set of vertices and E is the set
of edges. Parallel edges are edges pairing the same two vertices and self-loops are edges
pairing a vertex with itself. Usually if not mentioned, parallel edges and self-loops are not
allowed. The order of vertices in a pairing does not matter by default, otherwise, we call
the graph directed. In this case, edges are parallel only if the order of vertices is the same
in the pairing too. A graph is called complete if all possible, allowed pairing exists in E.
When we store data in the edges or vertices, we represent it with a function that assigns
this data to the edges or vertices. In most cases all vertex stores data with the same data
structure, same for edges.
Graphs are widely used in science to represent networks, hierarchical structures, associa-
tions, workflow, etc. We are going to use it to store the properties of customers and routes
between them.
A walk is a sequence of vertices and edges of a graph. An open walk is a walk that’s first
and last vertices are different. A trail is an open walk without any edges repeated. A
Cycle is a trail where the first and last vertices are the same. For example, a walk can
be any random movement on a road network from conjunction to conjunction, while a
minimal length route between two locations on the road network is a trail. We use cycles
to represent a transport starting and ending in the transport center. An Euler cycle of
G(V, E) graph is a cycle on G that contains all e ∈ E exactly once. A Hamiltonian cycle
of G is a cycle containing all v ∈ V exactly once except its endpoint that is included twice.
Both are used in heuristics (see chapter 4) for TSP. Euler cycles are more important for
the Christofides algorithm.

2.2 Big O notation

When we implement a program one of its most important attributes is its resource re-
quirement. The requirement of storage space, CPU runtime limits the practical usage
of said algorithm. The problem is that the requirements depend a lot on the computer
the algorithm is running on, the exact implementation, and the input to process. That
makes more abstract measurements necessary. Ordo defines an upper limit of an algo-

3

rithm depending on the length of its parameters. If f(n) is O(g(n)), that means for every
environment a c constant exists that f(n) ≤ c · g(n).
If an algorithm with a parameter N with n length requires O(n2) runtime, that means
for every environment the best implementation’s CPU runtime requirement will be below
c · n2, where c is a constant specific to that environment. So, the set of algorithms
with O(n3) runtime includes the set of algorithms with O(n2) runtime. We usually use
the multiplication of the next function types: 1, log(n), nx, xn, n!, nn, where x ∈ Z.
These function families are also increasing in said order. So O(nx1) < (xn

2) is true for
any x1, x2 ∈ Z. For better clarity we also mean by O(g(n)) that there is no better O
constructed from the previously mentioned functions multiplication. So if an algorithm
has O(n3) runtime then it does not have an O(n2) runtime. Of course, if we specify the
environment and the parameter better then the algorithm can have a better O specific to
that environment and parameter. For example, some algorithms might have better O on
a quantum computer.
The most used algorithms are O(n), sorting an array takes O(n · log(n)) (Merge sort).
Since the complete graph has O(|V |2) edges, most graph-based algorithms take O(n2)
runtime. If an algorithm has O(n3) runtime requirement, we already find it problematic.
It means on twice the input length it might take eight times more time. Still more complex
algorithms taking vertices as input and using graphs will exceed this limit. We have to
restrict these algorithms’ input length.
In practice, there is an inconsistency between the assumptions of storage space and the
runtime requirements of an algorithm. Let there be an n long array of vi values between
zero and m maximal value, where vi, m ∈ N. Storing this array will take O(n · log(m))
storage space, still we usually say that reading this array takes O(n) time. This is because
we use primitive numerical types on computers, and we must rebuild the code to change
these primitive types. This means that every implementation has a maximal value that
it can handle, and a length of numerical variables are constants. The numbers length
becomes relevant again only when the array is archived or loaded into memory. In the
case of permutations, the size of the array and the maximal value is the same. That means
we don’t handle permutations longer than 264.

2.3 Permutations

Permutation and order are similar concepts, but not the same. A permutation is an order
relative to another order. So if we have houses with different colors in this order: red, blue,
green, yellow, then this is an order, but a permutation of them is an array of numbers like
3,1,4,2. In itself, 3,1,4,2 does not define the order but if we take red, blue, green, yellow as
the base order then it means green, red, yellow, blue (where the numbers referred to the
indexes of the houses in the original order). Still, we say “the permutation of something”
interchangeably by order, but in that case, we always assume some basic order. A set
with a size of n will always have n! possible arrangements, that’s why most algorithms
searching for some optimal order have unacceptable runtimes. 100! is more than 10100, it
is impossible to check this many variants one by one. A cycle on a graph can be defined
by the set of vertices in the cycle in some order. That’s why brute force TSP solutions
have an O(c!) runtime requirement, where c is the number of customers.

4

2.3.1 Representations

The representation of a permutation is not trivial. Different representations can have
different benefits. A goal can be to store the permutation in minimal storage space or to
run the algorithm in minimal time or some balanced solution. On graphical cards, the
usage of matrices could be beneficial. We present a simple example of a transport group
for three transport units. The last transport unit has no customer to serve. All examples
are representations of this transport group (Figs. 2.1, 2.2).

Figure 2.1: Example for an abstracted tour group

Figure 2.2: Example for an abstracted tour group as segmented
permutation

• Path representation [6] (Fig. 2.3): The most natural representation is an array
of the values in the right order. In the case of the n value, this means O(n · log(n))
storage space. A position can be found in O(1) time but a value in O(n) time. This
may make the implementation of some operators difficult.

Figure 2.3: Example for path representation

• Inverted representation (Fig. 2.4): If it is beneficial to find the values fast an
inverse representation can be used. Here the positions of the array correspond to
the values and the stored value corresponds to the position in the order. This means
O(n · log(n)) storage space. A position can be found in O(n) time and a value in
O(n) time. In common cases, path representation is given but inverse permutation
is calculated from it. This calculation takes O(n) time, so it does not affect runtime
significantly.

5

Figure 2.4: Example for an inverted representation

• Sequential representation [6] (Fig. 2.5): In the case of transports, the position
in order is not the direct cause of cost. The cost comes from the edges of the
distance graph. Meaning the following value of a value is more important than
its position. Some operations building on this fact can benefit from a sequential
representation. In this representation, the position corresponds to the first value
and the value corresponds to the second value of neighboring value pairs. The main
disadvantage of this permutation is that it is hard to manipulate without breaking
the cycle into multiple small ones. Also, n + 1 numbers are needed since one of
them must mark the start of the permutation. Most operators are implemented for
path representation and refactored later for runtime improvement. Conversion still
takes O(n) time.

Figure 2.5: Example for sequential representation

• ordinal representation [6] (Fig. 2.6): The most efficient compression uses the
natural representation. Fills the positions of the array in order and decreases all
values by the number of lower values preceding it. The last value can be removed
since it is always one. This uses an O(∑0

m=n log(m)) storage space and can be used
on inverse and sequential representations too. Compression and depression take
O(n2) time.

Figure 2.6: Example for ordinal representation

• Permutation matrix [6] (Fig. 2.7): The permutation matrices use Rn×n binary
values. In the case of an M matrix, mi,j is 1 if and only if the jth position holds the i
value. Multiplying a vector v ∈ Nn representing the values in order by a permutation
matrix orders the values the right way. This can be used on graphical cards that
are stronger in matrix operations. Just like the compression, inverse and sequential
representations have matrix formats. In the case of the inverse representation, the
permutation matrix just has to be transposed. Conversion between permutation ma-
trix and path representation takes O(n2) time. This means the two representations
are rarely used in the same algorithm.

6

Figure 2.7: Example for representation by permutation matrix

• Precedition representation (figure 2.8): The precedition matrix M[i,j] is 1 if i
precedes j in the order. This can be used to minimize data loss with minimal storage
space sacrifice. Also, conversion takes O(n) on GPU-s.

Figure 2.8: Example for representation by precedition matrix.

Distribution can be represented in several ways that can be combined with All order
representations.

• Multi-chromosome representation [1] (Fig. 2.9): It uses t separate order rep-
resentations for t transport units. It still has to be marked which client belongs
into which transport. In the case of natural representation, using the indices of the
customers serves the task. In other cases, a separate n long binary array is needed to
mark the information for each customer. It makes implementation of new operations
and management of transports transparent. It requires O(n · t) additional storage
space and O(t) pointer calculations when iterated. It is mostly used to transport
data between representations.

Figure 2.9: Example for multi-chromosome representation

• Two chromosome representation (Fig. 2.10): It consists of an order represen-
tation and an n long array. The array contains the index of the transport unit the

7

customer on the same index belongs to. This means O(n · log(t)) additional storage
space requirement. It’s less transparent since the same transport groups can be rep-
resented in multiple ways. It is easy to handle distribution but sorting by transport
unit index is necessary to handle order efficiently. Sorting takes O(n · log(n)) time.

Figure 2.10: Example for two chromosome representation

• Two-part chromosome representation [1] (Fig. 2.11): It consists of an order
representation and a t long array. Each value in the array represents the number of
customers belonging to the transport unit on the same index. This representation
requires O(t · log(n)) additional storage space. It takes one pointer calculation to
iterate making it faster. It is harder to implement some operations and it is hard to
adapt operators used for TSP.

Figure 2.11: Example for two-part chromosome representation

• One-chromosome representation [2] (Fig. 2.12): It uses breakpoints inserted
into the representation as it was one permutation with an n + t length. Each break-
point represents a return to the transport center and the transport unit the transport
belongs to. It requires O(t · log(n + t)) additional space, but it varies depending on
the representation of the order. Most operations used for TSP can be easily adapted
by using this representation.

Figure 2.12: Example for one-chromosome representation

Representations are most relevant in the crossover and mutation phases of genetic algo-
rithms, where the transport groups are not just read but altered. Our focus was the
crossover operations since they are more complex and take more runtime. A different
representation should be preferred for each variant.

