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Chapter 1

Introduction

Networks are present in almost every field of life. An immediate example that comes

into mind is the Internet itself, but we could also think of human relationships, which

can be modeled by networks. The primary goal of the study of networks is to explore

and understand their structure, origin and possible evolution. For example, if we aim

to efficiently stop or prevent a pandemic, it is important to explore both the biological

structure of the virus and the social interactions of communities. Network theory plays a

major role in both of them.

The breakthrough of network science dates back around the millennium, since the

rapid and large-scale development of computer science made it possible to store and

efficiently analyse complex networks. An observation, that there are properties, which are

generally present in a large number of networks regardless of their origin, was also made

in these years. One of the most common features of networks is the scale-free property [1],

which can be interpreted such that most of the nodes of a network have only a few

neighbours, but there is a small number of so-called hub nodes too, with a large amount

of connections. Another frequent characteristic is the small-world property [2]. In these

networks, the average distances between nodes grow proportionally to the logarithm of

the network size, which means in practice that every node can be reached from any other

in just a few steps.

Networks can possess other interesting properties too, such as fractality. Fractal scaling

is a notion originating from geometry, but around two decades ago it was extended to

complex networks as well [3]. Since then, numerous important properties have been shown

to be present in fractal networks, such as robustness against intentional attacks [4] and

accelerated flow [5]. Consequently, it is in dire need to uncover the underlying mechanisms
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causing fractality. Several studies have been created throughout the years focusing on the

exploration of the origins of fractality, but it is still an unresolved problem. In this work,

we intend to discover which network characteristics influence the emergence of fractality

in complex networks. To this end, we review the most influential results in the field and

also suggest novel approaches concerning the conclusions of these studies. Furthermore,

we propose a completely different perspective for the solution of the problem as well,

which utilizes the tools of machine learning. All of the mentioned analyses rely on our

large dataset consisting of both real-world a model generated networks, in order to be

able to make universal findings.

In the rest of this chapter, we define the most important notions of network theory,

including fractality. In Chapter 2, we lay the foundation of our analyses by showing how

fractality can be determined in networks, presenting different fractal network models and

describing the creation and properties of our dataset, which forms the basis of the analyses.

In Chapter 3, we examine the characteristics, which have been associated with fractality,

one by one, and finally present our novel machine learning approach for the problem. In

Chapter 4, we summarize our findings and propose further research possibilities.

1.1 Important notions

In this section, the most important notions of network theory are presented, which may

appear in the later chapters concerning the analyses. We assume that the reader is familiar

with basic notions of graph theory. Throughout this paper we consider networks, which

can be modeled by simple, undirected, connected graphs. If the originating network is not

connected, we take only its largest connected component. Note also that in this paper the

words graph and network are used as equivalent terms.

Definition 1 (Degree distribution) The P (k) degree distribution is defined to be the

probability that a uniformly selected node has degree k.

Definition 2 (Scale-free network) A network is called scale-free, if its degree distribution

follows a power law, i.e.

P (k) ∼ k−γ,

where γ ≥ 1.

Definition 3 (Small-world network) Small-world networks are those for which the average
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path length is proportional to the logarithm of the number of nodes, i.e.

l ∼ logN,

where l denotes the average of the length of shortest paths, N is the number of nodes in

the network.

Definition 4 (Local clustering coefficient) The Cu local clustering coefficient of vertex

u gives the proportion of possible edges among its neighbours that are actually present in

the graph. Formally:

Cu =
|{(s, t) : s, t ∈ Γu, (s, t) ∈ E}|(

deg(u)
2

) ,

where Γu is the set of the neighbours of u, E denotes the edge set of the graph and deg(u)

is the degree of u.

Definition 5 (Edge betweenness centrality) The betweenness centrality of an e edge is

the number of shortest paths containing e divided by the number of all the shortest paths

in the graph, i.e.

c(e) =
∑
u6=v

σuv(e)

σuv
,

where σuv denotes the number of shortest paths connecting vertices u and v, and σuv(e)

the number of those, which contain e. We note here that Girvan and Newman defined

in [6] the edge betweenness centrality of e as the number of shortest paths containing e

however, in practice it is often more useful to consider it with the 1/
∑

u6=v σuv normalizing

constant.

Definition 6 (Eigenvector centrality) Let A denote the adjacency matrix of the graph.

Then the eigenvector x corresponding to the largest eigenvalue of A contains the centrality

values. Consequently, the eigenvector centrality of the vertex u is the component of x

corresponding to u. Note that in order to get an appropriate measure, the normalization

of the eigenvector is necessary.

Definition 7 (Assortativity coefficient) Assortativity coefficient describes the connection

pattern of a graph namely, that the similar or the non-similar nodes tend to connect to

each other concerning some characteristics. The most common, which is considered is

the degree of nodes. The assortativity coefficient defined by Newman [7] is the Pearson

correlation coefficient of the degrees of the endpoints of a randomly selected edge. Formally:

r =

∑
j,k jk(ejk − qjqk)

σ2
q

,
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where j and k indicate the remaining degrees (i.e. degree minus 1). Furthermore, qk is the

distribution of the remaining degree, ejk is the joint distribution of the remaining degrees

of the two vertices, and σ2
q is the variance of the qk distribution.

1.2 Fractality of networks

Similarly to the case of geometric fractals, fractality of networks can also be defined by

the so-called box-covering method, using the length of shortest path between two nodes

as the distance metric. The method can be summarized as follows [3]: The nodes of the

network are partitioned into boxes of size lb in a way that any two nodes of a box are

at distance less than lB from each other. Then the minimum number of boxes needed to

cover the entire network with lB sized boxes is denoted by NB(lB). With these notations,

a network is defined to be fractal, if the relation of NB(lB) and lB follows a power law,

i.e.:

NB(lB) ∼ l−dBB .

