
Budapest University of Technology and Economics
Faculty of Electrical Engineering and Informatics

Department of Measurement and Information Systems

Predicting Gene-Disease Associations Using
Heterogeneous Graph Neural Networks

Scientific Students’ Association Report

Author:

Balázs Róbert Glávits

Advisor:

Dr. András Gézsi

2022



Contents

Kivonat i

Abstract ii

1 Introduction 1

1.1 Graph Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.1 Heterogeneous graph neural networks . . . . . . . . . . . . . . . . . 3

1.2 Previous methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Materials and methods 5

2.1 Database integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.1 Gene annotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.2 Disease annotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.1 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.2 Hyperparameter optimization . . . . . . . . . . . . . . . . . . . . . . 10

3 Results 11

3.1 Binary evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 Ranked evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.3 Comparison with GWA studies . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.4 Comparison with PGCN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4 Conclusion 18

Bibliography 19



Kivonat

Gének és betegségek közti kapcsolatok (gene-disease association, GDA) ismerete felhasz-
nálható a betegségek mögött rejlő mechanizmusok mélyebb megértéséhez, ez által végső
soron hozzájárulhat új fajta diagnosztikai, prevenciós és kezelési módszerek fejlesztéséhez.
Azonban az ismereteink koránt sem teljesek, a valódi gén-betegség asszociációk nagy
része feltehetően még felfedezetlen. Nehézséget jelent, hogy az új, hipotetikus asszociációk
kísérletes igazolása költséges és időigényes feladat. Hasznos lehet egy módszer, ami képes
várhatóan valóságos új asszociációkat javasolni, így lecsökkentve a negatív eredményű
kísérletekre szánt erőforrásokat.

Az orvostudomány által felhalmozott genomikai mérési eredmények, illetve kollektív
tudás messze túlnőtte az egyén által könnyen megérthető méretet, ezért az elmúlt években
a gépi tanulás-alapú módszerek kerültek az orvosbiológiai elemzések középpontjába. Ilyen
módszer a gráf neurális hálózat, mely alkalmas félig felügyelt módon megtanulni és jósolni
entitás párok közti releváns kapcsolatok jelenlétét vagy hiányát.

Dolgozatomban különböző biológiai adatbázisokat integráltam egy heterogén tudás-
hálózattá, melyben két típust képez a gének és a betegségek halmaza. Megvizsgáltam és
kiértékeltem különböző architektúrájú gráf neurális hálózatok teljesítményét a tudásháló-
zatomban található gén-betegség asszociációk prediktálásában.

A kapcsolódó forráskód elérhető a következő webhelyen: https://github.com/
GlavitsBalazs/GeneDiseaseGNN.

i

https://github.com/GlavitsBalazs/GeneDiseaseGNN
https://github.com/GlavitsBalazs/GeneDiseaseGNN


Abstract

Knowledge of gene-disease associations (GDAs) is helpful in further understanding the
mechanisms that underly diseases and syndromes. This understanding can, in turn, aid in
developing novel methods for diagnosis, prevention, or treatment. However, the picture is
far from complete. Supposedly, the majority of true GDAs are yet undiscovered. The fact
that experimental verification of new hypothetical GDAs is a resource and time-intensive
task hinders discovery. Perhaps a way of predicting GDAs that likely exist could assist in
reducing resources expended on experiments with a negative outcome.
The size of genomic measurement results, along with the collective body of knowledge
amassed by the entire field of medicine, has far outgrown the scale which is easily under-
standable by the individual. For this reason, machine learning-based methods have become
central in recent biomedical analyses. One such method is the graph neural network. This
model can learn from examples and so predict whether or not relevant relationships exist
between pairs of entities.
In my work, I’ve integrated various biomedical databases to form a heterogeneous knowl-
edge graph, where the sets of genes and diseases are two distinct types. I then used this
data to train and evaluate graph neural networks with different architectures for the task
of GDA prediction.
The source code is available at https://github.com/GlavitsBalazs/GeneDiseaseGNN.

ii

https://github.com/GlavitsBalazs/GeneDiseaseGNN


Chapter 1

Introduction

Let me present a hypothesis. Suppose, in a simplified world view, that the human body
is a complicated machine. The fundamental building blocks of every mechanism in this
machine are proteins. Sometimes, when a person falls ill the disease is related to these
mechanisms failing. What do the proteins that took part in this failure look like? An-
swers to this question could lead to better understanding of the disease. Through further
research, even to better methods of diagnosis, prevention, or treatment.
Changes to protein structures are often due to variations in the genes that encode them.
Perhaps a route to discovery is to find the genes where variations are associated with
susceptibility to disease.[32] How to find such gene-disease associations? Experimentally,
of course, but there’s a limit to that. Only so much experimentation can be done with the
time and resource constraints of real life.
The next best thing is inference. To look at previous results and try to identify patterns
in them to predict new ones. Such a prediction of course doesn’t constitute any sort of
proof, more so a suggestion. Still, a potentially valuable one if chosen appropriately out
of the large space of possibilities.
With the goal in mind, I’ll briefly outline my plan on how to accomplish such a thing.
Imagine what a giant knowledge base of gene-disease associations would look like in an
abstract way. One possible picture is of a network, like in figure 1.1. The genes and diseases
are nodes and associations between them are links. This view is advantageous because
it becomes possible to talk about the problem in a mathematical way using the tools
available from graph theory. There’s also extensibility, to incorporate more information
into the model. Drawing connections between the genes and the diseases. To add edge
weights describing the strengths of associations. Attributes can be attached to the nodes.
Even more is possible.

1.1 Graph Neural Networks

A great tool for learning patterns in networks as described previously, is the graph neural
network (GNN)[44], which are artificial neural networks that include message passing (also
known as graph convolution, or neighborhood aggregation) operations.
I’ll give a definition for the message passing operation, but first it has to be said how the
graph gets encoded as input to neural networks. For a G = (V,E), E ⊆ V × V directed
graph both nodes and edges have to be given numberings (in an arbitrary manner). An
edge list is constructed in the form of a 2 × |E| matrix where the j-th column corresponds

1



PTPN1
LEP

Crohn's
Disease

Anorexia

?

Weight
decreasedGastroenteritis

JAK2
GHRL...

IRS1

...

...

...

Figure 1.1: Illustration of the gene-phenotype heterogeneous network. Round nodes
denote genes. Rectangle nodes show phenotypes such as diseases, symptoms
or categories of diseases. The line with the question mark is a supposed, yet
unknown association.

to the j-th edge. Each column consists of two node numbers, where the first corresponds
to the starting point and the second the end point of an edge. Then node features are
organized in a |V |×n matrix. The i-th row of which is the feature vector of the i-th node.
A similar construction can be made to store edge feature data (with only one dimension
if the feature is just a weight).
So a message passing operation is of the form

x′
i = Update

(
xi ,Aggregate({Messagej→i(xi,xj , eji) | j ∈ N(i))})

)
,

where xi,xj are the input features of the i-th and j-th nodes, eji is the edge feature of the
directed edge from j to i. The graph structure is also considered as an input and appears
here as the neighbor function N(i), returning the set of neighbors of the i-th node. Message
and Update can be any function that take and return vectors of appropriate shape. In
practice these are neural networks possessing arrays of learnable parameters. Aggregate
is similarly a function of vectors, but this one is typically not a neural network, and has
an additional important constraint that it must be permutation invariant: it must return
the same thing regardless of the order of its arguments. This is to mimic the key property
of graphs that there is no preferred ordering of neighbors of a node. Common choices for
Aggregate are sum, average or max.
So the output of all this is x′

i, the embedding of the i-th node. With chaining more following
neural layers (so called prediction heads), these embeddings can be molded during training
to work in a wide variety of applications.

