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Kivonat 

A forgalomban részt vevő járművek száma évről évre növekszik, emiatt a forgalmi torlódások 

egyre nagyobb problémát jelentenek. A forgalmi torlódásoknak gazdasági és egészségügyi hatásai 

is lehetnek, hiszen minél több időt tölt egy jármű a forgalomban, annál több üzemanyagot fogyaszt 

és annál több káros anyagot bocsát ki. 

Modern IoT szenzorokat manapság mind az infrastruktúrában, mind magukban a járművekben is 

alkalmaznak. Ezen szenzorok fejlődése tette lehetővé nagy mennyiségű és pontos adatok gyűjtését 

a forgalom állapotáról. A kooperatív intelligens közlekedési rendszerek (C-ITS) a forgalmi 

adatokat felhasználhatják [1] olyan módon, hogy segítségükkel gépi tanuláson alapuló modellek 

taníthatóak, amelyek képesek felismerni és megjósolni forgalmi anomáliák és torlódás jelenlétét 

[2]. 

A klaszterezés egy felügyelet nélküli gépi tanulási módszer, amely az adatpontokat adott számú 

különböző csoportba, úgynevezett klaszterbe sorolja, a paramétereik közötti korrelációi alapján. 

Nagyobb közlekedési hálózatok számos különböző típusú és viselkedésű útszakaszokból 

állhatnak. Az egymáshoz hasonló útszakaszokat közös klaszterekbe sorolva számítási kapacitást 

spórolhatunk meg, mivel a gépi tanulási modellt így elegendő a klaszterek alapján betanítani az 

egyes útszakaszok helyett. Ez a módszer a torzítás kiküszöbölését is segíti meghatározott úttípusok 

forgalmi paramétereinek előrejelzése során. 

A munkánk célja forgalmi paraméterek gépi tanulással történő előrejelzése klaszterezés 

használatával a számítási kapacitás csökkentése érdekében. Olyan megoldást fejlesztettünk ki, 

amely segítségével a hasonlóan viselkedő útszakaszok összevonhatóak és ezáltal ugyanazon 

predikciós modellel jelezhetőek előre a forgalmi viszonyaik, optimalizálva ezáltal a számítási 

erőforrásokat, illetve képessé téve a megoldást valós idejű alkalmazásra is. A klasztering megoldás 

teljesítményét validáltuk kétféle predikciós modellel is.    
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Abstract 

The number of vehicles that participate in transportation has been increasing every year which 

made traffic congestion a larger issue. Traffic congestion has both economic and health 

implications as the more time a vehicle spends in traffic the more fuel it consumes and the more 

harmful substances it emits.  

The advancements of IoT sensors used in both the infrastructure and the vehicles themselves 

provide large quantities of accurate data about the state of traffic. Cooperative Intelligent Transport 

Systems (C-ITS) can make use of this data [1] by utilizing machine learning algorithms to create 

models that accurately recognize or even predict the presence of a traffic anomaly or congestion 

[2]. 

Clustering is an unsupervised machine learning method which divides data points into several 

groups called clusters based on correlation between their features. Large traffic networks have all 

kinds of different road types with different behavior. Dividing these road sections and assigning 

similar ones to common clusters could save computational resources, because it is not necessary 

to train a model for every road, just for every cluster. By training these models using the clusters 

separately would also help eliminate bias, as the objective is to predict traffic parameters on 

specific road types instead of a whole network. 

The goal of our work is to predict traffic parameters with machine learning models and use 

clustering to reduce computational cost. We propose a solution which is capable of grouping road 

segments with similar parameters, thereby their parameters can be forecasted with the same 

prediction model. Our method optimizes computational resources and makes the solution suitable 

for real-time application. We have evaluated the clustering solution’s performance with two 

prediction models. 
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1 Introduction 

Traffic congestion has become a major problem in our world. It has a negative impact on 

economics, environment, health, and the quality of life. In the U.S., people spend more and more 

time in congestions, which caused $179 billion cost in 2017, as a result of wasted time and fuel 