The dB exponent is called the box-dimension or fractal dimension of the network.

Unfortunately, box-covering is proved to be an NP-hard problem [8]. This means that

there is no efficient algorithm, which could find the exact solution, i.e. the optimal NB(lB)

number of boxes. However, there are numerous approximating methods, for a collection

and comparative analysis of box-covering algorithms, please refer to [9]. Here, we present

only the most well-known and used Compact Box Burning (CBB) algorithm, which we

use later for the boxing of our networks. The method goes as follows [8]:

1. Let C be the set of uncovered nodes.

2. Randomly choose a c ∈ C node, and remove it from C.

3. Remove every node from C, which is at distance at least lB from c.

4. Repeat steps 2 and 3 until C becomes empty. At this point, the chosen c nodes form

a compact box, thus no other nodes could be added to this box.

5. Repeat steps 1-4 until the whole network is covered.
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Chapter 2

Data and methods

In order to resolve the common problem of non-generality of results about the origins of

fractality, our study relies on a large dataset, consisting of both real-world and model-

generated networks. Needless to say that in the study of fractal networks, it has major

importance to appropriately recognize the fractal nature of a network. Unfortunately,

this task is far from trivial, and most of the solutions rely on visual evaluations. To avoid

the uncertainty of these techniques, we apply a more mechanic method to determine the

presence of fractality in networks. In this chapter we lay the foundation of our analyses,

starting with the determination of fractality. After that, we present the used mathematical

network models, and finally we describe our data in detail.

2.1 Determination of fractality

In theory, the determination of the fractality of a network can be done by testing if

the (lb, NB(lB)) datapoints, resulting from the box-covering method, follow a power law

distribution. A statistical framework for the detection of power law behaviour in empirical

data was developed by A. Clauset, CR. Shalizi and M.E.J. Newman [10], however, there

are some difficulties, which is why this technique is commonly not appropriate for this

particular problem. First of all, due to the NP-hard nature of the box-covering method,

the use of approximating algorithms is necessary. These algorithms have an uncertainty

factor, consequently we cannot guarantee that their outcomes are always accurate, and

lower quality data often cause misleading results. Furthermore, statistical tests usually fail

for small sample sizes, and for smaller networks or for those with small average distances,

the number of points resulting from box covering is not large enough to obtain reliable
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information by these tests.

Because of the mentioned difficulties, in practice, the most common technique for

detecting the fractal nature of a network is to draw log-log plots of the (lb, NB(lB)) dat-

apoints, fit a line to them, and decide about the goodness-of-fit by the mean squared

error, the coefficient of determination or by simply looking at the plots. Obviously, these

methods and the conclusions drawn from their results are highly influenced by personal

decisions. Furthermore, considering a large number of networks the evaluation of plots

becomes impracticable. For this reason, we have been searching for a more mechanical

way to decide about the fractality of networks.

We use a method, which takes advantage of the observation that while in fractal

networks the Nb(lB) ∼ l−dBB relation holds, for non-fractal networks NB(lB) ∼ e−delB is

true [11]. This concept for the determination of fractality was introduced by K. Takemoto

in [12]. Here, we apply a modified version of the method presented in [13]. Namely, we

fit both a power law and an exponential curve in the form of the mentioned relations to

the normalized (lb, NB(lB)/N) points, where N is the number of nodes in the network.

The fitting is done by excluding the first point, i.e., when lb = 1, because it is usually an

outlier to the distribution of the data. Then the fractality is measured by the ratio of the

root-mean-square errors of the two curves:

R =
RMSEpowerlaw
RMSEexponential

.

The motivation behind the normalization of data points and the use of RMSE is to

be able to compare for different networks the goodness-of-fit of each curve separately, not

only their ratio.

We could say that if R < 1, then the network is fractal, since in this case the power

law curve fits better than the exponential one, otherwise it is non-fractal. However, the

presence of different properties in networks is usually not pure, especially in real networks.

It is a common phenomenon that fractal scaling holds only in an (lB,MIN , lB,MAX) range

of lB [10,11]. Often for small lB values the power law relation prevails, while for large lB’s

exponential holds. Fortunately, this metric allows to measure fractality on a continuous

scale, the closer R is to 0, the more fractal the network is. However, in order to compare

the characteristics of fractal and non-fractal networks, we still need to create a cut-off

point. We observed on both real and model generated networks that choosing it to be

R = 0.65 can be reasonable. We can say that the investigated networks with R < 0.65 are

rather fractal than non-fractal and vice versa. Figure 2.1 shows a few illustrative examples.
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Figure 2.1: Results of fitting power law and exponential curves to some real networks,

illustrated on log-log plots. (a) Brain network with R = 0.007 (b) Social network with

R = 3.3 (c) Metabolic network with R = 0.09

For the sake of fairness we have to mention that the described method cannot be used

for networks for which the outcome of box covering consists of only a few points (e.g., less

than 6). However, for these networks, fractal nature can hardly be interpreted anyway.

Furthermore, it may also not give appropriate results for some network models. The reason

behind it is that in models the fractal and non-fractal scaling often only asymptotically

hold. For this reason, we determine the fractality with this method only for real networks,

and we stick to the theoretical parameters for models.

2.2 Network models

Mathematical models play a crucial role in the understanding of network properties.

Numerous models have been created throughout the years to capture fractal scaling in

networks and to discover the relations of fractality to other characteristics. In this section,

we describe four such network models, including the connection of their parameters to

fractality.

2.2.1 Song-Havlin-Makse model

The most widely known model in the field of network fractality is the Song-Havlin-Makse

model, which was introduced in [4]. The main idea behind it is to dynamically grow a

network, while influencing the degree correlations, especially the correlation between hubs.