2.4 Logistiscs

Logistics is the branch of engineering working on the efficient storage, packaging, trans-
portation, and scheduling of physical goods. There are sites containing storage facilities.
Transportation is done between said facilities not touching factories, shops, etc. directly,
only their storage. The shops and factories supply themselves from their nearby storages.
This reduces packing time at the goal locations since the packaging is done in the storage
system instead of during packing.
In the storage system, storage locations are organized into a regular grid. Racks are
organized into lines where the space between two uprights of the rack is called a bay. One

8

bay is separated into levels and each level is organized into storage locations. One storage
location holds multiple stocks of products. Vehicles in the storage move from storage
location to storage location grouping and separating units of products. Every stock can
be identified by a five number vector and finding the optimal rout between two locations
takes no effort. If multiple locations must be touched in one tour usually the vehicle takes
a snake like rout through the roads between the rack lines. Each road is one directional
no time can be gained by playing with the order of locations in the transport. The only
parameter to optimise is the distribution of tasks between vehicles. That’s why we focus
on inter storage transports instead.
When a transport vehicle arrives, the transport is already collected into the packing po-
sition packaged and ready to transport. This means the time of packing mostly depends
on the volume of transport instead of its weight or type. Even if the transport is fragile
it is packaged in ways making flawless stacking possible. The speed of packing is specific
to the storage and measured in cubic meters per second. Storage systems have also a
capacity for vehicles that can be loaded at the same time. If capacity is exceeded, every
new vehicles have to wait until a slot is freed.
The cost of transportation comes from the fuel consumption and maintenance of vehicles
and the salary of the driver. The driver’s payment mostly depends on the time of the
transportation while fuel consumption depends more on the length of the rout. The
drivers also need to take breaks from time to time and vehicles need to be refueled.
Usually the delivery date of orders are set beforehand, so the transport group can be
calculated for the exact they for the central storage. There are always some last minute
orders so the transport plans must be adjusted manually. The vehicles start at the same
time waiting for the packing of the first packages, and leaving together. After they return,
they can take new tours until the work time of the driver is over. The goal is to minimize
the length and time of the sum of transports while the drivers must work during their
whole work time.

9

Chapter 3

Problem Statement

The Travelling Salesman Problem (TSP) is an NP-complete mathematical problem with
a lot of literature. A salesman plans to visit its clients in minimal time and return to
its original location. The distances (in time) between the clients are represented by an
undirected, weighted, complete graph where the clients are the vertices. The algorithm
must find a minimal weight Hamiltonian cycle on the given graph. The optimum will be
represented by the optimal order of the clients.
c is the number of clients and G(E, V) is the graph where G ∈ Rc×c. There is also C : e 7→ t
where e ∈ E and t is in R, the weight. Weight calculation of a route takes O(c) time. The
only exact solution is to iterate through all possible permutations, meaning c! iterations,
each taking O(c) time.
There are multiple heuristics (see 4). Their runtime ranges from O(c2) to O(c6) where
slower algorithms are advanced metaheuristics like Genetic algorithm and Ant Colony
Optimization. Genetic algorithms are a subset of Evolutionary Algorithms and Ant Colony
Optimization is a subset of swarm intelligence-based algorithms. Multiple other algorithms
were published for the problem from both sets. Neural networks can be also used. For
example, an Elastic Network was published in 2004 [5].
The Multiagent Travelling Salesman Problem (MTSP) is an extension of the TSP, which
is Karp reducible to TSP making it NP-hard. The goal is to plan multiple trips from the
same starting location, touching each client. There are multiple variants regarding the
optimum. The optimum is either defined as the minimum sum of weights of trips or as
the minimum sum of weights of the heaviest trip. The optimum will be represented as the
distribution of customers between trips and their optimal order in each trip.
Let there be c as the number of clients and G(E, V) is the graph where G ∈ Rc×c. There
is also c : e 7→ t where e is in E and t is in R, the weight. S is the set of salesmen and ci is
the length of the trip of si where i is in N. Weight calculation of a route takes O(c) time.
Brute force calculation would take O((c+s)!) time.
All algorithms for TSP can be adapted to MTSP by simply adding extra copies of the start
location to the graph, signifying a return to the location, pretending they are customer
vertices. Of course, the weight calculation function must be changed if the second variant
of the optimum definition is used. Also, all algorithms for MTS can be used for TSP if |S|
is one.
The Vehicle Routing Problem (VRP) is a group of mathematical problems with a lot
of variances. The goal is to plan a minimal cost trip visiting each client with multiple
vehicles, but the cost is not necessarily built into the distance graph. The complete graph

10

representing time, distance, and all properties of the routes between clients is directed
and has parallel edges. Each edge from one customer to another represents the properties
for each transport unit separately. For example, bigger vehicles might be unable to take
some routes that a small, more agile vehicle can, and vehicles can have different maximal
velocities. The cost might come from consumed fuel, the payment of the driver, the rent
of equipment, etc. . Some vehicles might take multiple trips. Some customers might not
be served if it is too costly. The goal is not to minimize the cost but to maximize the
profits.
In our variant of the VRP, the orders are permanent, meaning that each customer must
be served. The income is constant, so the goal is to minimize the cost. The cost is
calculated from a complex simulation based on the order and distribution of the customers.
The simulation has the properties of the transport units, packages, goal locations, routes
redefined. The vehicles have capacity limits, and the drivers have a work time maximizing
the length of trips. Invalid trips are allowed but not accepted as results and punished with
additional costs for overload and overwork.
The optimum will be represented as the distribution of customers between trips and their
optimal order in each trip. The cost is calculated by a complex simulation adjusted to the
exact current task. Other attributes of the transport plan like the optimal start time, the
optimal gate, necessary breaks, etc. are calculated during the simulation. Resulting in a
long simulation runtime but still shorter optimization. This reduces VRP to an MTSP in
representation, meaning multiple solutions used for MTSP can be applied.

11

Chapter 4

Heuristic Approaches

There are two groups of heuristics for trip planning: trip construction and trip optimization
algorithms. Trip optimizations take an initial trip and use iterative methods to improve
it. The initial trip might be random, a result of a trip construction algorithm or some
other methods specific to that type of optimization.

4.1 Trip Construction Algorithms

• Nearest Neighbour: The Nearest Neighbour heuristic is a greedy trip construction
algorithm. In the case of TSP, only one trip is created. Starts with the nearest
location to the transport center and always selects the nearest to the last location
that is not used yet. The result is usually far from optimal since the optimal trip
might require the use of more costly edges near o the beginning of the trip. The
algorithm is very fast, having an O(c2) runtime. In the case of TSP, multiple routes
are generated. Still, the nearest location is added but there are many methods to
determine which trip is the location added to.

– The algorithm iterates through the trips, always adding the location to the next
one. Generation takes O(c2) runtime.

– The salesman with the shortest yet trip selects the not selected nearest location
to its last location. Generation takes O(c2 · t) runtime.

– like b, but trips without any locations have length equal to the minimum of a
trip to a location and back. This stops the algorithm from using all transport
units, improving on b. Generation takes O(c3 · t) runtime.

– The location for each trip is only marked first. If the same location were marked
for multiple locations the location belongs to the trip which has the closer last
selected location. The locations not getting the location marks the next nearest
location. Repeat until each location marks a separate location or there are no
free locations. Add locations to trips. Generation takes O(c2 · t)

– Like d but locations not getting the location on the first attempt does not get
a location. Generation takes O(c2)

– like e but the distance of location is also multiplied by the length of the trip
when determining which trip the marked location will belong to. Generation
takes O(c2)

– One trip is generated every time. The transport center is always suggested
as an unselected location. If the center is closer than any other location, the

12

trip is closed. If all salesmen had a trip but not selected locations to remain,
the salesman with minimal cost trip continued selecting new locations, not the
center.

– Trips might be built from both ends always taking location nearest to both ends
adding it to the nearest end. In the case of VRP, a simulation is run. Since
the vehicles have the capacity and the goal is to use the minimal number of
vehicles, one trip can be generated at a time. The actual trip is generated with
all vehicles. Each vehicle continues until one of its capacities exceeds its limit.
The version with the least cost per completed order is selected for the trip. The
next trip is generated with the left vehicles. Its generation takes O(c2 · t)

• Cost based probability: The same as the nearest neighbor but the chosen location
is not always the nearest. First, a weight is calculated from the reciprocal of the
distance of the location. The choice is random and each location gains probability
proportional to its weight. The heuristic may run multiple times taking the best
result. The heuristic may run also with different metrics with convergence to the
nearest neighbor heuristic, meaning 100

• Greedy: Sort the edges by cost. Always take the edge with the minimal cost
unless it creates a not Hamiltonian cycle, remove it otherwise. This generation for
TSP takes O(c2 · log(c)) because of the sorting. In the convergence remove first the
transport center. Then find a Hamiltonian cycle on the rest of the graph. Remove
the t most costly edges. Connect each subtour to the transport center with two
edges. Generation still takes O(c2 · log(c)). In a more advanced approach: Let there
be a and b customer locations in the Hamiltonian cycle. The cost of a return to
the center instead of a->b is the cost of a to center plus center to b minus a to b.
Collect edges with negative remove cost. Break the cycle by removing the t edges
of the minimal and negative removal costs. If there isn’t t then fewer trips will be
generated. Generation still takes O(c2 · log(c)). In the case of VRP, the Hamiltonian
cycle is generated the same. The center is added back, and all vehicles start the
route with each location. The vehicle with the lowest cost per customer starts with
the trip resulting in the trip with the best ratio. The vehicle returns if capacity is
exceeded, and the next vehicle continues with the next location on the Hamiltonian
cycle. Generation takes O(t · c3) runtime at a minimum.

• Insertion heuristic: Starts with the shortest edge as a cycle of two locations. Add
a not included location with the closest location to any of the included locations.
Add the selected location into a location that causes minimal cost increase. Continue
until all locations are added. Generation takes only O(c2) runtime. In the case of
TSP and VRP, the same method can be used as in the case of the Greedy heuristic.

• Advanced insertion heuristic: Starts with the convex hull of the locations as a
tour. Find the optimal insertion location of each location and choose the location
with the least insertion cost and insert it. Continue until all locations are inserted.
Generation takes O(c2 · log(c)) runtime. In the case of TSP and VRP, the same
method can be used as in the case of the Greedy heuristic.

• Christofides: Find a minimal spanning tree on the graph. Duplicate all its edges.
Find an Euler cycle, then remove duplicates from the cycle. Found reduced cycle
will be a Hamiltonian cycle. Generation takes O(c2 · log(c)) runtime. Reducing the
Euler to the Hamiltonian cycle takes O(c), but reduction can be started from any
position. A better result can be found by trying all positions and taking the best

13

Hamiltonian cycle. In the case of TSP and VRP, the same method can be used as
in the case of the Greedy heuristic.

• Extended Christofides: Find a minimal spanning tree on the graph. Take all
vertices with odd degrees, and find minimum weight matching on the subgraph of
the taken vertices. Merge two graphs and find the Euler cycle. Reduce the Euler
like in Christofides. In the case of TSP and VRP, the same method can be used as
in the case of the Greedy heuristic.