2



Perhaps this is somewhat too general in practice. Let’s see a simpler, concrete example:
GCN[15]. Set Messagej→i = ejiWxj , Update(xi,y) = xi + y/

∑
j∈N(i) eji and Aggregate

is a simple sum. W is a trainable weight matrix, and eji is an edge weight (default value
1).
How to use graph neural networks for predicting gene-disease associations? Each associa-
tion is an edge, and GNNs can learn which edges are present in the graph. Suppose we have
a GNN with many layers of message passing operations, activation functions, linear layers
or anything else necessary. Remember that it takes as input the graph itself and outputs
node embeddings. Define a "decoder" operation that takes two of these embeddings and
produces a predicted probability of an edge being present. Often times simply an inner
product followed by a sigmoid activation works well: P ((i, j) ∈ E) ≈ σ(xT

i xj) = pij .
Training this GNN has to be done in a semi-supervised (self-supervised) manner. There
are no ground truth labels available telling us whether an edge should be present or not.
We only have the graph itself, so we must learn from that. For this a special kind of
dataset split is needed. To use the terminology of Jure Leskovec, a transductive link
prediction split. The graph’s edges must be split in four parts: training message passing
edges, training supervision edges, validation edges, and testing edges. At training time
the graph with only training message passing edges is shown to the GNN and it’s asked
to predict scores for every training supervision edge. Over time it may learn the patterns
of the training supervision edges too so during validation and testing care must be taken
to avoid data leakage. When validating enter as input the union of train message passing
and train supervision edges and query the validation edges. At testing time train message
passing, train supervision and validation edges may all be shown to the GNN to finally
predict the test edges.
In each training epoch we have have our appropriate message passing graphs and also
positive supervision edges, but negative supervision edges are too required. This to make
the cross entropy loss work:

L(p) = −
∑

log(ppos) −
∑

log(1 − pneg).

We’re telling the GNN to output 1 for the positive supervision edges and 0 for negatives, so
which edged should be the negatives? Simply put anything that’s not in the graph. There
are in practice much more edges that aren’t in the graph than that are so a balance must
be reached. One approach is to randomly generate such edges, with the number of them
equal to the positives. The simplest option to do so is by starting from two independent
uniform distributions of nodes and rejecting any node pairs that happen to be positive.

1.1.1 Heterogeneous graph neural networks

I’ve shown that it’s theoretically possible to predict gene-disease associations with GNNs.
However there is a practical opportunity for improvement left out of the discussion. The
knowledge graph as described previously (see fig.1.1) has additional structure, namely that
it has two entirely different kinds of nodes. A simple GNN doesn’t even get to know which
is which. Not to mention the fact that the edge structure between the varying types of
nodes could be drastically different as well. Not just statistically but semantically.
Heterogeneous graph neural networks aim to benefit from such additional structure. To
be formal, a heterogeneous (or sometimes multimodal or relational) graph[45][33] contains
types assigned to every edge and node, with ϕ : V → T and ψ : E → R label function
to T ,R sets of types. For a given type, the subset of nodes belonging to it can be

3



described as Vi = {v ∈ V : ϕ(v) = i}, i ∈ T , as can subsets of edges Er = {e ∈ E :
ψ(e) = r}, r ∈ R. Each (i, j, r) ∈ T × T × R triple designates a subgraph, such that
Gijr = (Vi ∪ Vj , (u, v) ∈ Er : ϕ(u) = i ∧ ϕ(v) = j).
A heterogeneous message passing operation can be defined as composing individual, "ho-
mogeneous" message passing operations, each having a type triple and acting on its des-
ignated subgraph. The outputs are then aggregated appropriately

x′
n = Aggregate({MessagePassing(ijr)(Gijr) | i = ϕ(n), j ∈ T , r ∈ R}),

where MessagePassing(ijr) is the message passing operation assigned to the type triple
(i, j, r) ∈ T × T × R. n is the target node, for which the embedding x′

n is computed.

1.2 Previous methods

One of the first projects investigating edge predicting heterogeneous GNNs was Zitnik
et al.’s Decagon[46]. They applied Schlichtkrull et al.’s architecture[30] on a knowledge
graph of genes and drugs, to predict unknown side effects of polypharmacy. Following
shortly after [20]’s PGCNLi et al. forked Decagon’s source code for gene-disease prediction.
PGCN’s authors have developed a heterogeneous graph of genes and diseases based on
OMIM[11] and HumanNet v1[17]. PGCN has served as a great inspiration for my work and
I hope to improve upon it. Another group of researchers[31] have published developments
recently, but they’ve relied on the original knowledge graph of PGCN. I intend to construct
my own dataset that is larger and more up to date.
Another early work using GNNs for GDA prediction was Rao et al.’s GCAS[28]. Their
dataset (titled HANRD) was composed from HPO, MeSH, Wiki Pathways, and Orphanet.
The latter choice made it particularly specialized for rare diseases. Again this graph would
be considered outdated today due to its small size.
Other research projects of interest include HGCNMDA[18], HPOFiller[23], HNEEM[39],
and GCN-MF[12], each having unique specializations and algorithms.
The most recent research projects rely on DisGeNet as their main data source. As does
PDGNet [42], which utilized a multi-view learning framework rather than a heterogeneous
GNN. geneDRAGNN[2] is solving a more specialized task than the methods previously
discussed. Rather than predicting associations for any disease, they specifically target
lung adenocarcinoma, allowing them to use a node classification type of approach rather
than an edge prediction based one.
Finally I’d like to mention an algorithm belonging in an entirely separate class of algo-
rithms: RWRH[19] first published in 2010. This method is not a neural network but
rather type a network propagation[7]. Recent studies[37] have applied it on more up to
date datasets (the original was based on OMIM, Valdeolivas et al. used DisGeNet v4) and
found considerable success.

4



Chapter 2

Materials and methods

2.1 Database integration

Here I’ll describe may way of constructing a large heterogeneous knowledge graph of genes
and diseases, which is suitable for training graph neural networks.
The state of the art in cataloging gene-disease associations is DisGeNet v7.0[26]. Over
a million associations are recorded between 20000+ genes and 30000+ diseases or phe-
notypes. Its large size and clean labeling make it a natural choice for training neural
networks. Not just diseases but symptoms, categories of diseases, or even body parts are
present as well. In general I’ll refer to such things as phenotypes, with the connotation
that these phenotypes are relevant in discussion of diseases, by merit of being included in
DisGeNet.
There is just one downside that comes with such size, not all of it is equally reliable.
The majority of the data comes from text mining sources such as BeFree[25], which were
generated algorithmically and not always validated by experts. For this reason I chose to
partition DisGeNet into three qualities by the score. I’ve filtered out any phenotypes with
insufficient evidence: if the sum of all scores remains below 0.6. Even this low threshold
leaves only 8070 terms out of 30293.
In DisGeNet each association is annotated by a numeric score, which in essence describes
the reliability of its evidence. I’ll call high quality any association with score > 0.1,
meaning that it either comes from a manually curated source or more than ten papers
mention it. It should be mentioned that this notion of high quality may not be high
enough for other kinds of applications. Associations that are only supported by text
mining evidence, but more than more one, I’ll deem medium quality. This is encoded by
scores that are < 0.1 and > 0.01. Finally, score = 0.01 associations are only mentioned in
one text mined publication, therefore should be treated as low quality.
For connections between genes I’ve adopted the STRING database[35] v11.5. Except, of
course STRING is a network between proteins not genes. In my application these will
be treated as equivalents. I’ll assume that whenever a phenotype is associated with a
gene it is also associated with any coded proteins. Ensembl BioMart[14] was used to
translate between the HGNC gene IDs in DisGeNet to the Ensembl version 77 protein IDs