The model is defined as follows:
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1. The initial graph is a simple structure, e.g. two nodes connected via a link.

2. In iteration step t+ 1 we connect m−m offspring to both endpoints of every edge,

i.e. a v node gains m · degt(v) offspring, where m is a predefined parameter and

degt(v) is the degree of node v at the end of step t.

3. In iteration step t + 1 every (u, v) edge is removed independently with probability

p, where p is a predefined parameter. When an edge is removed, it is replaced with

x new edges between the offspring of u and v.

The fractality is influenced by the choice of parameter p namely, the generated network is

fractal for p = 1, and non-fractal for p = 0 [4]. The intermediate values develop mixtures

between the two properties. Our observation is that the networks resulting from setting

p ≥ 0.4 can be considered fractal, which is illustrated on Figure 2.2.

For the later analyses, we restrict ourselves to the x = 1 case in order to reduce the

number of possible networks to be generated, and hence the computational demand of

the tasks.

100 101 102 103

lB

100

101

102

103

N
B
(l B

)

p = 0
p = 0.2
p = 0.4
p = 0.6
p = 0.8
p = 1

Figure 2.2: Illustration of the fractality of the Song-Havlin-Makse model for different

parameter settings.

2.2.2 Repulsion based fractal model

The following model was presented in [14]. It is similar to the SHM model in a way, that

starting with an initial graph it dynamically grows through iterations, and edge rewiring
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influences the structure of the network. Its uniqueness is that it always generates fractal

networks, irrespective of the parameter choices. The evolution of the model is as follows:

1. The initial condition and the growth of the model is the same as step 1 and 2 of the

Song-Havlin-Makse model.

2. In iteration step t+ 1 we remove every (u, v) edge with probability

pYuv = 1−
∣∣∣∣Y − degt(u) + degt(v)

2 · degt,max

∣∣∣∣ ,
where Y ∈ [0, 1] is a predefined parameter, degt(u) is the degree of node u, degt,max

is the maximum degree at step t. When an edge is removed, it is replaced with x

new edges between the offspring of its endpoints.

3. We add degt(v) edges among the newly generated offspring of every old node v.

The author claims that in this way, when Y = 0 repulsive relation is created among

small degree nodes, while for Y = 1 it is among hubs [14]. As Figure 2.3 shows, the model

indeed generates fractal networks for all parameter settings.

As in the case of the SHM model, for the analyses we simplify the model by setting

x = 1.

100 101 102

lB

100

101

102

N
B
(l B

)

Y = 0
Y = 0.5
Y = 1

Figure 2.3: Illustration of the fractality of the Repulsion based fractal model for different

parameter settings.
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2.2.3 Mixture model

The Mixture model was introduced in [14]. The main idea behind it is to take a pure

fractal initial graph and rewire some of its edges based on the preferential attachment

mechanism to obtain a less fractal network. The steps of the model are as follows:

1. We start with a k-dimensional (practically k = 2) grid graph with n1×n2×· · ·×nk
vertices.

2. We remove every (u, v) edge with a predefined probability p, and replace it by choos-

ing a new endpoint for the edge. The probability of selecting vertex w is proportional

to

pw =
1

1 + exp (−a · ( deg(w)
degmax)

− 1
2
)
,

where a is a positive constant, deg(w) is the degree of node w and degmax is the

maximum degree of the current graph. By practical motivation, to avoid multiple

edges, we exclude the neighbours of the starting point from the set of possible

endpoints. By default, u is chosen to be the starting point of the new edge, however

if in this way the graph becomes disconnected, v is chosen instead.

The fractality of the generated network depends on the choice of p. For p = 0 the

network is purely fractal, and as p grows the model shows a transition from fractal to

non-fractal networks [14]. We can say that a cut-off point can be created at p = 0.01, as

Figure 2.4 demonstrates.

2.2.4 (u, v)-flower

The family of (u, v)-flowers was created by Rozenfeld, Havlin and Ben-Avraham [15].

Similarly to most of the previous models, this model also generates networks through

iterations, but the edge replacement procedure is quite different. The model is defined as

follows:

1. The initial graph is a cycle consisting of w = u+ v nodes and edges, where u and v

are predefined parameters, and we can assume that u ≤ v.

2. In iteration step t + 1 every (x, y) edge is replaced by two paths connecting x and

y, one with length u and one with length v.

H. D. Rozenfeld et al. showed in [15] that the model generates fractal networks when

u > 1, and non-fractal ones when u = 1. This statement is illustrated on Figure 2.5.
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Figure 2.4: Illustration of the fractality of the Mixture model for different parameter

settings.
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Figure 2.5: Illustration of the fractality of the (u, v)-flower for different parameter settings.

2.3 Data

To thoroughly analyse network properties, search for possible relations among them, and

to be able to draw relevant conclusions, it is essential to consider a diverse and large-

scale collection of networks as the basis of the analyses. Although mathematical models

can give insight to the evolution of networks and some properties in focus, they usually
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cannot capture every characteristic of real networks. Striving to be as comprehensive as

possible, we generated networks with the models described in Section 2.2 considering

various parameter settings, furthermore, we collected a large number of real networks

originating from six different domains.

During the selection of parameter settings for the different models, we aimed to get

a representative sample of the possible networks, which can be generated, while keeping

the number of networks reasonably low for computational purposes. For this reason also

we limited ourselves mostly to networks with at most 5000 number of nodes. Fortunately,

the number of nodes is deterministic in the parameters for all models, thus this limitation

could be easily controlled. Our choices of parameter values can be summarized as follows:

For all the cases below, n denotes the number of iterations the models do.