4.2 Trip OptimisationAlgorithms

• 2-Opt: Take one Hamiltonian cycle. Iterate through all two edges of the cycle.
Invert the order of vertices between the two edges. If the new cycle is better, keep it,
if not, revert the last modification. Continue iteration and repeat until no two edges
result in improvement. One iteration takes O(c2) runtime since all two edges are
checked. Cost recalculation is not necessary since the cost difference comes only from
the two removed and two added edges. Required runtime is more if the direction
of the edges matter, the wrong data structure is used, or cost calculation is more
complex. In the case of TSP and VRP, the same method can be used as in the case
of the Greedy heuristic.

• simplified 2-Opt: Same as 2-Opt but every two vertices are checked, and they are
switched. This variant requires less runtime if edge direction matters or array data
structure is used, but more complex cost calculations still slow it significantly.

• 3-Opt: Same as 2-Opt but three edges are used and the inversion of all three cycle
segments are tested. Takes at least O(c3) runtime. A simplified version can be also
used, like simplified 2-Opt.

• k-Opt: Same as 2-Opt but k edges are used and the inversion of all k cycle segments
are tested. Takes at least O(c ·k) runtime. Multiple k-Opt algorithms could be used
together. For example, starts with k=2, k-Opt. If no more improvements are found
then continue with an incremented k. If any improvement is found by higher than 2
k, decrements k. A simplified version can be also used, like simplified 2-Opt.

• Lin-Kernighan [7]: Same as adaptive k-Opt but a complex calculation is added
to determine the correct k necessary to improve in each iteration. The calculation
is quite complex, but in the case of TSP the found local optimum will be only two
percent worse than the optimum itself. The necessary iteration count is unknown
however and one iteration takes O(c2.2) runtime. The algorithm also has worse
results on VRP since the cost is graph independent and time dependent.

• Tabu-Search: 2-Opt is a neighborhood search meaning it takes elementary modi-
fications of a permutation and checks permutations it can get by applying the mod-
ification on all possible positions. However, 2-Opt stops when it does not find any
more possibilities for improvement. Tabu-search improves on this by letting changes
with negative gain in these situations. The changes continue randomly until a bet-
ter position is found. Since some modifications invert each other, the algorithm lists
the modifications that invert earlier ones. For example, since switching two values
twice results in their original order, the algorithm bans switching of already switched
values. The usage of list could increase the time requirement to O(c3) per iteration

14

for simplified Opt-2 moves, but using clever implementation with O(c2) memory
requirement this can be reduced to O(c2).

• Simulated Annealing: Simulated annealing is an improvement on neighborhood
search like Tabu-search. However instead of using a list it uses probability. It allows
moves with negative gain with a low probability and by adjusting this probability
over time it can avoid local minimums. Since it does not have a stop condition, it
can run for any time. The results of more advanced versions are comparable to those
of Lin-Kernighan.

• Banch & Bound: It is a tour construction algorithm. It iterates all possible
permutations searching for the optimum, but in an almost optimal order. As it
builds the tour it considers each customer as the next one and associates cost with
them and also a graph from the original one with reducing weights and removing
used vertices. Choose the customer with the lower cost, then that customer’s graph
will be the new graph. If the route is constructed the cost of the associated cost of the
next customer will be exactly the cost of the tour. It checks for considered subtours
of the past eliminating subtours with already higher cost. If a subtour with lower
cost is found then the search continues with that subtour. If there is no subtour left
in consideration the algorithm stops and the optimum is guaranteed. The choice of
one subtour should be interpreted as one iteration of the algorithm. This iteration
takes O(c3) time because of the graph manipulation. The construction of the first
tour takes O(c4) time however time requirement decreases since their subtour is
already considered. The method is well adaptable for MTSP, but not so well for
VRP.

• Ant Colony Optimization: It applies swarm intelligence to TSP. There are mul-
tiple agents walking the cost graph after each other. Each leaves a pheromone in
each visited node meaning a constant value marking the quality of the node. Later
agents choose vertices with higher pheromone value with a bigger probability, while
increasing the values themselves. The pheromones are also decreased in each itera-
tion, aging old assumptions. This process continues and ants are finding better and
better solutions in time. One iteration takes O(c3), meaning it is comparable with
genetic algorithms. It can be applied to MTSP and VRP by starting multiple agents
in one iteration, always moving the one with the lowest subtour. These take O(c4)
runtime per iteration since the ant with the lowest time must be found.

15

Chapter 5

Proposed Algorithm

5.1 Genetic Algorithm

Genetic algorithms are metaheuristics that belong to the group of evolutionary algorithms.
Heuristics are simple algorithms, strategies to find suboptimal solutions for optimization
problems. Metaheuristics are a subset of heuristics lacking a clear separation from other
heuristics. Usually, we call a heuristic metaheuristic if it implements a more abstract
strategy that can be adapted to most optimization problems. Evolutionary algorithms
belong to this set since they simulate a simplified model of the evolutionary algorithm
over any suboptimal solution set. They use controlled selection and mutation to breed a
more optimal solution set over the iterations.
In a typical case, the problem to solve is NP-hard, call it HP (hard problem). HP must
meet several requirements. A problem must exist for HP that is P-hard, call it LP (light
problem). HP’s solution set should be a subset of LP’s. There should be a function that
defines for each solution of LP a distance from the set of HP’s solutions, call it distance
function. In classical cost minimization problems, the goal value is unknown making
distance calculation impossible. Instead of a distance, a cost function is defined. The
goal of the optimization process is to minimize this cost. In most versions, we take the
reciprocal of the cost and call it a fitness function. This way it is easier to handle problems
where HP’s solution set is finite and LP’s solution set is infinite.
In our case, LP is the task to find a possible transport group on the given parameters and
HP is the problem to find a transport group with optimal cost. HP’s solution set is finite
but LP’s solution set is finite too. There are finite different permutations and distributions
even if their number increases factorially with the number of clients and transport units.
Therefore a cost function can be more efficient than a fitness function: cost : (Slp) 7→ C,
where Slp is a Solution of LP and C is the cost, C ∈ R+.
During the implementation of a Genetic Algorithm (Fig. 5.1) LP’s solution set is treated
as a species. The algorithm starts with the generation of the initial population (P0)
that consists of a polynomial number of solutions of LP (Slp). Every Slp is treated like
a specimen of the species and an evolutionary process is simulated. In each iteration,
survivors are selected, and others are removed. A higher probability of survival is insured
for the specimen that has a lower cost, driving the convergence. New solutions are breaded
from the survivors and the newborn specimens are mutated. Usually, two survivors are
merged to generate two new specimens keeping the original ones too and the survivors are
mutated based on pure randomness.

16

Figure 5.1: Flowchart of the genetic algorithm

The main disadvantage of genetic algorithms is their runtime. In the case of c customers
and a population of p solutions, an O(p · c) runtime is required for one iteration. This
approximation still assumes O(c) runtime requirement per operation. Any more complex
operations and cost calculations affect the runtime significantly. If p was O(c), then one
iteration took O(c2). Since at least O(c) iterations are required the whole optimization
takes O(c3) runtime. In our original version, the p was O(c2) and the optimization took
O(c2) iteration meaning an O(c5) runtime. We had to scale back population and operation
runtime significantly before applying it to one thousand customers.
There are two other variants of evolutionary algorithms worth mentioning because of their
similar mechanics and the promise of lower runtime. One of them is virus evolutionary
algorithms [11] that adds two steps to the genetic algorithm’s iteration. One step is infec-
tion and the other is destruction. The two steps take place after crossover (breeding) but
before mutation. Infection inserts advantageous elementary properties (genes) into spec-
imens. Destruction chooses disadvantageous elementary properties already in specimen
replacing them. These operations are usually applied to the newly generated specimens.
These steps can be implemented to O(n) runtime but still slow down iteration. They
are beneficial because they speed up convergence. The other is bacterial evolutionary
algorithms [12], where the selection phase is removed, and the crossover phase is replaced
with gene transfer and use mutation for different purposes. The mutation step accurses
before gene transfer. Each specimen is cloned multiple times and the mutation is applied
to each except one. One of the clones is replacing the original specimen and the step is
repeated a few times. During gene transfer, elementary properties are injected from one
of the best specimens to one of the worst specimens. This way the smaller population can
be used compensating with the cloning mechanics. p can be O(c) and most operations
take O(1) time. The only exceptions are the cloning mechanic and the ordering of the
population by cost to choose the best and worst specimen. Creating and mutating l clones
take O(c · l) runtime, and the sorting population takes O(p · log(p)). However, there are
techniques where each specimen is cloned in l examples only once and copies are kept in
later iterations reducing runtime requirement to O(l). Also, a tournement mechanic can
be used during gene transfer eliminating the need of sorting the population. This means
an O(c3) runtime in case of an O(c) p, O(c) l, and O(c) iteration, but l can be reduced to
O(1) resulting in an O(c2) runtime.
Still, we chose to experiment with genetic algorithms since they are more commonly used.
This way our research affects more people’s work. We are also more familiar with genetic

17

algorithms. The introduced new crossover operator promises to reduce runtime signifi-
cantly. Our results can be easily applied to virus and bacteria algorithms too and we are
going to experiment with those variants too.

5.2 Modified Genetic Algorithm

There are two reasons a Genetic Algorithm can get stuck in local minima. One is too slow
convergence and the other is the extinction of elementary properties, genes. If a specimen
is represented by numbers, each number is usually treated as a separate gene. In our case,
this could be an index of a customer occurring in a position of the permutation. If there
was no more specimen with a value in a position necessary to construct the permutation
of the optimal tour then the chances of such a specimen being born before the iteration
limit is exceeded is negligible.
There are two common treatments for the two phenomena. A well-adjusted boost step
can be applied to some of the population, to speed up convergence. Usually, it consists of
one iteration of local search on the specimen with the lowest cost. Also, extinct genes can
be revived by replacing some specimens with specimens consisting mostly of extinct genes
or by inserting those genes into newly born specimens. The two methods are contra-
productive. Boosting the best specimen is reducing the chance for another specimen
to replace it. If the same specimen stays in the first position it will have more and more
descendants that have similar genomes. The more similar the specimens are to one another,
the more uneven the distribution of genesis. We call this the incest effect since the best
specimen will become closer relatives. If some of the best specimens get replaced or less
advantageous genes stay in the population, the convergence slows down. By preferring
advantageous genes during injection local searches may be stuck in local minima more
easily. In the original setup bringing back, extinct genes are done by mutation, but
survival chances of those genes are very slow. As convergence is approaching local minima
survival chances to drop by an exponential rate.
Still, both steps might be necessary since both phenomena must be treated. The virus al-
gorithm solves this problem by merging the methods into one. By injecting back genes into
the population all genes have some chance and by eliminating costly edges the convergence
does not slow significantly and new edges are born. The problem with this approach is
that the two steps serve both purposes and adjusting the two processes affects each other
directly. In our solution, the steps are separated. Boosting becomes a separate step and
gene distribution treatment replaces mutation.
Another new step we added is the simulation phase. In VRP the calculation of cost for the
specimen is costly. In older versions, it is done during the selection phase. Separating it
to a new phase makes other steps easier, makes the process more ready for parallelization,
and lets us run it on way stronger computers.
So, in the modified version the optimization starts with the generation of the population
and the simulation phase. The iteration starts with the selection, followed by crossover,
then mutation (gene revival), simulation, and finally boost. Our architecture makes it
simple to switch between the different variants even turning off boost or replacing edge
revival with other mutation methods.
For local search, the OPT2 algorithms variant was implemented. This algorithm is used
on permutations. Every two positions of the permutation are selected, and the values are
swapped. After each change, the simulation runs, and the change is kept only in the case
of a better cost. The iteration is repeated until no better solution is found. In our Boost

18

phase, the local search is stopped after the first better solution to minimize the negative
side effects.

