
Budapest University of Technology and Economics
Faculty of Electrical Engineering and Informatics

Department of Measurement and Information Systems

Formal Methods for Better Standards
Validating the UML PSSM Standard

About State Machine Semantics

Scientific Students’ Association Report

Author:

Péter Szkupien
Ármin Zavada

Advisor:

Márton Elekes
Bence Graics

dr. Vince Molnár

2022

Contents

Kivonat i

Abstract ii

1 Introduction 1

2 Background 3

2.1 Unified Modeling Language . 3

2.1.1 Behavior . 3

2.1.2 Activity Behavior . 4

2.1.3 State Machine Behavior . 4

2.1.4 Precise Execution Semantics of fUML and PSSM 6

2.1.5 Overview of the PSSM Test Suite . 7

2.2 Gamma Statechart Composition Framework 8

2.2.1 Gamma Behavioral Languages . 9

2.2.2 Gamma Composition Semantics . 9

2.3 Theta Model Checking Framework . 12

2.3.1 Extended Symbolic Transition System (XSTS) 13

2.4 Related Work . 16

3 Validation of Modeling Language Specifications 17

3.1 Validation Workflow . 17

3.2 PSSM Validation Workflow . 19

3.3 Running Example . 21

3.3.1 Test Model . 21

3.3.2 Specified Trace . 21

3.3.3 Deadlock of Test Model . 23

4 Modeling PSSM State Machines 24

4.1 Activity Component . 24

4.2 Overview of the Internal Structure . 26

4.2.1 Common Interfaces . 27

4.2.2 Message Queue Component . 27

4.2.3 Statechart Behavior Component . 28

4.2.4 Activity Behavior Component . 29

4.2.5 Message Dispatcher Component . 30

4.2.6 Constructing the State Machine Component 33

4.3 Interaction Example . 35

5 Systematic Generation of Precise Execution Traces 37

5.1 Tracing Information . 37

5.2 Splitting XSTS Models . 37

5.3 Generating Execution Traces . 38

5.3.1 Traversing Every Possible Execution 39

5.3.2 Representing an Execution as an Execution Trace 40

5.3.3 Merging Execution Traces Graphically 41

5.4 Example Generated Trace . 41

6 Evaluating the PSSM Validation Workflow 44

6.1 Implementation . 44

6.1.1 Contributions to the Gamma Statechart Composition Framework . . 44

6.1.2 Contributions to the Theta Model Checking Framework 45

6.2 Evaluation Strategy . 46

6.3 Test Model Library . 46

6.4 Validation Results . 47

6.4.1 Equivalent Traces . 48

6.4.2 Different Traces . 51

6.4.3 Indeterminate Traces . 51

6.5 Summary . 53

7 Conclusion and Future Work 54

8 Acknowledgement 55

Bibliography 56

A Splitting XSTS Transitions 59

A.1 Splitting Rules . 60

A.2 Merging Transition Relations . 62

Kivonat

Az emberiség egyre komplexebb biztonságkritikus rendszereket készít, amelyeket már túl-
nyomó többségben szoftverek vezérelnek. Ezen rendszerek hibás működése katasztrofális
következményekkel járhat, ezért új fejlesztési módszertanok váltak szükségessé a bizton-
ság garantálására. Többek között ilyen a modellalapú rendszertervezés is, amely számos
előnnyel rendelkezik a hagyományos módszerekhez képest.

A modellalapú rendszertervezés használhatához elengedhetetlenek a modellezési nyel-
vek, amelyekkel többek között a rendszer viselkedése is leírható. A mérnöki viselkedésmo-
dellek esetében is egyre elterjedtebb a végrehajtható modellek használata, melyek haszna
abban rejlik, hogy pontos végrehajtási szemantikával rendelkeznek. Reaktív rendszerek
esetében széleskörben használt modellezési nyelv a Unified Modeling Language (UML)
állapotgép formalizmusa, amely működésének leírását a Precise Semantics of UML State
Machines (PSSM) szabvány definiálja. Az elvárt viselkedést egy tesztkészlet is bemutatja,
amely tesztmodellek lehetséges lépéssorozatait definiálja. A szabvány minősége szempont-
jából kiemelten fontos, hogy ez a tesztkészlet a szöveges szemantikával konzisztens legyen,
és hiánytalanul mutassa be a lehetséges viselkedések körét.

Ebben a dolgozatban formálisan modellezzük az UML állapotgépek PSSM szabvány
által definiált működését, valamint a tesztkészlet állapotgépeit. Az így előálló modellekből
formális módszerek segítségével automatizáltan előállítjuk a lehetséges lépéssorozatokat,
melyeket végül összevetünk a szabványban megadottakkal.

A bemutatott módszerrel lehetővé válik a szabvány esetleges hiányosságainak és hi-
báinak felfedése, amely a szabvány pontosításán keresztül segíti a jobb minőségű mérnöki
modellek készítését, végső soron pedig a biztonságosabb kritikus rendszerek fejlesztését is.
A folyamat egyúttal példaként is szolgálhat más modellezési nyelvek pontos tesztkészlete-
inek előállításához, ezáltal biztosítva a pontos működési szemantikát.

i

Abstract

Humanity is creating more and more complex safety-critical systems, almost all of which
are now operated by software. The incorrect operation of these systems can lead to
catastrophic consequences, therefore new development principles have become necessary
to guarantee safety. One of these principles is model-based systems engineering (MBSE)
which has several advantages over traditional ones.

To apply model-based systems engineering, modeling languages are needed for describing
the structure and behavior of systems. The application of executable models is becoming
more and more popular in the case of engineering models. The power of executable
models lies in their precise execution semantics. In the case of reactive systems, a widely
used modeling language is the state machine formalism of the Unified Modeling Language
(UML), whose precise semantics is defined in the Precise Semantics of UML State Machines
(PSSM) standard. PSSM also presents the expected behavior of such models with a test
suite, which defines the possible execution traces of the test models. In terms of the quality
of the standard, the consistency of the test suite and the semantics is especially important,
as well as demonstrating the possible behaviors completely.

In this work, we formally model the behavior of UML state machines, defined by the PSSM
standard, along with the state machines of the test suite. From the resulting models, we
automatically generate the possible execution traces using formal methods and compare
them with the ones given by the standard.

The presented technique allows the exposure of possible errors and shortcomings in the
standard, which, by refining the specification, facilitates the construction of better quality
models, and ultimately, the development of safer safety-critical systems as well. The
workflow may also serve as an example for developing precise test cases for the modeling
languages of the future.

ii

Chapter 1

Introduction

Reactive systems are becoming ever more complex as user requirements proliferate. As a
result, such systems are generally decentralized; they consist of heterogeneous components
distributed among several computing nodes, which constantly interact and communicate
with each other and external resources (e.g., cloud computing via the Internet) while
carrying out critical tasks. This problem is amplified in safety-critical systems – such as
embedded control systems in the railway, automotive, and aerospace industries – as this
field requires the highest degree of confidence in the correctness of the final system [23].

During the product lifecycle, the teams of engineers go through various phases of devel-
opment and create multiple design artifacts. To guarantee the consistency and correct-
ness of the final system, engineers use verification and validation (V&V) techniques (e.g.,
model checking) throughout development. However, during the increased lifespan of such
projects, the V&V process becomes more difficult, resulting in an increased likelihood of
faults [19].

To tackle the increasing development complexity, new approaches and tools have been
introduced to supervise the design, verification, and implementation of reactive safety-
critical systems. Model-based systems engineering (MBSE) is a methodology aiming to
support the development process by allowing the engineers to use high-level modeling lan-
guages with automatically derivable implementation and verifiable design [22], decreasing
(but not eliminating) the need for manual V&V.

In MBSE, models are the primary artifacts of the development process [24], which are
expressed using various modeling languages, that have a language structure (abstract
syntax), grammatical rules (well-formedness constraints), exact graphical or lexical repre-
sentation (concrete syntax) and an interpretation (semantics) of well-formed models. In
order to use such models for simulation, verification, or code generation, the preciseness
of the language is essential [2].

The Unified Modeling Language (UML) [10] is a general-purpose modeling language –
developed by the Object Management Group (OMG) – that is widely used in MBSE
approaches to describe the behavior and structure of systems. UML defines several types
of diagrams that allow the user to define and visualize different aspects of the system.
Since its birth in 1997, a multitude of additional specifications have been released for
UML, reducing the lack of precise semantical specification of the langauge [25]. The
Semantics of a Foundational Subset for Executable UML Models (fUML) [13] specification
defined a subset of standard UML with precise structural and behavioral semantics, which
has been extended in the Precise Semantics of UML Composite Structures (PSCS) [11]
specification with composite structures. The latest development came with the release of

1

the Precise Semantics of UML State Machines (PSSM) [12] specification, which extended
the executable subset with UML State Machines. Additionally, PSSM also presents the
expected behavior of models using a test suite, which may be used to validate the PSSM
conformance of various tools, and also helps in understanding the execution semantics.

Despite the large amount of effort that went into extending the subset of UML elements
with precise semantics, there still remain un- or underspecified parts of the standard to
this day [4, 3]. The reason for this lies in the immense difficulty in writing standards in a
highly precise, but still understandable manner [1]. A possible way to further increase the
semantical precision of UML may be to model its semantics using a formal language and
generate all the execution traces for the specified test cases in a highly detailed fashion (i.e.,
making every step observable) using formal methods. The usage of formal methods can
be automated based on existing development workflows and could produce the complete
set of execution traces while reducing the possibility of remaining errors in the standard.

In this work, we propose an approach for validating modeling standards and demonstrate
it using the PSSM Test Suite as a case study. We formally model a subset of the behavior
of PSSM State Machines and implement several PSSM Test Models as well in the Gamma
Statechart Composition Framework [20]. With the use of formal methods, we generate the
test cases’ execution traces using the Theta Model Checking Framework [27], by exploring
the possible state space of the models. To provide highly detailed execution traces, we
insert additional tracing information into the model with the modification of the model
transformations. Using the resulting execution traces, we validate a subset of the PSSM
Test Suite and provide a deeper understanding of the internal mechanics of PSSM State
Machines.

Our main contributions are the following.

• We proposed an approach for conformance testing in modeling standards, by trans-
forming a set of test models into formal test models based on the natural language
specifications, and generating the execution traces.

• We formalized a subset of the underlying semantics of PSSM State Machines in the
formal language of Gamma according to fUML and PSSM specifications.

• Using formal methods, we automated the generation of the complete set of execution
traces from the Gamma models by systematically exploring their state space.

• We introduced a graphical way to present all the possible execution traces of a
model with configurable granularity, resulting in a more intuitive representation of
their differences.

• As a demonstration, we used our approach on PSSM resulting the PSSM Validation
Workflow, which revealed several previously unknown errors in the Test Suite.

The rest of the work is structured as follows. Chapter 2 gives an overview of the theoretical
background needed to understand our main contributions. In Chapter 3, we overview our
validation workflow for modeling standards. Chapter 4 formulates the internal components
of PSSM State Machines and describes the mapping from PSSM State Machines to formal
Gamma models. Next, in Chapter 5, we describe how the trace generator explores the
state space of Gamma models and provides the possible execution traces. Chapter 6
presents the validation workflow by evaluating a subset of the PSSM Test Suite. Lastly,
in Chapter 7, we draw our conclusions on the work and present possible future work.

2

Chapter 2

Background

This work builds upon the theories and results of several fields across computer science,
including systems engineering, modeling language semantics, formal modeling, and sym-
bolic transition systems. Given the broad spectrum of theoretical background, this chapter
introduces all the necessary preliminary knowledge this work uses as its foundation, and
establishes the basis of the presented work.

The chapter is structured as follows. Section 2.1 presents the Unified Modeling Language,
which is a widely used modeling language in the field of model-based systems engineer-
ing. Next, Section 2.2 introduces the Gamma Statechart Composition Framework, which
enables the formal modeling of component-based reactive systems. Section 2.3 introduces
the Theta Model Checking Framework used to efficiently explore the state space of formal
models. Lastly, Section 2.4 showcases related works in the literature.

2.1 Unified Modeling Language

The Unified Modeling Language (UML) [10] is a general-purpose modeling language –
developed by the Object Management Group (OMG) – that is widely used in the model-
based systems engineering domain to describe the behavior and structure of systems.
UML provides numerous types of diagrams for visualizing different aspects of systems.
State Machine Diagrams and Activity Diagrams are behavioral diagrams, whose purpose
is to describe how a component behaves in certain situations. Base UML does not specify
precisely the operational semantics of the behavior models. The Precise Semantics of UML
State Machines (PSSM) [12] is a follow-up specification for a subset of UML elements,
refining their execution semantics. This section provides a brief overview of the State
Machine and Activity behaviors and summarizes the PSSM standard.

2.1.1 Behavior

Behaviors are the basic concepts for modeling dynamic change in UML models [10]. A
Behavior may be executed, either by direct invocation or through an active object hosting
it. During execution, Behaviors may produce several types of signals, which they can send
to themselves or to other Behaviors. The occurrence of a signal may trigger a reaction in
Behaviors: signals thus provide the basic mechanism for their communication.

3

2.1.2 Activity Behavior

An Activity is a kind of Behavior that is specified as a graph of nodes interconnected
by edges [10]. Three (disjunct) types of nodes are supported in Activities, which can be
connected with two types of edges. Executable nodes represent lower-level steps in the
overall Activity. Object nodes hold data that is input to and output from executable
nodes and moves across object flow edges. Control nodes specify sequencing of executable
nodes via control flow edges. Activities are essentially what are commonly called “control
and data flow” models [10]. Such models of computation are inherently concurrent, as
any sequencing of activity node execution is modeled explicitly by activity edges, and no
ordering is mandated for any computation not explicitly sequenced. Activity execution is
modeled using token-flow semantics – tokens flow through the network of nodes along the
edges connecting them.

Initial

Activity Final

Action

Flow Final

Accept Event Action

Send Event Action

Decision

Merge

[g1] [gn]

…

…

Fork

Join

…

…

Central Buffer

P

Pin

Figure 2.1: Artifacts of UML Activity Diagrams.

Figure 2.1 shows the set of modeling elements Activity Diagrams may contain. Simple
actions represent a single step of behavior. Action nodes may have Pins, which specify
input or output values, and are connected by object flows. Execution starts from the
Initial node and ends with an Activity Final node. Fork nodes generate tokens on all
their output flows while Join nodes consume all incoming tokens. Generally, fork-join
pairs model parallel behavior over multiple branches. Simple branching behavior can be
modeled using Decision nodes, which forward the incoming token to a single outgoing
flow. Their counterparts are Merge nodes, which merge all incoming branches into one.
Activities may also receive and send events (a type of signal) using the Accept Event and
Send Signal nodes accordingly.

Figure 2.2 presents a simple activity modeling the printing of the word S1(entry) to the
trace. The activity first gets a reference for this (the execution context) and the word to
be traced. The two values are forwarded to the trace action node with object flows, which
then uses these objects. Execution terminates upon reaching the activity final node.

2.1.3 State Machine Behavior

For discrete event-driven behavioral modeling, UML defines State Machines using a finite
state-machine formalism. In the following, we give a brief overview of the elements used
in this work based on [10].

A State Machine is composed of one or more (orthogonal) Regions, each Region containing
a set of Vertices interconnected by Transitions. A Vertex can be a PseudoState, State or
FinalState. A State may be simple or composite; the latter containing other Regions as
well: we say a state is a substate of a composite state containing it either directly or
indirectly, while its direct container is its parent state. States may have entry and exit
Behaviors, which are executed when the state is entered or exited, respectively. States may

4

Figure 2.2: Activity Diagram of the entry behavior of S1 state
in Behavior 001 [12] test case tracing the word
S1(entry).

also have a doActivity behavior, which is an Activity Behavior started asynchronously after
the entry Behavior has completed, and runs concurrently to the State Machine. When the
state is exited, its associated doActivity is terminated.

A Transition is a directed arc from a source Vertex to a target Vertex [10]. Transitions
may have an effect Behavior, which is executed upon firing the transition. A Transition is
enabled if its source State is the active state and it has a Trigger matching the incoming
Event. Transitions may also have a guard constraint, which has to be evaluated to true
to enable the transition.

More than one Transition can be enabled within a State Machine. In such cases, they
may be in conflict with each other. Two Transitions are said to be in conflict if the
intersection of the set of States (and sub-states) they exit (source state configuration)
is non-empty. There are multiple ways to resolve transition conflicts. Transitions that
occur in orthogonal Regions may be fired simultaneously. Otherwise, a partial ordering is
defined by firing priorities. In general, let t1 and t2 be transitions in the State Machine,
with s1 and s2 as their source States, respectively.

• If s1 is a direct or indirect substate of s2, then t1 has higher priority than t2.