[3]. In 2017 congestion added 88 billion extra hours of travel in the U.S. and 3.3 billion gallons of 

fuel was consumed [3]. This study [4] shows that most of the individual’s health is affected due to 

traffic congestion, their main symptoms are mental stress, headache, tiredness, unexpected 

sweating, and breathing difficulty. Traffic congestion can have long term effects, as it is associated 

with circulatory disease, heart disease, lung cancer, asthma, and acute lower respiratory infections 

in children [5]. In classrooms, traffic pollution can affect students’ attention, concentration, and 

reaction time, due to nitrogen dioxide and elemental carbon [6]. As the largest portion of 

greenhouse gasses coming from transportation (29%), traffic has a large impact on the 

environment [7]. In traffic congestion, vehicles spend more time on the roads, their travel time 

increases, thereby they emit more CO2 [8]. Besides these, congestion wastes the time of people, 

so they can spend less time with their families, friends, and they can be late for work. Roads are 

noisy during congestion, which can be annoying for pedestrians, and increased travel time costs 

people more money because of the increased fuel consumption. Papers citated above show that 

traffic congestion is a major problem in modern cities, and we need solutions that can help optimize 

traffic flow. 

Traffic prediction can help optimizing traffic flow with traffic signal control [9] and it is helpful 

for navigation apps. Traffic lights with fixed timers are not optimal for traffic flow, as they cannot 

use the information of the state of the traffic. It is possible to optimize traffic lights with the output 

of a machine learning based prediction model, so we can manage traffic real time, potentially 

prevent congestion [9].  For emergency services, it is important to know about the traffic state in 

real time, so they can reach their destination faster, which can even save lives.  

As all road parameters are different, it would be necessary to build a prediction model for every 

road segment to get good results, which has a large computational cost. The goal of our work is to 

save computational capacity by grouping road segments into clusters and build a prediction model 

for every cluster separately. In this work, SUMO (Simulation of Urban MObility) is used for 

creating traffic simulation with different scenarios, to reproduce real life traffic flow. The output 
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of the simulation is the vehicles trajectory data, with 10Hz. As the vehicles trajectory data is not 

completely accurate in real life, map matching should be used for correcting these. Valhalla’s Map 

Matching Service is used for correcting these in datasets, which come from real traffic, but because 

we used a simulation to generate data, it was not necessary. We aggregated the dataset for every 

road segment and calculated the traffic flow parameters for 5-minute periods. The output 

parameters from the aggregation are road length, mean speed, mean travel time, flow, density, and 

a flag that shows whether a vehicle passed the road in the 5-minute period. We used HDBSAN to 

group similar road sections by these parameters and creating clusters. With the use of clustering, 

it is not necessary to build a prediction model for every road segment, just for every cluster, thereby 

we can save computational cost. We used SVR and LSTM for traffic forecasting. Our method uses 

data from the previous 25 minutes to predict traffic flow parameters to 10 minutes. The predicted 

parameters are mean travel time, flow, and the aforementioned flag. We evaluated the results of 

the models with and without clustering and compared their results. 
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2 Related work 

In recent years, data collection and processing became more efficient due to the developments 

made in the field of artificial intelligence and IoT sensors. New and more efficient machine 

learning models have been introduced and made publicly available. Traffic congestion prediction 

is a commonly researched area with various goals and methods. Some works aim to forecast the 

presence of congestion using historical data and some of them are even capable of real-time 

prediction [10]. 

Priambodo et al. [11] used a data from real world sensors located in Aarhus, Denmark to create 

their solution. They proposed a machine learning model based on a probabilistic reasoning model, 

the Hidden Markov Model (HMM). In order to determine congestion, they defined a metric called 

congestion index. This index is based on speed and occupancy values extracted from the data and 

represents the level of congestion on a given road segment. They also introduced an 

unconventional road segment clustering method using Grey Level Co-occurrence Matrix and 

spectral clustering [12] [13]. As a result of clustering, road segments that have the same amount 

of congestion at around the same time of day are grouped together. They managed to produce 

superior results compared to existing solutions using HMM. 