5.3 Boost

Boost as previously mentioned is local search applied to some of the population. The
target can be the best of the population to affect the convergence directly or the worst of
the population to find new unique local minima. If the local search is running too many
iterations the incest effect might take place. By improving multiple specimens it can be
reduced. So, there are three questions. Who should be boosted? Which local search
should be applied? How many iterations should the local search run?
As previously mentioned (reference background and heuristics) there are multiple ways to
specify the distance of two permutations. The distance is always specified by the amount
of some elementary modification that is necessary to transform one of the permutations
into the other. This modification might be the writing of positions, switching two values,
reversing a segment of the permutation, etc. One iteration of the local search is done by
applying these modifications in every possible way. If any better permutation is found,
the old permutation should be replaced by the new one. In some variants, it is done
immediately, in others all permutations of the iteration are tested and the best permutation
is chosen at the end of the iteration. Immediate overwrite is beneficial because the iteration
can be stopped after every test of permutation. In this case, we usually refer to this test
as a step of iteration. At the start of the optimization immediate overwrite might result
in faster convergence too.
The most common choice is the Opt-n algorithm family. In Opt-n the Hamiltonian cycle
is cut into n parts and all permutation of parts is tested trying also to reverse the permu-
tation of values of parts. In simplified versions, n positions are selected and all possible
permutations are tested. Since these optimizations take O(c(n + 1)) runtime, Opt-2 is the
optimal choice for boost. The runtime would have been reduced to O(cn) if cost calcula-
tion of permutations took O(1), but VRP simulation is more complex taking at least O(n)
time. This means Opt-2 has an O(c3) runtime per iteration per specimen.
Since simplified Opt(2) selects two positions in the permutation per step all two positions
are tested in an iteration. We could stop optimization if it got stuck in local minima or
after one iteration or after one step. We can also wait until an amount of improvement
is achived or choose a hybrid of the two perspectives. We choose to stop the boost after
the first improvement, but before the second iteration. This seemed to be the fastest we
could run it without the whole population getting stuck in local minima.
At boost the survivors can be classified into the following groups: survivors because of
their low cost (elite), survivors because of randomness (lucky), survivors because newly
born (child), survivors because of gene revival (mutant). Of course, one specimen can
belong to multiple groups and different classifications might be beneficial for the different
selection processes. If we wanted the fastest convergence, the elitist solution might be
chosen: the whole elite, elite of the elite, some of the elite, best of the elite, worst of the
elite. Newly revived genes start in mutants, then usually move to lucky, then children and
have a small chance to get into the elite. So local search might be used for the mutants
removing unnecessary edges and bringing in new competitors to the elite. Or might be
used for the lucky, so they have a better chance to pass their genes. Or might be applied
to the best child so it has a better chance to replace the best permutation. Even a more
complex approach could be implemented where a function is defined too as u : Slp 7→ y

19

where y measures the uniqueness of the given specimen. The specimen with the maximal
y per cost should be chosen.
For the sake of simplicity, we choose the elitist approach. Since our goal was to measure
the effectiveness of crossover operators and other approaches could deform the results
complicating the interpretation of statistics. The best specimen is affected, but the small
boost those not increase the incest effect.
So, we use simplified Opt-2 on the best specimen until the first improvement or the end
of the first iteration.

5.4 Maintaining Gene Diversity

As previously mentioned there are two ways of reviving genes. The genes can be generated
by replacing old specimens or by inserting extinct genes into the old specimens. Which
should be used? Which child should be affected? Which genes should be revived? What
should be perceived as genes?
We observed that the cost of genes does not come directly from the position of a value in
the permutation. It comes instead from the neighboring of the values. This means that
a gene is an edge. First, the extinct edges must be identified. We create a whole graph
with the same vertices but different edges that have the amount of said neighboring in the
population as weight. Let’s call this graph edge counter graph. They initialize by zero
then we iterate through each specimen of the population. After counting we can simply
take the edges with zero weights. This takes O(p·c) runtime, so O(c2) in our case. Let e be
the number of extinct edges. e is also O(c2). Another solution could be to skip calculation
and simply revive all edges. This removes the cost of counting but maximizes the cost of
insertion.
We can take an edge from ca to cb and insert it by moving the cb right after ca or by
moving ca right before cb. If the original edges ca to cc, cd to cb, and cb to ce existed
then moving cb means the destruction of these edges and the creation of ca to cb and cb
to cc and cd to ce. This is unwanted behavior because by the insertion of one edge other
edges might go extinct. If ca exceeds cb in permutation, we could simply invert the section
from cc to cb, where cc is the element after ca. This means two edges are destroyed and
two are created. This is exactly an Opt-2 step. In this case, we assume that the edges are
undirected. If there is a significant difference between the edges between two locations,
this means the destruction and creation of 2 · (d + 1) edges. If a permutation is stored as
a list, finding the position of ca and cb takes longer because O(c) pointer calculations are
necessary, but moving ca and cb to the right position takes O(1) time. If a permutation is
stored as an array, finding the position of ca and cb is fast but inserting means other values
must be moved resulting in O(c) runtime. Insertion takes O(c) time anyway. Inserting e
edges takes O(c3) time. This is a big deal because it means O(c3) iteration time. A good
strategy might be to run insertion for every n iteration or inserting only O(c) edges per
iteration.
Construction of new edges might be faster. It should be started from a vertex of the
counter graph with zero edges. Generate cycle by always taking the edge with the lowest
weight not leading to already visited vertices. We increase the weight of all edges. O(c) new
specimen is enough, but generation still takes O(c2) time because edges must be checked.
Time can be reduced to O(c2 · log(c)) by sorting the edges of each vertex beforehand. If
there are no zero edges the lowest cost edge might be selected or the edge with the lowest
cost ·weight. Cost can be further reduced to O(c2) by choosing a completely random edge.

20

If we choose new specimen construction and revival of all edges modulo cycling permuta-
tion generation might be used. It will be introduced in a later section (reference section).
We choose modulo cycling permutation generation. We reset exactly c-1 specimen instead
of mutation of every second child. We chose it for its minimal runtime, and because it can
be applied to the multiplicative of c. Since these genes’ survival rate drops exponentially
by iterations the reset is running in each iteration.

5.5 Selection Process

In the standard genetical algorithms, the selection process means the deletion of half of the
population. Since the same amount of children are generated, p / 2 instances are deleted
and initialized. We chose to flip a flag in the specimen and use them as child specimens.
Our goal during selection is to keep the best specimen and give better chances of selection
for the better specimen. The elitist solution is to sort the population by cost and select
the better half of the population. This leads to fast convergence but local minimums and
incest effect. The other solution is to select specimens by pure chance. This can eliminate
any convergence leading to aimless search in the solution set.
We chose a hybrid of the two where a quarter of the population is selected elitist, and
one quarter is selected randomly. This means ordering them is necessary, and it takes
O(p · log(p)) runtime. Convergence is still good and can be adjusted in many ways. This
is also the most standard approach. Sorting the population had other advantages in other
steps and the collection of statistics.
There are several advanced approaches.
One of them is tournement selection [8]. The population is shuffled and sliced into pairs.
The specimen with the best cost is kept from each pair. This means at least a quarter
of the best specimen is kept and survival chance is directly proportional to the backward
order of the specimens. It is because if a specimen is at the back quarter line of the
population then one fourth of the population leads to its selection if chosen as a pair. A
less elitist solution would be to slice the population into groups of four and select the best
and random. A more elitist solution would be to slice the population into groups of four
and select the better two of the four. Each version takes only O(p) time since ordering is
not required.
Another method is the roulette wheel selection method [8]. In this version, the sum of
the reciprocal cost of specimen in population is calculated. A random number is selected
between zero and the sum. We iterate through the population reducing the value by the
reciprocal of the specimen’s cost. If the value drops below zero, the specimen is selected.
The selected specimen is removed from the further process. Selection is repeated, taking
O(p2) runtime. It can be reduced by preparing n random numbers between zero and one.
These numbers should be sorted. We take the first number, make a copy, and reduce it
with cost per sum. If it drops below zero, the specimen is selected. The sum is reduced
by the reciprocal of its cost, the second number is reduced by copy and value, and scaled
by sum / old sum. The first value is removed. If the new first value is negative, we step
backward adding a reciprocal of the cost of the specimen until it raises over zero. We
repeat iteration until the number array is empty. In another version, one specimen can
be selected multiple times. The random numbers are generated between zero and sum
and sorted. Value is reduced by reciprocal of cost. In case of selection only the value is
removed and the second value is reduced by the copy and other value. If it is negative
then the same specimen is selected again. Both versions take O(p · log(p)) runtime.

21

During selection, the reciprocal of the cost was used. This is dangerous because of the
accuracy of numerical types. Values may drop to zero or exceed maximal value. We could
use more complex numerical types instead of values, but it would multiply runtime by
a higher polynomial. The solution is to select specimens for deletion instead of survival.
This way the weights could be proportional to cost.
Since we overwrite some of the specimens, to deal with gene extinction, a new selection
task should be added. The specimen to overwrite should be collected into a separate
group, next to the survivors and children. This means that not p / 2 but (p - r) / 2
specimen should be selected for survival, where r is the amount of the reseted specimen.
This way the mutation step can be removed entirely. If one-third of the population is
selected as parents and one-third is selected for reset then the tournement selection can
be used. Shuffle population and sort it into groups of three. The best of the three is a
survivor and the worst of the three is reset. The middle one might be overwritten by the
best’s child.