• If s1 and s2 are not in the same state configuration, then there is no priority conflict
between the two transitions.

In the case when there are still conflicting enabled transitions after the partial ordering,
a non-deterministic choice is made between them, resulting in a maximal set of enabled
transitions to be fired at the same time [10].

Internal transitions are special kinds of transitions, with the only difference being they
do not exit or enter states – upon firing an internal transition, only its effect Behavior is
executed. Internal transitions are only in conflict with transitions that exit their state.

Completion transitions are also special kinds of transitions, which are triggered by a
completion event of its source state (CE(source)). A completion event is generated for a
state when all of its internal activities are completed (entry and doActivity) and all of its

5

internal Regions have reached a FinalState. Completion events have priority over regular
events.

Figure 2.3: Target State Machine Diagram of the
Behavior 001 [12] test case.

Figure 2.3 shows an example State Machine Diagram with a single State and two pseu-
dostates – an initial and a final. Execution begins by entering state S1 and firing its entry
action. Afterwards, as soon as the Start event is received by the State Machine, the T2
transition is fired – executing the testEnd effect, and terminating execution.

2.1.4 Precise Execution Semantics of fUML and PSSM

The Precise Semantics of UML State Machines (PSSM) [12] standard is the logical contin-
uation of previous specifications created by OMG (fUML [13], PSCS [11]). It is intended
to further detail the execution semantics of UML State Machines, by refining the specifica-
tion with a more detailed execution model specified in natural language. In the following,
we give a brief overview on the specification of fUML and PSSM based on [13, 12].

In fUML, the execution of a model begins with a Locus, which is an abstraction over
physical or virtual computers [13]. During execution, an Executor is created, which can
evaluate value specifications and execute behaviors synchronously or start them asyn-
chronously. The execution semantics is defined using visitor classes for specific behav-
iors. For example, activity execution is defined using an ActivityExecution class, whose
execute() function defines how and when the activity’s nodes should be activated [13].

All objects have a common behavior defined in the ObjectActivation class. Active objects
may communicate with each other using signals, either synchronously or asynchronously.
Active objects have an event pool, to which incoming events are put, and from which
events are dispatched to EventAccepter instances of the object. Event accepters can be
registered at any time during the execution of behavior objects [13].

PSSM defines classes that extend the execution model of fUML [12]. A state ma-
chine is represented by an SM_Object class, and its semantics is defined in the
SM_ObjectActivation class. A single, special event accepter is used for state machines,
which is responsible for collecting matching transitions, calculating priorities, resolving
conflicts, and selecting the set of transitions to fire in the case of orthogonal regions.

6

When the State Machine receives an event, its event accepter accepts it, and triggers a
run-to-completion (RTC) in the State Machine, processing the event and taking the State
Machine into the next state configuration.

DoActivities have special DoActivityContextObjects which provide a specialized context
object for the activity. DoActivities register event accepters in the state machines acti-
vation class upon executing AcceptEventActions, in order to be able to accept incoming
events, and trigger RTC steps in the doActivity.

An RTC step in an executing doActivity Behavior is triggered by the acceptance of
an EventOccurrence dispatched from the StateMachineExecution context Object’s
ObjectActivations’s eventPool. This starts a new RTC step for the doActivity Ex-
ecution, asynchronously from the StateMachineExecution. An RTC step entails the
passing of tokens downstream in the activity until there is no more node capable of ac-
cepting a token [12]. During an RTC step the Activity may not accept incoming signals,
however, it can be terminated.

Note that, in general, an executing doActivity Behavior will compete with the executing
State Machine that invoked it to accept event occurrences dispatched from the same event
pool. An activity completion occurs when, after an RTC step, there are no more event
accepters registered for the doActivity [12]. When a doActivity execution completes, the
StateActivation that invoked that doActivity may have to complete too. In this situa-
tion, upon the completion of the doActivity execution, a CompletionEventOccurrence is
generated for the StateActivation and placed in State Machine’s event pool.

2.1.5 Overview of the PSSM Test Suite

The PSSM test suite provides 103 test cases grouped into 18 different packages based on
which part of the semantics they test. The tests were manually created by experts based
on 113 requirements extracted from the UML specification.

Each test case consists of a Target State Machine, a Tester component, and a Semantic
Test component orchestrating the case itself. Figure 2.4 illustrates the different compo-
nents and their interactions. The main orchestrator of the tests is the Semantic Test Suite
component, which instantiates and starts each Semantic Test by sending them a Start sig-
nal one by one. Upon receiving the Start signal, the Semantic Test component instantiates
the Tester and Target components, connects them, and sends each a Start signal. During
the testing phase, the Tester component sends the Target component predefined Mes-
sages. These messages can be any of the following: Continue, AnotherSignal, Pending,
Data(value : boolean) or IntegerData(value : integer), with the last two signals
having value arguments as well. While processing the aforementioned signals, the Tar-
get component records its execution trace by calling a special trace() function with the
desired string. At the end of the test, the Target component sends a testEnd event to
the Semantic Test, which includes the trace list generated during execution. By com-
paring this trace to a predefined set of valid traces, the Semantic Test component can
decide whether this test has passed or failed. The Semantic Test Suite then aggregates
the results, and provides a final verdict.

Let us take the Behavior 001 test case for example. Figure 2.3 shows the behavior of the
Target component. This test case specifies empty behavior to the Tester component (i.e.,
no signals sent to the Target component), so it is not shown. Each test case is provided
with a description, a set of valid traces, and an example trace with RTC steps. For this
model, PSSM provides the following test trace.

7

Tester

{
S

ta
rt

 }

{
S

ta
rt

 }

{
Te

st
E

nd
}

Target
Message

Seman�c Test

Seman�c Test Suite

{
S

ta
rt

 }

{
Te

st
E

nd
}

Figure 2.4: Abstract structure of a test case from the PSSM Test
Suite.

• S1(entry)

Table 2.1 shows the RTC steps provided for this execution of the model. The different
rows describe the state of the system at various steps during the RTC process. First,
it fires T1 and enters S1 as part of the initial RTC step. After the initial RTC step, a
completion event is created for state S1 after its entry behavior has finished execution.
Since there is no completion transition from S1, this event is discarded. Given, that the
component already received the Start event1, it immediately accepts it and triggers T2,
thus a testEnd signal is sent with the trace S1(entry) to the Semantic Test component.
According to the specification, this is the only valid trace for this model.

Step Event pool State machine configuration Fired transitions(s)
1 [] [] - Initial RTC step [T1]
2 [Start, CE(S1)] [S1] []
3 [Start] [S1] [T2]

Table 2.1: The run-to-completion steps for execution of the Behavior 001 [12] test case.

2.2 Gamma Statechart Composition Framework

The Gamma Statechart Composition Framework2 [20] is an integrated tool to support the
design, verification, and validation of, as well as code generation for component-based re-
active systems. The behavior of each atomic component is captured by a statechart, while
assembling the system from components is driven by a composition language. Gamma
supports several compositional semantics which can be combined, allowing the user to
model systems with various execution and interaction semantics.

8

Expression
Language

Ac�on
Language

AcTivity
Language

Statechart
Language

Composi�on
Language

Figure 2.5: The behavioral-language structure of the Gamma
Framework.

2.2.1 Gamma Behavioral Languages

Figure 2.5 displays the language structure of the behavior languages. Solid lines represent
inheritance between the languages, while dashed lines represent usage dependency.

For the purposes of modeling various system behaviors, Gamma defines several formal
languages, of which the Gamma Expression Language (GEL) and Gamma Action Language
(GAL) [28] serve as the foundation. GEL and GAL together define variables, types and
expressions accessing and combining them using arithmetical and logical expressions. GAL
builds on these by providing simple atomic actions over variables in a reusable fashion.

In our previous work [30], we proposed the Gamma AcTivity Language (GATL) which is
an extension of the Gamma Action Language, providing control- and data-flow semantics
for modeling concurrent systems. GATL provides simple and composite actions, fork-join
and decision-merge control nodes, and action pins for data flow modeling. Its behavior
closely resembles UML Activity Behaviors [30].

The most basic building blocks of Gamma components are atomic components, of which
Gamma currently supports statecharts with the Gamma Statechart Language (GSL) [5].
Statechart formal semantics closely resembles UML State Machine semantics, and provides
simple and composite states, entry-exit and doActivity behaviors, orthogonal regions, and
transitions with effects.

Listing 2.1 shows a simple Gamma statechart with an internal doActivity counting incom-
ing events. The statechart has a port called incoming, through which the component may
receive events. It has two states: the initial state is Counting, which has an associated
doActivity called CountActivity, while NotCounting has no associated behavior. Upon re-
ceiving an incoming stop event, the statechart transitions from Counting to NotCounting
– which terminates the execution of the CountActivity. CountActivity has a simple loop,
in which it firsts waits for any event from port incoming. Upon receiving an event, it
continues execution with the Increment node – which increments the value of the count
variable.

2.2.2 Gamma Composition Semantics

As shown in Figure 2.5, the Gamma Composition Language uses the Gamma Statechart
Language as its main behavioral language. Indeed, atomic component behavior can be
modeled using statecharts; however, Gamma also provides a powerful composition lan-
guage to combine different kinds of components to model various interaction and execution

1This is not true generally, as there is no time constraint for the incoming events.
2https://inf.mit.bme.hu/en/gamma

9

https://inf.mit.bme.hu/en/gamma

� �
1 statechart CountingStatechart [
2 port incoming : provides Events // exposed port of the statechart component
3] {
4 var count : integer := 0
5 region Main {
6 initial MainEntry
7 state Counting {
8 do / call CountActivity; // doActivity
9 }

10 state NotCounting
11 }
12 transition from MainEntry to Counting // initial state transition
13 transition from Counting to NotCounting when incoming.stop // transition with a trigger
14 activity CountActivity {
15 initial Init // initial node
16 merge Merge
17 trigger Waiting when incoming.any // AcceptEventAction
18 action Increment : activity [language=action] { // action node incrementing the variable
19 count := count + 1;
20 }
21 // Specifying control flow edges between the nodes
22 control flow from Init to Merge
23 control flow from Merge to Waiting
24 control flow from Waiting to Increment
25 control flow from Increment to Merge
26 }
27 }� �

Listing 2.1: Gamma statechart which counts incoming events using a doActivity.

semantics. In this section, we provide a detailed overview of the composition semantics
based on [6].

Components serve as types of component instances. They may be atomic or composite,
synchronous or asynchronous. A component can have zero or more ports, which serve as
the only point of interaction between components. This ensures that external dependencies
and interactions are explicitly modeled, leading to fully encapsulated behavior.

Atomic components can be considered black boxes, with

• a set of states with a well-defined initial state,

• a set of input and output events,

• a transition function that constructs the components’ new state and output events
from the current state and incoming events.

Component

Input1

Input2

Input3

Output1

Output2

Output3

Figure 2.6: Abstract diagram of atomic components.

10

Synchronous Components

The execution of synchronous components is scheduled by a scheduler, which invokes the
component using the cycle3 input. The execution of atomic components follows a turn-
based semantic, where a turn is called a cycle. In a cycle, the component processes its
incoming signals and produces output signals in accordance with their internal states.
Output signals are present for a single execution cycle only, meaning the signal disappears
after one cycle. An illustration of an abstract atomic component is shown in Figure 2.6,
depicting a component with a set of input and output signals.

Component

Input1

Input2

Input3

Component

Output1

Output2

Output3

Scheduler

Figure 2.7: Structure of a synchronous composite component.

Synchronous composite components are defined by their internal components and their
connections. Composite components may contain one or more channels, which connect
internal components together. The composite component’s ports may also be bound to an
internal component’s port, exposing it to the environment. The behavior of the component
is defined by the scheduler, which executes the internal components. This execution may
be in any custom order. Figure 2.7 depicts a generic composite component and its internal
structure.

Asynchronous Components

Asynchronous behavior may be supported by injecting buffers between the components.
In Gamma, event queues can be used to achieve the delayed transmission of events from
one component to another. Event queues may contain multiple events and have priorities
over each other, which in turn can affect when a component is scheduled. In order to
use atomic components in asynchronous contexts, an asynchronous adapter must be used,
which wraps the component, making it compatible with asynchronous systems. Figure 2.8
depicts an asynchronous adapter component with two separate event queues. Queue1-2
has a priority of 1, while Queue3 has a priority of 2 – thus events from Input1 and Input2
will be processed before events from Input3.

Queue3
2

Input1

Input2

Input3

Output1

Output2

Output3

C
o
m
p
o
n
en
t

Queue1-2
1

Figure 2.8: Diagram of an asynchronous adapter component.
3Cycle is a special implicit input of all components.

11

Asynchronous composite components compose other asynchronous components, connect-
ing them with channels – similarly to synchronous components. Figure 2.9 depicts an
asynchronous composite component with two internal components and queues. Asyn-
chronous components are inherently nondeterministic, meaning there is no guarantee on
the execution time and frequency of the components, only on the ordering between the
processing events – events in higher priority queues will be processed first, in the order of
their arrival.

Queue3
2

Input1

Input2

Input3

ComponentQueue1-2
1

Component

Output1

Output2

Output3

Figure 2.9: Structure of an asynchronous composite component.

� �
1 adapter AsyncCounter of component counter : CountingStatechart {
2 when any / run // any incoming message will execute the wrapped component
3
4 queue incomingQueue(priority = 1, capacity = 10) {
5 incoming.any
6 }
7 }
8
9 async System {

10 component countingStatechart : AsyncCounter // instantiating the async adapter
11 component eventSupplier : EventSupplier // instantiating another async component
12
13 // connecting the components using a channel
14 channel [eventSupplier.events] -o)- [countingStatechart.incoming]
15 }� �
Listing 2.2: Gamma system of an EventSupplier component and the CountingStatechart

introduced before.

Listing 2.2 depicts a simple asynchronous composite component in Gamma, connecting the
previously created CountingStatechart to an EventSupplier component4. Since statecharts
are synchronous components, we need to create an async adapter, called AsyncCounter.
It has a single event queue with a capacity of 10. The two components are instantiated in
the async System, and are connected using a channel between them.

2.3 Theta Model Checking Framework

The Theta Model Checking Framework5 [27] is a generic, modular, and configurable model-
checking framework. It can handle multiple formalisms as input, such as timed automata,
control flow automata, and transition systems. In this work, we use the Extended Symbolic
Transition System (XSTS) [21] formalism as the input of Theta.

4The implementation of this component is omitted for brevity.
5https://inf.mit.bme.hu/en/theta

12

https://inf.mit.bme.hu/en/theta

2.3.1 Extended Symbolic Transition System (XSTS)

Extended Symbolic Transition System (XSTS) [21] is a suitable low-level formalism to
describe higher-level reactive systems, such as state machines. Informally, an XSTS model
describes variables and transition sets, and in every step a non-deterministically selected
atomic transition fires from the appropriate transition set. In this work, we introduce
XSTS based on our previous work [26].

Definition 1 (Extended Symbolic Transition System). Formally, we define an
XSTS model as a 4-tuple XSTS = ⟨V, Tr, In,En⟩ where:

• V = {v1, v2, . . . , vn} is a set of variables with domains Dv1 , Dv2 , . . . , Dvn , e.g. integer,
bool (⊤ for true, ⊥ for false), or enum. An enum domain is just syntax sugar, a
set of literals which are different values with a textual representation.

• A state of the system is s ∈ S ⊆ Dv1 ×Dv2 × · · · ×Dvn , which can be regarded as a
value assignment: s(v) ∈ Dv for every variable v ∈ V .

• Tr ⊆ S×S is the internal transition relation, describing the behaviour of the system
itself;

• In ⊆ S×S is the initial transition relation, describing the initialization of the system,
which is executed only once at the beginning of the execution;

• En ⊆ S × S is the environmental transition relation, describing the environment
which the system is interacting with;

• Both Tr, In, and En may be defined as a union of exclusive transitions that the
system can take. Abusing the notation, we will denote these transitions as t ∈ Tr
which actually means that t ⊆ S × S as a transition relation is a subset of Tr. �

A concrete state of the system is c ∈ C = Dv1×Dv2×· · ·×Dvn , which is a value assignment
c : v 7→ c(v) ∈ Dv for every variable v ∈ V . A concrete state c can also be described with
a logical formula φ = (v1 = c(v1) ∧ · · · ∧ vn = c(vn)) where var(φ) = V .