5



(or ENSPs for short) in use by STRING. All 5071682 records were inserted as weighted
directed1 edges in my graph verbatim. Though most of them (85%) have low scores < 0.4.
DisGeNet identifies diseases by their UMLS Metathesaurus[4] version 2019AA concept
unique identifiers (CUIs). The Metathesaurus authors have created a database which
subsumes several other biomedical thesauruses (collections of terms and their definitions),
linking equivalent or synonymous spellings of terms to appropriate abstract concepts.
Relationships between concepts have been adopted too. I’ll draw from these to form
my phenotype-phenotype network. Some source vocabularies, such as OMIM[11] and
SNOMED CT[8] include relationships information such as disease symptoms and comor-
bidity. It turns out that a large number of interesting comorbidity relationships were
adopted from an unexpected lesser known source titled Clinically Useful Problem State-
ment Systems[5].

2.1.1 Gene annotation

For the success of training a graph neural network it is critical to choose node feature vec-
tors appropriately. After all, the only thing a graph convolution does is transformation of
node feature vectors. Care should be taken that the vectors are not too similar, otherwise
we run the risk of the neural network confusing different nodes for one another[41]. The
dimensionalities of the vectors can’t grow arbitrarily large either, because the graph convo-
lutions entail linear transformations on these vectors. The number of trainable parameters
in the linear transformations would grow quadratically with more added dimensions, which
in turn may lead to overfitting and memorization.
Recall that the probability of an edge as predicted by the model depends on the inner
product of the embedding of the end point nodes. Perhaps it would be a good idea to
construct feature vectors with a similar property of having larger inner products for nearby
nodes. It’s not immediately possible to construct vectors that behave this way between
genes and diseases – that’s the end goal of the whole endeavor –, but inside the gene-gene
network, we can attempt to. For a given K kernel on the graph, which is positive-definite
and kij measures the similarity between the i-th and j-th node, the rows of its factorization
AAT = K would suffice.
STRING includes hierarchical clustering information[34], computed using HPC-
CLUST[24]. Consider treating the dendrogram of this clustering as an ontology, where the
objects are the proteins, the classes are the clusters, and every time a cluster or protein
is included in another cluster draw a directed edge from it, representing an "inverse is
a" relation. In this ontology it’s possible to compute Resnik’s information content based
similarity[29] between any pair of proteins.
So here’s the procedure in practice. Take the hierarchical clustering data from STRING
and construct an ontology graph. Compute the intrinsic information content of each node,
find the most informative common ancestor of each protein pair and construct a kernel
matrix on the graph K′. Technically this won’t be a kernel yet because it might not be
positive-definite. A quick fix for this issue is to find the smallest (negative) eigenvalue λmin
and subtract it from the diagonal: K = K′−(λmin−ε)I, where ε > 0 is a small value needed
to make it positive-definite and not just positive semi-definite. This step introduces a bias
favoring self-similarity of nodes, so care must be taken not to rely on these measurements
blindly. Now, this may be factored using Cholesky decomposition. One issue remains

1In STRING every protein-protein interaction is encoded as two directed edges between the proteins, one
having orientation opposite of the other. This way essentially undirected relationships may be represented
in a directed graph.

6



still, that the dimension of these vectors is too large. Of all the dimensionality reduction
methods, truncated SVD is useful here, because ∥A′A′T − K∥, where A′ is the reduction
of A, remains small.
What are the strengths and the weaknesses of this approach? Most important is the fact
that every node receives a proper feature vector, none are missing. It would be hard
to find a database of genetic data that includes complete and consistent annotations for
every gene. The numerical range of the data is not too large, mostly between -1 and 1.
The mean is close to zero the standard deviation is 0.1, which make it easy for neural
networks to learn from. A handy property of the truncated SVD dimensionality reduction
is that it’s possible to first compute, say, 1024 leading principal components. Afterwards,
whenever lower dimensioned vectors are required, it suffices to throw away the last few
items of these 1024.
The Resnik similarity kernel appears to contain information relevant for edge prediction
inside the gene-gene graph. To demonstrate this I set up the following simple test scenario
with conditions somewhat similar as those yet to be faced by the graph neural network.
The inner product of feature vectors is computed for each pair of nodes with an edge
between them, and also for an equal number of randomly sampled negative edges. For
calibration purposes, a one dimensional logistic regression model is trained with 1 labels
given for positive edges and 0 labels for negatives. The calibrated scores should now
serve as predicted probabilities for discriminating the presences of edges. Indeed they do,
showing ≈ 70% average precision and receiver operator characteristic scores.
However, by definition, any kernel must describe similarities between all pairs of items in
the dataset. This could pose an issue in inductive settings, where new nodes would have to
be processed by the model which were never part of the training dataset. By choosing to
use a kernel I constrain the applicability of this model to transductive settings only. Every
time a never before seen new gene or phenotype should be evaluated, it is necessary to
reconstruct the dataset and retrain the model all over again. This limitation is acceptable
in the task at hand, simply because in practice we rarely expect to see such brand new
genes or phenotypes.
Another open possibility is to extend the feature vectors further. With every node having
a solid foundation of basic data describing it, additional dimensions may be concatenated
that contain values coming from less reliable or less complete sources. Even if a gene hap-
pens to be missing from such a database, placing zeros or averages in its vector should not
cause substantial problems because having the synthetically generated feature informa-
tion present should orient it differently in latent space than other genes with information
similarly missing. It’s possible to avoid repeatedly annotating every missing gene with the
same placeholder vector. However I opted not to explore these possibilities in the current
experiments. I don’t believe that altering the current values of the feature vectors could
significantly improve the end results.

2.1.2 Disease annotation

Finding good vector representations for disease nodes poses a challenge. I’ve elected not
to use the common way of previous studies: to describe diseases with their characteristic
symptoms. This is because in my network symptoms are represented as nodes, just as
diseases are. Valuable network structure and gene-symptom association data would be
lost if symptoms were removed from the graph to become parts of vector representations.