5.6 Initialization

The standard way of initialization of the population is pure randomness. There are multi-
ple ways we found in implementations and publications to generate purly random permu-
tations. Therefore the most trivial solution is to use one-chromosome representation and
build c+s long permutations. A common mistake is to choose random numbers between
1 and c+t adding them to a list. If the list already contains the number, skip it and
continue until the list is c+t long. The biggest problem with this method is that it takes
multiple generations to generate the last values, because the more value is already present
the harder it is to choose randomly a number not present yet.
A better solution would be to use perturbation. Take the values in any order and switch
two randomly selected values 2 · (c + s) times. It is proven that all possible permutations
have the probability using this method. It takes 4 · (c + s) random number generations
and writing of numbers to use this method. Another solution can be to create a c + s
long list of all the values and choose a random one every iteration, removing it from the
list and adding it to the permutation. This takes only c + s random number generations
and writing but slower because of using lists. It can be further improved by using a c + s
long array and in the ith iteration choosing a random position between i and c + s.Than
the value in position is switched with the one in the ith position.
The first intuition to speed up the optimisation would be to start with a better population.
Specimens of the population could be created using some kind of tour constructing heuris-
tics or randomly but improved by some kind of iterative optimisations. In the first case it
is a big challenge to construct multiple kinds of specimens. Usually some kind of random
construction is used with cost based probability, like the nearest neighbour variant. The
resulting transports are diverse and have better cost, but still some genes will be extinct
from the initial population. Other versions improve by giving lover probability for some
edges if they mean other good edges get excluded and building the rout from multiple
locations. The other versions with iterative optimisation use Opt-2 or other method keep-
ing the time requirements under O((c + s)3). These versions still require more time than
most construction methods. These kinds of optimisations tend to drive the optimisations
into local minimums. If only a part of the population is optimized or created using some
heuristics the effects are worse becouse of the incest effect.

22

We chose to generate diverse populations instead optimising for even distribution of genes.
This can be done multiple ways. We could use a nearest neighbour with a cost based
probability variant. If we initialize a complete graph’s edges with 1 as cost and double
the cost of all edges selected, that means edges never used gain higher probability over
time. This means O((c + s)2) generation for each specimen. We found a better solution
called modulo stepper initialization. In this initialization a completely random population
is chosen as base permutation. Other specimen’s permutations are generated by walking
this permutation with different step sizes equal to the specimen’s index relative to the base
specimen. All values touched during walk are copied to the new permutation, if already
existent values are touched they are skipped. If more specimens can not be generated from
the base permutation, then a new base permutation is generated. This way generation
takes O(c+s) per permutation and the distribution will be almost even. We could assume
that by forming permutations from the base permutation, we can get a population that is
too regular. This could cause stucking in local minima, but we didn’t experience any signs
of it. By always using a random permutation as base all permutations will be random.
A similar state to populations generated by Opt-2 can be achieved in the first cycle of
the optimization (c iterations). The population can be generated in O(c · p) time using
minimal memory space.

5.7 Crossover Operators

During the crossover phase, the survivors are paired as parents and two new transport
plans are generated, referred to as the children of said parents. Usually, a child is based
more on one parent than the other so the parents are referred to as primary and secondary
parents. The goal is to mix the properties of the transports in a way that keeps the essence
of both parents, so the children have a higher chance to inherit the advantageous ones.
The operation is called crossover and the variant used to generate the children is called
crossover operator. Usually some values are set based on the primary parents and then the
empty positions are filled with the missing values in the same order the values are in the
secondary parent. That’s what we are going to refer to as “fill based on the other parent.”
or “ filled in the order of the other parent”. We used fourteen different crossover operators
that were published for the TSP problem. Therefore one-chromosome representation was
used in most cases. All operators are listed in this section.

• Order Crossover [6] (OX1, Fig. 5.2): Two children are generated and the pri-
mary parent of one is the other child’s secondary parent. First, two positions are
randomly selected and the sequence between the positions is copied to the children
from their primary parent to the same positions. The missing values are filled based
on the secondary parent. This is fast and most edges are inherited by the children.
If the segment length is long then the child is based most on its primary parent,
while if the segment length is short then the secondary parent becomes dominant.

Figure 5.2: Example for order crossover

• Sorted Match Crossover [6] (SMX, Fig. 5.3): One child is generated from
two parents. The parents are searched for sequences consisting of the same values.

23

The sequence must have the same start and end value, length and values present in
it. The only difference will be the order of the values in the middle. The cost of
the sequences is measured. The child is filled with the higher cost parent’s genes
replacing the sequence with the other parent’s. The operator requires O(c2) CPU
time for finding the sequence, but the simulation can increase it further. We removed
the simulation from the operator and made it generate two children. It has slower
but still good convergence and runs significantly faster. We used a simplified, faster
variant, where two children are created by switching the sequences. This operator has
the highest possible inheritance rate since the child will contain only genes present
in parents. The generation takes O((c+s)2) runtime, but provides the most stable
convergence, that’s why we kept the operator.

Figure 5.3: Example for sorted match crossover

• Maximal preservation crossover [6] (MPX, Fig. 5.4): One child is generated
from two parents. The length and the starting position of the sequence are randomly
selected. The sequence is copied from the primary parent to the child’s beginning.
The missing values are filled in the other parent’s order. Since the length of the
sequence is restricted, most genes are inherited from the secondary parent.

Figure 5.4: Example for maximal preservation crossover

• Partially Matched Crossover [4] (PMX, Fig. 5.5): It is similar to the OX.
The difference is that the elements not in the sequence are copied. The positions of
the sequence are filled in the order of the other parent.

Figure 5.5: Example for partially Matched crossover

• Cycle Crossover [6] (CX, Fig. 5.6): Two children are generated from two par-
ents. Optimisation starts by copying a random value from primary parent to child
into position and follows the next iteration. Finds the last copied value’s position
in the secondary parent. Copies the value of the position from the primary parent
to the position in the child. If the child contains the value, the iteration ends. The
missing values are filled in the secondary parent’s order. This results in less inherited
edges since the cycle can be very small or the copied values may not neighbour each
other.

24

Figure 5.6: Example for cycle crossover

• Voting Recombination Crossover [6] (VR, Fig. 5.7): One child is generated
from multiple parents. l (smaller than parent count) limit is chosen. If more than l
parents have the same value in a position then the value is copied to the child into
said position. The empty positions are filled with missing values in random order.
In our variant, two parents were used and l was two. The runtime was high because
of the randomization. Since more than two parents would be needed for an efficient
user, the convergence is very low. In the case of a local minimum, many permutations
become copies of each other. A too high p with too low l would stop the algorithm
from getting out of the local minimum. In the current form, the algorithm is a useful
noise in the case of local minima. The runtime is O(p · n), so it is optimal in the
case of a given p.

Figure 5.7: Example for voting recombination crossover

• Genetic Edge Recombination Crossover [6] (EX, Fig. 5.8): We live with the
presumption that the direction of the edge is of secondary importance. One child
is generated from two parents. An n times n matrix is generated, where each line
corresponds to a value, and the line is filled with the values neighboring them in
either parent. For each value, neighboring values are collected from parents into a

25

table. We choose a random value to be the first element and remove it from the
table. In some variants, the value must be from any end of any parent. We choose
one of the values from its line randomly from the ones with the least values in their
lines. The value is copied and removed from the table, the line is cleared. We repeat
until the child is filled and every time a chosen value line is empty, a random missing
value is chosen. In a modified variant the edges in both parents have priority. This
crossover is efficient because of its optimal O(n) runtime and great emphasis on edges
instead of values.

Figure 5.8: Example for edge recombination crossover

• Heuristic Crossover [6] (HX, Fig. 5.9): One child is generated from two parents
and the first value of the child is chosen randomly. In each iteration the neighboring
values of the last inserted value are collected from parents. The neighbours already
in the child are deselected. The next value is randomly chosen from the neighbours
with probabilities proportional to the cost of the route between the last inserted and
the neighbour. If all neighbours are already in the child, then a random missing
value is selected. The iteration is repeated until the child is filled. According to
statistics, on average sixty percent of neighboring values are inherited from parents.
The weight calculation can be time-consuming, but usually a simplified calculation is
used. With simplified calculation HX has an optimal runtime, and a fast convergence,
however the local minimums are not avoided. The crossover may be more adaptive
if it chooses random values with a small probability even if neighbours are missing
from the child.

26

Figure 5.9: Example for heuristic crossover

• Alternating-Position Crossover [6] (AP, Fig. 5.10): One child is generated
from two parents, and the primary parent’s first element is copied to the child.
During iteration it keeps switching between the parents, always taking the next not
touched value of the parent. If the value is already present in children, skip the
value. Continues until all positions of children are filled. This generation breaks
almost all edges making inheritance low, however edges present in both parents have
higher chances.

Figure 5.10: Example for alternating position crossover

• Alternating Edge Crossover [6] (AEX, Fig. 5.11): The sequential represen-
tation is used and a random value is chosen as the first element of the child. The
iteration keeps switching between the parents. Always takes the value following the
last inserted value in the actual parent. In case of values already present in the child
a random value is selected instead. AEX is a flexible operator that rarely gets stuck
in local minima. It has a slow convergence but a high inheritance rate.

Figure 5.11: Example for alternating edge crossover

• Order Based Crossover [6] (Ox2, Fig. 5.12): Two children are generated from
two parents and multiple positions are selected randomly. Values from selected
positions are copied from primary parents to children. The unselected positions are
filled with the missing values in the secondary parent’s order. OX2 breaks most
neighboring pairs resulting in slow convergence. OX has better convergence, but
OX2 has a lower chance to run into local minima.

27

Figure 5.12: Example for order based crossover

• Distance Preserving Crossover [3] (DPX, Fig. 5.13): Two children are gen-
erated from two parents. Values that are in the same positions in both parents are
copied to the child into position. If a value is in the jth position of the primary parent
and ith position of the secondary parent, then copy the value from the secondary
parent’s ith position to the child’s jth position. DPX has a similar convergence speed
to CX but is a bit more flexible.

Figure 5.13: Example for distance preserving crossover.

• Position-Based Crossover [6] (POX, figure 5.14): It’s the same as OX2 but
only a few positions are selected and the parent’s roles are switched.

Figure 5.14: Example for position based crossover

• Subtour chunks crossover [6] (SCX, Fig. 5.15): One child is generated from
two parents using sequential representation. We are taking a random sequence from
the first permutation and follow up with a sequence from the other parent switching
until the child is filled. In the case of an already used position, a random other
unused position is chosen. SCX is resulting in one of the best convergence with a
lot of flexibility.