Song-Havlin-Makse model

n = 1, 2, . . . , 5

m =



1, 2, 3, 5, 10, 20, 50, if n = 1

1, 2, 3, 5, 10, 20, if n = 2

1, 2, 3, 5, 10, if n = 3

1, 2, 3, if n = 4

1, 2, if n = 5

p = 0, 0.2, . . . , 0.8, 1

136 generated networks in total.

Repulsion based fractal model

n = 1, 2, . . . , 5

m =



1, 2, 3, 5, 10, 20, 50, if n = 1

1, 2, 3, 5, 10, 20, if n = 2

1, 2, 3, 5, if n = 3

1, 2, 3, if n = 4

1, if n = 5

p = 0, 0.5, 1

63 generated networks in total.
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Mixture model

N = n1 · n2 = 10, 50, 100, 200, 500, 800, 1000, 1500, 2000, 3000, 5000,

and n1 and n2 is chosen in a way that |n1 − n2| becomes as small as possible

p =

0, 0.00001, 0.0001, 0.001, 0.0025, 0.005, 0.0075, 0.01,

0.05, 0.1, 0.25, 0.5, 0.75, 1

154 generated networks in total.

(u, v)-flower

1 ≤ u ≤ v, such that w = u+ v = 2, 3, . . . , 10

n =



9, if w = 2

8, if w = 3

6, if w = 4

5, if w = 5, 6

4, if w = 7, 8, 9, 10

114 generated networks in total. We have to mention that unfortunately, during the prepa-

ration of the data some networks got lost. This is the reason why the total number of

networks is not equal to the number of possible networks, which can be generated with

the described parameter settings.

For those analyses, where the evaluation of results is needed to be done network-wisely

and is based on making plots, we restricted ourselves to a smaller number of networks. We

created three categories, namely where the number of nodes is approximately 800, 2000,

and 5000. In the case of the Song-Havlin-Makse and Repulsion based fractal model, for

every category, one realization of the (n,m) pair of parameters was selected, which gen-

erates networks with number of nodes corresponding to the categories. All the previously

mentioned p values were assigned to these (n,m) pairs, resulting in six generated networks

per category for the Song-Havlin-Makse, and three for the Repulsion based fractal model.

Similarly, for the Mixture model one realization of the (n1, n2) pair was chosen for every

category, according to the previously detailed rule. Moreover, we selected six values for

parameter p, three below 0.05, and three above it. Finally, in the case of the (u, v)-flower,

we considered all the (u, v, n) parameter settings, which generate networks with sizes cor-

responding to the categories, thus three to five networks got assigned to each category,

including both fractal and non-fractal ones.
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Real networks were collected from online repositories [16–28]. Table 2.1 gives a short

description of the different domains and shows the corresponding number of gathered

networks. In total, we work with 275 real-world networks. Some of their main features

can be seen in Table 2.2, aggregated by domains. For those analyses, which require visual

evaluation, we selected four to six networks from every domain, bearing in mind to have

both fractal and non-fractal networks from all size categories presented in the domain.

We decided about the fractality of the networks in the same way as described in

Section 2.1. In order to eliminate the randomness of the box-covering algorithm and the

network models, we repeated the procedure 15 times. More precisely, in the case of the

models, for a particular parameter setting we generated 15 networks and considered their

average box-counts, while for the real networks we performed the box-covering 15 times

and averaged their outcomes. The resulting class distribution of the datasets are shown

on Figure 2.6. There are much more fractal networks amongst the model-generated ones,

while real networks are rather non-fractal. However, combining the two datasets the classes

become balanced.

Domain Description
Number of

networks

Brain
Human and animal connectomes

(neural connections in the brain)
45

Metabolic Protein-protein interactions of organisms 47

Cheminformatics Graph structure of enzymes 45

Infrastructural Transportation and distribution networks 30

Foodweb What-eats-what in an ecological community 69

Social Facebook, Twitter and collaboration networks 39

Table 2.1: Description of the network domains and the numbers of collected networks.
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Domain
Number of nodes Number of edges Diameter

AVG (MIN, MAX) AVG (MIN, MAX) AVG (MIN, MAX)

Brain 1073 (65, 2989) 7485 (730, 31548) 14 (2, 43)

Metabolic 815 (11, 2831) 2099 (10, 20448) 9 (1, 22)

Cheminformatics 58 (44, 125) 100 (77, 149) 16 (9, 37)

Infrastructural 1268 (8, 6474) 2396 (7, 15645) 37 (3, 122)

Foodweb 115 (19, 765) 655 (38, 6613) 5 (2, 9)

Social 4465 (86, 9763) 7300 (117, 24806) 14 (6, 28)

Table 2.2: Some of the main features of the collected real networks. The average, minimum

and maximum value of the number of nodes, the number of edges and the diameter of the

networks by domains.
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Figure 2.6: Class distribution concerning fractality for (a) model generated, (b) real-

world, (c) all of the examined networks together.
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Chapter 3

Analysis of network characteristics

In this chapter, we intend to give a comprehensive analysis of the relation of fractality to

other network properties. We revisit the widely researched suggestions that fractal scaling

originates from disassortativity and/or from the repulsion between hub nodes. We also

reconsider some newer questions concerning long-range correlation of nodes and edge be-

tweenness centrality. Where it is possible, we follow the methodology of the corresponding

research papers and extend the results to a larger scale relying on our massive dataset.

Moreover, we also give our own approach to the examined issues and investigate the rel-

evance of the suggestions from all these perspectives. Finally, we study the connection of

fractality to other network characteristics from a whole different point of view. Namely, we

are searching for important features of fractal networks with the help of machine learning

algorithms.