7



Instead I’ll use the same same approach as I did with the gene nodes. Finding an ontology
of diseases, computing the Resnik similarity kernel then factoring it. The UMLS Metathe-
saurus again proves useful here. DisGeNet contains many phenotype terms which have
no describing records anywhere but in the UMLS Metathesaurus. Even obscure terms are
given at least a categorization in SNOMED CT[8] or in other ontologies.
So the goal is to construct an ontology (rooted directed acyclic graph, where edges are
"inverse is a" relations) made of smaller ontologies found in the UMLS Metathesaurus,
while covering as many DisGeNet phenotypes as possible. This becomes possible with the
help of the UMLS Metathesaurus, but it is perhaps a bit too helpful. Many commonly
used terms are contained in multiple ontologies (for example MeSH[21], HPO[16] and
SNOMED CT) at the same time. This is a problem because wrong categorizations can
appear between terms originating from different semantic frameworks.
Unfortunately there is no way to avoid introducing such incorrect relations when forcefully
integrating so many different systems of categories. Though I did try in the following
way. I took every single parent-child relationship in UMLS and placed them in different
ontology graphs based on the source vocabulary from which it came, all while filtering
out data that’s unrelated to the set of terms contained in DisGeNet. So I found 76
individual ontologies of various sources that contained some DisGeNet terms. Each one
should be consistent, meaning that no foreign terms or relations were added to them
by me, potentially causing corruption. Now to assembling them, I went with a greedy
approach inspired by Chvatal[6]. Always choosing the largest UMLS ontology to add to
my union of ontologies, then removing its edges from all others and re-measuring the size
after removal. I hope that this way fewer different source ontologies and fewer cross edges
between them were incorporated. Afterwards only a minor pruning is required to make
the graph acyclic.
This automated method of constructing a large disease ontology certainly has its flaws.
Just a quick glance at the results shows many inconsistencies, mislabelings, and sometimes
too much branching. Perfection is not the goal however. The fact that similar diseases
are placed somewhat closely together leads to a good enough approximation. The neural
network can learn to work around any possible issues here.
Now with an ontology in hand the feature vectors can be computed as discussed. Some
terms in DisGeNet unfortunately had no relationships records in UMLS so were discarded.
The situation is not a total loss though. Remember that we now have an ontology full of
relevant terms and interesting connections. The Resnik kernel can include these as well,
thereby giving them feature vectors. So I’ve added all this to the disease-disease graph,
naturally without any associations to genes.

2.1.3 Summary

Finally, the heterogeneous network includes 63906 edges connecting 9399 phenotypes.
Though these edges can potentially mean 209 different classes of things based on their
relationship type attribute from the UMLS Metathesaurus. 2 19385 genes were taken from
STRING with 5969249 edges between them. DisGeNet had 449945 records of associations
between 5880 of these genes and 7914 of the phenotypes. 142827, 100900 and 206218 of
these are high, medium, and low quality respectively. The dimensionality of the feature
vectors can be any number desired by discarding a few principal components.

2A missed opportunity in development was to encode these types as edge feature vectors.

8



2.2 Architecture

Here are some details about the neural network architecture I’ve implemented using the
PyTorch Geometric framework[9].
Figure 2.1 illustrates the anatomy of a single heterogeneous layer in. GCNConv[15] was
chosen for the gene-gene network, because it naturally handles graphs that have edge
weights, as does STRING db. SAGEConv[10] works well on bipartite graphs. Contrary to
the gene graph, the edges in the disease-disease graph have variable semantics and there is
no available way of assigning weights to them in a consistent manner. Therefore by using
GATConv[38] I give the neural network a chance to learn by itself which edges have more
importance than others.
The layers use dropout, batch normalization as regularization and PReLU[13] activation.

GATConv

Disease - Disease

SAGEConv

Disease - Gene

SAGEConv

Gene - Disease

GCNConv

Gene - Gene

Σ Σ

Batch Norm

Dropout

PReLU

Batch Norm

Dropout

PReLU

Gene
Features

Disease
Features

Gene

Embeddings

Disease

Embeddings

Heterogeneous
Graph Conv Layer

Graph
Structure

Figure 2.1: Heterogeneous graph convolution layer.

In 2.2 The decoder takes a list of target edges and all the node embeddings as input. For
each target edge it "decodes" the corresponding pair of node embeddings into a probability.
In this case a simple inner product followed by a sigmoid activation suffices.

2.2.1 Training

The model was trained using the Adam optimizer for 76 epochs. I have not employed
any mini-batching mechanism, as the entire dataset comfortably fits in memory. In each
epoch the entire train message passing dataset and the entire train supervision edge set is
passed to the model along with a new set of randomly sampled negative supervision edge
set.

9



Gene
Features

dim: 128

Disease
Features

dim: 128

Message
Passing
Edges

Positive
Edge

Probabilites

Negative

Edge

Probabilites

Heterogeneous
Graph Conv Layer

Gene
Embeddings


dim: 64

Disease
Embeddings


dim: 64

Heterogeneous
Graph Conv Layer

Gene
Embeddings


dim: 64

Disease
Embeddings


dim: 64

Heterogeneous
Graph Conv Layer*

Gene
Embeddings


dim: 32

Disease
Embeddings


dim: 32

Decoder

Edge Pediction
Model

Encoder

Positive
Supervision

Edges

Negative
Supervision

Edges

Figure 2.2: Edge prediction model. Note: the last convolution layer marked with an
asterisk (*) has had its regularization (dropout, batch norm) and activation
operations omitted.

2.2.2 Hyperparameter optimization

Inspired by the work of You et al.[43] I explored various choices for altering the neural
network architecture and training. In summary: the number of layers, embedding dimen-
sions of each layer, the inclusion of linear layers between graph convolutions, the choice
of regularization, and others. I have not experimented with any large models deeper than
three layers or using embedding dimensions higher than 256 due to rising computational
costs and no apparent signs pointing to better performance in this area. My tool of
choice for carrying out these experiments was the Optuna framework[1]. The current best
architecture was decided upon after running ≈ 200 trials.

10



Chapter 3

Results

From now on I’ll treat each method as a black box. A gene-disease association predictor
can be any algorithm that takes some biological databases as input and outputs a matrix
of real numbers. Each row corresponds to a gene, and each column to a disease. Higher
values indicate a higher likelihood of association being present, but I’m not assuming that
the numbers would form a valid probability distribution.
The methods compared are the following:

• GNN: As described in section 2.2.

• MLP: It’s a simple multi-layer perceptron that takes a pair of feature vectors con-
catenated as input, has one hidden layer of dimension 64 and outputs the predicted
probability of an edge being present. Trained the exact same way as was the GNN.

• RWRH: Running the random walk with restart algorithm[19][37] on the heteroge-
neous graph with parameters λ = 0.5, α = 0.7. Each gene-phenotype association
score is the stationary probability received by the gene when the network propaga-
tion is started from the phenotype.

• Uniform random baseline: The prediction for each gene-phenotype association is a
random number sampled from independent uniform distributions on [0, 1].

• PGCN: See section 3.4.

3.1 Binary evaluation

Here I’ll assume that each prediction in the result matrix is an independent binary clas-
sifier. Every association in DisGeNet is treated as a positive sample. Negative samples
are generated in a uniformly random manner, same way as in 2.2.1. The number of nega-
tives is chosen to equal the positives. These assumptions mirror those used in the neural
network training process.
The metrics I chose to use are the following:

• ROC: Receiver Operator Characteristic.

• AveP: Average Precision, or equivalently, Area Under the Precision-Recall Curve
(AUPRC).

11



• BEDROC: Boltzmann Enhanced Descrimination of the ROC, introduced by Truchon
and Bayly[36], used by Li et al.

• AP@K: Average precision at the top K = 200 predictions.

• BinROC: Binarized ROC. Every prediction where the score is > 0.5 gets replaced
by 1 or 0 otherwise before computing the ROC.

• BinAveP: Average precision similarly binarized.