Mondal and Rehena [14] used clustering to identify congestion patterns using real time traffic data. 

They used the K-means clustering method, which is one of the most well-known clustering 

algorithms. It is widely used and is capable of producing adequate results for most datasets [15]. 

The algorithm is configured with a target number that defines the number of centroids in the 

dataset, which represent the centers of the clusters. The centroids are randomly selected at first and 

then moved at every iteration using the distance values between the data points and the centroid 

while minimizing the value of a defined loss function. This results in the various data points 

separated into K number of clusters with the nearest mean (centroid) [16]. They defined four 

clusters based on density and speed. The model produced good results and was able to accurately 

determine the predefined clusters. The output of this model could be used to train machine learning 

models that could produce higher accuracy when trained using the clustered data independently. 

Huang et al. [17] introduced a congestion prediction method using the random forest algorithm. 

They have also used the DBSCAN clustering algorithm to divide the data points based on the level 

of congestion using velocity and flow as features. DBSCAN is a density-based clustering method 
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that can determine the amount of clusters by itself and can also recognize noise. The model 

produced great results, but according to their evaluation, there is room for optimization and more 

features should be considered such as weather reports or holidays. 

Many papers have used machine learning and deep learning techniques for traffic flow prediction, 

and achieved remarkable results [18]. Lin et al. [19] used combined Support Vector Regression 

(SVR) and K-Nearest Neighbors Algorithm (KNN) to predict traffic flow. SVR is a commonly 

used model in regression tasks, which tries to fit a line on the training data, while KNN averages 

K number of training data, which are the closest to the test data point, to return its output. While 

training SVR, KNN learned to predict the prediction errors, which reduced root mean squared error 

significantly compared to the traditional SVR. The paper published by Shen presents [20]  a model 

for long-time traffic speed prediction with XGBoost and considered spatial and temporal 

dependencies to improve the model. XGBoost is an ensemble of decision trees which combines 

weak models to create stronger ones.  

Long Short-Term Memory (LSTM) is a widely used deep neural network which is designed for 

handling sequential data, and it uses gates to control the information flow through the network. 

Mondal and Rehena [21] have showed that stacked multivariate LSTM gives better results than 

univariate LSTM or Autoregressive Integrated Moving Average models. Gated Recurrent Unit 

(GRU) is also popular in traffic prediction, it is similar to LSTM, as it also uses gates, but less, 

thus its complexity is smaller. Bi-directional Gated Recurrent Unit (bi-GRU) is able to process the 

input in both directions by combining two separate GRUs. Wang et al. [22] compared bi-GRU 

with single GRU, and they found the two models’ errors almost equal, since the difference in mean 

absolute error is only 0.48% between them. Mean absolute error (MAE) averages the absolute 

differences between the real and the predicted value. A popular method to forecast traffic flow 

parameters is hybrid CNN-LSTM, which appears in multiple papers [23] [24] [25]. CNN uses 

convolutional layers to extract spatial characteristics, while LSTM extracts temporal 

characteristics. Transformers are more and more popular in deep learning, it uses attention to track 

relationships in sequential data. Reza et al. [26] used multi-head attention-based transformer to 

predict traffic flow, compared it with recurrent neural networks and SVR. Their results showed 

transformer’s superiority on both MAE and MSE metrics. Mean squared error (MSE) averages the 

squared differences between the between the real and the predicted value. Unsupervised models 

can be used for traffic prediction, stacked autoencoder (SAE) uses dimension reduction to extract 
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features from the input data. Kailasam et al. [27] proposed deep architecture model with stacked 

SAE, and trained it with greedy algorithm, which means the network trains layer-by-layer. To fine-

tune the model, they used Back Propagation method, which adjust the network’s weights and 

biases, to improve the prediction’s accuracy. Djenouri et al. [28] built a pipeline with graph CNN 

to forecast traffic flow. They reduced the noise and removed outliers from the dataset in the pre-

process, then made the prediction with the mentioned model. 