3.1 Disassortativity and hub repulsion

The first network properties, which were associated with fractality are disassortativity and

repulsion between large degree nodes, i.e., hubs. It was suggested that fractal nature of

networks originates from these characteristics [4, 29]. There are numerous papers dealing

with this statement, some support it [30], and there are more that confute it [14,31–33].

In most of the studies, the concepts of disassortativity and hub repulsion coincide,

although the latter can be considered only as the practical interpretation of the former.

For this reason, we rather separate the two notions and measure the assortativity of a

network by the classic assortativity coefficient, and define a different hub repulsion score.

For this, let Nhub denote the number of hubs in the network and Ehub the number of edges
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among these hubs. Then the hub repulsion score (HRS) is defined to be one minus the

ratio of the number of realized and possible edges among hubs. Formally:

HRS = 1− Ehub(
Nhub

2

) .
In this way, HRS is small for those networks, in which hubs tend to connect to each other

(no repulsion), and large, when there are only a few or no edges among them (strong

repulsion).

During the analysis, we define hubs as the nodes whose degree is above the 90th

percentile of the degree distribution, i.e., the top 10% of nodes according to their degree.

Furthermore, both the assortativity coefficient and the hub repulsion score is averaged

over 15 realizations of the network models for each parameter setting.

Results

In the case of the network models, the change in the assortativity coefficient is observed

as a function of the parameter, which influences the fractality of the network. Figure 3.1

illustrates the results on three examples for every model. On the one hand, it can be said

that three of the four models support the statement that fractal networks are disassor-

tative. It has to be mentioned though, that while the (u, v)-flower also supports that the

difference in fractal and non-fractal networks can be found in their assortativity pattern,

the Song-Havlin-Makse model fails on this conjecture, since it always generates diasas-

sortative networks. On the other hand, the Mixture model is a complete counterexample

for the mentioned beliefs, because it not only generates instances for assortative fractal

networks, but we can observe a positive connection between fractality and assortativity,

as it was also pointed out in [14]. Finally, real networks do not show any pattern con-

cerning the assortativity of fractal and non-fractal networks. They are often disassortative

regardless of fractality, but among the examined fractal networks there are as much as-

sortative as disassortative, which is well illustrated on Figure 3.2. Overall, we can support

the conclusion of [31] namely, that fractality is independent of the assortative mixing.

Regarding the hub repulsion, we can also say that some models support the conjecture,

that this property may lie behind fractality. Figure 3.3 shows how the hub repulsion score

characterizes the different cases of the (u, v)-flower. It can be seen on both subfigures

that in the u = 1, i.e., the non-fractal case, the scores are much lower, than in the fractal

cases. Furthermore, the scores are not just higher for the fractal networks, they are high in
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Figure 3.1: Assortativity as a function of the parameter, which influences fractality for the

(a) Song-Havlin-Makse model, (b) Repulsion based fractal model, (c) Mixture model,

(d) (u, v)-flower. The grey dotted line at Assortativity = 0 is a guide for the eye.
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Figure 3.2: Assortativity of real networks plotted against the number of nodes on a semi-

log scale. Subfigure (a) shows the non-fractal, subfigure (b) the fractal networks. The

grey dotted line at Assortativity = 0 is a guide for the eye.

19



101 102 103 104

Number of nodes

0.0

0.2

0.4

0.6

0.8

1.0

H
RS

(a)

u= 1
u= 2
u= 3
u= 4
u= 5

1 2 3 4 5
u

0.00

0.02

0.04

0.06

0.08

0.10

H
RS

/N

(b)

Figure 3.3: Plots of hub repulsion score for the (u, v)-flower. (a) HRS as a function of

the number of nodes on a semi-log scale. (b) Boxplots of the normalized hub repulsion

scores for different u parameters. The normalization is done by dividing by the number

of nodes in the network.

general. However, it can be observed that the HRS gets close to 1 for large networks, for

the non-fractal cases too. Similar behaviour is presented by the Repulsion-based fractal

model and the Song-Havlin-Makse model as well, consequently we have to assume that

the score may not be reliable in larger scales. Nevertheless, we can still use it for smaller

networks and observe that the Song-Havlin-Makse model shows that hub repulsion is much

stronger in the fractal networks than in the non-fractal ones. Concerning the Repulsion-

based fractal model, we can say that the HRS and Y show a positive relation, and that

fractal networks do not necessarily have to possess a strong hub repulsion property. It has

to be mentioned that for those networks for which hub repulsion cannot be interpreted

(because there are no hubs), this hub repulsion score practically cannot get much below

1, because of the large number of possible edges among the considered nodes. This is the

reason why for most cases of the Mixture model it cannot give useful measures.

Lastly, as Figure 3.4 shows, real networks fully contradict the conjecture that hub

repulsion may cause fractality. There are fractal networks with low HRS and non-fractal

ones with high score too, and there is no significant difference in the distribution of

the values for the two classes. We would like to note here how important it is to take

into consideration the network sizes when comparing the hub repulsion scores. There is

a tremendous difference between the two boxplots on Figure 3.4 (b) and (c), and the

reason behind it is that smaller networks can have smaller HRS more easily, while large

networks cannot obtain significantly less than 1, as it was pointed out earlier. Therefore
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having a bunch of small and only a few large networks in one group, and reversely in the

other group, the pure (mean) scores may be misleading.

In conclusion, we can say that, similarly to disassortativity, hub repulsion also seems

to be independent of fractality.
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Figure 3.4: Plots of hub repulsion score for real networks. (a) HRS as a function of

the number of nodes on a semi-log scale. (b) Boxplots of HRS in the fractal and non-

fractal class. (c) Boxplots of the normalized hub repulsion scores for the two classes. The

normalization is done by dividing by the number of nodes in the network.
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3.2 Long-range correlation

Besides the direct relations of nodes, long-range correlations can also be captured and

analysed in networks. This extension of degree anticorrelation has already been associated

with fractal scaling [32,34]. Both studies suggest, based on different approaches, that there

is a connection between long-range negative correlation and fractality. Here, we apply both

of these methods on our data in addition to a more immediate extension of neighbour-level

degree correlation measures, introduced in [35].