The formula for average precision at the top K is the following[22]:

AP@K = 1
min(|R|,K)

K∑
i=1

δ(i ∈ R) |{r ∈ R : r ≤ i}|
i

,

where R is the set of ranks of true positive items. δ(i ∈ R) = 1, if the i-th predicted item
is positive, 0 otherwise.
The findings of my tests are summarized in table 3.1.
The total number of positive samples in the dataset is 100900 for medium and 206218 for
low quality. In the case of the 142827 high quality edges originally present in the graph,
90% was used as training data, leaving only 14283 for this test. Not shown is the fact that
RWRH produces ≈ 99% ROC and AveP on high quality DisGeNet data because those
edges were part of the propagation graph. Note that the baseline (as produced by an
uniform random classifier) for these metrics is 0.5, except for the case of AP@200, where
it is approximately 0.25.
Applying such a binary evaluation framework for RWRH is perhaps an objectionable
choice. The main cause for concern is that the individual probabilities assigned to each
gene-phenotype association are not independent of each other, rather, they sum up to a
probability distribution. They will almost never exceed 0.5, explaining the complete lack
of binarized classification performance. An unfair advantage is given to RWRH over the
neural networks when evaluated under the ROC and AveP metrics.
In conclusion, these results show that the GNN model was successfully able to learn the
patterns in high quality DisGeNet data and generalize this knowledge to the remaining
samples with high quantity but lower quality. The MLP results indicate that the node
feature vectors were adequately chosen during database construction, they do hold infor-
mation that’s relevant for solving the task at hand, but utilizing graph structure remains
necessary.
However, seeing the excellent performance of the much simpler RWRH algorithm suggests
a flaw in this binary approach. Perhaps it is less important or even counterproductive to
discriminate rather than prioritize potential gene-phenotype associations.

12



DisGeNet quality ROC AveP BEDROC AP@200 BinROC BinAveP

GNN
high 0.976 0.967 0.987 0.983 0.936 0.899
medium 0.953 0.934 0.954 0.751 0.894 0.858
low 0.922 0.893 0.917 0.694 0.831 0.796

MLP
high 0.720 0.699 0.803 0.666 0.661 0.606
medium 0.712 0.698 0.807 0.889 0.653 0.600
low 0.668 0.656 0.757 0.800 0.622 0.576

RWRH medium 0.909 0.901 0.967 0.987 0.500 0.500
low 0.865 0.848 0.927 0.913 0.500 0.500

Table 3.1: Binary evaluation results.

3.2 Ranked evaluation

Using a different approach to testing, I’ll consider each phenotype independently, taking
the corresponding column from the prediction matrix as the list of its candidate genes.
Again relying on DisGeNet as the source of truth, it gives a subset of these genes that are
positive. The question I’m asking now is not whether those genes are predicted or not,
but rather what their rank is in the ordered list of candidates.
In this application DisGeNet seems somewhat sparser. Out of 9393 only 3847 phenotypes
had any matching high quality associations, likewise 3243 had medium, and 4485 had low
quality matches. The average number of genes matched per phenotype is 19, 31, and
46 for the different qualities. So overall not too sparse, but maybe more matches would
be expected based on the advertised number of a million plus total associations in the
database.
With the rankings of the positive associations in hand, it’s time to take measurements.
The metrics I chose were the AveP and AP@K, which it turns out, are applicable both
for binary and ranked types of classification. The mean reciprocal rank (MRR) was also
measured.
My results are summarized in Figure 3.1, which shows the distribution of ranked evaluation
measurements over all possible phenotypes. It seems that the neural networks pay little
attention to the ordering of their positive results. Not surprising, since that’s not part
of the loss function. By a coincidence GNN slightly outperforms MLP but both pale in
comparison to RWRH.
The baseline value for AveP was ≈ 0.01. AP@200 and MRR were ≈ 0.001, as found by
measuring the performance of the uniform random classifier and taking the 95-th percentile
(regardless of quality).

13



1000

2000

3000

4000

AveP per phenotype
GNN
MLP

1000

2000

3000

4000

AP@200 per phenotype
GNN
MLP

1000

2000

3000

4000

MRR per phenotype
GNN
MLP

0.0 0.2 0.4 0.6 0.8 1.0
AveP

0

20

40

60

Nu
m

be
r o

f p
he

no
ty

pe
s

0.0 0.2 0.4 0.6 0.8 1.0
AP@200

0

20

40

60

0.0 0.2 0.4 0.6 0.8 1.0
MRR

0

20

40

60

Ranked evaluation of all phenotypes over high quality DisGeNet edges

1000

2000

3000

AveP per phenotype
GNN
MLP
RWRH

1000

2000

3000

AP@200 per phenotype
GNN
MLP
RWRH

1000

2000

3000

MRR per phenotype
GNN
MLP
RWRH

0.0 0.2 0.4 0.6 0.8 1.0
AveP

0

20

40

60

80

Nu
m

be
r o

f p
he

no
ty

pe
s

0.0 0.2 0.4 0.6 0.8 1.0
AP@200

0

20

40

60

80

0.0 0.2 0.4 0.6 0.8 1.0
MRR

0

20

40

60

80

Ranked evaluation of all phenotypes over medium quality DisGeNet edges

1000

2000

3000

4000

AveP per phenotype
GNN
MLP
RWRH

1000

2000

3000

4000

AP@200 per phenotype
GNN
MLP
RWRH

1000

2000

3000

4000

MRR per phenotype
GNN
MLP
RWRH

0.0 0.2 0.4 0.6 0.8 1.0
AveP

0

20

40

60

Nu
m

be
r o

f p
he

no
ty

pe
s

0.0 0.2 0.4 0.6 0.8 1.0
AP@200

0

20

40

60

0.0 0.2 0.4 0.6 0.8 1.0
MRR

0

20

40

60

Ranked evaluation of all phenotypes over low quality DisGeNet edges

Figure 3.1

3.3 Comparison with GWA studies

So far, in my experiments, I’ve only used DisGeNet as the single source of gene-disease
associations. While, of course, DisGeNet itself composes a wide range of sources, there
remains an insufficiency, namely that it only contains a few associations per phenotype.
There is no information of how a given phenotype relates to the remaining 19000 genes for
which no records are present. Even knowledge of supposed negative associations would be
helpful.
I turn to genome-wide association studies (GWAS) as the solution. Such a study measures
the genetic variants throughout the whole genome over a population exhibiting a given
phenotype. Based on this data, the study presents hypothesized links between genes and
the phenotype, but negative results, genes from which no association is provable, are
recorded as well.