In this work, two widely used models have been chosen: SVR and LSTM. The aim was to try both 

simple and deep machine learning models, which are robust and accurate. LSTM has become one 

of the most popular prediction models recently and is also widely used in hybrid models, as it is 

built for sequential data, such as time series [29]. While deep learning techniques are used more 

frequently in traffic forecast papers, SVR often appears in comparisons. It is specialized for 

regression problems, such as traffic prediction. 

Researching the topic of traffic congestion prediction, we have come across numerous solutions 

that involve popular machine learning algorithms and models. These models were proven to be 

quite successful on their own, however they were often trained on a single traffic network raising 

the question that they might be biased. Training these models also take a considerable amount of 

time and computational resources, especially if the model relies on neural networks or other types 

of deep learning algorithms. An advantage of the model presented in this paper is that it provides 

a solution for scalability by reducing the total amount of time needed to train traffic prediction 

models. 

The motivation of this paper is to create a model that would account for the biases of these models 

by separating road segments that behave similarly, so that the model would be able to see 

correlation between the roads but not the whole network at any given time. This would also 

conserve computing power and time because training would happen only on the clusters and not 

each individual road. To achieve this, we used an unsupervised machine learning technique called 

clustering.  

Clustering not only enables the presented methodology to train and test the machine learning 

models faster, but it might also produce more accurate results because of the separation of the 

outliers. Conserving time and resources are beneficial even with some tradeoffs. If a given model 

requires a fraction of the time to be trained using clustered input but produces marginally worse 
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results, it could be considered as a viable solution. Our work aims to preserve the same 

performance of models used in intelligent transport systems as well as reducing the time needed 

to set them up.  
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3 Methodology 

3.1 Unsupervised machine learning 

Unsupervised machine learning is a learning method that is used to train models using unlabeled 

data. It is used to reveal the underlying structure of the dataset and group or associate similar data 

points with one another [30]. Common unsupervised learning techniques consist of association 

rules, dimension reduction and clustering.  

Association rules are used to discover relationships between features in the dataset [31]. It is 

commonly used for market basket analysis, for example learning the relationship between products 

in an online store or uncovering the listening habits of users on a music streaming service. 

Dimensionality reduction is used to increase the speed of machine learning models as well as 

transforming a dataset to a form that is easier to visualize. The dimensionality of a given dataset 

is defined by the number of features it has. Dimensionality reduction reduces these features while 

also keeping the integrity of the data intact [32]. Popular algorithms include Principal Component 

Analysis (PCA), Autoencoders, Uniform Manifold Approximation and Projection (UMAP) and t-

distributed stochastic neighbor embedding (t-SNE). 

 

3.2 Clustering 

Clustering is a technique that divides unlabeled data based on similarities into groups called 

clusters. There are various clustering algorithms that each present a different approach of defining 

the clusters. The most commonly used clustering algorithms are centroid-based like the k-means 

algorithm, density-based like DBSCAN or hierarchical like HDBSCAN [33]. 

 

3.2.1 DBSCAN and HDBSCAN 

Density based clustering algorithms offer a different approach by working on the assumption that 

clusters are dense regions in space, separated by regions of lower density. This eliminates the 

problem of outliers as these methods are able to identify them and leave them out of any cluster. 

The most popular density-based clustering algorithm is Density-Based Spatial Clustering of 

Applications with Noise (DBSCAN). DBSCAN is efficient and easier to configure than k-means. 
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It is able to determine the total number of clusters by itself and does not need to be told beforehand. 

DBSCAN only requies two parameters: epsilon and minPoints. Epsilon is the radius of the circle 

in which points are considered to be neighbors of one another [34]. MinPoints defines the least 

number of neighboring points required to form a core point [34]. The algorithm works by 

establishing circles (or hypherspheres in higher dimensions) around the data points with the radius 

of the given epsilon and classifies them as core point, border point and noise  

(see Figure 1). A core point is a data point whose boundary contains at least minPoint amount of 

other data points. If the neighboring points are less than minPoints then it is classified as a border 

point. If there are no neighbors, then it is classified as noise [34]. 