In [34] a fluctuation analysis approach was proposed to measure long-range correla-

tions. We follow the steps of this method, which can be summarized as follows:

1. Consider all shortest paths in the network with length d. For all of these paths

calculate the average degree of the nodes on the path.

2. Calculate F (d), which is the standard deviation of the averages calculated in step 1.

3. Repeat step 1 and 2 for all possible d.

4. Examine if the relation of F (d) and d follows power law with exponent α. If so,

−1
2
< α < 0 suggests positive, −1 < α < −1

2
negative long-range correlations.

An extension of the concept of hub repulsion to long-range scales was proposed in [32].

They examined how the distribution of hub distances look like in fractal and non-fractal

networks. The procedure can be summed up by the following steps:

1. Calculate the distance of all pairs of hubs.

2. For all distance l calculate P̂ (l), which is the number of hub pairs separated by a

shortest path of length l.

3. Calculate P̃ (l) by dividing P̂ (l) by the number of possible edges among hubs, i.e.

by
(
Nhub

2

)
.

In this way, P̃ (l) is the probability that a randomly selected pair of hubs is at distance l

from each other. In order to be consistent with the results of [32], for this analysis we cut

off the hubs at the 98th percentile of the degree distribution.

The third approach, which we consider here for capturing long-range correlations in

networks, was introduced in [35]. It extends the notion of neighbour connectivity to nodes

at a distance larger than one. The main concept of the method can be summarized as

follows:
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1. Fix m, and for every node v average the degree of nodes, which are at distance m

from v.

2. Calculate 〈km〉(k) by taking the average of the outputs of step 1 over nodes with

degree k.

3. Examine the relation of k and 〈km〉(k).

Following the details of the analysis of [35], we consider the values of m up to 5, and

assume power law relation between k and 〈km〉(k).

Results

The results of the fluctuation analysis are illustrated for some model-generated and real-

world networks on Figure 3.5. Generally, it can be said that for the (u, v)-flower and

the Song-Havlin-Makse model the relation of d and F (d) of the fractal networks follow

power law with exponent less than −1
2
, while in the non-fractal cases the mentioned

relation is rather exponential, which support the observations of [34]. However, for the

Repulsion-based fractal model F (d) do not seem to have power law distribution. It may

not be immediately visible from Figure 3.5(b), but testing if power law or exponential

distribution is more appropriate for the data, we get that exponential fits better. For

this purpose, we use the powerlaw Python package [36]. In the case of the Mixture model,

none of the previously mentioned distributions seem to fit for the results of the fluctuation

analysis for the fractal networks. Among real-world networks there are some cases, where

the expected behaviour of F (d) can be observed, as Figure 3.5(c) shows. However, there

are examples, where power law relation cannot be detected, thus long-range correlations

cannot be concluded, as it is illustrated on Figure 3.5(d). In conclusion, we can say that

long-range anticorrelation captured by fluctuation analysis is not a universal property of

fractal networks.

Concerning the distribution of hub distances, we can say that most of the examined

models support the suggestion of [32], that in fractal networks hub distances have a wide

range, while in non-fractal networks hubs cannot get far from each other. However, a

surprising observation can be made based on the Song-Havlin-Makse model. As Figure

3.6(a) illustrates, the range of hub distances widens as p grows, but in the pure fractal

p = 1 case it falls back to the level of non-fractal networks. Consequently, this model

seems to contradict, that there have to be larger hub distances in fractal networks, than
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Figure 3.5: Results of the fluctuation analysis on a log-log scale for some examples of

the (a) (u, v)-flower, (b) Repulsion based fractal model. (c) illustrates the cases of some

metabolic, (d) infrastructural real networks. The dotted grey lines on subfigures (a) and

(c) are guides for the eye.

in non-fractal ones. Real networks also turn out to be counterexamples for this conjecture.

Although, there are some cases, where the hoped property can be observed. The first two

subplots of Figure 3.6(b) give an example for that, where two networks of the same size

are considered, and the fractal one clearly possesses larger hub distances, than the non-

fractal one. However, most of the time both fractal and non-fractal networks have small

hub distances, thus this property seems to be independent of fractality. An example for

this suggestion is given on the third and fourth subplots of Figure 3.6(b). They show that

two fractal networks of the same size can differ completely concerning their hub distances.

Finally, by the results of the third approach of capturing long-range correlations, we
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Figure 3.6: Distribution of hub distances for (a) some cases of the Song-Havlin-Makse

model, (b) some real networks. On subfigure (b), for the first two subplots two networks

with similar sizes are considered, and similarly to the third and fourth subplots.

can say that there is no connection between the fractality and the long-range correlation

profile of networks. It can be observed that in the case of the Repulsion-based fractal model

and the Song-Havlin-Makse model, usually no correlation can be detected for m ≥ 3 and

until that, the correlation profile does not change. For the (u, v)-flower, at m = 3 or

m = 4 the reverse of the m = 1 case can be observed for all networks, independently

of fractality. Networks generated by the Mixture model preserve their correlation profile

for all m distances, i.e., fractal networks have positive degree correlations, while non-

fractal networks have negative, even in the long-range scale. This phenomenon is well
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illustrated on Figure 3.7. Degree correlations of the real networks are usually preserved

or reversed for larger distances, but do not seem to disappear. However, these processes

are independent of the fractality of the networks. To illustrate this, Figure 3.8 shows two

brain networks, one of them is fractal, the other one is not, and their correlation profile is

exactly the same for all m distances. Lastly, the networks considered on Figure 3.9 show

that fractal networks with negative correlation on the direct neighbour level can show

positive correlation by stepping a little farther, at distances of m = 2 in these particular

cases.