14



GWAS Atlas[40] is a database cataloging over 4000 GWA studies. Importantly, it is
independent from DisGeNet so an ideal choice for external validation. The experimental
results are presented in the following form. The name of the phenotype or trait is given
in English, along with a list of genes by their Ensembl IDs considered in the study. The
strengths of the associations between the phenotype and the genes are quantified as p-
values.
I chose not to treat these p-values in the conventional manner of evidences for rejecting null
hypotheses. That would give me a list of positive associations, which I already have enough
of from DisGeNet. Rather, I assume that lower p-value genes have a higher likelihood of
association than ones with higher p-values, therefore an ordering of genes is formed. So my
method for testing is to match phenotypes in my database to GWA studies and compare
the predicted ordering of genes to those presented in the GWAS.
There stands the practical issue of matching the phenotypes in my dataset – which come
from DisGeNet and are defined by UMLS CUIs – to the GWA Studies, that have only
English language textual descriptions. The basis for solving this is to look in the UMLS
Metathesaurus records, which list all canonical ways of naming a given concept, includ-
ing different spellings, variations, or synonyms. Unfortunately the GWAS authors rarely
use these UMLS accepted exact phrasings as their phenotype descriptors, but sometimes
they do come close. So to account for inexact, approximate matches between GWAS de-
scriptions and UMLS terms, I opted to use the 2-gram occurrence vector cosine similarity
metric to find nearly equivalent pairs of strings.
After normalizing for special characters, every occurrence of every pair of letters is counted
in the phrase to form an occurrence vector. Occurrence vectors of all the GWAS trait
names can be stored in a sparse matrix with each column normalized. I then ran through
the database of UMLS terms, computing the normed 2-gram occurrence vector and mul-
tiplying it with the sparse matrix, resulting in the cosine similarities of a term to each
GWAS name. I accepted any match with score ≥ 0.8, which is empirically quite a low
threshold, admitting many false matches. These wrong matches however should not cause
any problems, because down the line it will become evident that the genetic backgrounds
of two such traits are unrelated.
It is now possible to take an ordered list of gene predictions for a phenotype and compare
it to a GWAS from GWAS Atlas. The method of comparison I went with was Spearman’s
rank correlation. If the genes are numbered 1, 2, 3 . . . based on their ascending order of p-
values as reported by the GWAS, then this is reduced to the empirical Pearson correlation
coefficient between the list of ranks of the predicted genes and the list 1, 2, 3 . . . The
significance of such a correlation can be validated using Student’s t-test[27]. With all
matches tested for significance, I’ve used Benjamini and Hochberg’s procedure[3] to select
positives, targeting an expected false discovery rate of 5%.
Table 3.2 shows the summary of matching gene predictions to GWA studies. The first row
includes the number of matches found by the cosine similarity matching strategy. The low
fraction of GWA studies found (out of 4756) is not surprising because GWAS Atlas does not
specialize in disease related studies. However for studied diseases there are often multiple
instances of GWA studies present, explaining the even lower number of phenotypes found.
Note that the baseline random classifier found no significant correlations between any
GWAS and phenotype prediction.
The results shed light on the fact that RWRH is superior in terms of the ordering of results
over the neural networks. The GNN correctly predicts important gene-disease associations
but it may give them lower scores than to less important ones.

15



Matches Unique GWAS Unique Phenotypes
All Potential 3737 1494 712
GNN 321 170 159
MLP 41 24 32
RWRH 874 376 343

Table 3.2: Comparison with GWA studies.

3.4 Comparison with PGCN

As I’ve based my GNN on similar principles to PGCN[20], it’s possible to compare the two
methods on the basis that both of them give as output a matrix of scores between genes
and phenotypes. The exact genes and phenotypes differ somewhat, but a translation can
be made. Originally PGCN operates with phenotype IDs from OMIM and NCBI Entrez
gene IDs. So I’ve utilize Ensembl BioMart to translate HGNC gene IDs of DisGeNet to
NCBI. The UMLS Metathesaurus entails mappings between OMIM phenotypes and its
own CUIs.
Having cross-compatibility between the training set of PGCN and DisGeNet I’ve pro-
ceeded to validate both neural networks with both datasets using the binary evaluation
method as described in section 3.1. The results in table 3.3 show nearly complete indepen-
dence. The neural networks perform well on their own training sets, but fail to generalize
out-of-distribution. Though in this case preference has to be given to my method for
demonstrating adequate prediction ability on a dataset of size on the order of a few hun-
dreds of thousands instead of just a few thousands.
The disparity in edge counts between methods is an artifact caused by the many-to-many
nature of mapping between the different ID schemes of genes and phenotypes. For any
record in DisGeNet that had a matching prediction in PGCN there may be multiple
synonyms in my network. Some edges in the PGCN training network aren’t included in
mine.

16



PGCN Training Set DisGeNet High Quality

PGCN

Edge Count 3954 12014
AUROC 0.968* 0.456
AUPRC 0.973* 0.479
AP@200 1.000* 0.282
BEDROC 1.000* 0.508

My Method

Edge Count 2485 19105
AUROC 0.681 0.966*
AUPRC 0.555 0.972*
AP@200 0.522 0.994*
BEDROC 0.643 0.989*

DisGeNet Medium Quality DisGeNet Low Quality

PGCN

Edge Count 16734 31013
AUROC 0.464 0.458
AUPRC 0.483 0.480
AP@200 0.228 0.236
BEDROC 0.509 0.506

My Method

Edge Count 29854 49382
AUROC 0.944 0.911
AUPRC 0.957 0.923
AP@200 0.934 0.821
BEDROC 0.978 0.950

Table 3.3: Binary evaluation results of PGCN compared with my method using different
data sets. Note: numbers marked with an asterisk (*) are taken from tests
which include training data.

17



Chapter 4

Conclusion

Instead of relying on evaluation metrics, just take a look at the output of the GNN. Two
things immediately become obvious. First, that it keeps repeating the same genes over and
over again as top candidates for pretty much every disease. This is explained by the binary
nature of the training of this GNN. Yes those genes may indeed have associations, but
they shouldn’t come first all the time. The GNN was never told to pay attention to such
ordering. The second thing you’ll see when disregarding the order and simply counting
the number of predicted positives. There is almost always more than a thousand. So with
no ordering to them, which ones out of these thousands should we pay attention to? The
GNN has no answer.
In a way I’ve achieved success. I’ve implemented the edge predicting GNN as envisioned
by the PGCN authors and others. Yet discovered that it was a failed premise from the
start. The task of gene-disease prediction is not a binary but an ordinal one. It’s the
job of real life experiments to prove yes or no answers. There is little practical value in
receiving such a judgment from a fallible neural network.
It seems though that RWRH is a superior solution and I’ve happened to find a setting
where it gives promising results. Maybe more research effort should be spent on that
algorithm instead.

Acknowledgments

I would like to thank my advisor András Gézsi for his continued guidance, encouragement,
and patience. My thanks also go out to Bence Bruncsis for his valuable input.
Thanks to Stanford University and Jure Leskovec for publishing their Machine Learning
with Graphs course freely available.
The study was supported by the National Research, Development and Innovation Office
(NKFIH, Grant No. OTKA PD 134449).

18



Bibliography

[1] Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori Koyama.
Optuna: A next-generation hyperparameter optimization framework. In Proceedings
of the 25rd ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, 2019.

[2] Awni Altabaa, David Huang, Ciaran Byles-Ho, Hani Khatib, Fabian Sosa,
and Ting Hu. geneDRAGNN: Gene disease prioritization using graph neu-
ral networks. In 2022 IEEE Conference on Computational Intelligence in
Bioinformatics and Computational Biology (CIBCB), pages 1–10, 2022. DOI:
10.1109/CIBCB55180.2022.9863043.

[3] Yoav Benjamini and Yosef Hochberg. Controlling the false discovery rate: A practi-
cal and powerful approach to multiple testing. 57(1):289–300, 1995. ISSN 0035-9246.
URL https://www.jstor.org/stable/2346101. Publisher: [Royal Statistical Soci-
ety, Wiley].

[4] Olivier Bodenreider. The unified medical language system (UMLS): integrat-
ing biomedical terminology. 32:D267–D270, 2004. ISSN 0305-1048. DOI:
10.1093/nar/gkh061. URL https://doi.org/10.1093/nar/gkh061.

[5] Steven H Brown, Randolph A Miller, Henry N Camp, Dario A Guise, and H Kenneth
Walker. Empirical derivation of an electronic clinically useful problem statement
system. Annals of internal medicine, 131(2):117–126, 1999.

[6] Vasek Chvatal. A greedy heuristic for the set-covering problem. Mathematics of
operations research, 4(3):233–235, 1979.