An abstract state of the system s ∈ S = 2C may cover more concrete states. Instead of
assigning a concrete value, it assigns a set of possible values s(v)i to every variable v ∈ V :
s : v 7→ s(v) ⊆ Dv. If there is no restriction on variable v, i.e. it can have any value from
Dv, we use the notation s(v) = ⊤ ≜ s(v) = Dv. The logical formula of an abstract state
is φ = ((v1 = s(v1)1 ∨ · · · ∨ v1 = s(v1)|s(v1)|) ∧ · · · ∧ (vn = s(vn)1 ∨ · · · ∨ vn = s(vn)|s(vn)|))
where var(φ) = V , and it covers exactly |s(v1)| ∗ · · · ∗ |s(vn)| (maybe infinite) concrete
states. We use the notation 0 ≤ |s| ≤ 2|C| for the number of concrete states covered by
abstract state s.

Note, that every concrete state c is also an abstract state s covering only 1 concrete state
c, so |c| = |s| = 1. Thus, without the loss of generality, we use abstract states in the
following even without explicitly stating that a state is abstract.

Each transition relation T ∈ {Tr, In,En} is a set of transitions t where a transition leads
the system from a state s to a successor states s′: T ⊆ {t = (s, s′) ∈ S × S}.

Every domain D has an initial value IV (D) ∈ D e.g., IV (bool) = ⊥, IV (integer) = 0.
Every variable v can have a custom initial value IV (v) ∈ Dv but it is not necessary,
because its domain Dv always has one. The initial state s0 is given as the initial value for
each variable v: s0(v) = IV (v) if IV (v) exists, otherwise s0(v) = IV (Dv). The execution
of the system starts with assigning the initial value s0(v) to every variable v ∈ V .

13

From the initial state s0, In is executed exactly once. Then, En and Tr are executed
in alternation. In state s, the execution of a transition relation T (being either of the
transition relations) means the execution of exactly one non-deterministically selected
t ∈ T transition. Transition t is enabled if t(s) ̸= ∅. If a transition is not enabled, it can
not be executed. If ∀t ∈ T : t(s) = ∅, transition relation T can not be executed in state
s. In addition to the non-deterministic selection, transitions may be non-deterministic
internally, therefore even in the case of a concrete state c, t(c) = {c′

1, . . . , c
′
k} yields a set

of successor concrete states. In other words, in the case of a general transition t = (s, s′),
there is no restriction on the relation between |s| and |s′|.

XSTS Operations

Transitions are described as op ∈ Ops operations, which may be atomic or composite
operations. The semantics of transitions are defined through the semantics of operations,
which is, in turn, the definition of op as a relation over S × S. For a precise description,
refer to [21] – for this work, an informal definition is sufficient.

XSTS defines the following basic operations which lead the system from state s to successor
state s′:

• Assignments: An assignment of form v := φ with v ∈ V and φ as an expression of
the same type Dv means that φ is assigned to v in the successor state s′ and all other
variables keep their value. Formally, s′(v) = φ ∧ s′(v′) = s(v′) for every v′ ̸= v ∈ V ,
while |s′| = |s|

|s(v)| .

• Assumptions: An assumption of form [ψ] with ψ as a Boolean expression over the
variables (var(ψ) ⊆ V) checks condition ψ without modifying any variable and can
only be executed if ψ evaluates to true over the current state s, in which case the
successor state is s′ = s, and |s′| = |s| – otherwise the set of successor states is the
empty set ∅, and |s′| = 0.

• Havocs: A havoc of form havoc(v) with v ∈ V means a non-deterministic assignment
to variable v, i.e., after execution, the value of v can be anything from Dv and all
other variables keep their value. Formally, s′(v) = ⊤ ∧ s′(v′) = s(v′) for every
v′ ̸= v ∈ V . Therefore, c′

i will be |s′| = |Dv| ∗ |s|.

• Local variables: A local variable can be declared as an operation of form var vloc :
type := φ.6 A local variable can only be accessed in its scope which is its direct
container composite operation. Technically, the declaration of a local variable vloc

adds it to V and assigns its initial value φ to vloc while the end of every scope removes
every local variable declared in it from V . Thus, local variables increase the state
space only inside their container transitions. Due to the atomicity of transitions, local
variables do not modify the state space of the system itself. Formally, V ′ = V ∪{vloc},
s′(vloc) = φ, s′(v) = s(v) for every v ∈ V , and |s′| = |s|.

Composite operations contain other operations but their execution is still atomic. Practi-
cally, this means that the contained operations are defined over transient states and the
composite operation determines which one(s) will be the (stable) result of the composite
operation. XSTS defines the following composite operations:

6The default value of the type is used as an initializer unless explicitly specified by the modeler.

14

• Sequences: A sequence of form op1, . . . , opn is composed of operations op1, . . . , opn

with opi ∈ Ops executed sequentially, each applied on every successor state of the
previous one (if any). The successor state after executing the sequence is the result
of the last operation. Each operation opi+1 = (si+1, s

′
i+1) = (s′

i, s
′
i+1) works on the

result of opi = (si, s
′
i), so s′

i = si+1. Thus, the transition of the sequence itself is
(s1, s

′
n) but it can be executed only if s′

i ̸= ∅ for every 1 ≤ i ≤ n, i.e. all assumptions
are satisfied.

• Choices: A choice of form op1 or . . . or opn means a non-deterministic choice between
operations (branches) op1, . . . , opn with opi ∈ Ops. This means that exactly one
executable branch opi will be executed. A branch opi = (si, s

′
i) can not be executed

if s′
i = ∅, i.e. an assumption does not hold in the branch. If there are both executable

and non-executable branches, an executable one must be executed. If all branches are
non-executable (s′

i = ∅ for every 1 ≤ i ≤ n), the choice itself is also non-executable,
so its successor state is ∅. Generally, the set of successor states is the union of the
results of any branch ∪n

i=0s
′
i.

• Conditionals: A conditional of form (ψ) ? opthen : opelse with ψ as a Boolean
expression over the variables (var(ψ) ⊆ V) checks condition ψ, and executes
opthen = (sthen, s

′
then) if ψ evaluated to true, otherwise opelse = (selse, s

′
else) (opelse

can be empty, i.e. a 0-long sequence, when selse = s′
else). The sccessor state of the

conditional (s, s′) is s′ = s′
then if ψ is true over the variable values of s, otherwise

s′ = s′
else.

• Parallels: A parallel of form op1 || . . . || opn means the parallel execution of operations
(branches) op1, . . . , opn with opi ∈ Ops. The parallel execution means, that one
substep of the parallel execution is a substep of a non-deterministically selected
branch, which has not finished its execution. The parallel action finishes when all of
its branches have finished.

Note that assumptions may cause any composite operation to yield an empty set as the
set of successor states. This allows us to use the choice operation as a guarded branching
operator, ruling out branches where an assumption fails by yielding an empty set as the
result of that branch.

In this work, we make the following assumptions, which can be easily guaranteed by simple
pre-processing.

1. The operation of transitions and non-sequence composite actions must be composite
actions. Thus, single basic operations will be treated as 1-long sequences.

2. We assume that there are no sequences directly inside sequences.

These restrictions help the clarity and consistency of local variable scopes without the loss
of generality.

Transition Granularity in XSTS Models

The execution of a transition relation means a non-deterministic choice over the transitions
of the relation. In addition, transitions can also be non-deterministic internally. After
executing transition t = (s, s′) from state s, we can only observe state s′ but the possible
internal non-determinism of t remains invisible. To make the execution of the system

15

fully explainable we have to make every non-deterministic choice observable. This can
be achieved by making internal non-determinism external by splitting the transitions into
smaller ones.

The basics of this splitting approach are presented in our previous work [26]. In Ap-
pendix A, we extend and formalize the splitting model transformation in order to make
the execution traces fully explainable without changing the original semantics of the XSTS
model.

2.4 Related Work

Elekes et al. in [4] investigate the assessment of modeling language specifications in regards
to (i) whether they contain errors, contradictions or ambiguities, (ii) how suitable they
are for assessing the correctness of related modeling tools, and (iii) how helpful they are
for professionals to understand the language. They use the PSSM [12] specification as
a case study to show the typical issues in modeling language specifications. As a result,
they have pinpointed several significant errors in the PSSM Test Suite specification and
test traces, resulting in unclear semantics. This work serves as our main motivation, to
explore the possibilities of generating consistent and complete execution traces for test
models using formal methods.

Ma et al. in [18] (i) conduct an extensive literature review on existing domain-specific
modeling methods (DSMM) engineering approaches, (ii) provide a detailed description of
validation and verification for each phase of DSMM engineering, (iii) and a road-map en-
compassing the desiderata for further advances in V&V in DSSM engineering. The authors
advocate for the use of formal methods in DSMM engineering, however, also acknowledge
that the field of formal methods is often not part of conceptual modeling courses. Given
this result, a validation workflow harnessing the power of formal methods without explicit
need for preliminary studies on formal methods can help DSMM engineering processes.
Our work provides the foundation for a fully automatic validation workflow with hidden
formal methods.

Lima et al. in [15] present a novel refinement and analysis framework for models specified
in SysML7 [8] using the COMPASS Modeling Language (CML) [29]. Their solution in-
cludes the modeling of SysML State Machines in a state-rich process algebra with separate
components for the doActivities, communicating with each other asynchronously through
channels and special messages. Our work is similar in the sense that it uses special activity
components and statechart components in asynchronous systems.

Liu et al. in [16] formalized the execution semantics of UML [10] State Machines with
entry and exit behaviors, concurrent doActivities, orthogonal regions and deferred event
pools in the model checker called USMMC [17]. They evaluated their solution’s valid-
ity by executing formal verification on models from the literature. Their work lacks a
formally defined action language, while we define doActivities using the Gamma Action
Language (GAL) [28] and our previous work, the Gamma AcTivity Language (GATL) [30].

7SysML is a variant of UML.

16

Chapter 3

Validation of Modeling Language
Specifications

Standards play a central role in engineering methods. In the case of modeling languages,
standards guarantee consistent interpretation of models between different participants.
Several methods have been proposed for specifying modeling languages, but the most
used method is still largely based on extensive natural language specification [1]. This
results in an increased possibility of imprecise standards, which hinders the useability of
the modeling languages they specify. According to previous work [4, 3] the PSSM Test
Suite has several linguistical and semantical errors. This chapter introduces a validation
workflow that uses formal methods for validating modeling language standards, which can
help improve their quality. The validation workflow is also demonstrated on the PSSM
Test Suite throughout the rest of the work.

The chapter is structured as follows. Section 3.1 introduces the process of standardization
development and proposes the use of the validation workflow. Section 3.2 introduces the
PSSM validation workflow, which serves as a case study in this work. Finally, Section 3.3
showcases an example PSSM Test Case used throughout the rest of the work.

3.1 Validation Workflow

Traditionally, the creation of a new standard begins with a request-for-proposal (RFP)
submitted by a central agency (e.g. the creation of SysMLv21 [7] began with an RFP [9]
created by OMG). Figure 3.1 illustrates a generic standardization process, in which domain
experts create a standard proposal, for which feedback is given by a team of reviewers.
This process is repeated until the desired quality is reached, at which time the standard
is released to the general public. Any remaining error in the standard at this point might
propagate into the systems created by systems engineers, which can result in unexpected
and hard-to-debug behavior in the final products [23].

The standardization and review processes are both done by a limited group of people, are
difficult to execute, and take a long time overall. To support this process, we propose
a validation workflow, that uses formal methods to provide validation results and execu-
tion traces for example models (see Figure 3.2a). This additional feedback can support
the refinement of specification, ultimately resulting in safer models created by systems
engineers [18].

1The successor of the well-known language SysML [8] by OMG.

17

Standard
Proposal

Standardiza�on
Process

Experts

Review

Systems Engineering

Standard

System

Reviewers

Engineers

RFP

F
ee
db
ac
k

Figure 3.1: Traditional standardization process.

Standard
Proposal

Standardiza�on
Process

Experts

Review

Systems Engineering

Standard

System

Reviewers

Engineers

RFP

Valida�on
Workflow

F
ee
db
ac
k

(a) Traditional standardization process sup-
ported with our validation workflow.

Validation
Results

Execution Trace
Visualization

Specification Test Models

Formal Test
Models

Execution
Traces

Refined
Specification

(b) High-level overview of the validation work-
flow.

Figure 3.2: Our proposed standardization process supported with
formal methods.

18

In general, the validation workflow is composed of three distinct steps. The high-level
overview of the workflow is shown in Figure 3.2b.

1. Based on the semantics provided by the standard, the Test Models are transformed
into formal test models.

2. Then, with the use of formal methods, all the possible execution traces are generated
from the formal test models.

3. Finally, the expected behavior of the models may be validated using the execution
traces.

Of the steps defined above, the first two may be automated to provide hidden formal
methods.

The validation workflow provides three main contributions (gray boxes in Figure 3.2b)
which can improve standardization processes in general:

• It visualizes the possible execution traces for the test models, which

• allows the user to validate the expected behavior of the test models, in doing so

• it provides the team of experts with valuable insight for refining the specification.

3.2 PSSM Validation Workflow

To demonstrate the use of the validation workflow, we provide a case study of validating
the PSSM Test Suite. As previously discussed, PSSM defines the precise semantics of
UML State Machines in natural language specification and also showcases it using a set
of test models.

Figure 3.3 depicts the validation workflow of the PSSM standard. 1 The workflow starts
with the semantics specification and the test model. The gray boxes represent artifacts that
do not change from test to test, while white boxes are unique for each test case. 2 Using the
specification we construct the Common Gamma Components and a Gamma Test Model for
each PSSM Test Case. The Common Gamma Components embody the common behavior
of PSSM State Machines, and are reused between test cases. By combining the Gamma
Test Model with the Common Gamma Components, we construct the Gamma Composite
Test Model, which represents the test case in the Gamma language (see Chapter 4). 3 This
model is then processed by Gamma using automatic model transformations. Firstly, it is
enhanced with additional trace calls, which results in the Detailed Test Model. Afterwards,
the model is transformed into the XSTS formalism, which is then split up, resulting in the
Split XSTS Test Model artifact (see Chapter 5). 4 The split version of the test model is
then processed by Theta, which constructs an Abstract Reachability Graph from the model.
The Execution Traces are generated by exploring said graph. Finally, the execution traces
are combined into one visual trace, providing the behavior of the model in a compact way,
showcasing the trace calls during the possible executions (see Chapter 5).

19

Common Gamma
Components

Gamma Test
Model

Gamma Composite
Test Model

PSSM Specifica�on PSSM Test Model

P
S
S
M

G
am
m
a

T
he
ta

Detailed
Test

Model

XSTS
Test

Model

Execu�on
Traces

Split XSTS
Test

Model

Abstract
Reachability

Graph

Combined
Execu�on

Trace

Figure 3.3: Artifacts produced during the PSSM validation work-
flow.

20

Figure 3.4: State Machine Diagram of Target component –
Behavior 003-B [12] test case.

3.3 Running Example

Throughout the rest of the work, we demonstrate the different steps of the proposed
workflow using an example model. In this section, we showcase the Behavior 003-B [12]
test model from the PSSM Test Suite and analyze its specified valid execution trace.

3.3.1 Test Model

We have chosen Behavior 003-B [12] test case as a running example. The Target State
Machine of the test is shown in Figure 3.4. After instantiation, the initial RTC step
takes the State Machine into the wait state, in which it will stay until a Start signal
is received. Upon receiving the Start signal, it enters S1, which has an entry behavior
tracing S1(entry). After the entry behavior has finished, the state’s doActivity is started
asynchronously. S1 has a completion transition to FinalState1, which will only fire upon
successful completion of the doActivity. The test is only considered successful, if it sends
the testEnd signal by firing transition T3.

The doActivity is shown in Figure 3.5. It begins its execution by taking a reference of
this (which is the State Machine’s context) and duplicates the value using a fork node.
The separate branches go to two trace calls – the first one traces S1(doActivityPartI),
while the second one traces S1(doActivityPartII). Since there is an AcceptEventNode
between the two trace calls, the activity must receive a Continue signal to execute the
second trace call, finish execution and thus let the statechart reach its final state.

3.3.2 Specified Trace

The PSSM specification lists a single valid execution trace for this model:

• S1(entry)

21

Figure 3.5: Activity Diagram of S1’s DoActivity –
Behavior 003-B [12] test case.

• S1(doActivityPartI)

• S1(doActivityPartII)

The specification also provides the RTC steps during execution, which is shown in Ta-
ble 3.1. First, it fires transition T1 and enters state wait as part of the initial RTC
step. Afterwards, a completion event is generated for state wait, as it does not have an
entry behavior. Since there is no completion transition from wait, this event is discarded.
Given, that the Start signal is in the event pool, it triggers transition T2. This transition
takes the State Machine into state S1, which asynchronously starts its doActivity Behav-
ior. Afterwards, the State Machine receives a Continue signal, which is dispatched to the
doActivity, enabling it to finish execution and let S1 generate a completion event. Since
S1 has a completion transition, it fires, taking the State Machine into its final state, and
sending a testEnd signal to the Semantic Test component, thus successfully completing
the test.