 

Figure 1: DBSCAN's data point classification [35] 

 

HDBSCAN is a hierarchical extension of the DBSCAN algorithm. It is more efficient as the flat 

clustering approach by utilizing many density thresholds. This makes the algorithm 

computationally less expensive and more accurate as well [36]. 

The algorithm does not require an epsilon parameter as the previously introduced flat counterpart, 

because it redefines how the distance measurement is implemented. The new distance metric is the 

mutual reachability distance which keeps dense points close to each other but pushes sparser points 

away. During execution, a minimum spanning tree and cluster hierarchy is built, from which the 

clusters are extracted.  
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HDBSCAN focuses more on higher density clusters. This is also emphasized by its most important 

parameter, the minimum cluster size which defines the least amount of data point required to be 

close to each other for it to be considered a cluster [36]. 

In conclusion, HDBSCAN proposes a significant improvement over DBSCAN and is able to 

identify clusters of any size or shape while also being less resource intensive and more accurate 

[36]. 

 

3.2.2 Distance-metrics 

Distance between data points can be measured in different ways which has a considerable amount 

of effect on the outcome of the algorithm. In Euclidean geometry, the Euclidean distance is the 

shortest path between any two given data points. The city block or Manhattan distance is measured 

by taking the sum of distances between the x and y coordinates (see Figure 2). There also exists a 

distance measure for time series, called Dynamic Time Warping (DTW), which compares the 

points of two time series by mapping the corresponding ones to one another. This creates a more 

efficient distance measure than the Euclidean distance. The input data of the clustering process is 

provided in the form of a multivariate time series, therefore we have chosen DTW as our distance 

matrix calculation method.  

 

Figure 2: visual representation of commonly used distance measures [37] 
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3.3 Traffic prediction using machine learning 

3.3.1 SVR 

SVR is a supervised machine learning algorithm, and is a modification of SVM (Support Vector 

Machine) but used for regression problems. It predicts the value of the target variable based on the 

input features by fitting a line on the training dataset. Unlike Linear Regression, SVR can work 

well on nonlinear data with the usage of the kernel trick. 

The goal of the SVR is to fit a hyperplane on the training data which minimizes the prediction 

error, and keeps the model’s complexity low. In SVR, there is a tube, called Ɛ-insensitive and 

every data point’s error will be disregarded which falls inside this tube (see Figure 3). The points 

outside the tube are training errors, SVR tries to minimize their losses. The closest data points to 

the hyperplane inside the tube are called Support Vectors, which are a small number of the training 

vectors, and these will give the regression line. By getting rid of most of the training vectors, and 

keeping just the Support Vectors, SVR reduces its computational load, since the final model 

becomes smaller. 

The goal in the training is to reduce the deviation of the points outside the tube, while keeping the 

model complexity low. The more data points are inside the margin, the better. 

 

𝑚𝑖𝑛
1

2
||𝑤||2 + 𝐶 ∑ |𝜉𝑖|

𝑛
𝑖=1  

 𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠:      |𝑦𝑖 − 𝑤𝑖𝑥𝑖| ≤ 𝜀 + |𝜉𝑖| (3.1) 

 

The main formula for SVR is shown in 3.1 equation. SVR’s main hyperparameters are ε, C and 

kernel. Parameter ε stands for the maximum error, so SVR only calculates with errors that are 

larger than ε. Smaller ε means narrower margin, while bigger ε means wider margin which is more 

error tolerant. C is the tradeoff between empirical risk and regularization terms [38]. If the C value 

is small, SVR tolerates errors more, the complexity of the model is low, but it may not train well, 

empirical risk can be high. On the other hand, if parameter C is high, it punishes errors more, 

which will fit the training data well, but it can cause overfitting, and high model complexity.  
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Figure 3: Illustration of SVR [39] 

 

SVR can manage non-linear datasets with the usage of the kernel trick. Kernel function adds a new 

dimension to the input vector with non-linear transformation, so the system can be treated as linear. 

The four main SVR kernels are Linear, Radial Basis Function (RBF), Polynomial and Sigmoid. 

Overall, we need to choose these parameters appropriately to get the best results with SVR. 