[7] Lenore Cowen, Trey Ideker, Benjamin J Raphael, and Roded Sharan. Network prop-
agation: a universal amplifier of genetic associations. Nature Reviews Genetics, 18
(9):551–562, 2017.

[8] Kevin Donnelly et al. Snomed-ct: The advanced terminology and coding system for
ehealth. Studies in health technology and informatics, 121:279, 2006.

[9] Matthias Fey and Jan E. Lenssen. Fast graph representation learning with PyTorch
Geometric. In ICLR Workshop on Representation Learning on Graphs and Manifolds,
2019.

[10] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on
large graphs. In Advances in Neural Information Processing Systems, volume 30. Cur-
ran Associates, Inc., 2017. URL https://proceedings.neurips.cc/paper/2017/
hash/5dd9db5e033da9c6fb5ba83c7a7ebea9-Abstract.html.

19

http://dx.doi.org/10.1109/CIBCB55180.2022.9863043
https://www.jstor.org/stable/2346101
http://dx.doi.org/10.1093/nar/gkh061
https://doi.org/10.1093/nar/gkh061
https://proceedings.neurips.cc/paper/2017/hash/5dd9db5e033da9c6fb5ba83c7a7ebea9-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/5dd9db5e033da9c6fb5ba83c7a7ebea9-Abstract.html


[11] Ada Hamosh, Alan F Scott, Joanna S Amberger, Carol A Bocchini, and Victor A
McKusick. Online mendelian inheritance in man (omim), a knowledgebase of human
genes and genetic disorders. Nucleic acids research, 33(suppl_1):D514–D517, 2005.

[12] Peng Han, Peng Yang, Peilin Zhao, Shuo Shang, Yong Liu, Jiayu Zhou, Xin Gao,
and Panos Kalnis. GCN-MF: Disease-gene association identification by graph convo-
lutional networks and matrix factorization. In Proceedings of the 25th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining, KDD ’19, pages
705–713. Association for Computing Machinery, 2019. ISBN 978-1-4503-6201-6. DOI:
10.1145/3292500.3330912. URL https://doi.org/10.1145/3292500.3330912.

[13] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into recti-
fiers: Surpassing human-level performance on imagenet classification. In Proceedings
of the IEEE international conference on computer vision, pages 1026–1034, 2015.

[14] Kevin L Howe, Premanand Achuthan, James Allen, et al. Ensembl 2021. Nucleic
Acids Research, 49(D1):D884–D891, 2021.

[15] Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convo-
lutional networks, 2017. URL http://arxiv.org/abs/1609.02907.

[16] Sebastian Köhler, Michael Gargano, Nicolas Matentzoglu, Leigh C Carmody, David
Lewis-Smith, Nicole A Vasilevsky, Daniel Danis, Ganna Balagura, Gareth Baynam,
Amy M Brower, et al. The human phenotype ontology in 2021. Nucleic acids research,
49(D1):D1207–D1217, 2021.

[17] Insuk Lee, U Martin Blom, Peggy I Wang, Jung Eun Shim, and Edward M Marcotte.
Prioritizing candidate disease genes by network-based boosting of genome-wide asso-
ciation data. Genome research, 21(7):1109–1121, 2011.

[18] Chunyan Li, Hongju Liu, Qian Hu, Jinlong Que, and Junfeng Yao. A novel com-
putational model for predicting microRNA–disease associations based on hetero-
geneous graph convolutional networks. 8(9):977, 2019. ISSN 2073-4409. DOI:
10.3390/cells8090977. URL https://www.mdpi.com/2073-4409/8/9/977. Num-
ber: 9 Publisher: Multidisciplinary Digital Publishing Institute.

[19] Yongjin Li and Jagdish C. Patra. Genome-wide inferring gene–phenotype relation-
ship by walking on the heterogeneous network. 26(9):1219–1224, 2010. ISSN 1367-
4803. DOI: 10.1093/bioinformatics/btq108. URL https://doi.org/10.1093/
bioinformatics/btq108.

[20] Yu Li, Hiroyuki Kuwahara, Peng Yang, Le Song, and Xin Gao. PGCN: Disease gene
prioritization by disease and gene embedding through graph convolutional neural net-
works, 2019. URL https://www.biorxiv.org/content/10.1101/532226v1. Pages:
532226 Section: New Results.

[21] Carolyn E Lipscomb. Medical subject headings (mesh). Bulletin of the Medical
Library Association, 88(3):265, 2000.

[22] Lizhi Liu, Hiroshi Mamitsuka, and Shanfeng Zhu. Hpofiller: identifying missing
protein–phenotype associations by graph convolutional network. Bioinformatics, 37
(19):3328–3336, 2021.

[23] Renming Liu, Christopher A Mancuso, Anna Yannakopoulos, Kayla A John-
son, and Arjun Krishnan. Supervised learning is an accurate method for

20

http://dx.doi.org/10.1145/3292500.3330912
https://doi.org/10.1145/3292500.3330912
http://arxiv.org/abs/1609.02907
http://dx.doi.org/10.3390/cells8090977
https://www.mdpi.com/2073-4409/8/9/977
http://dx.doi.org/10.1093/bioinformatics/btq108
https://doi.org/10.1093/bioinformatics/btq108
https://doi.org/10.1093/bioinformatics/btq108
https://www.biorxiv.org/content/10.1101/532226v1


network-based gene classification. 36(11):3457–3465, 2020. ISSN 1367-4803.
DOI: 10.1093/bioinformatics/btaa150. URL https://doi.org/10.1093/
bioinformatics/btaa150.

[24] João F. Matias Rodrigues and Christian von Mering. HPC-CLUST: distributed hier-
archical clustering for large sets of nucleotide sequences. 30(2):287–288, 2014. ISSN
1367-4803. DOI: 10.1093/bioinformatics/btt657. URL https://doi.org/10.
1093/bioinformatics/btt657.

[25] Janet Piñero, Núria Queralt-Rosinach, Alex Bravo, Jordi Deu-Pons, Anna Bauer-
Mehren, Martin Baron, Ferran Sanz, and Laura I Furlong. Disgenet: a discovery
platform for the dynamical exploration of human diseases and their genes. Database,
2015, 2015.

[26] Janet Piñero, Juan Manuel Ramírez-Anguita, Josep Saüch-Pitarch, Francesco Ron-
zano, Emilio Centeno, Ferran Sanz, and Laura I Furlong. The DisGeNET knowledge
platform for disease genomics: 2019 update. Nucleic Acids Research, 48(D1):D845–
D855, 11 2019. ISSN 0305-1048. DOI: 10.1093/nar/gkz1021.

[27] Press, Vettering, Teukolsky, and Flannery. Numerical Recipes in C: The Art of Sci-
entific Computing, page 640. Cambridge University Press, 2 edition, 1992.

[28] Aditya Rao, Saipradeep Vg, Thomas Joseph, Sujatha Kotte, Naveen Sivadasan,
and Rajgopal Srinivasan. Phenotype-driven gene prioritization for rare diseases
using graph convolution on heterogeneous networks. 11(1):1–12, 2018. ISSN
1755-8794. DOI: 10.1186/s12920-018-0372-8. URL https://bmcmedgenomics.
biomedcentral.com/articles/10.1186/s12920-018-0372-8. Number: 1 Pub-
lisher: BioMed Central.

[29] Philip Resnik. Using information content to evaluate semantic similarity in a taxon-
omy, 1995. URL http://arxiv.org/abs/cmp-lg/9511007.