Step Event pool State Machine configuration Fired transitions(s)
1 [] [] - initial RTC step [T1]
2 [Start, CE(wait)] [wait] []
3 [Start] [wait] [T2]
4 [Continue] [S1] [] – doActivity RTC
5 [CE(S1)] [S1] [T3]

Table 3.1: The run-to-completion steps for an execution of the Behavior 003-B [12] test
case.

22

3.3.3 Deadlock of Test Model

Upon closer examination of the PSSM semantics and the test case, we found that in certain
situations the model can enter a deadlock2 state before reaching its final state, which is
not specified as a valid trace by the PSSM standard. The trace of that execution would
look like the following:

• S1(entry)

• S1(doActivityPartI)

• (deadlock, final state not reached)

The RTC steps for this trace are shown in Table 3.2. The beginning steps are the same up
to the point of entering state S1. Given the concurrent nature of doActivities, it is possible,
that S1’s doActivity does not reach its AcceptEventAction, and thus does not register any
EventAccepter for the Continue signal before the event dispatch begins. In this case,
since there are no event accepters for the Continue signal, it is discarded. After this point,
the doActivity will reach its trace action and AcceptEventNode, thus registering a new
event accepter for the Continue signal. Since doActivities are only considered completed
when they do not have any event accepters registered and have no more actions to execute,
the doActivity remains active, which prevents S1 from generating a completion event, thus
the State Machine may never fire T3. After this point, the State Machine has no more
steps to take, thus the test case will never complete (testEnd signal).

Step Event pool State Machine configuration Fired transitions(s)
1 [] [] - Initial RTC step [T1]
2 [Start, CE(wait)] [wait] []
3 [Start] [wait] [T2]
4 [Continue] [S1] []

Table 3.2: The run-to-completion steps for a deadlocked execution of the
Behavior 003-B [12] test case.

Problem statement The lack of this execution trace specification in the PSSM stan-
dard allows discrepancies in interpreting UML models. For example, a PSSM conform
simulator might assure a systems engineer that a similar model always terminates success-
fully, yet code generated by a PSSM conform code-generator might enter this deadlock
state during execution. This, and other underspecifications can result in hard-to-find bugs
in real systems.

2A state in which the State Machine does not have any more legal steps.

23

Chapter 4

Modeling PSSM State Machines

UML State Machines have complicated execution semantics, defined using only natural
language specification. Although PSSM refined the behavioral semantics, it remains a
challenge to accurately replicate said behavior, due to the sheer size of the specification
and the amount of underspecified aspects [4, 3]. This chapter models a subset of the PSSM
State Machine behavior using Gamma components, in the context of the PSSM Test Suite
validation workflow.

The chapter is structured as follows. Section 4.1 briefly describes the changes in the
Gamma AcTivity Language. In Section 4.2, we formulate the internal structure of PSSM
State Machines using Gamma components. Finally, Section 4.3 showcases the interactions
between the internal components during the execution of Behavior 003-B [12], providing
further insight into how the model can enter a deadlock state.

4.1 Activity Component

The Gamma AcTivity Language (GATL) defined in our previous work [30] already intro-
duced a doActivity statement, which can run activities concurrently inside states. How-
ever, in that formalism, the activity was part of the statechart. Since this work relies on
activities being separate components, we formulate a new Activity Component.

Listing 4.1 provides an example activity component in the new syntax of the language.
Activity Components are atomic components similar to statecharts, as they have ports,
internal state and a transfer function defining its execution. The body of an activity
component contains the activity nodes and flows already defined in GATL. Activity com-
ponents have two special ports: the Activity Controller Port, which allows them to be
connected to statecharts, and the Rtc Port which allows them to periodically reexecute
themselves.

ActivityControllerPort Ports annotated with @ActivityController are considered Activ-
ity Controller Ports. Such ports enable or disable the execution of a component; by
sending a control event with a true argument the activity begins execution, while a false
argument will terminate it. The event’s isActive parameter is persistent, which means
the value of the parameter remains accessible throughout multiple execution cycles – in
contrast to the default parameters whose values remain only for the duration of a single
cycle. When the component receives an event, it is only executed if the isActive param-
eter is true – which means the activity has not received a stop event since the last start

24

� �
1 // Interfaces provided as a library of the language
2 interface ActivityControllerInterface {
3 in persistent event control(isActive : boolean) // argument stored between events
4 out event done
5 }
6 interface Rtc {
7 internal event Run // this event may only be raised by the Activity itself
8 }
9 // An example Activity component

10 activity Activity [
11 @ActivityController port controller : provides ActivityControllerInterface
12 @RtcPort port rtc : provides Rtc
13 port data : provides Data // additional port for incoming events
14] {
15 initial init
16 trigger Wait when data.continue on-await {
17 log "Begun waiting";
18 }
19 action Done {
20 log "Finished waiting";
21 }
22 final fin
23 succession from init to Wait
24 succession from Wait to Done
25 succession from Done to fin
26 }� �
Listing 4.1: Example Gamma Activity Component showcasing the language changes.

event. The port also has a done event, which can be raised by the activity when it has
finished execution.

RtcPort Ports annotated with @RtcPort are considered RTC Ports. Such ports provide
internal run events, which are sent and received by the activity itself. After an execution,
if the activity has any legal step left to execute, it sends itself a run event, causing a
reexecution of the component. In doing so, a full run-to-completion of the activity is split
up into multiple sub steps with run calls in between. This allows the execution to overlap
with other components, modeling the behavior of concurrent execution.

Langauge Extensions A new log "trace_information"; statement has been added to the
Gamma Action Language, which works similarly to the trace(string) function used in
the PSSM Test Suite. Gamma Activity Trigger nodes have also been extended with an
on-await { } block, which is executed when the node is first reached.

Listing 4.1 shows an example activity component, which has the following behavior. Upon
receiving a control(true) event through its activity controller port the component begins
execution. Its action is the Wait trigger node, which logs the string Begun waiting. Since
the activity has no legal next step at this point, it does not raise its run event. It will
only resume execution upon receiving a continue event, which executes the action Done.
The node Done has a successor node, thus the activity raises its run event. This next
execution takes the activity into its final node. Since the activity does not have any legal
next step, and there are no currently active trigger nodes, it raises its done event, signaling
its completion to its controller statechart.

25

Message Queue
Component

Message Dispatcher Component

Statechart
Behavior

Component

Ac�vity Behavior
Component

Message

{ next }

{
re

ad
y,

 ig
no

re
 }

M
es

sa
ge

S
ub

sc
rip

tio
n

M
es

sa
ge

{ run }{ completion }

{ start, stop }

{ done }

Figure 4.1: Overview of the PSSM State Machine internal struc-
ture.

4.2 Overview of the Internal Structure

As previously discussed (see Section 2.1.5) the PSSM Test Suite is composed of a Tester
and a Target component, which are orchestrated by the Semantic Test component. Since
we only want to trace the execution of the Target component, we only model the Target
State Machine precisely at the time when all incoming events have arrived (but not yet
processed). This results in a self-contained model, that when executed, provides the same
behavior as the Target State Machine would.

Figure 4.1 depicts a Gamma asynchronous component that models the internal compo-
nents of a PSSM State Machine. The different parts have been numbered for ease of
understanding. 1 The Message Queue Component represents the internal event pool of
the State Machine. 2 It has a connection with the main Message Dispatcher Component,
whose purpose is to distribute incoming Messages between the internal components. They
interact using a pull pattern, which means the Dispatcher asks for the next Message by
sending a next event. 3 The Dispatcher may then forward this message to the underlying
Statechart Behavior Component, which models the actual behavior of the state machine.
4 The Statechart may also send itself various completion events, to model different state
completion events. 5 To accurately model the concurrent behavior of doActivities, each
doActivity is represented by an Activity Behavior Component. The Statechart Compo-
nent may start and stop them at any time by sending them a control event with isActive
being true or false, respectively. 6 The Dispatcher may also choose to distribute incom-
ing Messages to the Activity Components. Activities can subscribe to specific Message
kinds asynchronously, in which case the Activity Component might receive an incoming
Message of that kind from the Dispatcher – one Message for every subscription. 7 In
order to model the interleaving of several activities, Activity Behavior Components may
send themselves a run event, which reexecutes them in the future. 8 Finally, upon its
completion, the Activity Component may send the Statechart a done event.

26

4.2.1 Common Interfaces

Gamma uses interfaces for specifying the events that can be raised on a port. Listing 4.2
shows all the interfaces used in the Gamma library of PSSM State Machines. The Data
interface has an event for each Message kind the Target component may receive during
a test. QueueControl provides the control interface for MessageQueues. DispatcherCon-
trol interface provides the interface for the communication between the Dispatcher and the
Statechart Component. Completion events may be raised by the use of the StatechartCom-
pletion interface, which has a single internal completion event. ActivityDispatcherControl
defines the subscription communication between the Dispatcher and the Activities. It ex-
tends the Data interface with a resetSubscriptions event, which can be used to remove an
activity’s existing subscriptions.

� �
1 interface Data {
2 out event start
3 out event continue
4 out event anotherSignal
5 out event pending
6 out event data(value : boolean)
7 out event integerData(value : integer)
8 }
9 interface QueueControl {

10 out event next
11 }
12 interface DispatcherControl {
13 out event ignore
14 out event ready
15 }
16 interface ActivityDispatcherControl extends Data {
17 out event resetSubscriptions
18 }
19 interface StatechartCompletion {
20 internal event completion
21 }� �

Listing 4.2: The common interfaces of the Gamma models.

4.2.2 Message Queue Component

{ next }

M
es

sa
ge

Q

u
eu

e
St

at
ec

h
ar

t

Queue 1 Message

Figure 4.2: The asynchronous adapter of the Message Queue
Component.

In general, Message Queue Components represent the event pools of State Machines.
They must respond to a next event with the next Message to be processed. Generally,
a Message Queue is modeled using a simple statechart with an asynchronous adapter
component wrapping it. Figure 4.2 displays the asynchronous adapter of the Message
Queue Component. It has a single incoming event, which is forwarded into the Queue.

27

Listing 4.3 shows the Statechart model of the Message Queue of Behavior 003-B [12].
Since the Target component is specified to receive a start and a continue event, the model
of the Message Queue contains these events encoded in its structure. Upon receiving the
first next event, it sends out the event start, and upon the second next event it sends out
a continue event. This statechart does nothing after this point.

� �
1 @Asynchronous // automatic asynchronous adapter wrapping
2 statechart MessageQueue [
3 port queueControl : requires QueueControl
4 port data : provides Data
5] {
6 region Main {
7 initial Initial
8 state _0
9 state _1

10 state _2
11 }
12 transition from Initial to _0
13 transition from _0 to _1 when queueControl.next / raise data.start;
14 transition from _1 to _2 when queueControl.next / raise data.continue;
15 }� �
Listing 4.3: Gamma Statechart describing the Message Queue of Behavior 003-B [12]

test case.

4.2.3 Statechart Behavior Component

Message 1

{ start/stop }

{ ready/ignore }

St
at
ec
h
ar
t

B
eh

av
io
rComple�on 2{ completion }

Message

Figure 4.3: The asynchronous adapter of the Statechart Behavior
Component.

In general, Statechart Behavior Components represent the actual behavior of the State
Machine. They receive Messages from the Dispatcher, to which they must respond with
either a ready or ignore event, specifying whether the statechart has consumed the incom-
ing message or not, respectively. Statechart Behavior Components may also communicate
with several Activity Behavior Components, modeling their executing doActivities. Fig-
ure 4.3 displays the asynchronous adapter of Statechart Behavior Components. A State-
chart Behavior Component has two event queues, one for completion events, and one for
the incoming dispatched messages. Completion events may come from the associated Ac-
tivity Components, as well as from the statechart itself as state completion events. Since
in UML completion events have priority over standard messages, the Completion event
queue has a higher priority than the Message event queue.

As an example, the Gamma implementation of the Behavior 003-B [12] can be seen in
Listing 4.4. The statecharts region schedule is changed using the @RegionSchedule=bottom

-up annotation to follow UML semantics. The statechart has three ports, an activity
controller for controlling S1’s doActivity, an incoming data port for incoming Messages
from the Dispatcher, and a dispatcher control port for responding to incoming messages.

28

The states of the Target State Machine are replicated in the statechart, wrapped in the
WrapperFunction state. This is done to provide a default ignore response for incoming
Messages. by adding an internal transition, that is the outmost transition, it will only
be triggered, if no other transition is triggered, and does not cause exiting or entering
internal states, thus does not affect the State Machine’s original behavior. S1’s doActivity
is modeled by raising the associated Activity Components control variable with a true
argument in its entry action, and with a false argument in its exit action. Transition T2
is triggered by a Message, thus its effect is sending the Dispatcher a ready event, signaling
that the statechart has consumed the Message. State S1 also as a log statement, which
represents the original trace() function call.

� �
1 @RegionSchedule=bottom-up // UML-style transition priority
2 statechart TargetSC [
3 port activity_0 : requires ActivityControllerInterface
4 port data : requires Data
5 port dispatcherControl : provides DispatcherControl
6] {
7 region Wrapper {
8 initial WrapperInitial
9 state WrapperFunction {

10 region Main {
11 initial Initial
12 state wait
13 state S1 {
14 entry / log "S1_entry"; raise activity_0.control(true);
15 exit / raise activity_0.control(false);
16 }
17 state FS1
18 }
19 }
20 }
21 transition from WrapperInitial to WrapperFunction
22 // Transition sendding an ignore event if no other transition triggered
23 @Internal transition from WrapperFunction to WrapperFunction when data.any /
24 raise dispatcherControl.ignore;
25
26 transition "T1" from Initial to wait
27 // Since T2 is triggered by a Message, it raises the ready event
28 transition "T2" from wait to S1 when data.start / raise dispatcherControl.ready;
29 transition "T3" from S1 to FS1 when activity_0.done
30 }� �
Listing 4.4: Gamma Statechart describing the internal behavior of Behavior 003-B [12]

test case.

Listing 4.5 shows the asynchronous adapter of the statechart, specifying the two event
queues. Since the statechart may generate and receive multiple completion events from
the various states and doActivities, the completionQueue’s capacity is greater than 1.
QUEUE_SIZE is a constant value defining the common queue sizes of the models. Since the
Dispatcher will wait for a ready or ignore Message from the Statechart Component, the
dataQueue can stay at the capacity of 1.

4.2.4 Activity Behavior Component

The Activity Behavior Component represents the instances of doActivities executed in the
State Machine. Figure 4.4 shows the asynchronous adapter of the Activity Behavior Com-
ponent. Activities have multiple event queues, whose priority determines which incoming
events are processed first. Control events have the highest priority, in order to guarantee
the Activity always responds to start and stop events, thus an activity will never run after

29

� �
1 adapter Target of component target : TargetSC {
2 when any / run
3 queue completionQueue(priority = 2, capacity = QUEUE_SIZE) {
4 activity_0.any
5 }
6 queue dataQueue(priority = 1, capacity = 1) {
7 data.any
8 }
9 }� �

Listing 4.5: Asynchronous adapter component of the Statechart Behavior Component of
Behavior 003-B [12] test case.

RTC 2
{ completion }

Subscription

A
c�

vi
ty

B

eh
av

io
r

Control 3{ start/stop }

Message 1Message

Figure 4.4: The asynchronous adapter of the Activity Behavior
Component.

a stop event. Since PSSM prohibits incoming Message processing during an RTC step,
the RTC event queue has the second highest priority.

As an example, the Gamma implementation of the doActivity of S1 in Behavior 003-B [12]
can be seen in Listing 4.6. Additionally to the activity ports already described, it also has
a dispatcher control port and a data port, which allow the activity to subscribe to and re-
ceive Messages. This activity begins execution by logging the word S1_doActivityPartI.
Afterwards, it executes the Wait trigger node, which subscribes to the continue event. Af-
ter receiving a continue event from the Dispatcher, its execution completes by logging the
word S1_doActivityPartII. Finally, it sends a done event to the executing Statechart
Component.

Listing 4.7 shows the asynchronous adapter of the Activity Component, specifying the
three event queues. Since Statechart Components may send multiple control events to
the Activity Component (e.g, first starting it then stopping it) the new incoming events
must override the previous ones: discard = oldest sets this behavior for the controlMessages
event queue. Due to their concurrent behavior, Activity Components may receive multiple
Messages between executions, thus their the dataMessages event queue has also a bigger
capacity. Since the run event in the rtcMessages queue is only used to reexecute the
component, its capacity can remain 1.

4.2.5 Message Dispatcher Component

The Message Dispatcher Component represents the dispatch functionality of UML objects
and is the main driver of the interactions inside the State Machine. An excerpt of the
Gamma implementation is displayed in Listing 4.8. At initialization, it sends a next
event to the Message Queue, signaling that it requires the next Message. Upon receiving
the Message, it has a choice to make: it can either send the Message to the Statechart
Component or to one of the Activity Components.