Overall, we can conclude from the results of all three approaches, that fractality seems

to be independent of long-range correlation profiles.
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Figure 3.7: Degree correlations of the two extreme cases of the Mixture model at distances

from 1 to 5. The first row corresponds to the p = 0, the second to the p = 1 case. 〈km〉(k)

is plotted against k on a log-log scale, and the line fitted to the log-transformed data is

also provided.
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Figure 3.8: Degree correlations of a fractal (top row) and a non-fractal (bottom row) brain

network at distances from 1 to 5. 〈km〉(k) is plotted against k on a log-log scale, and the

line fitted to the log-transformed data is also provided.
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Figure 3.9: Degree correlations of two fractal social networks at distances from 1 to 5.

〈km〉(k) is plotted against k on a log-log scale, and the line fitted to the log-transformed

data is also provided.

3.3 Edge betweenness centrality

In [33], the authors reported that even a small number of edges with high betweenness

centrality (BC) can destroy the fractal scaling of a network. Although, they investigated

this conjecture from the point of minimum spanning trees, here we rather study the

suggestion generally on the exact networks. Consequently, we examine the question that

fractal networks can or cannot have edges with high betweenness centrality. To this end,

for every network we divide the edges into four categories according to their betweenness

centrality by the following percentile cutpoints: 95, 85, 70. Then we take the average of the

edge betweenness centralities in every category and examine if they are lower for fractal

networks, than for non-fractal ones, and if the average drops significantly after the first

category for fractal networks.

Results

Concerning the network models it can be said that some of them generate networks with

edges having small betweenness centrality, and some can create edges with quite large

BC too. However, these are model-specific properties, thus conclusions can also be made

only on each model separately. Figures 3.10 (a) and (b) show the resulting average edge

betweenness centralities aggregated for the two extreme cases of the Song-Havlin-Makse

model. In the pure fractal p = 1 case the average BC of the top 5% of the edges is

roughly the same, independently of the other parameters, and can be considered high in

general. The averages in the other categories drop significantly for some networks, but

not necessarily for every fractal network. In the pure non-fractal p = 0 case, the averages
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Figure 3.10: Average edge betweenness centralities in the different categories created by

the BC of the edges. (a) Song-Havlin-Makse model in the p = 0 case, (b) Song-Havlin-

Makse model in the p = 1 case, (c) Repulsion based fractal model. On the x-axis, the

networks are ordered by the average edge betweenness centralities.

in every category can take on values from a wide range, but they are generally, especially

in the highest category less than the ones for the fractal networks. Similar observations

can be made on the Mixture model, with the note that in that case the edge betweenness

centralities are low in general for all parameter settings.

For the (u, v)-flower there seems to be no significant difference in the averages between

the fractal and non-fractal networks, except for a few extreme cases, where they are all

1 for some non-fractal networks. Figure 3.10(c) illustrates the average edge betweenness

centralities in the different categories for networks generated by the Repulsion-based frac-

tal model. It can be said that there are fractal networks, for which the averages in all

categories are high, and there are such as well, where they are low. Significant drops can

be detected in about half of the cases. Finally, Figure 3.11 shows the results for the real

networks. It can be observed, that the averages are higher in general for the fractal than

non-fractal networks. Note that they also seem to be more stable across the different

categories for non-fractal networks, significant drops are more common for fractal ones.

Consequently, there are fractal networks, in which indeed only a few edges with high BC

occur, but it is not a universal property.

As a summary, we can conclude that fractal networks can have edges with high edge

betweenness centrality too. Comparing a large number of networks from the fractal and

non-fractal classes, we could say that the averages of the BCs in the different categories

are often higher for the fractal networks, but this is not a universal difference between the

two classes by no means.
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Figure 3.11: Average edge betweenness centralities in the different categories created by

the BC of the edges. (a) Fractal real networks, (b) Non-fractal real networks. On the

x-axis, the networks are ordered by the average edge betweenness centralities.

3.4 A machine learning approach

In the previous sections, the main concept in discovering the origins of fractality was

to take a network characteristic and examine if there is any difference between fractal

and non-fractal networks concerning this particular property. Here, we propose a different

approach to uncover the underlying mechanisms behind fractality. Namely, we address

this problem as a binary classification task. We intend to distinguish fractal and non-

fractal networks based on a few selected network characteristics, with the help of machine

learning algorithms, and identify the most important features. In this way, we could

conclude which properties cause the fractal scaling of networks.

There are numerous machine learning algorithms, which can be used for solving clas-

sification problems. Here, we apply three widespread methods, each of them are decision

tree based, namely, simple decision tree, random forest and XGBoost. During the selec-

tion of explanatory variables we are bearing in mind to get a collection of characteristics,

which represents the structure of the networks, but it is not too correlated. Moreover, we

aim to make these metrics as independent of the network size as possible, hence where it is

reasonable, normalization is also performed. The selection is carried out by [28] and [37].

In addition, we also consider some metrics resulting from the previous analyses. The list of

the final explanatory variables together with their description can be found in Table 3.1.