Figure 5.15: Example for subtour chunks crossover

28

5.8 Mutation

Mutation and crossover have opposite goals and a similar dynamic to boost and edge
distribution correction. Crossover’s goal is to gain similar specimens to already existing
ones with minimal amount of new genes, while mutation’s goal is to create new genes. High
mutation slows down convergence while weak mutation increases the risk of getting stuck
in local minima. Not all children are mutated, only a specific ratio, usually 50There are
multiple ways to mutate a specimen, even if edge distribution corrections are not included.

• Relocation of gene of specimen. In this case two random positions are chosen. One to
select the value of that position and a second as the new position. The disadvantage
of this method is that the values between the two positions must be shifted. In the
case of arrays shifting the segment requires O(c+s) time.

• Swapping two genes in the permutation. This requires two random index generation
and O(1) runtime.

• Shuffling multiple genes in the permutation. This requires O(c+t) random index
generation and O(c+t) runtime.

• Reversing a segment of the permutation. This requires two random index generation
and O(c+s) runtime. The fastest implementation could be

• Shuffling a segment of the permutation. This requires two random index generation
and O(c+s) runtime.

• Shuffling segments of the permutation. This requires two random index generation
and random numbers between 1 and six. The two indexes are the breakpoints and
the random number will determine the new order of the three segments. Process
still takes O(c+s) runtime.

• Cost proportional probability can be applied to these operators randomization too.
Each operator destroys and creates new edges. We should choose to break costly
edges with higher probability. Adds an O(c+s) timecost for the weight calculation
and makes the return of costly edges harder. Another solution could be to give higher
probability for modifications that create lower cost edges. This can significantly
increase the time requirement of the modification.

Since mutation and edge distribution correction have similar purposes, we chose to merge
them into one step. We used the reset of multiple children to complete the phase in
O((c + s)2) using the modulo stepper method. The new specimens are rarely optimal and
have an exponentially increasing chance of death, but have a good chance to crossover
with better specimens inserting rare edges back into the population. We also run setups
with the value switching and segment reversing variants. We found sinergies competing
with SRX, but SRX worked best with the resetting method.

29

Chapter 6

Statistical Racing Crossover

In most cases, the population is squarely proportional to the number of customers. Since a
crossover operator has to fill the genes of a specimen it has at least an O(n) runtime. The
crossover phase takes at least an O(n3) runtime. In the case of a thousand customers, the
operator must run a billion times. The operator must be simple and as fast as possible.
Speed is primary compared to the speed of convergence and avoidance of local minima. The
currently used operators are fast enough, but the simplicity stops them from performing
either at the speed of convergence or at the avoidance of local minima. More complex
operators exist but they require at least O(n · log(n)) runtime.
Our goal in designing the new operator was to combine the advantages of the previously
mentioned operators with a minimal additional time cost. This is achieved by running one
of the operators at a time. The only additional cost is the gathering of statistics and the
selection process. The selection process runs only once per iteration minimizing the costs
further. The operator had multiple variants, we are presenting the best-performing one.
The Statistical Racing Crossover (SRX, Fig. 6.1): The first time the operator runs
it initializes the statistical data. This way SRX doesn’t require resources before it is in use.
Two counters are stored for each operator, the run counter and the improvement counter.
The run counter is incremented every time the SRX runs with the operator selected. The
improvement counter is incremented every time the child’s cost is better than a parent’s.
It is increased by two for the primary parent and by one for the secondary parent. The
run counter is initialized as 2 and the improvement counter is initialized as 1.
On the first run of each iteration, the previous operator’s statistics are aged if there were
any, and a new one is selected. On aging, the run and improvement counters are multiplied
by 0.9 and incremented. The incrementation is necessary because the counters can hold
only whole values, and the aging could reduce them to 0 otherwise. The selection is
random, but a probability is insured for each operator proportional to their improvement
run ratio. The goal is to favor operators with faster convergence, but leave an opportunity
for operators with lower convergence to improve their statistics. Aging causes operators
stuck in local minima fade faster while leaving the probability of the aged operator the
same.
The selection process resembles the roulette wheel selection method [10], but used to select
only one element. Also there are multiple other ways to measure the success of an operator.

• SRX with equal parents: This variant assumes that the secondary and primary
parents have the same importance in the child’s creation. In this case, the counter
should be increased by 1 for each. We observed other tendencies. Most crossover

30

Figure 6.1: SRX operator flowchart

operators copy values from the primary parent and fill empty positions in the sec-
ondary parent’s order breaking most neighboring of it resulting in less similarity
with the secondary parent.

• SRX with preset ratio: The importance ratio of the two parents depends on the
operator. We measured the weight of the parents in separated runs. We found that
the correct ratio varies within optimizations. We observed an even higher variance
between data sets making it unreliable. It must be adjusted to the input data based
on statistical assumptions.

• SRX with dynamic ratio: The importance of parents can be measured by count-
ing the edges inherited. We observed better results, but additional runtime increased
from O(1) to O(n). Conversion to sequential representation is necessary, and two
comparisons are iterating the new arrays. Overhead overwhelmed the time won by
needing less iteration during our tests.

• SRX with improvement rate: Another observation we made was the importance
of the improvement rate. If the increase was the ratio of the parent’s and child’s
cost, the convergence had been faster at the start of the optimization. However, later
the improvement slowed down quickly. Some operators were better at improving
specimens with high cost while being bad at improving the leading ones. Since
mutation produces new specimens with a high cost every iteration, these operators
led the race instead of others, who were still capable improve optimum at a slower
rate. Further experiments are necessary to identify operators necessary to remove.

• SRX with bounty: There should be an extra increase called bounty for improving
specimens with the best cost. The lucky ones getting the first bounties led the
race. Leading operators collect more bounty, and they fall back very slow. We
experimented with different bounty amounts, but it seemed impossible to pinpoint
the correct one. We tried a higher aging rate, but it meant a new parameter with
an optimum dependent on data.

31

• SRX with parent cost penalty: The lower the cost of the improved specimen
is the better. That means the increase should be divided by the parent’s cost.
This meant aging like effect since the specimen had lover costs in later iterations.
However, the aging was faster on a specimen that was run rarely. This made racing
impossible for some operators losing in the first iterations.

• SRX based on parent position: In a population sorted by cost, the further for-
ward a specimen is, the harder it is to improve it. The key to long-term convergence
is to reward improvement on the specimens ahead. The increase could be the index
from the back of the population or polynomially proportional to it. This version
was promising but made sorting the population a necessity. We prefer the proposed
version for its wide range usability.

SRX is useful to collect statistical data about operators without running a different op-
timization for each. It combines the strength of the built-in operators. When operators
with fast convergence lead into local minima, others got higher weight and find better
transport groups. In the long term, the position of each operator is stable within the
race. The positions are changed regularly marking a local minimum but the contestants
are realigned to the original order within a few iterations.

32

Chapter 7

Implementation and Technologies

7.1 Kotlin

The algorithm was implemented in Kotlin. Kotlin is a programming language developed
by JetBrains in 2011. It replaced Java on Android as the official language of the platform
in 2019, because of disagreements between Google and Oracle. Since then it has gained
bigger popularity than Java and Dart (programming language of Flutter, a multiplatform
solution by Google) (according to stack overflow statistics). It runs on JVM like java
making it multiplatform but can be translated to JavaScript and C++ too. On JVM all
java libraries and frameworks are accessible and work well with the already present Java
codes making the switch from Java to Kotlin easy. Kotlin has multiple features that were
announced as the future for Java years later. A multiplatform solution was also added in
2020 as a competitor for Flutter.
Kotlin brings a typescript-like syntax to JVM where the name of variables comes before
their type. The language is strongly typed but marking the type of the variables is
usually optional. Kotlin also introduces properties and lambdas with a cleaner syntax.
For example, if the lambda parameter is the last parameter of a function then it can be
written into curvy brackets right after the call brackets instead of into the call brackets.
This results in a statement-like syntax (like cycles, if-else, switch) making the introduction
of new structures more transparent. Attributes are removed from class bodies forcing the
best practice of properties. A field variable replaces it that can be manipulated from the
get and set of the property. Semicolons are optional in Kotlin if expressions are in separate
lines removing thousands of unnecessary characters from bigger code bases. These features
can be misinterpreted as syntactic sugar, but they improve code readability, coding speed,
and extendibility significantly.
Kotlin also has multiple functionalities present in C#, but with cleaner or more Kotlin-
like syntax: properties, operator overload, extension functions, lambdas like LINQ, data
classes instead of structs, async-await, as, yield, var, when instead of switch expression,
etc.
Kotlin’s most famous feature is null safety. In Java, null pointer-based errors are the most
common. In Kotlin all types are non-nullable by default meaning variables can’t store the
null value. Of course, all type has a nullable variant, but they are used only if necessary,
so the risk of null values is eliminated. When nullable variants are used Kotlin forces null
check on every use and introduces new structures for it. Data can be stored in values
or variables marked by val or var making the reference read-only or writeable further
improving code safety. Only var properties have a set method. Set and get can have

33

 https://kotlinlang.org
https://insights.stackoverflow.com/survey/2021#most-loved-dreaded-and-wanted-language-want

different visibility. Properties must have an initial value or must be marked by lateinit
signaling the risk of undefined value.
Kotlin also introduces coroutines. Coroutines are an alternative to thread pooling. In
this solution, a few threads are used for thousands of asynchronous tasks. A thread takes
the first task but does not stop on completion, it takes the next task instead and keeps
running. This makes the program compatible with every computer’s thread capacity and
reduces the cost of the asynchronous behavior. We do not use anync await in Kotlin since
it makes debugging difficult. A run blocking lambda function is used instead, that waits
until all asynchronous tasks are completed, and coroutine scope is used to launch new
coroutines.
Kotlin has a big focus on fluent chaining of functions. They introduced special extension
functions with lambdas available for any type that make modifications easier. The four
functions are let, run, apply and also. Let and run returns the value returned in the
lambda, while apply and also returns the value the function was called on. The value
is seen in let and also as a parameter supporting embedding better while run and apply
makes it available as this making syntax clearer.
Kotlin keeps improving every year. They are taking features from other languages, mak-
ing improvements on syntax and coming up with new features. Their biggest focus is
multiplatform and efficiency now. The language was chosen for implementation for its
elegant, clear design, the promise of fast coding, and safe handling of data structures.
Most features of the language were used during development proven to be usefull.
We used Hibernate and MySQL Connector for database communication. Hibernate is a
flexible ORM layer for java. It can be configured from a hibernate.cfg.xml file where all
data classes must be listed. The data classes can be further configured by annotations
handling relations between schemas, keys, and mapping. The schemas are automatically
updated on configuration based on the data classes. Columns are not removed.
Ktor was applied for web communication. Ktor is a library for Kotlin supporting REST
based web communication. It can be configured from application.conf and the Applica-
tion.main() extension function, where install lambdas can be called. It maps URL-s to
functions by adding said functions to the Rout object in the install(Routing). Apis are
defined as extension functions on said Rout object. Listeners for application events can
be added by calling the environment.monitor.subscribe lambda.
We used apache fluent for calling apis and Open Trip Planner for routing.