30

� �
1 activity Activity [
2 @ActivityController port controller : provides ActivityControllerInterface
3 @RtcPort port rtc : provides Rtc
4 port dispatcherControl : provides ActivityDispatcherControl
5 port data : requires Data
6] {
7 initial init
8 action Part1 {
9 log "S1_doActivityPartI";

10 }
11 trigger Wait when data.continue on-await {
12 raise dispatcherControl.continue;
13 }
14 action Part2 {
15 log "S1_doActivityPartII";
16 }
17 final fin
18
19 succession from init to Part1
20 succession from Part1 to Wait
21 succession from Wait to Part2
22 succession from Part2 to fin
23 }� �
Listing 4.6: Gamma Activity describing the doActivity run in S1 of Behavior 003-B [12]

test case.

� �
1 adapter DoActivity of component act : Activity {
2 when any / run
3
4 queue controlMessages(priority = 3, capacity = 1, discard = oldest) {
5 controller.any
6 }
7 queue rtcMessages(priority = 2, capacity = 1) {
8 rtc.any
9 }

10 queue dataMessages(priority = 1, capacity = QUEUE_SIZE) {
11 data.any
12 }
13 }� �
Listing 4.7: Asynchronous adapter of the Activity describing the doActivity run in S1

of Behavior 003-B [12] test case.

Message

{ ready/ignore }

Subscription

Message

Message

MessageM
es

sa
ge

D

is
p

at
ch

er

St
at

ec
h

ar
t

Queue 1

Figure 4.5: The asynchronous adapter of the Message Dispatcher
Component.

31

� �
1 statechart DispatcherSC [
2 // MessageQueue ports
3 port queueControl : provides QueueControl
4 port inputData : requires Data
5 // Statechart Behavior ports
6 port dispatcherControl : requires DispatcherControl
7 port outputData : provides Data
8 // Activity Behavior ports
9 port dispatcherControlActivity_0 : requires ActivityDispatcherControl

10 port outputDataActivity_0 : provides Data
11] {
12 // variables tracking the number of subscriptions for a given Activity Component
13 var activity_0_Start : integer := 0
14 // ...
15 var activity_0_IntegerData : integer := 0
16 // variables storing the value of send Message parameters
17 var sentIntegerDataValue : integer := 0
18 region Main {
19 initial Initial
20 state WaitingForEvent {
21 entry / raise queueControl.next; // sending ’next’ to messageQueue
22 }
23 state WaitingForTarget {
24 region Sent {
25 // ...
26 state Sent_Start
27 choice DecideActivity_Start
28 merge MergeActivity_Start
29 // ...
30 state Sent_IntegerData
31 choice DecideActivity_IntegerData
32 merge MergeActivity_IntegerData
33 }
34 }
35 }
36 region EventSubscription {
37 initial EventSubscriptionInitial
38 state ListeningToSubscriptions
39 }
40 transition from Initial to WaitingForEvent
41 // dispatching incoming start event
42 transition from WaitingForEvent to WaitingForEvent when inputData.start [activity_0_Start>0]

/ raise outputDataActivity_0.start; activity_0_Start:=activity_0_Start-1;
43 transition from WaitingForEvent to Sent_Start when inputData.start / raise outputData.start;
44 transition from Sent_Start to DecideActivity_Start when dispatcherControl.ignore
45 transition from DecideActivity_Start to MergeActivity_Start [activity_0_Start>0] /
46 raise outputDataActivity_0.start; activity_0_Start:=activity_0_Start-1;
47 transition from DecideActivity_Start to MergeActivity_Start [else];
48 transition from MergeActivity_Start to WaitingForEvent
49 // dispatching incoming events ...
50 // statechart processed this event
51 transition from WaitingForTarget to WaitingForEvent when dispatcherControl.ready
52 // processing event subscriptions
53 transition from ListeningToSubscriptions to ListeningToSubscriptions when

dispatcherControlActivity_0.start / activity_0_Start:=activity_0_Start+1;
54 // ...
55 transition from ListeningToSubscriptions to ListeningToSubscriptions when

dispatcherControlActivity_0.integerData / activity_0_IntegerData:=activity_0_IntegerData+1;
56 }� �

Listing 4.8: Gamma Statechart of all Dispatcher Componenents.

32

• If there is an Activity Component that has subscribed to the incoming Message
previously, the Dispatcher may1 choose to dispatch the Message to that component.
Given, that an Activity Component will only subscribe to a Message if it can process
it (Section 4.2.4), the Dispatcher can consider this as a successful dispatch, and move
on to the next Message.

• The Dispatcher may choose to try to send the Message to the Statechart first, in
which case it forwards the Message, and stores its specific details in the current
state. If the statechart responds with a ready event, then it has processed it, thus
the dispatcher may move on to the next Message. Otherwise, it will try to resend
it to one of the Activity Components using the stored details. If none of the above
succeeds then the Message is discarded.

This non-deterministic choice is modeled using conflicting transitions inside the behav-
ior model. Initially, the model starts in the WaitingForEvent state, which automatically
sends out a next event to the Message Queue. There are multiple conflicting transi-
tions from this state for each possible incoming Message: one for the statechart, and
one for each connected activity guarded with if it has subscribed to the specific Message
([activity_0_Start>0]). Since the Dispatcher has to wait for the reply event (ignore or
ready) from the Statechart Component, it must store the sent Message in its state. In the
case of Start Message, the Sent_Start state is entered, from which there are multiple ways,
to return: if there is an Activity Component subscribed to the Start Message then it is
dispatched to one of them, otherwise, it discards the Message. In either case, it transitions
to the WaitingForEvent state, starting the whole process of asking for the next Message
and trying to dispatch it to one of the components over again.

In order to track Message subscriptions, the Dispatcher has an orthogonal region with
a single state with transitions triggered by each subscription Message. The number of
subscriptions is tracked with an integer value for each Activity Component. This variable
is decremented when the dispatcher sends Messages to the Activity Component since it is
no longer waiting for that Message, and incremented if the Activity Component subscribes
to the specific Message.

Listing 4.9 shows the asynchronous adapter of the Dispatcher Component, specifying the
three event queues. Since the Dispatcher may receive multiple subscriptions from multiple
executing Activity Components, its activityControlMessages capacity is increased from 1.
As the Message Queue and the Statechart Behavior components only send one-one events
at a time, their event queues can remain at the capacity of 1. In order to allow Activity
Components to send subscription events concurrently to the Statecharts behavior, the
activityControlMessages event queue’s priority has to be the highest. The priority of the
other two event queues does not matter, as no events can occur concurrently from the
Message Queue and the Statechart Behavior components.

4.2.6 Constructing the State Machine Component

Finally, since the inherent behavior of PSSM State Machines is asynchronous in nature,
the whole Gamma Test Model is wrapped using an async component. Listing 4.10 shows
the Gamma implementation of the Behavior 003-B [12] system, instantiating the different
components, and connecting them using channels. Since the model does not have any
environment, the System component does not expose any ports.

1This is a non-deterministic choice.

33

� �
1 adapter Dispatcher of component dispatcher : DispatcherSC {
2 when any / run
3
4 queue activityControlMessages(priority = 3, capacity = QUEUE_SIZE) {
5 dispatcherControlActivity_0.any
6 }
7 queue controlMessages(priority = 2, capacity = 1) {
8 dispatcherControl.any
9 }

10 queue dataMessages(priority = 1, capacity = 1) {
11 inputData.any
12 }
13 }� �

Listing 4.9: Asynchronous adapter of the Dispatcher Component.

� �
1 async System {
2 component messageQueue : MessageQueue
3 component target : Target
4 component dispatcher : Dispatcher
5 component doActivity_0 : DoActivity
6 // Connecting messageQueue to dispatcher
7 channel [dispatcher.queueControl] -o)- [messageQueue.queueControl]
8 channel [messageQueue.data] -o)- [dispatcher.inputData]
9 // Connecting dispatcher to target

10 channel [dispatcher.outputData] -o)- [target.data]
11 channel [target.dispatcherControl] -o)- [dispatcher.dispatcherControl]
12 // Connecting doActivity_0 to target
13 channel [doActivity_0.controller] -o)- [target.activity_0]
14 // Connecting doActivity_0 to dispatcher
15 channel [doActivity_0.dispatcherControl] -o)- [dispatcher.dispatcherControlActivity_0]
16 channel [dispatcher.outputDataActivity_0] -o)- [doActivity_0.data]
17 }� �

Listing 4.10: The Gamma Test Model of Behavior 003-B [12] test case.

34

MessageQueue Dispatcher Statechart Activity

next

start

start

control(true)

ready

next

subscribe(continue)

continue

continue

next

done

control(false)

(a) Continue dispatched to the Activity.

MessageQueue Dispatcher Statechart Activity

next

start

start

control(true)

ready

next

subscribe(continue)

continue

continue

ignore

continue

next

done

control(false)

(b) Continue dispatched to the Statechart first.

Figure 4.6: Interactions during successful execution of
Behavior 003-B [12].

4.3 Interaction Example

By modeling the State Machine with multiple internal components that interact with
each other asynchronously, we may gain a deeper insight into the underlying mechanism
of PSSM State Machines. Figure 4.6 shows two distinct sequences of interactions between
the internal components of the constructed Target State Machine of Behavior 003-B [12]
(introduced in Section 3.3), that results in the system reaching its final state. In Figure 4.6a
the interaction starts with the Dispatcher asking for the next Message. Upon receiving it,
since no Activity has subscribed to the start message, it dispatches it to the Statechart.
The Statechart has a trigger for the start message, which takes it into state S1, starting its
doActivity, and replying with a ready to the Dispatcher. The Dispatcher asks for the next
Message, which is a continue Message. Meanwhile, the activity is running concurrently to
the components, and has subscribed to the continue Message. Since there is a subscriber to
the continue Message, the Dispatcher chooses to dispatch it to the Activity, and proceeds
to ask for the next Message. Since the MessageQueue has run out of Messages, it will never
receive a reply. Meanwhile, the Activity has finished execution and sent a done event to
the Statechart, which in result executes its completion event, stopping the Activity and
finishing the test successfully. The interaction shown in Figure 4.6b differs in that the
Dispatcher first tries to dispatch the continue Message to the Statechart, which responds
with an ignore event, thus the Dispatcher retries with the Activity. Note, that in order
for the Dispatcher to be able to dispatch the continue Message to the Activity, it had to
receive the subscription before the dispatching process finished.

35

Figure 4.7 shows an interaction, in which the State Machine reaches the deadlock state
described in Section 3.3.3. The execution starts similarly to the ones described above,
only differing in the timing of the subscribe event being sent to the Dispatcher. Since
it arrived after the dispatching process finished, the incoming Message has already been
discarded, hence the Activity will never be able to resume execution.

MessageQueue Dispatcher Statechart Activity

next

start

start

control(true)

ready

next

continue

continue

ignore

next

subscribe(continue)

Figure 4.7: Interactions during execution of Behavior 003-B [12]
reaching a deadlocked state.

36

Chapter 5

Systematic Generation of Precise
Execution Traces

In order to provide the reviewers and experts with validation insights during the validation
workflow, it must provide an exhaustive and precise set of execution traces for the test
models. As Gamma models have formal semantics, we can use formal methods to generate
a complete set of execution traces.

The chapter is structured as follows. Section 5.1 describes how models trace their execu-
tion. Section 5.2 introduces the XSTS split algorithm. Section 5.3 describes the algorithm
that explores and records the available execution traces exhaustively. Finally, Section 5.4
showcases the trace generated for the Gamma implementation of Behavior 003-B [12].

5.1 Tracing Information

Gamma uses automatic semantic-preserving model transformations to transform Gamma
models into the XSTS formalism – which is one of the input languages of Theta. By
extending this tool chain, we are able to construct execution traces that precisely follow the
execution semantics of the original Gamma models. We extended Theta with a Simulator
component, that is able to exhaustively traverse all possible executions of an XSTS model
and record changes in the variables. By specifying which variables to track, we are able
to reconstruct the execution traces.

Gamma log statements serve the purpose of tracing information during a model’s execu-
tion. During the Gamma → XSTS transformation, for every component type C of the
Gamma model, an enum type DlogC

is defined in the XSTS model, with literals corre-
sponding to the string inputs of log statements in C. For every component instance c
of type C, a log variable logc ∈ V is defined in the XSTS model ⟨V, Tr, In,En⟩, with
domain Dlogc = DlogC

. Then, the Gamma log statements of form log(φ) in component c
are modeled as logc := φ assignments in XSTS. During a Gamma model’s execution, we
are able reconstruct its execution trace by tracking variables logc.

5.2 Splitting XSTS Models

Gamma models transformed into XSTS represent one step of their execution as a sin-
gle monolithic XSTS transition. This transition may have several sequence and non-

37

deterministic operations. To execute the Gamma model, this XSTS transition must be
executed over and over again. The granularity of XSTS transitions has a serious effect
on the verification of such systems in terms of required time and memory. This effect
is investigated in our previous work [26], and measurements showed that splitting mono-
lithic transitions into smaller ones causes a huge overhead on model checking – this design
decision behind the model transformation in Gamma remains justified.

However, since XSTS transitions are atomic in nature, the simulator could lose tracing
information during execution (e.g., two log statements on a single transition effect). Also,
any non-determinism inside this monolithic transition would be lost by the simulator. In
order to detect every log statement, and be able to control the non-deterministic choices
made during execution, the monolithic transition must be split into multiple deterministic
parts, as presented in our previous work [26].

We extended the splitting algorithm of XSTS transitions with handling parallel operations,
in order to explore every possible execution overlap of several parallel branches. This
work does not require the detailed definition of the splitting algorithm, however, since
precise semantics is essential when using formal methods, Appendix A provides a detailed
formulation.

Briefly, splitting is a semantics-preserving model transformation, which transforms an
XSTS model into the form ⟨V, Tr, In,En⟩ ⇝ ⟨V ′, T r′, In′, En′⟩ where In′ = En′ = ∅,
V ⊆ V ′, |Tr′| ≥ |Tr| + |In| + |En|, and every t′ ∈ Tr′ transition is deterministic, and
contains only a single log variable change.

5.3 Generating Execution Traces

In order to generate every possible execution trace systematically, we need to traverse the
entire state space of the given XSTS model precisely. To prevent multiple states from
overlapping with each other, we track the value of every variable explicitly, instead of
using any kind of abstraction. Informally, from a specific state of our system, we calculate
the possible successor states, until there is no more fireable transition. When we reach the
end of an execution, we save its trace, then we backtrack to the last decision point where
unexplored decisions remained, and continue in a new direction. This process is continued
until there are no more unexplored parts of the system. We introduce Reachability Graph
to represent the state space during the algorithm.

Theta transforms every input formalism into a common internal representation, Abstract
Reachability Graph (ARG) [14]. ARG is used to represent an abstract state space with
abstract domains, but in this work, we avoid the usage of abstraction, thus, RG is a
simplification of ARG.

Definition 2 (Reachability Graph). A reachability graph (RG) is a 3-tuple RG =
⟨N,E,C⟩ where:

• N is the set of nodes, each n ∈ N representing a concrete state c of the system,
marked c(n) = c.

• E ⊆ N×Ops×N is the set of edges labeled with operations. An edge (n1, op, n2) ∈ E
is present if c(n2) is a successor state of c(n1) with operation op.

• C ⊆ N ×N is the set of covered-by edges. A covered-by edge (n1, n2) ∈ C is present,
if c(n1) ⊏ c(n2). Note, that without abstraction, c1 ⊏ c2 ≡ c1 = c2. �

38

A node n ∈ N is expanded, if all of its successors are included in RG. A node n is covered,
if a covered-by edge (n, n′) ∈ C exists for an other node n′ ∈ N .

5.3.1 Traversing Every Possible Execution

In order to explore every possible execution, we traverse the entire state space of the model.
To do so, starting from the root node representing initial concrete state c0, we build a
reachability graph RG, until it can be expanded. As a result, we will have a complete
RG, in which every path starting from the root node corresponds to an Execution of the
system.

Definition 3 (Path). We define a path σP in the reachability graph RG = ⟨N,E,C⟩ as
σP = [n0, e1, n1, ..., en, nn] an alternating sequence of nodes and edges of the RG, where
every ni ∈ N and every ei ∈ E. �

Definition 4 (Execution). We define an execution σ of a split XSTS model
⟨V, Tr, In,En⟩, where In = En = ∅, as an alternating sequence of concrete states and
operations σ = [c0, op1, c1, . . . , opn, cn], where every ci ∈ C = ×v∈V Dv is a concrete state
of the model, and every opi is the operation of a split transition (fragment) t ∈ Tr. �

Generally, in the case of a sequence σ, we use the notation σ ← [σ, a] for adding a to the
end of σ.