We consider three datasets to perform the task on, one consisting of the model-

generated networks, one of the real networks, and one which concatenates the two sets,

thus including all examined networks. More precisely, we drop the small networks from
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Name Description

avg path logsize
Average of the length of shortest paths,

divided by the logarithm of the number of nodes

avg deg Average degree

assortativity Assortativity coefficient

avg clust Average of the local clustering coefficients

max eigen Maximum of the eigenvector centralities

skew deg dist Skewness of the degree distribution

diam logsize Diameter, divided by the logarithm of the number of nodes

max deg n Maximum degree, divided by the number of nodes minus 1

hub repulsion Hub repulsion score (see: Section 3.1)

ebc avg 95
Average of the edge betweenness centralities

over the top 5% of edges (see: Section 3.3)

Table 3.1: Name and description of the chosen explanatory variables, for the classification

task.

all dataset, i.e. the ones whose number of nodes is less than 100, because in most of these

cases fractality can hardly be defined, as it was also mentioned earlier. We use 2
3

of the

datasets for training and the remaining 1
3

for testing. Two evaluation metrics are used

to measure the performance of the algorithms, accuracy and the Area Under the (ROC)

Curve (AUC). To read about the definition and usage of these measures, as well as the

basics of data science, we suggest the following introductory book: [38]. The parameter

optimisation for the algorithms is carried out based on the latter one, because for unbal-

anced classes accuracy can often be misleading. For the data preparation, training, and

evaluation of algorithms, we use the scikit-learn [39] and XGBoost [40] Python packages.

To identify, which are the important variables in the decision making process of the

algorithms, we calculate the permutation importance score of the features. These values

show, how much the performance of the model decreases if the values of a given attribute

are randomly permuted. For details concerning the determination of the scores, please

refer to the documentation of the permutation importance function1 of the scikit-learn

package.

1https://scikit-learn.org/stable/modules/permutation_importance.html
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Decision tree Random forest XGBoost

model real all model real all model real all

Accuracy 0.86 0.93 0.91 0.95 0.74 0.95 0.86 0.89 0.91

AUC 0.95 0.91 0.95 0.99 0.95 0.98 0.97 0.81 0.96

Table 3.2: Accuracy and AUC scores of the different algorithms on the fractal/non-fractal

classification task, on the three considered datasets.

Results

The performances of the models measured on the test sets are summarized in Table 3.2.

It can be said that all of the algorithms can solve the problem with high accuracy and

AUC score, thus we can conclude that fractal and non-fractal networks indeed differ in the

considered network characteristics. To see, which are the distinguishing features, we look

at the permutation importance scores for every algorithm and dataset. We can observe

that in the case of the dataset of the model generated networks, the normalized average

path length has the most significant importance for all algorithms. In addition to it, the

normalized diameter, maximum degree and the assortativtiy coefficient also seem to be

important for some methods. In the case of real networks, the assortativity coefficient

and the normalized diameter turn out to be the leading features, with the addition of the

average clustering coefficient for the simple decision tree. When all of the networks are

combined together and classified to fractal and non-fractal categories, not surprisingly,

the set of important variables come together from the previous two cases. Namely, the

normalized average path length, the assortativity coefficient, and the average clustering

coefficient turn out to be the important characteristics, consistently for all algorithms.

From the results detailed above, we can conclude that the magnitude of distances

in a network can have a connection to fractality. It may not be the distances between

hubs, which influence fractality, but the distances between any of the nodes generally.

Furthermore, although assortativity alone is not enough to separate fractal and non-

fractal networks, together with other properties, it could contribute to the distinction.

It sounds reasonable in general too that the joint presence of some properties causes the

rising of another property, in this particular case, fractality.
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Chapter 4

Summary

In this work, we investigated which characteristics could cause the emergence of fractal

scaling in complex networks. Our analyses relied on a large dataset of both real-world

and model generated networks, in order to prevent making conclusions based on coinci-

dences. Concerning the disassortativity of fractal networks, we have found that although

most of the considered mathematical models suggest that fractality is in a strong rela-

tion with disassortativity, there is also one, which supports the reverse of the statement.

Consequently, we can conclude that the fractality of a network is independent of its as-

sortativity, which is suggested by the real networks as well. Similar observations could be

made in the case where hub repulsion was measured directly. However, a modification on

the proposed Hub Repulsion Score should be made, to capture the property reliably for

the full range of networks, which is planned for future work.

The possible connection of long-range anticorrelation to fractality was reviewed using

three different methods proposed in the literature for capturing long-range patterns in

networks. Just as in the case of neighbour-level anticorrelations, here we have found that

correlation of node degrees is also independent of the fractal scaling. For all of the three

methods we could find both models and examples of real networks, which support the

suggestion of anticorrelation in fractal networks, even in the long-range scale, but there are

numerous counterexamples as well. The suggestion of the connection of edge betweenness

centrality with fractality was also reviewed. We examined whether fractal networks can or

cannot possess edges with large betweenness centrality. We have come into the conclusion

that fractal networks show no tendency to have edges mostly with small betweenness

centrality, which statement is supported by almost all of the considered models and real

networks as well.
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Finally, we proposed a novel perspective for the study of the origins of fractality.

We formulated a classification task with the goal to distinguish fractal and non-fractal

networks based on other network properties. We solved the problem with state-of-the-art

machine learning algorithms and identified the characteristics with high distinguishing

ability. By these results, we suggest that the joint presence of different properties may be

necessary for the emergence of fractality in a network. Furthermore, a feature related to

the average distance of a network is possibly one of the essential properties in recognizing

fractal scaling.

An important direction of further studies is to directly examine the possible connec-

tions of the proposed joint properties to fractality. For these analyses the extension of the

dataset with additional models and real networks may be reasonable. Another interesting

question, which is loosely connected to the previously mentioned problem, is if there is a

conflicting relation between fractality and the small-world property. This suggestion was

first proposed in [41], but since then examples have been shown for networks, which are

fractal and small-world at the same time, for example in [4]. Thus, it seems that the two

properties do not necessarily contradict each other however, average distances may still

have connection to fractality, by taking into consideration other characteristics as well.
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