7.2 React

A React client was created for the project. React is a technology developed by Facebook
making web development easier. The HTML of the webpage is rendered for every sig-
nificant state change. The programmer can create new HTML components by defining
functions that return HTML based on the state of the component. The state can be han-
dled by Typescript code while HTML generation is done by embedding HTML code into
the function. The component can react to state changes by hooks.
We can define properties for the component by adding properties to the function. The
components can be embedded into each other’s HTML where properties can be set like
other HTML components attributes. The inner state of the component is stored in the
properties and state variables. We can define state variables by the useState hook that
returns a reference to the active state and to a set method of said state. Other hooks

34

 https://reactjs.org

can subscribe to those hooks by useEffect hooks that contain a reference to the state
variables and a lambda as the reaction to modification of said variable. The lambda is
triggered if any referenced state variable gains new value. Important to note that reference
modification is necessary to trigger.
In a usual use case buttons and all inputs manipulate state in the component or in its
parents. Prents are reached with callbacks injected by parents as lambdas. The modifica-
tion is captured by a useEffect hook making modifications, interacting with the logic, and
setting other state variables. State variables are embedded into the HTML code resulting
in other layouts.
The main advantage of React is its simplicity. It is easy to structure the user interface and
produce reusable codes. More hooks can be introduced to cover more complex situations.
React is modular, flexible, and scalable making it optimal for web development. The
main disadvantage of react is the render mechanism. The HTML is rendered for every
state change of the component meaning if the screen displays a loading line in the root
component, the whole screen was rendered every second. This can mean flashing UI in
case of more complex views. The only solution is to minimize components that need render
and store state variables directly in the effected components.
React’s simplicity also has a payoff. Multiple supporting systems should be added for
larger applications. Event processor pattern can be used to replace the callback system,
so they do not have to be passed as parameters. A central data storage can make it
easier to handle data relevant for multiple components. Listeners should be added for
most central data. A separate framework is necessary to handle communication with the
server. We used portable-fetch and url for this purpose.
The web interface was generated from swagger script in swagger editor. The script supports
all forms of REST communication and data structures. The main advantage of this method
is the well formatted documentation that can be also generated. The resulting code is rich
in comments and well structured. The data classes are also generated making the generated
code suitable starting points of the client. Custom generators can be written in java to
support frameworks not listed on the editor webpage.
Framer library was used to avoid css usage simplifying development. It introduces frames
as an easy weight base type for components. Also adds Stack as a base layout and scroll
for displaying lists. Stack is like Android’s linear layout and Scroll makes implementation
of scrollable views easy. Only the input HTML component is necessary to make it a
fully capable UI system. Framer also has a desktop editing software where drag and drop
and scripting can be mixed for faster production. We switched to pure scripting because
of a lack of npm package install option in the framework and windows support. The
functionality was added this year making the tool optimal for production.
For displaying maps with the routes we used mapbox. In mapbox lets you customize the
map display and load it through its online api. We used the mapbox-gl package to display
and load the map into the application. The map can be moved, zoomed and tilted. A
reference must be made to a div in our HTML to set it as a container for the map in the
constructor. We can set data sources for features of the map and connect them to layers
that display them. Changes can be made by setting the data for the source or removing
and adding layers. Event listeners can be added by the on lambda function.

35

7.3 Client

The client functions similar to a wizard menu always moving to the next screen with a
button at the bottom. The process is segmented into five steps. All screens consist of a
left menu and a map.
The first screen is for setting up the task. Transport locations and transport units can
be added, removed or edited here. The whole task can be saved and all previously saved
tasks can be loaded. Here the map is interactable and can be adjusted to fit the added
locations.
After the task is set the server calculates the distance between every two transport loca-
tions. The user must wait until it completes.The calculated routes appear continuously
on the map which is not interactable anymore. The continue button and an estimation
for the best and worst cost appears on completion.
After routing the user can select the algorithm type to run and the stop conditions. The
setup can be also saved or loaded from the server. On the next screen the algorithm is
started but not running. It can be stepped by iteration or as many iterations as many goal
locations are defined. The results are regularly refreshed on the map. The algorithm can
be also set to run. In this case it runs until the time limit or iteration limit is exceeded.
Functionality was the main focus of the development of the client, but a pleasant look
was our secondary objective. This was achieved by the rounded corners, use of icons
instead of text whenever possible and use of multiple shades of gray. This resulted also
in a more clear, intuitive, easy to see through design, since the shades segment the screen
into components and guide the eye to the inputs.

7.4 Server

The server code is divided into logic, model, network and utility. Logic is the core of
the server containing the most complexity. More structuring was considered, but was
dropped for efficiency’s sake. The most patterns were applied to the inner logic to provide
factorability, modularity, mobility and extendibility.
As previously mentioned, the database is handled by Hibernate. To separate transaction
and session handling from the rest of the code, a singleton class was created with generic
methods called OHibernateManager. O refers to the world object which is the keyword
for singleton classes in Kotlin. Connection with the database is built lazily on the first
call and it is removed by the closeFactory method that closes the session factory. Records
can be loaded by id even supporting more complex ids list items that have to implement
the IListItemKey interface. This makes saving and loading of collections simple. Records
can be saved, updated, deleted or listed. For more complex queries separate functions
must be defined. All records have string UUID, most records have names with better
readability, all list items have orderInOwner column and reference to owner. The most
complex shame is DGraph, where D refers to it being a data class. It contains an array of
DObjectives referring to goal locations that are differentiated from central position. Two
separate arrays store DEdges from the and to the central position. The edgesBetween
field stores the edges between objectives as an array of DEdgeArrays. DEdgeArrays is a
wrapper for an array of DEdges that is necessary to make it saveable into the database.
Hibernate makes decisions about the foreign key structure automatically. Usually creates

36

a separate table for the connection. This is applied to DEdges too since DEdges are list
items of DGraphs and DEdgeArrays too.
In the networking layer functionality is divided into three separate apis, SetupApi, LifeCy-
cleApi and UpdateApi. Tasks and Settings can be configured, saved and loaded through
SetupApi. LifeCycleApi is responsible for control over the complex optimization, while
UpdateApi allows monitoring and routing. All apies interact with the OAlgorithmMan-
ager, a singleton class that is the interface of inner logic.
All algorithms are working with specimen representations. Each representation type im-
plements the ISpecimenRepresentation interface. It provides multiple lambdas for uni-
form handling of specimens to avoid constant type checks in the code. Most algorithms
implemented are generic and support all representations. As previously mentioned all rep-
resentations consist of a permutation and a distribution. One slice is the segment of the
permutation belonging to one transport unit. There are lambdas to iterate through the
slices or map them as the representation was a Multi-chromosome representation. There
is a factory object for each representation that can produce and also copy the instances.
This object is passed to the algorithm in the constructor with the task data.
There are multiple types of heuristics implemented. All groups are in separate packages
implementing a sealed class containing all common properties of the group. For example,
all nearest neighbour heuristic variants extend the SNearestNeighbour class. The class
provides cost measurement for edges, objectives and whole transport groups and an entry
point.
The genetic algorithms have the most complex implementation in our source code, that
supports step by step control, lifecycle management and full customizability. Each phase
of the iteration, each lifecycle function and control function calls functors injected through
the constructor. The exact implementations are specified by the GeneticalAlgorithmSetup
object that contains instances of enumerations. Each enumeration is associated with
one function of the genetic algorithm and each member is an exact implementation. In
Java and Kotlin abstract functions can be specified in enumerations that each member
implements differently and Kotlin has operator overload. Our elegant solution is to make
each member a functor with a call operator and specify the interface of said funcion as
an abstract operator of the enumeration. Each functor has the algorithm’s state and
parameters as an input parameter. This way the caller gives access to the data for the
functor in each call, and not the functor takes it.
Other constructor parameters include the representationFactory, timeLimit, itera-
tionLimit, costGraph, salesmen and setup. The class has an inner enumeration for lifecycle
state that is stored in the state property. While state is modified, runtime is measured.
The algorithm itself runs on a separate thread controlled by the lifecycle functions. The
genetic algorithm also keeps track of the iteration count of the best and worst specimen
and the whole population of course.
The phases are broken into eight enumerations. Six is for the phases themselves and two
is for operators. One is for the crossover and the other is for the cost calculation. This
way if the genetic algorithm is run for another problem with the same data representation,
only the ECost file must be modified, where the E refers to enumeration.
ECrossoverOperator takes the pair of parent specimens, the child to overwrite and the
algorithm data as parameters. It returns nothing since the result can be found in the
child. There are several methods used to decrease runtime requirements of the operators.
We found that some operators made a “contains” function necessary, however each check
took O(c+s) runtime. Therefore we created a boolean array that’s ith value is true if the

37

ith value is already in the child. Each time a value is written to the child, the value’s flag is
set in the boolean array. This reduces “contains” check’s runtime to O(1). Sometimes we
had to choose a random value missing from the child, this also took O(c+s) time adding
up to O((c+s)2) during construction of the child. We reduced this time by generating one
random permutation and a counter starting from zero. Every time a random missing value
was needed, a loop started to walk the random permutation from the counter as an index
until it found the first missing value. It saved the index of the last found value back to
the counter. This way the time requirement was O(c+s) for the whole operator. Another
function with problematic runtime was the “indexOf” where the position of a value was
necessary in the permutation. This also took O(c+s) time per run and was improved by
generating the inverse of the permutation. The generation took O(c+s) time, but was
necessary only once and all “indexOf” took only O(1) time. Using these tricks it was
possible to implement all operators in O(c+s) time.