Note, that a path σP = [n0, e1, n1, ..., en, nn] represents exactly one execution σ =
[c0, op1, c1, . . . , opn, cn], where every ci is the concrete state represented by RG-node ni,
and every opi is the operation of RG-edge ei. In the following, we present an algorithm
to collect every path σP of the RG, then map the paths to executions.

The execution traversal algorithm is presented in Algorithm 1. Every path in RG =
⟨N,E,C⟩ represents an execution of the system. We expand the RG until any of its nodes
n ∈ N can be expanded – a node n ∈ N can be expanded if it has not been expanded
earlier, and it is not covered by any other node n′ ̸= n ∈ N , i.e. no covered-by edge (n, n′) ∈
C is present. In other words, we stop expanding a path σP = [n0, e1, n1, . . . , en, nn], if the
node nn ∈ N corresponding to the last state cn of the execution is covered by another node
(so the rest of the path is already discovered in a previous one), or if it has no successor
nodes (so the path can not be continued).

After a path σP = [n0, e1, n1, . . . , en, nn] can not be further expanded, we save it to
the set of paths ΣP , and backtrack to the last node nimax , where nimax has at least
one unexpanded successor node n′

imax+1, available by edge e′
imax+1 = (nimax , op, n

′
imax+1)

from nimax . Then, we continue with the expansion of n′
imax

, resulting in a new path
σ′

P = [n0, e1, n1, . . . , eimax , nimax , e
′
imax+1, n

′
imax+1, . . .].

After this, every node n ∈ N is expanded, and every path σP ∈ ΣP has a final node nn

with no successor nodes. Note, that nn may be covered by another node n′ if a covered-by
edge (nn, n

′) ∈ C is present. In this case, path σP is not a complete path, but it must be
continued by any other subpath, starting from node n′.

σPlast denotes the last element (node) of σP . ΣP ← ΣP ∪ {copy(σP)} denotes
that the later modification of σP does not change its previously created copy in ΣP .
UnexpandedSuccessors(n,RG) where n ∈ N is an RG-node, returns the set of un-
expanded successors n′ ∈ N of n, i.e. the unexpanded nodes n′ for which an edge
(n, op, n′) ∈ E is present.

39

Algorithm 1: TraverseExecutions Traversing every execution of a split
XSTS model.

Input: Split XSTS model XSTS = ⟨V, Tr, In,En⟩ with initial state c0
Output: The set of executions Σ = {σ1, . . . , σn}

1 TraverseExecutions (XSTS)
2 ΣP ← ∅, σP ← []
3 N ← {n(c0)}, E ← ∅, C ← ∅
4 RG← ⟨N,E,C⟩
5 successors← N
6 traverse← ⊤
7 while traverse do
8 while |successors| > 0 do
9 node← successor ∈ successors

10 σ ← [σ, (σPlast
, op, node) ∈ E,node]

11 Close(node,RG)
12 successors← ∅
13 if node is not covered then
14 successors← Expand(node,RG)
15 end
16 end
17 Σ← Σ ∪ {copy(σ)}
18 if ∃nimax ∈ σP with unexpanded successors then
19 successors← UnexpandedSuccessors(nimax , RG)
20 else
21 traverse← ⊥
22 end
23 end
24 Σ← ΣP as executions
25 return Σ

The RG is built by the Close and Expand methods. Close(n,RG) checks whether the
given node n ∈ N of RG can be covered with another n′ ∈ N node. If yes, it adds the
corresponding covered-by edges (n, n′) to C. Expand(n,RG) expands the RG with every
successor node n′, each representing a state c′ which is a successor state of c(n), i.e. a
transition t = (c(n), c′) exists. For every n′ node, an edge (n, opt, n

′) is also added to E
where opt is the operation of transition t.

5.3.2 Representing an Execution as an Execution Trace

Instead of saving every concrete state of a concrete execution as a trace, we just track
some of the variables of the system VT ⊆ V . For a specific execution of the model, we
would like to observe the value changes of the tracked variables in order.

Definition 5 (Execution Trace). We define an execution trace ET as a sequence of
sets of pairs (vT , φ), where vT ∈ VT is a tracked variable and φ ∈ DvT is the value of vT

from its domain DvT . An element ETi of the trace represents the set of variables (and
their values) that have changed as a result of the execution of an operation. �

Note, that we can observe the precise order of every value change in the tracked variables
by splitting every assignment to a tracked variable into a separate fragment. To achieve

40

this, we just need to modify the splitting rule of sequences, by defining these assignments
as splittable operations.

If we would like to observe consecutive vT := φ assignments, i.e. an ET =
[. . . , {(vT , φ)}, {(vT , φ)}, . . .], we need to introduce vT := ϵ assignments between
them where ϵ ∈ DvT is an unused value of domain DvT . It will result in an
ET = [. . . , {(vT , φ)}, {(vT , ϵ)}, {(vT , φ)}, . . .], from which, then we need to remove every
{(vT , ϵ)}, resulting in ET = [. . . , {(vT , φ)}, {(vT , φ)}, . . .].

At the initial concrete state c0 (where every variable v ∈ V has its initial value c0(v) =
IV (v), we add the pair of every tracked variable vT ∈ VT and its initial value IV (vT) into
the execution trace ET ← [

⋃
vT inVT

(vT , IV (vT))].

During the execution, in every concrete state c, we check whether the value of any tracked
variable vT ∈ VT has changed. If so, we add these value changes into ET . Formally,
ET ← [ET,

⋃
∀vT ∈VT : last(vT) ̸=c(vT)(vT , c(vT))] where last(vT) denotes the last value of vT

saved to ET . At the end of the execution, this algorithm will produce a list of every value
change of every tracked variable.

By choosing the right set of tracked variables VT , we can precisely control the granularity
of the execution traces, i.e. the observable state changes of the system.

5.3.3 Merging Execution Traces Graphically

We found, that the most convenient way to summarize every different execution of a model
is by choosing the correct set of tracked variables VT and visualizing the execution traces
as a graph.

This representation is brief but complete: it shows the differences of the executions in an
intuitive way. Transforming an execution trace into a graph is quite intuitive, so we leave
its formal definition out. Informally, the value change sets are transformed into nodes,
and the consecutive ones are connected with directed edges.

The last node of every execution trace of executions, finishing with a covered node, is
connected to the successor value changes of the covering node. As a result, the possible
ends of incomplete execution traces are also shown, i.e. on this graph, every path ends in
a final state of the model, regardless of the covered-by edges.

For a more compact representation, semantically the same nodes are merged into each
other. Starting from the leaves, we merge two nodes n1, n2, if they represent the same
value changes, and the sets of their successor nodes S1, S2 are semantically the same,
recursively. Two sets of nodes S1, S2 are semantically the same, if |S1| = |S2|, and a
mutually exclusive mapping exists between their semantically same elements.

5.4 Example Generated Trace

As an example, in this section we showcase the generated execution traces for the
Behavior 003-B [12] test case introduced in Section 3.3. We used the model constructed
in Section 4.2 and tracked two sets of variables to demonstrate the configurability of the
trace generator, and demonstrate how well it showcases the possible interactions between
the internal components.

Figure 5.1 shows the generated trace by tracking only the Target logs: VT1 =
{vlogtarget , vlogdoActivity

}. The generator also found the execution trace of reaching the dead-

41

S1(entry)

S1(doActivityPartI) S1(doActivityPartI)

S1(doActivityPartII)

Figure 5.1: The actual execution traces of Behavior 003-B [12],
found by our approach with tracking variables VT1 .
The expected execution trace defined by PSSM is col-
ored green, while the execution trace reaching a dead-
locked state (discussed in Section 3.3.3) is colored red.

lock state. This trace is refined in Figure 5.2, which shows the generated trace by tracking
the Target logs and the Dispatcher logs as well: VT2 = VT1 ∪ {vlogdispatcher

}.

Discussion The fact, that the trace generator found the deadlock execution using only
the log statements already present in the model (i.e., no automatic detailing of the model)
demonstrates the value of this approach, However, as the refined execution shows, there
are various other execution traces as well, which were abstracted away and not shown in
the simple trace. However, too much detail could have also easily overwhelmed the exe-
cution trace, essentially making it next to impossible to meaningfully analyze. Thus, it is
important to view the system through different execution traces with various granularities,
tracking different components, and injecting additional detailing log statements.

42

D->SC: Start

S1(entry)

SC->D: Ready S1(doActivityPartI)

D->SC: Continue S1(doActivityPartI)

SC->D: ignore S1(doActivityPartI)

D discards Continue

S1(doActivityPartI)

A->D: subscribed

SC->D: ignore

D discards Continue

A->D: subscribed

SC->D: ignore

D->A: Continue

S1(doActivityPartII)

D->SC: Continue A->D: subscribed

D->SC: Continue

SC->D: Ready A->D: subscribed

SC->D: Ready

Figure 5.2: The actual execution traces of Behavior 003-B [12],
found by our approach with tracking variables VT2 .
The nodes representing dispatcher interactions (dis-
cussed in Section 4.2) are filled with gray, in their label
D denotes the dispatcher, SC denotes the statechart,
and A denotes the activity. The deadlocked execution
traces (discussed in Section 3.3.3) are colored with red.
The red nodes show the reasons for the deadlocks, i.e.
that the statechart sends the ignore message to the
dispatcher before the subscription of the activity.

43

Chapter 6

Evaluating the PSSM Validation
Workflow

Using the mapping rules from PSSM State Machines to Gamma (introduced in Chapter 4)
and the execution trace generation (introduced in Chapter 5), we validated a subset of
the PSSM Test Suite by modeling the Test Cases and comparing the generated traces to
the ones specified by the PSSM standard. In this chapter, we systematically evaluate the
constructed PSSM validation workflow and summarize our findings.

This chapter is structured as follows. Section 6.1 provides an overview on our technical
contributions to the Gamma and Theta tools. In Section 6.2, we define goals for this
evaluation. Section 6.3 details the constructed test model library we used as formal models.
In Section 6.4, we provide an overview on the validation results. Finally, Section 6.5
summarizes the evaluation of the validation workflow.

6.1 Implementation

The implementation of the PSSM validation workflow entailed the extension of the Gamma
Statechart Composition Framework and the Theta Model Checking Framework tools. By
choosing a mature and well-tested tool chain as the bases of our work, our software com-
ponents also inherit their capabilities, and our work becomes available for everyone else
using these tools. Our implementation is open source, and will be contributed back to the
tools’ main GitHub repositories.

This section gives a brief overview of the implementation details of our theoretical contri-
butions introduced in Chapter 4 – 5.

6.1.1 Contributions to the Gamma Statechart Composition Framework

The Gamma Statechart Composition Framework1 is a collection of Eclipse plugins building
upon several technologies: Eclipse Modeling Framework (EMF) to create the metamodels,
Xtext to define the language grammars, and Viatra for model transformations.

1https://github.com/ftsrg/gamma

44

https://github.com/ftsrg/gamma

Language Extensions

As part of this work, we extended several Gamma languages.

• We added log statements to the Gamma Action Language in order to add tracing
information for models.

• We extended the Gamma Statechart Language with the Internal transition formalism
of UML State Machines.

• We extended our previously proposed Gamma AcTivity Language [30] to allow its
usage as Components.

• We extended the Gamma Composite Language with the new Gamma Activity Com-
ponent formalism.

Gamma Transformation Extensions

As part of this work, we enhanced the Gamma transformation components to support the
PSSM validation workflow.

• To support the execution trace generation, we added a new Log Statement Injector
module to the framework, which can inject log statements into Gamma models during
model transformation, extending the resulting model with additional detailed tracing
information.

• We extended the Gamma → XSTS transformer component with the new language
formalisms mentioned above, generating semantically correct XSTS models.

• We extended our previous work [26] of splitting XSTS operations with the splitting
of parallel actions, thus providing fully concurrent behavior.

6.1.2 Contributions to the Theta Model Checking Framework

The Theta Model Checking Framework2 is a modular framework with multiple backend
analysis tools, formalisms, solvers and frontend languages.

Precise Simulation of XSTS Models

We implemented a simulator for XSTS models in Theta, based on existing parts of the
model-checking framework. The simulator can track the value of every variable and uses
the transfer function of the model checker to calculate every successor state of the current
state of the simulation. In the case of non-determinism (e.g., the selection from multi-
ple fireable transitions), the simulator makes the choice explicit to the user so they can
precisely control the simulation step-by-step. By extending Theta, we guarantee that
the simulator executes the XSTS model in the exact way as Theta, inheriting its formal
semantics.

2https://github.com/ftsrg/theta

45

https://github.com/ftsrg/theta

Traversing Executions with the Simulator

In order to traverse every execution, we implemented an automated listener interface for
the simulator, that follows a depth first search algorithm. At every decision point, where
there are more successor states, it selects the first one. At the end of an execution, it
tells the simulator to backtrack to the last decision point with unexplored successors, and
repeats the algorithm, until every decision has been explored.

Graphical Representation

In order to visualize the resulting trace, we reused the visualization components of Theta,
which can build generic graphs using the dot format of GraphViz3. We implemented a
graph simplifier module, which can simplify the generated execution trace into a more
readable, compact format by contracting common segments of the traces.

6.2 Evaluation Strategy

We used the following strategy during evaluation. We modeled a subset of the PSSM Test
Suite in Gamma, then we generated their execution traces in various granularities. Finally,
we compared the generated execution traces to the specified valid traces by pinpointing
their differences:

• If the execution traces are equivalent (✓) to the ones specified by the standard, then
our mapping is correct.

• If the generated execution traces are missing (−) executions from the specified valid
traces, then the mapping is either incorrect, or the standard specifies incorrect exe-
cutions.

• If the generated execution traces have additional (+) executions, then the mapping
is either incorrect, or the standard is missing crucial execution information.

We formulated the following questions to evaluate the PSSM validation workflow.

Q1 – Can the PSSM validation workflow reproduce the traces given by the PSSM Test
Suite?

Q2 – Can we gain deeper insights about the semantics from the detailed execution traces?

Q3 – Can the validation workflow expose previously unknown errors in the PSSM Test
Suite?

6.3 Test Model Library

We manually created an extendable test model library in Gamma, containing all the
common elements for Gamma test models as well as the Gamma version of a subset of
the PSSM Test Cases. Tee PSSM Test Suite defines 18 test categories, with a total of 103
Test Cases. Since the Suite has an extensive feature set, we have selected specific tests
and features that provide a good foundation for our validation.

3https://graphviz.org/

46

https://graphviz.org/

B
eh

av
io

r
Tr

an
sit

io
n

Ev
en

t

En
te

rin
g

Ex
iti

ng
En

tr
y

Ex
it

C
ho

ic
e

Ju
nc

tio
n

Fo
rk

Jo
in

Te
rm

in
at

e
Fi

na
l

H
ist

or
y

D
ef

er
re

d

R
ed

efi
ni

tio
St

an
da

lo
ne

O
th

er
Te

st
T

ot
al

Cases 5 15 16 5 5 6 3 5 5 2 3 3 1 8 10 6 3 1 103
Models 5 9 11 3 3 0 0 5 0 1 2 0 1 4 0 0 0 0 44

Table 6.1: Number of modeled test cases from the PSSM Test Suite by category.

Si
m

pl
e

C
om

pl
et

io
n

Tr
an

sit
io

n

C
om

po
sit

e
C

om
pl

et
io

n
Tr

an
sit

io
n

C
on

fli
ct

in
g

Tr
an

sit
io

ns
In

te
rn

al
Tr

an
sit

io
n

Lo
ca

lT
ra

ns
iti

on
G

ua
rd

ed
Tr

an
sit

io
n

O
pe

ra
tio

n
Tr

ig
ge

r
Ev

en
t

D
ef

er
rin

g

D
oA

ct
iv

ity

O
rt

ho
go

na
lR

eg
io

ns

En
tr

y
/

Ex
it

Po
in

t

Fo
rk

/
Jo

in
St

at
e

D
ec

isi
on

St
at

e
Ju

nc
tio

n
St

at
e

Te
rm

in
at

e
St

at
e

H
ist

or
y

St
at

e

Cases 76 33 4 3 5 16 7 10 10 34 19 8 6 8 3 8
Models 32 11 4 2 0 5 0 0 5 11 0 1 5 0 0 4

Table 6.2: Models using specific feature set in the PSSM Test Suite. The feature sets
are not disjunct, i.e., a single model can be in multiple columns in this table.

Table 6.1 shows the number of test cases PSSM defines in each category, and how many
we have implemented of the specified models. Table 6.2 shows the number of models using
a given feature set, and our models covering them. With this initial implementation, our
aim was to cover the most common features and models, thus providing us with a baseline
that can be further improved upon in future works.