[30] Michael Schlichtkrull, Thomas N. Kipf, Peter Bloem, Rianne van den Berg, Ivan
Titov, and Max Welling. Modeling relational data with graph convolutional networks,
2017. URL http://arxiv.org/abs/1703.06103.

[31] Juan Shu, Yu Li, Sheng Wang, Bowei Xi, and Jianzhu Ma. Disease gene prediction
with privileged information and heteroscedastic dropout. 37:i410–i417, 2021. ISSN
1367-4803. DOI: 10.1093/bioinformatics/btab310. URL https://doi.org/10.
1093/bioinformatics/btab310.

[32] U Martin Singh-Blom, Nagarajan Natarajan, Ambuj Tewari, John O Woods, Inder-
jit S Dhillon, and Edward M Marcotte. Prediction and validation of gene-disease as-
sociations using methods inspired by social network analyses. PloS one, 8(5):e58977,
2013.

[33] Yizhou Sun, Jiawei Han, Xifeng Yan, Philip S Yu, and Tianyi Wu. Pathsim: Meta
path-based top-k similarity search in heterogeneous information networks. Proceedings
of the VLDB Endowment, 4(11):992–1003, 2011.

[34] Damian Szklarczyk, Annika L. Gable, David Lyon, Alexander Junge, Stefan Wyder,
Jaime Huerta-Cepas, Milan Simonovic, Nadezhda T. Doncheva, John H. Morris, Peer
Bork, Lars J. Jensen, and Christian von Mering. STRING v11: protein-protein
association networks with increased coverage, supporting functional discovery in
genome-wide experimental datasets. 47:D607–D613, 2019. ISSN 1362-4962. DOI:
10.1093/nar/gky1131.

21

http://dx.doi.org/10.1093/bioinformatics/btaa150
https://doi.org/10.1093/bioinformatics/btaa150
https://doi.org/10.1093/bioinformatics/btaa150
http://dx.doi.org/10.1093/bioinformatics/btt657
https://doi.org/10.1093/bioinformatics/btt657
https://doi.org/10.1093/bioinformatics/btt657
http://dx.doi.org/10.1093/nar/gkz1021
http://dx.doi.org/10.1186/s12920-018-0372-8
https://bmcmedgenomics.biomedcentral.com/articles/10.1186/s12920-018-0372-8
https://bmcmedgenomics.biomedcentral.com/articles/10.1186/s12920-018-0372-8
http://arxiv.org/abs/cmp-lg/9511007
http://arxiv.org/abs/1703.06103
http://dx.doi.org/10.1093/bioinformatics/btab310
https://doi.org/10.1093/bioinformatics/btab310
https://doi.org/10.1093/bioinformatics/btab310
http://dx.doi.org/10.1093/nar/gky1131


[35] Damian Szklarczyk, Annika L Gable, Katerina C Nastou, David Lyon, Rebecca
Kirsch, Sampo Pyysalo, Nadezhda T Doncheva, Marc Legeay, Tao Fang, Peer Bork,
et al. The string database in 2021: customizable protein–protein networks, and
functional characterization of user-uploaded gene/measurement sets. Nucleic Acids
Research, 49(D1):D605–D612, 2021. DOI: 10.1093/nar/gkaa1074.

[36] Jean-François Truchon and Christopher I Bayly. Evaluating virtual screening meth-
ods: good and bad metrics for the “early recognition” problem. Journal of chemical
information and modeling, 47(2):488–508, 2007.

[37] Alberto Valdeolivas, Laurent Tichit, Claire Navarro, Sophie Perrin, Gaëlle Odelin,
Nicolas Levy, Pierre Cau, Elisabeth Remy, and Anaïs Baudot. Random walk with
restart on multiplex and heterogeneous biological networks. 35(3):497–505, 2019.
ISSN 1367-4803. DOI: 10.1093/bioinformatics/bty637. URL https://doi.org/
10.1093/bioinformatics/bty637.

[38] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò,
and Yoshua Bengio. Graph attention networks, 2018. URL http://arxiv.org/abs/
1710.10903.

[39] Xiaochan Wang, Yuchong Gong, Jing Yi, and Wen Zhang. Predicting gene-disease
associations from the heterogeneous network using graph embedding. In 2019 IEEE
International Conference on Bioinformatics and Biomedicine (BIBM), pages 504–
511, 2019. DOI: 10.1109/BIBM47256.2019.8983134.

[40] Kyoko Watanabe, Sven Stringer, Oleksandr Frei, Maša Umićević Mirkov, Christiaan
de Leeuw, Tinca JC Polderman, Sophie van der Sluis, Ole A Andreassen, Benjamin M
Neale, and Danielle Posthuma. A global overview of pleiotropy and genetic architec-
ture in complex traits. Nature genetics, 51(9):1339–1348, 2019.

[41] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph
neural networks?, 2019. URL http://arxiv.org/abs/1810.00826.

[42] Kuo Yang, Yi Zheng, Kezhi Lu, Kai Chang, Ning Wang, Zixin Shu, Jian Yu, Baoyan
Liu, Zhuye Gao, and Xuezhong Zhou. PDGNet: Predicting disease genes using a
deep neural network with multi-view features. 19(1):575–584, 2022. ISSN 1557-9964.
DOI: 10.1109/TCBB.2020.3002771. Conference Name: IEEE/ACM Transactions on
Computational Biology and Bioinformatics.

[43] Jiaxuan You, Zhitao Ying, and Jure Leskovec. Design space for graph neural networks.
Advances in Neural Information Processing Systems, 33, 2020.

[44] Xiao-Meng Zhang, Li Liang, Lin Liu, and Ming-Jing Tang. Graph neural networks
and their current applications in bioinformatics. 12, 2021. Publisher: Frontiers Media
SA.

[45] Jianan Zhao, Xiao Wang, Chuan Shi, Binbin Hu, Guojie Song, and Yanfang Ye.
Heterogeneous graph structure learning for graph neural networks. In 35th AAAI
Conference on Artificial Intelligence (AAAI), 2021.

[46] Marinka Zitnik, Monica Agrawal, and Jure Leskovec. Modeling polypharmacy side
effects with graph convolutional networks. 34(13):i457–i466, 2018. ISSN 1367-
4803. DOI: 10.1093/bioinformatics/bty294. URL https://www-cs.stanford.
edu/~marinka/papers/decagon-ismb18.pdf.

22

http://dx.doi.org/10.1093/nar/gkaa1074
http://dx.doi.org/10.1093/bioinformatics/bty637
https://doi.org/10.1093/bioinformatics/bty637
https://doi.org/10.1093/bioinformatics/bty637
http://arxiv.org/abs/1710.10903
http://arxiv.org/abs/1710.10903
http://dx.doi.org/10.1109/BIBM47256.2019.8983134
http://arxiv.org/abs/1810.00826
http://dx.doi.org/10.1109/TCBB.2020.3002771
http://dx.doi.org/10.1093/bioinformatics/bty294
https://www-cs.stanford.edu/~marinka/papers/decagon-ismb18.pdf
https://www-cs.stanford.edu/~marinka/papers/decagon-ismb18.pdf

	Kivonat
	Abstract
	Introduction
	Graph Neural Networks
	Heterogeneous graph neural networks

	Previous methods

	Materials and methods
	Database integration
	Gene annotation
	Disease annotation
	Summary

	Architecture
	Training
	Hyperparameter optimization


	Results
	Binary evaluation
	Ranked evaluation
	Comparison with GWA studies
	Comparison with PGCN

	Conclusion
	Bibliography