38

Chapter 8

Statistics

8.1 Data sets

For most statistics, we used multiple datasets with less than one hundred real Hungarian
locations. A run of a brute force implementation is still estimated to take millions of
years. This means a good enough complexity for the experiments while having a low few
milliseconds per iteration runtime requirement. To increase complexity the locations were
chosen from the same city, so the roads are more complex and parallel edges have a bigger
difference in cost. We used this data to test long-term tendencies of the optimization and
to test on as many locations sets as possible. We also made a bigger dataset of almost one
thousand locations. We had to scale down the population from squarely proportional to
linear. This way one iteration took only a few seconds.
Open Trip Planner was used for routing and trafficking. Each route was precalculated
connecting all locations with each other. This was time-consuming since each route took
almost a second for the OTP. One hundred routes took two and a half hours while the
big dataset took eleven and a half days to connect with each other. We choose to cache
the data into the database. Later we randomly selected a hundred locations for each test
from the bigger dataset and loaded the routes from the database. We used this method
to test the variance in behavior between different inputs.
A custom simulation was used for cost calculation. The vehicles were loaded with all the
packages and the packages were removed as the vehicle progressed. The fuel consumption
was simulated with only a distance-dependent constant and the speed on the roads was
equal to the speed limit since OTP-s traffic data was unreliable. The cost of a route was
calculated on arrival to the next location. These simplifications saves a lot of runtime
during the simulation. Our estimations show that the simulations would take double the
time if it was more realistic.
Our simulations were run on a Legion y530 with a 10th generation CPU and 8GB memory.
We experienced similar resources in the industry. Even if servers suitable for AI have
better prices every year, most logistic companies want to avoid the maintenance of such
hardware. They also want to avoid solutions as a service since it would mean that the
other company can easily monitor their transports. Our goal is to support transports up
to five thousand locations using stronger gaming pc-s. OTP is clearly not suitable for
this size and precalculation is not a soulution eather since the storage of routs between all
possible custemers of a company would take peta bytes to store.

39

http://www.opentripplanner.org/

8.2 Simulation Results

We had multiple goals during the test runs. We wanted to prove that SRX can improve
the cost even in later iterations when other setups already got stuck in a local minimum.
One of our goals was to show that SRX has a faster convergence than most other operators
and achieves better solutions in a shorter time. We found the comparison of different SRX
variants necessary to show the effects of different success metrics. We tested SRX on huge
data sets to make approximations on resource requirements. We are going to show that
SRX can adapt to more input data than other operators.
We used cycles in our statistics as a unit consisting of p iterations, where p is the size
of the population. Our biggest restriction was time since longer tests required multiple
weeks to complete. Even at the end of our first year, most test scenarios were tested less
than ten times. That is why we are going to collect more statistical data before presenting
our data tables. We made big progress however and we are going to present our detailed
statistics next year.
As previously mentioned we had three types of data set. We had a small data set of less
than one hundred customers at the start, later (late September) we created a data set of
one thousand customers and later we used subsets of the big data set.
We used the first data set to test the long-term behavior of SRX. On average p was about
5000 and the test run for almost sixteen cycles (Fig. 8.1). After several runs, we found
that the operators achieve the same rankings in the race on the data. The operators were
sorted within the first few cycles. Operators performing similarly changed their positions
regularly but realigned in a few iterations. The increase of change in order had a high
correlation with the increase of drop rate of improvement, marking local minimums.

Figure 8.1: Long term behaviour of SRX

We were also comparing SRX with other operators running each operator for almost nine
cycles (Fig. 8.2, Fig. 8.3). We were especially interested in operators leading the race
over the test data. The statistics show that the SRX has the cheapest cost after the first
cycle and leads right to the end. It also improves its cost even in later cycles. MPX
improves faster in the first 20000 cycles but doesn’t get close in cost to SRX having the
second-worst. SCX, SMX, and OX have a close long-term result getting the closest to
SRX, but SRX improves almost 20% even compared to them.

40

Figure 8.2: Comparison to SRX zoomed

Figure 8.3: Comparison to SRX improvement logaritmic

On the bigger data set, SRX showed similar behavior, with the race stabilizing within the
first cycle. However, HX tends to lead the race in the first cycle almost to the end when its
results become comparable to OX’s. After the first cycle, it slowly lost its position falling
to the last position in multiple cycles. That’s why we started to experiment with HX.
Interestingly HX had a surprisingly good synergy with simplified Opt-2 step leader boost
and reverse mutation. In the boost phase, the best specimens were searched for value
pairs that are switching resulted in an improvement of cost and stopped after the first
improvement. The mutation choose two positions randomly and reversed the order of the
segment between the two positions. This version had 5% better results than SRX. However,
HX based configuration reacted badly for edge distribution correction by resetting. This
not just slowed but stopped convergence since children almost always inherited the genes of
the parent with the better cost. Unique genes went extinct faster than usual and resetting
couldn’t bring back any of them.
This meant that edge distribution correction strongly depends on the crossover step and
the fall of HX may have been caused by the incompatible mutation operator. This also
shows that SRX is an optimal tool to find promising combinations and run tests saving a
lot of time before experiments.
On the smaller subsets, the order of crossover operators varied strongly. However, some
operators tended to lead the race while others tended to fall back. Ox, SMX, SPX, and
HX were leading usually, while DPX, OX2 was always one of the last operators. The
efficiency of the HX variant also varied. The less even the locations were distributed on
the map the better was the performance of HX both in the race and alone. In some cases,
it even got stuck in the first cycle without making any improvements later. SRX led the
race in about 60% of tests in the long term, but HX still remains advantageous, because
of its initial speed.

41

Chapter 9

Conclusions and Future Works

After our research in heuristics, we concluded that most accurate heuristics take too
much time. They tend to be O((c + s)4) meaning they are strongly limited in time and
customer count. Unfortunately, most neural networks fall into this category. There are
a few metaheuristics relying on probabilistic methods, like genetic algorithms. Genetic
algorithms are limited in population size, iteration count, and operator complexity since
these are the main factors of their runtime requirement. Additional methods are necessary
to unlock more control over algorithm convergence speed and gene diversity.
SRX is faster than other operators in the given environment. The data shows that local
minima are not avoided but solved. It meant a 10-20 percent improvement in cost for
O((c + s)2) additional time requirement. Further improvements are needed before genetic
algorithms can be applied in the industry for larger combinatorial problems. We achieved
a total runtime of O((c + s)3).
HX seems to be the strongest competitor of SRX since it has faster initial convergence.
It could be further improved by the right gene distribution correction. Resetting seemed
to be counterproductive, gene injection might be necessary. Statistical racing should be
applied to other phases. It could be an efficient tool to discover new synergies competing
with HX. SRX is also useful to identify data sets that HX is less efficient on compared to
other operators.
We are going to apply statistical racing methods to other phases. We plan to add more
variants to our operator pool. Higher level racing will be implemented between different
evolutionary algorithm types. We are going to implement a hybrid pool where crossover
operators are mixed with gene transfer operators. Boost should be mixed with bacte-
rial mutation and infection. Mutation should be mixed by gene distribution correction
and gene destruction. These phases and operators have similar purposes, therefor they
efficiency can be compared.
More statistical data will be collected to further prove our statements. We are planning
to collect data on gene distribution and its correlation with smooth convergence. We
are going to design metrics for the balance of convergence and gene distribution. Some
elements of the pools will be eliminated based on advanced statistics. We plan to develop
methods for selecting the correct setup of the algorithm based on the statistics of the input
data.

42

Acknowledgements

I would like to thank the help of all my colleges, friends, and family members for helping my
work. Thanks to Dr. János Botzheim for the help in the scientific background, motivation,
and correction of the hypothesis. Thanks to István Albert for the help with administration,
management of progress and correction of phrasing and language. Thanks to my wife for
help with difficult design decisions, correction of language, and moral support. Thanks to
QLM, my workplace, for being flexible on work time and providing hardware. Finally but
not least thanks to my friends and family for supporting me in these difficult times.

43

Bibliography

[1] M. Albayrak and N. Allahverdi. Development a new mutation operator to solve
the traveling salesman problem by aid of genetic algorithms. Expert Systems with
Applications, 38(3):1313–1320, 2011.

[2] E. C. Brown, C. T. Ragsdale, and A. E. Carter. A grouping genetic algorithm for
the multiple traveling salesperson problem. International Journal of Information
Technology & Decision Making, 6(2):333–347, 2007.

[3] B. Freisleben and P. Merz. A genetic local search algorithm for solving symmetric
and asymmetric traveling salesman problems. In Proceedings of IEEE International
Conference Evolutionary Computation, pages 616–621. IEEE, 1996.

[4] D. E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learning.
Addison-Wesley PC., 1989.

[5] Zong-Ben Xu Kwong-Sak Leung, Hui-Dong Jin. An expanding self-organizing neural
network for the traveling salesman problem. Neuralcomputing, (62):267–292, 2007.

[6] Pedro Laranga, Cindy Kuijpers, R. H. Murga, I. Inza, and S. Dizdarevic. Genetic
Algorithms for the Travelling Salesman Problem: A Review of Representations and
Operators. Artificial Intelligence Review, 13(2):129–170, 1999.

[7] B. W. Lin. S. & Kernighan. An effective heuristic algorithm for the traveling
salesman problem. Operations Research, 21(2):498–516, 1973.

[8] John Geraghty Noraini Mohd Razali. Genetic algorithm performance with different
selection strategies in solving tsp. Proceedings of the World Congress on Engineering
2, II, 2011.

[9] Adewole Philip, Akinwale Adio Taofiki, and Otunbanowo Kehinde. A genetic algo-
rithm for solving travelling salesman problem. International Journal of Advanced
Computer Science and Applications, 2(1):26–29, 2011.

[10] Sándor Szénási and Zoltán Vámossy. Implementation of a distributed genetic algo-
rithm for parameter optimization in a cell nuclei detection project. Acta Polytechnica
Hungarica, 10(4):59–86, 2013.

[11] K Shimojima T. Fukuda, N. Kubota. Virus-evolutionary genetic algorithm and its
apllications totravelling salesman problem. Evolutionary Computation: Theory And
Applications, pages 235–255, 1999.

[12] János Botzheim Tamás Bódis. Bacterial memetic algorithms for order picking routing
problem with loading constraints. Expert Systems with Applications, 105:196–220,
2018.

44

	Kivonat
	Abstract
	Introduction
	Terms and Background
	Graphs
	Big O notation
	Permutations
	Representations

	Logistiscs

	Problem Statement
	Heuristic Approaches
	Trip Construction Algorithms
	Trip OptimisationAlgorithms

	Proposed Algorithm
	Genetic Algorithm
	Modified Genetic Algorithm
	Boost
	 Maintaining Gene Diversity
	Selection Process
	Initialization
	Crossover Operators
	Mutation

	Statistical Racing Crossover
	Implementation and Technologies
	Kotlin
	React
	Client
	Server

	Statistics
	Data sets
	Simulation Results

	Conclusions and Future Works
	Acknowledgements
	Bibliography