We manually modeled each test case as separate Gamma model files grouped into folders
specified by their categories. The Test Models contain the Message Queues of the test,
the Target Statechart Component, and the connecting Test System.

The transformation and trace generation has been automated as one-click processes, in
order to make rapid-prototyping easier during model development; each test model has an
associated Gamma generator file, which generates the detailed, split XSTS model. Each
category also has a generator file calling their test cases. Finally, a main generator file calls
all categories’ generator files. The execution traces can also be generated automatically
using a batch simulator, which processes all test models systematically, providing the
visualized execution traces in various granularities.

6.4 Validation Results

Using the constructed models we generated the execution traces in two different granular-
ities: a baseline model that contains only the original tracing information, and a detailed
model injected with state entry and exit trace, transition effect trace, event raising trace,
and RTC step trace information. Table 6.3 showcases the differences between the gener-
ated traces and the ones provided by the PSSM Test Suite. We used the same notation

47

(a) State machine of Transition-020 model [12].

S1(entry)

T4(effect)

(b) The only execution trace of Transition-020,
found by tracking the log variables.

Figure 6.1: State machine and execution trace of Transition-020.

introduced previously for the differences in the generated traces, extended with ✓⋆, which
means the trace provides additional semantical information. Table 6.4 shows the aggre-
gated results of the trace comparison.

6.4.1 Equivalent Traces

To answer our Q1 question, we must compare the Baseline execution traces to the ones
specified in the PSSM Suite. Indeed, we have generated 30 traces that match the ones
specified in the specification precisely.

Let’s take the Transition-020 model as an example for equivalent trace. Figure 6.1a shows
its State Machine. This test aims to showcase the priority of completion events over
traditional ones. The execution trace generated by the validation workflow is presented in
Figure 6.1b, which is the only valid execution trace specified by the Test Suite.

Another example could be the Event-010 test case, which has three valid traces specified
by the Test Suite. Figure 6.2a shows its State Machine. The execution trace generated
by the validation workflow is shown in Figure 6.2b. It showcases how compactly it can
display the three separate executions in a single diagram.

Using the generated detailed execution traces, we may also deduce more information than
the Test Suite provides. Take RTC steps for example. In the PSSM Test Suite, only one
RTC step is specified for each test case. Given, that there are several test models with
more than one valid execution traces, we may lose important insight of the behavior of
the test models. Also, there are several examples in the Test Suite, in which the RTC step
specifies several transitions firing at once – but does not specify an ordering between them.
As an answer to Q3: since the validation workflow may insert RTC beginning and RTC
end trace information into the model, we can uncover the exact ordering all transitions in
each model.

48

Test Case B
as

el
in

e

D
et

ai
le

d

PS
SM

Er
ro

rs

M
ap

pi
ng

Er
ro

rs

Behavior

001 ✓ ✓⋆

002 ✓ ✓⋆

003-A + + A
003-B + + A
004 + + A

Transition

001 ✓ ✓⋆

007 ✓ ✓⋆

010 ✓ ✓⋆

015 ✓ ✓⋆

016 ✓ ✓⋆

017 − −+ C I
019 −+ −+ C J
020 ✓ ✓⋆

022 ✓ ✓⋆

Event

001 ✓ ✓⋆

002 ✓ ✓⋆

008 ✓ ✓⋆

009 ✓ ✓⋆

010 ✓ ✓⋆

015 ✓ ✓⋆

016-A no result
016-B ✓ ✓⋆

017-A ✓ ✓⋆

017-B ✓ ✓⋆

018 ✓ ✓⋆

Entering
005 ✓ ✓⋆

010 − −+ C I
011 no result

Exiting
001 ✓ + C
003 ✓ + C
005 ✓ + C

Choice

001 ✓ ✓⋆

002 ✓ ✓⋆

003 ✓ ✓⋆

004 ✓ ✓⋆

005 ✓ ✓⋆

Fork 002 no result

Join 001 ✓ ✓⋆ J
002 − −+ C J

Final 001 ✓ ✓⋆

History

001-A − − H
001-B − − I
001-C − − H
001-D − − H

Table 6.3: Trace comparison results for the modeled test cases.

49

(a) State machine of Event-010 model [12].

T2(effect) T3(effect)

S1.1(entry)

T1.2(effect) T1.3(effect)

S1.2(entry) S1.3(entry)

S1(entry) S2(entry)

(b) The execution traces of Event-010, found by tracking the log variables.

Figure 6.2: State machine and execution trace of Event-010.

50

Test Case B
as

el
in

e

D
et

ai
le

d

of equivalent traces 30 27
of valid additional traces 4 10
of valid missing traces 0 0
of invalid additional traces 0 2
of invalid missing traces 8 8
of indeterminate traces 3 3

Table 6.4: Trace comparison results aggregated.

6.4.2 Different Traces

Several generated traces were different from the ones specified by the Test Suite. These
models are denoted with either +, − or −+. We compared the generated execution
traces with the PSSM Specification, and aggregated the results for these traces. Table 6.3
contains a PSSM Errors and a Mapping Errors column, which contains the symbol of the
found errors.

Unsynchronized behavior of doActivities A The unsynchronization of the execu-
tion of doActivities has been presented in detail during the work. We first introduced it
in Section 3.3.3, which we refined in Section 4.3 by giving an example interaction, and in
Section 5.4 by actually showing the traces generated for such models.

Concurrency in orthogonal regions C There are several tests checking the correct
ordering of the effects on orthogonal regions. However, there were test cases, that did not
specify their tracing in high enough detail, to provide all the possible orderings as valid
execution traces.

The Exiting-003 model is shown in Figure 6.3a. The execution traces found by our work-
flow tracking the log variables are presented in Figure 6.3b.

Limitations in the Gamma mapping We found several limitations of the Gamma
mapping during the validation workflow. H Gamma did not transform transitions directed
into History states in the same region as the source, and provided no grammar validations
when trying to do so. J Transitions directed into Join nodes may not have effects on
them, preventing us from modeling several test cases. I Gamma executes the initial
transitions and entry actions for composite states in the wrong order: executing first all
transition effects and then the entry actions.

The maintainers of Gamma have been notified of these limitations.

6.4.3 Indeterminate Traces

There were three models in the test library, for which the trace generator could not pro-
vide meaningful traces. These models have been annotated with the “no result” line in
Section 6.4.

51

(a) State machine of Exiting-003 model [12].

S1.1.1(exit) S1.2.1(exit)

S1.2.1(exit)

S1.1(exit)

S1(exit)

S1.1.1(exit)

(b) The execution traces of Exiting-003, found by tracking the log variables.

Figure 6.3: State machine and execution trace of Exiting-003.

52

6.5 Summary

Using the PSSM Validation Workflow, we were able to generate baseline and detailed exe-
cution traces for a subset of test cases using the essential features of UML State Machines.
The execution traces were able to reproduce the execution specified by the Test Suite and
provide deeper semantical insight into the underlying behavior (e.g., RTC steps). Using
the validation workflow we were also able to reveal two types of errors in the test suite:
the unsynchronized behavior of doActivities, and the concurrent nature of orthogonal re-
gions, which were not covered in full detail by the test suite. The mapping has also shown
previously unknown limitations in the Gamma language, which have been reported to the
maintainers.

53

Chapter 7

Conclusion and Future Work

The preciseness and unambiguity of modeling langauge specifications are essential in the
world of MBSE. However, the standardization process of such languages is a long and
hard work. In this work, we proposed a novel validation workflow that aims to support
the standardization process by harnessing the power of formal methods for generating
detailed and semantically correct execution traces. The set of generated execution traces
can be considered complete, i.e., it contains all possible execution traces for a model, due
to the formal methods based approach. These execution traces provide valuable insight
into the behavioral aspects of the modeling language.

The results of the work are twofold. From the theoretical point of view, we developed a
mapping to model UML/PSSM State Machines in the Gamma formalism in a semantically
sound way. In order to do so, we formalized a new Activity Component formalism, which
allows the application of Gamma Activities as seperate components. We also defined a way
to systematically generate precise execution traces from Gamma models in a configurable
way, which results in highly detailed and compact execution graphs.

From the practical point of view, we extended the Gamma and Theta tools with new
components neccessary for the modeling and execution trace generation of PSSM State
Machines. As evaluation, we modeled a subset of the PSSM Test Suite models and did
an extensive comparison over the generated execution traces and the ones specified in the
standard. This evaluation demonstrated the applicability and the value of the approach,
by showing that the validation workflow (i) can generate equivalent execution traces to
the standard, and is also (ii) able to find certain executions the PSSM Test Suite did not
show.

Future work The validation workflow seems to be a promising way to support the
process of creating new standards and validating already existing ones. As direct next
steps, we intend to implement an automatic UML → Gamma model transformation, in
order to further simplify the validation of test models. Since the most prevalent error in
the PSSM Test Suite execution traces seems to be missing concurrent traces, we also plan
to formulate additional concurrent model features, such as Event Deferring in states, since
they are extensively used with doActivities. Furthermore, we would like to extend the
execution trace generation with fine grained granularity.

54

Chapter 8

Acknowledgement

We would like to express our gratitude to our advisors – Márton Elekes, Bence Graics,
and Vince Molnár – for their continous support and guidance. We are also grateful for
the valueable feedbacks of András Vörös and Benedek Horváth.

55

Bibliography

[1] Dominik Bork, Dimitris Karagiannis, and Benedikt Pittl. A survey of modeling
language specification techniques. Information Systems, 87:101425, 2020. ISSN 0306-
4379. DOI: https://doi.org/10.1016/j.is.2019.101425. URL https://www.
sciencedirect.com/science/article/pii/S0306437919303035.

[2] Manfred Broy and María Victoria Cengarle. UML formal semantics: lessons
learned. Software & Systems Modeling, 10(4):441–446, Oct 2011. ISSN 1619-
1374. DOI: 10.1007/s10270-011-0207-y. URL https://doi.org/10.1007/
s10270-011-0207-y.

[3] Márton Elekes and Zoltán Micskei. Towards Testing the UML PSSM Test Suite. In
10th Latin-American Symposium on Dependable Computing, LADC 2021, pages 1–4.
IEEE, 2021. DOI: 10.1109/LADC53747.2021.9672570.

[4] Márton Elekes, Vince Molnár, and Zoltán Micskei. Assessing the specification of
modelling language semantics: A study on UML PSSM, 2022. URL https://doi.
org/10.21203/rs.3.rs-1577254/v1.

[5] Bence Graics. Mixed-Semantics Composition of Statecharts for the Model-Driven
Design of Reactive Systems. Master’s thesis, BME, 2018.

[6] Bence Graics, Vince Molnár, András Vörös, István Majzik, and Dániel Varró.
Mixed-semantics composition of statecharts for the component-based design of re-
active systems. Software and Systems Modeling, 19(6):1483–1517, Nov 2020. ISSN
1619-1374. DOI: 10.1007/s10270-020-00806-5. URL https://doi.org/10.1007/
s10270-020-00806-5.

[7] Object Management Group. Systems Modeling Language v2 (SysMLv2). URL https:
//github.com/Systems-Modeling/SysML-v2-Release.

[8] Object Management Group. Systems Modeling Language (SysML), 2012. URL
https://www.omg.org/spec/SysML/1.6/About-SysML.

[9] Object Management Group. Systems Modeling Language (SysML) v2 RFP (ad/2017-
12-02), 2017. URL http://doc.omg.org/ad/2017-12-2.

[10] Object Management Group. Unified Modeling Language (UML-v2.5.1), 2017. URL
https://www.omg.org/spec/UML/2.5.1/About-UML.

[11] Object Management Group. Precise Semantics of UML Composite Structures (PSCS-
v1.2), 2019. URL https://www.omg.org/spec/PSCS/1.2/About-PSCS.

[12] Object Management Group. Precise Semantics of UML State Machines (PSSM-v1.0),
2019. URL https://www.omg.org/spec/PSSM/1.0/About-PSSM.

56

http://dx.doi.org/https://doi.org/10.1016/j.is.2019.101425
https://www.sciencedirect.com/science/article/pii/S0306437919303035
https://www.sciencedirect.com/science/article/pii/S0306437919303035
http://dx.doi.org/10.1007/s10270-011-0207-y
https://doi.org/10.1007/s10270-011-0207-y
https://doi.org/10.1007/s10270-011-0207-y
http://dx.doi.org/10.1109/LADC53747.2021.9672570
https://doi.org/10.21203/rs.3.rs-1577254/v1
https://doi.org/10.21203/rs.3.rs-1577254/v1
http://dx.doi.org/10.1007/s10270-020-00806-5
https://doi.org/10.1007/s10270-020-00806-5
https://doi.org/10.1007/s10270-020-00806-5
https://github.com/Systems-Modeling/SysML-v2-Release
https://github.com/Systems-Modeling/SysML-v2-Release
https://www.omg.org/spec/SysML/1.6/About-SysML
http://doc.omg.org/ad/2017-12-2
https://www.omg.org/spec/UML/2.5.1/About-UML
https://www.omg.org/spec/PSCS/1.2/About-PSCS
https://www.omg.org/spec/PSSM/1.0/About-PSSM

[13] Object Management Group. Semantics of a Foundational Subset for Executable
UML Models (fUML-v1.2), 2021. URL https://www.omg.org/spec/FUML/1.5/
About-FUML.

[14] Ákos Hajdu and Zoltán Micskei. Efficient strategies for cegar-based model
checking. Journal of Automated Reasoning, pages 1051–1091, Aug 2020.
DOI: 10.1007/s10817-019-09535-x. URL https://doi.org/10.1007/
s10817-019-09535-x.

[15] Lucas Lima, Alvaro Miyazawa, Ana Cavalcanti, Márcio Cornélio, Juliano Iy-
oda, Augusto Sampaio, Ralph Hains, Adrian Larkham, and Vaughan Lewis.
An integrated semantics for reasoning about SysML design models using refine-
ment. Software & Systems Modeling, 16(3):875–902, Jul 2017. ISSN 1619-
1374. DOI: 10.1007/s10270-015-0492-y. URL https://doi.org/10.1007/
s10270-015-0492-y.

[16] Shuang Liu, Yang Liu, Étienne André, Christine Choppy, Jun Sun, Bimlesh Wadhwa,
and Jin Song Dong. A formal semantics for complete uml state machines with com-
munications. In Einar Broch Johnsen and Luigia Petre, editors, Integrated Formal
Methods, pages 331–346, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg. ISBN
978-3-642-38613-8.

[17] Shuang Liu, Yang Liu, Jun Sun, Manchun Zheng, Bimlesh Wadhwa, and Jin Song
Dong. Usmmc: A self-contained model checker for uml state machines. In Pro-
ceedings of the 2013 9th Joint Meeting on Foundations of Software Engineering,
ESEC/FSE 2013, page 623–626, New York, NY, USA, 2013. Association for Com-
puting Machinery. ISBN 9781450322379. DOI: 10.1145/2491411.2494595. URL
https://doi.org/10.1145/2491411.2494595.

[18] Qin Ma, Monika Kaczmarek-Heß, and Sybren de Kinderen. Validation and
verification in domain-specific modeling method engineering: an integrated
life-cycle view. Software and Systems Modeling, Oct 2022. ISSN 1619-
1374. DOI: 10.1007/s10270-022-01056-3. URL https://doi.org/10.1007/
s10270-022-01056-3.

[19] Markus Maurer. Automotive Systems Engineering: A Personal Perspective, pages
17–35. Springer Berlin Heidelberg, Berlin, Heidelberg, 2013. ISBN 978-3-642-
36455-6. DOI: 10.1007/978-3-642-36455-6_2. URL https://doi.org/10.1007/
978-3-642-36455-6_2.

[20] Vince Molnár, Bence Graics, András Vörös, István Majzik, and Dániel Varró. The
Gamma statechart composition framework: Design, verification and code generation
for component-based reactive systems. In Proceedings of ICSE’18: Companion Pro-
ceeedings, pages 113–116. ACM, 2018. DOI: 10.1145/3183440.3183489.

[21] Milán Mondok. Formal verification of engineering models via extended symbolic
transition systems. Bachelor’s thesis, BME, 2020.

[22] Ana Luísa Ramos, José Vasconcelos Ferreira, and Jaume Barceló. Model-Based Sys-
tems Engineering: An Emerging Approach for Modern Systems. IEEE Transactions
on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 42(1):101–
111, 2012. DOI: 10.1109/TSMCC.2011.2106495.

57

https://www.omg.org/spec/FUML/1.5/About-FUML
https://www.omg.org/spec/FUML/1.5/About-FUML
http://dx.doi.org/10.1007/s10817-019-09535-x
https://doi.org/10.1007/s10817-019-09535-x
https://doi.org/10.1007/s10817-019-09535-x
http://dx.doi.org/10.1007/s10270-015-0492-y
https://doi.org/10.1007/s10270-015-0492-y
https://doi.org/10.1007/s10270-015-0492-y
http://dx.doi.org/10.1145/2491411.2494595
https://doi.org/10.1145/2491411.2494595
http://dx.doi.org/10.1007/s10270-022-01056-3
https://doi.org/10.1007/s10270-022-01056-3
https://doi.org/10.1007/s10270-022-01056-3
http://dx.doi.org/10.1007/978-3-642-36455-6_2
https://doi.org/10.1007/978-3-642-36455-6_2
https://doi.org/10.1007/978-3-642-36455-6_2
http://dx.doi.org/10.1145/3183440.3183489
http://dx.doi.org/10.1109/TSMCC.2011.2106495

[23] G.J.M. Read, A. Naweed, and P.M. Salmon. Complexity on the rails: A
systems-based approach to understanding safety management in rail trans-
port. Reliability Engineering & System Safety, 188:352–365, 2019. ISSN 0951-
8320. DOI: https://doi.org/10.1016/j.ress.2019.03.038. URL https://www.
sciencedirect.com/science/article/pii/S0951832018311773.

[24] E. Seidewitz. What models mean. IEEE Software, 20(5):26–32, 2003. DOI:
10.1109/MS.2003.1231147.

[25] Bran V. Selic. On the Semantic Foundations of Standard UML 2.0, pages 181–
199. Springer Berlin Heidelberg, Berlin, Heidelberg, 2004. ISBN 978-3-540-
30080-9. DOI: 10.1007/978-3-540-30080-9_6. URL https://doi.org/10.1007/
978-3-540-30080-9_6.

[26] Péter Szkupien and Vince Molnár. The effect of transition granularity in the model
checking of reactive systems. In Proceedings of the 29th Minisymposium of the
Department of Measurement and Information Systems, pages 54–57, 2022. DOI:
10.3311/MINISY2022-014.

[27] Tamás Tóth, Ákos Hajdu, András Vörös, Zoltán Micskei, and István Majzik. Theta:
A Framework for Abstraction Refinement-Based Model Checking. In Proceedings of
FMCAD’17, page 176–179, Vienna, Austria, 2017. ISBN 978-0-9835678-7-5.

[28] Balázs Várady. Designing a Formally Verifiable Action Language for the Modeling of
Reactive Embedded Systems. Bachelor’s thesis, BME, 2019.

[29] J. Woodcock, A. Cavalcanti, J. Fitzgerald, P. Larsen, A. Miyazawa, and S. Perry.
Features of cml: A formal modelling language for systems of systems. In 2012 7th
International Conference on System of Systems Engineering (SoSE), pages 1–6, 2012.
DOI: 10.1109/SYSoSE.2012.6384144.

[30] Ármin Zavada. Formal Modeling and Verification of Process Models in Component-
based Reactive Systems. Bachelor’s thesis, BME, 2021.

58

http://dx.doi.org/https://doi.org/10.1016/j.ress.2019.03.038
https://www.sciencedirect.com/science/article/pii/S0951832018311773
https://www.sciencedirect.com/science/article/pii/S0951832018311773
http://dx.doi.org/10.1109/MS.2003.1231147
http://dx.doi.org/10.1007/978-3-540-30080-9_6
https://doi.org/10.1007/978-3-540-30080-9_6
https://doi.org/10.1007/978-3-540-30080-9_6
http://dx.doi.org/10.3311/MINISY2022-014
http://dx.doi.org/10.1109/SYSoSE.2012.6384144

Appendix A

Splitting XSTS Transitions

In this section, we extend and formalize the splitting of XSTS transitions, originally intro-
duced in [26]. In an XSTS model, the following operations cause internal non-determinism:

• Choices: The selection between the branches opi of a choice op1 or . . . or opn is
non-deterministic.

• Conditionals: Although the evaluation of the condition ψ of a conditional
(ψ) ? opthen : opelse is deterministic, the splitting of ψ, opthen and opelse makes the
observation of the actual execution easier.

• Parallels: In every step of a parallel action op1 || . . . || opn, the selection between
the not-finished branches opi is non-deterministic.

• Havocs: The concrete value x ∈ Dv assigned to variable v ∈ V is non-
deterministically selected from domain Dv of variable v. This non-determinism can
not be made external, but havocs are for modeling the non-deterministic inputs from
the environment. In the scope of PSSM models, there is no non-deterministic input,
so we just ignore havocs in this work.

The splitting of an XSTS model should not change the possible executions. Informally, it
just replaces some non-deterministic operations with deterministic ones and transforms the
original internally non-deterministic semantics into external non-determinism by moving
every non-deterministic step outside the split transitions.

In other words, the goal of splitting is to eliminate the abstract states from the execution
of an XSTS model, making the successor state s′ of every transition t = (s, s′) concrete:
|s′| ≤ 1.

In general, splitting is a model-transformation over an XSTS model ⟨V, Tr, In,En⟩ which
breaks down some monolithic transitions of the transition sets Tr, In,En into smaller
transitions (called fragments), resulting in a split XSTS model ⟨V ′, T r′, In′, En′⟩.

The splitting of a transition relation T means the splitting of every transition t ∈ T . Note,
that for each transition, splitting yields at least one split transition, so the split transition
set T ′ must not contain fewer transitions than the original T : |T ′| ≥ |T |.

59

A.1 Splitting Rules

In the following, we formalize the splitting of a transition relation T by defining splitting
rules of choices, conditionals, and parallels. In order to make the originally internal
non-deterministic choices external, we introduce a new variable pc which will serve as a
program counter, to enforce the original control flow: V ′ = V ∪ {pc}, Dpc = integer,
IV (pc) = 0.

The splitting of a transition t ∈ T results in a set of split transitions (fragments): split(t) =
{t′1, . . . , t′n}. The splitting of a transition relation T results in the union of the fragments
of every original transition t ∈ T : split(T) =

⋃
t∈T split(t).

A fragment of an operation op wraps the operation into a sequence, starting with an
assumption on pc and ending with an assignment to pc. Formally, frag(op, x, y) = ([pc =
x], op, pc := y), where x is the program counter value, after which op can execute, and
y is the program counter value associated with the fragment. These assumptions and
assignments will guarantee the original control flow of the model.

Note, that the first fragment(s) of the original non-split transition should start with [pc =
0], while the last fragment(s) should end with pc := 0. This means, that the original states
of the system (i.e., where the system is not in the middle of the execution of an original
atomic transition) are the states, where pc = 0 holds.

In the following, we use split(op, x, y), where x denotes the pc value which should be
assumed at the beginning of the first fragment(s) of op, and y denotes the pc value which
should be assigned to pc at the end of the last segment(s) of op. For transitions t ∈ T ,
this means split(t) = split(t, 0, 0).

The splittable operations are choices, conditionals, and parallels. In
case of a sequence seq = op1, . . . , opn, if opi is the first split-
table operation, the resulting fragments will be split(seq, x, y) =
{(frag((op1, . . . , opi−1), x, ξ1), split(opi, ξ1, ξ2), split((opi+1, . . . , opn), ξ2, y)}, where ξi

denotes a unique program counter value, which can be generated incrementally, for
example. If there is no splittable operation in seq, split(seq) = frag(seq, x, y).

Example 1 (Splitting sequence with non-splittable operations). For transition
t = ([x = 0], x := 1, y := 2) with no splittable operation, splitting will result in only a
single fragment:

split(t) = split(t, 0, 0) = frag(t, 0, 0) = {([pc = 0], [x = 0], x := 1, y := 2, pc := 0)}

The splitting of a choice of form ch = (op1 or . . . or opn) means splitting all of its branches
opi into fragments, with the same assumption, and the same assignment on pc. This will
result in a set of fragments for each branch, from which exactly one non-deterministically
selected set will execute. Formally, split(ch, x, y) =

⋃n
i=0 split(opi, x, y).

Example 2 (Splitting choice). For transition t = (x := 1 or x := 2) with a splittable
choice with 2 branches, splitting will result in 2 fragments:

split(t) = split(t, 0, 0) =
{

([pc = 0], x := 1, pc := 0),
([pc = 0], x := 2, pc := 0)

}

60

Example 3 (Splitting sequence with splittable and non-splittable operations).
For transition t = (y := x, (x := 1 or x := 2), z := x) with a splittable choice with 2
branches, in the middle of a sequence, splitting will result in 4 fragments:

split(t) = split(t, 0, 0) =

([pc = 0], y := x, pc := 1),
([pc = 1], x := 1, pc := 2),
([pc = 1], x := 2, pc := 2),
([pc = 2], z := x, pc := 0)

The splitting of a conditional of form cond = (ψ) ? opthen : opelse means splitting the con-
dition into a separate fragment, as well as the splitting of opthen and opelse. In order to keep
the original control flow, we need two pc values ξthen and ξelse for opthen and opelse, respec-
tively. Formally, split(cond, x, y) = {condfrag(ψ, x, ξthen, ξelse)} ∪ split(opthen, ξthen, y) ∪
split(opelse, ξelse, y).

The condition fragment condfrag(ψ, x, ξthen, ξelse) checks pc = x, then assigns ξthen or ξelse

to pc based on the evaluation of ψ, repsectively. Formally, condfrag(ψ, x, ξthen, ξelse) =
([pc = x], pc := (ψ) ? ξthen : ξelse), where an assignemnt of form v := ψ ? a : b means
evaluating the Boolean expression ψ, and assigning a to v, if ψ is true, or b, otherwise.

Example 4 (Splitting conditional). For transition t = ((x > 0) ? y := x : y := 0)
with a splittable conditional, splitting will result in 3 fragments:

split(t) = split(t, 0, 0) =

([pc = 0], pc := (x > 0) ? 1 : 2),

([pc = 1], y := x, pc := 0),
([pc = 2], y := 0, pc := 0)

The splitting of a parallel of form par = op1 || . . . || opn means splitting every operation
of every branch into a separate fragment, as well as creating a fragment for forking
and joining the branches. For every branch opi, a separate branch program counter pci

is introduced, in order to guarantee the execution order of operations from one branch:
V ′ = V ∪ {pc1, . . . , pcn}. The assumption on pci can be merged into the original pc
assumption(s) at the beginning of the fragment with logical and.

In order to keep the original control flow between fork, branches,
and join, a new pc value ξ is needed. Formally, split(par, x, y) =
{forkfrag(x, ξ,

⋃n
i=1 pci),

⋃n
i=1

⋃|opi|
j=1 parfrag(ξ, pci, opi, j), joinfrag(ξ, y,

⋃n
i=1 pci)}.

The fork fragment forkfrag(x, ξ, PC) checks pc = x, then assigns 1 to every branch pro-
gram counter pci ∈ PC, and ξ to pc. Informally, the fork fragment enables the execution
of the parallel branches. Formally, forkfrag(x, ξ, PC) = ([pc = x], seq|P C|

i=1 PCi := 1, pc :=
ξ), where seqn

i=1opi means the sequence of op1, . . . , opn.

Generally, the jth operation of branch opi results in parallel fragments
parfrag(ξ, pci, opi, j) =

⋃
f ′. First, we split opij into fragments with split′(opij , ξ, ξ)

which will result in the fragments f of opij . Then, we wrap each of these fragments f
into a parallel fragment f ′, with adding an assumption [pci = j] to the beginning, and an
assignment pci := φ to the end, where φ = j + 1, if j < |opi|, otherwise 0. As a result,
pci = 0 denotes, that the execution of opi has finished.

We used split′ instead of split, because in order to enable every valid parallel execution,
we need to split every operation opi of sequences op1, . . . , opn into a separate fragment. So

61

split′(op, x, y) only differs from split(op, x, y) in the case of sequences, creating a separate
fragment of every contained operation.

The join fragment joinfrag(ξ, y, PC) checks pc = ξ, and pci = 0 for every pci ∈ PC,
then assigns y to pc. Informally, the join fragment awaits the finishing of every parallel
branch. Formally, joinfrag(ξ, y, PC) = ([pc = ξ ∧

∧|P C|
i=1 pci = 0], pc := y).

Example 5 (Splitting parallel). For transition t = ((x := 1, y := x) || (x := 2, y :=
x)) with a splittable parallel with two 2-long sequences, splitting will use 2 branch program
counters pc1, pc2, and result in 6 fragments:

split(t) = split(t, 0, 0) =

([pc = 0], pc1 := 1, pc2 := 1, pc := 2),
([pc = 1 ∧ pc1 = 1], x := 1, pc1 := 2),
([pc = 1 ∧ pc1 = 2], y := x, pc1 := 0),
([pc = 1 ∧ pc2 = 1], x := 2, pc2 := 2),
([pc = 1 ∧ pc2 = 2], y := x, pc2 := 0),
([pc = 1 ∧ pc1 = 0 ∧ pc2 = 0], pc := 0)

A.2 Merging Transition Relations

Splitting every transition relation In,En, Tr of an XSTS model independently, may mod-
ify the original semantics of the model, because the execution order of the transition re-
lations In,En, Tr,En, Tr, . . . , En, Tr would execute only fragments in this order, instead
of originally atomic transitions.

To avoid this difference in the semantics of the non-split and split models, we merge every
fragment t ∈ split(In) ∪ split(En) into split(Tr), and force the original execution order
of transition relations with explicit assumptions and assignments of newly introduced
variables.

Formally, we extend the variables V of the system with two Boolean variables init and
trans: V ′ = V ∪ {init, trans}, Dinit = Dtrans = bool, IV (init) = ⊤, IV (trans) = ⊥.

Informally, the value of init and trans denote which original transition relation should
execute:

• init denotes the execution of the original In transition relation

• ¬init ∧ ¬trans denotes the execution of the original En transition relation

• ¬init ∧ trans denotes the execution of the original Tr transition relation

In order to enforce these rules, we extend every fragment t = op, op ∈ Ops with the
following operations, resulting in t′:

• t⇝ t′ = ([init], op, init := ⊥) for every t which is created from a tIn ∈ In

• t ⇝ t′ = ([¬init ∧ ¬trans], op, trans := ⊤) for every t which is created from a
tEn ∈ En

• t⇝ t′ = ([¬init∧trans], op, trans := ⊥) for every t which is created from a tT r ∈ Tr

62

After these transformations, we can merge the t′ fragments from split(In), split(En), and
split(Tr) into Tr′, while In′ = En′ = ∅. The resulting ⟨V ′, T r′, In′, En′⟩ model will have
the same executions as the original model has.

Example 6 (Merging transition relations). Given an XSTS model ⟨V, Tr, In,En⟩,
where Tr = {tr1, tr2}, In = {in1, in2}, and En = {en1, en2} the merged XSTS model will
be ⟨V ′, T r′, In′, En′⟩, where V ′ = V ∪ {init, trans}, In′ = En′ = ∅, and

Tr′ =

([init], in1, init := ⊥),
([init], in2, init := ⊥),
([¬init ∧ ¬trans], en1, trans := ⊤),
([¬init ∧ ¬trans], en2, trans := ⊤),
([¬init ∧ trans], tr1, trans := ⊥),
([¬init ∧ trans], tr2, trans := ⊥)

63

	Kivonat
	Abstract
	Introduction
	Background
	Unified Modeling Language
	Behavior
	Activity Behavior
	State Machine Behavior
	Precise Execution Semantics of fUML and PSSM
	Overview of the PSSM Test Suite

	Gamma Statechart Composition Framework
	Gamma Behavioral Languages
	Gamma Composition Semantics

	Theta Model Checking Framework
	Extended Symbolic Transition System (XSTS)

	Related Work

	Validation of Modeling Language Specifications
	Validation Workflow
	PSSM Validation Workflow
	Running Example
	Test Model
	Specified Trace
	Deadlock of Test Model

	Modeling PSSM State Machines
	Activity Component
	Overview of the Internal Structure
	Common Interfaces
	Message Queue Component
	Statechart Behavior Component
	Activity Behavior Component
	Message Dispatcher Component
	Constructing the State Machine Component

	Interaction Example

	Systematic Generation of Precise Execution Traces
	Tracing Information
	Splitting XSTS Models
	Generating Execution Traces
	Traversing Every Possible Execution
	Representing an Execution as an Execution Trace
	Merging Execution Traces Graphically

	Example Generated Trace

	Evaluating the PSSM Validation Workflow
	Implementation
	Contributions to the Gamma Statechart Composition Framework
	Contributions to the Theta Model Checking Framework

	Evaluation Strategy
	Test Model Library
	Validation Results
	Equivalent Traces
	Different Traces
	Indeterminate Traces

	Summary

	Conclusion and Future Work
	Acknowledgement
	Bibliography
	Splitting XSTS Transitions
	Splitting Rules
	Merging Transition Relations