SVR is not preferable on large datasets, as its complexity is quadratic, so a ten times bigger dataset 

means a hundred times more operations. In this case, Linear SVR or other regression models can 

be a better choice. 

 

3.3.2 LSTM 

LSTM is a type of Recurrent Neural Network (RNN), which is capable of learning long-term 

dependencies. Since LSTM uses data from the previous steps, it is a suitable choice for working 

with serial data, time series, such as traffic flow. 

RNN is designed for serial data, as it has a recurrent loop, which allows the model to use the 

previous step’s information, besides the current input. This solution allows the information to 

persist, thus giving memory to the model. 
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Neural networks are trying to minimize their loss function during training, so in every iteration it 

adjusts its parameters to get better results. To find out how to adjust the parameters, neural 

networks are using backpropagation, which means that we compute the gradients of the loss 

function with the respect of weights and biases. During backpropagation we are moving backwards 

layer-by-layer and compute the gradients by the chain rule. Therein lies RNN’s disadvantage, 

which is the vanishing gradient problem [40]. Because RNN has recurrent loops, we need to 

backpropagate through time, and as we go deeper, there can be a lot of gradient multiplication 

according to the chain rule. If the gradients are small, we multiply many small numbers which 

gives us a result of almost zero. This is called vanishing gradient, which prevents us from training 

the model well. Also, if the gradient values are big, the result will explode, which is called 

exploding gradient. We calculate the new weights and biases by multiplying the gradient and the 

learning rate, but if the gradient is too small, the change is almost zero, so our model does not 

learn. This shows that RNN cannot learn long term dependencies.  

Against the vanishing gradient problem, LSTM uses gates to learn long term dependencies. These 

gates control what is the relevant information from the input, what the network should remember 

from the past, and generate the output.  

 

  

Figure 4: LSTM structure [41] 
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The structure of the LSTM network is shown in Figure 4. The core of the LSTM is the cell state, 

which lets the information persist. Gates can add or remove information from the cell state, hence 

it controls the flow of the information. 

The forget gate controls which information is relevant from the past, and which should be removed. 

It uses the previous hidden state and the current input, then a sigmoid activation function 

compresses the values between 0 and 1. Zero means that the information can be removed 

completely, while numbers close to one are the most important. We multiply the sigmoid 

function’s output with the cell state, which updates the memory cell (Equation 3.2). 

 𝑓𝑡 = 𝜎(𝑊𝑓 ∗ [ℎ𝑡−1 ∗ 𝑥𝑡] + 𝑏𝑓) (3.2) 

The input gate and input node decide what information of the input should be added to the cell 

state. The input gate creates weights for the input vector with a sigmoid function, decides which 

value to update, while the input node creates a vector from the candidate values. We multiply them 

and add them to the cell state (Equation 3.3). 

𝑖𝑡 = 𝜎(𝑊𝑖 ∗ [ℎ𝑡−1 ∗ 𝑥𝑡] + 𝑏𝑖) 

 𝐶𝑡̃ = tanh(𝑊𝐶 ∗ [ℎ𝑡−1 ∗ 𝑥𝑡] + 𝑏𝐶) (3.3) 

With the outputs of the forget gate, the input gate, and the input node, we have updated the cell 

state (Equation 3.4): 

 𝐶𝑡 = 𝑓𝑡 ∗ 𝐶𝑡−1 + 𝑖𝑡 ∗ 𝐶𝑡̃ (3.4) 

 

The last part of the LSTM unit is the output gate, which determines what is important from the cell 

state to make the prediction. To get the output, which is also the next hidden state, we push the 

cell state into a tanh function, which returns a value between -1 and 1, then multiply it with the 

output of the sigmoid function, so we get just the important values (Equation 3.5). 

𝑜𝑡 = 𝜎(𝑊𝑜 ∗ [ℎ𝑡−1 ∗ 𝑥𝑡] + 𝑏𝑜) 

 ℎ𝑡 = 𝑜𝑡 ∗ tanh(𝐶𝑡) (3.5) 
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Overall, LSTM can learn long term dependencies, which makes it a robust, and widely used model 

in the field of deep learning, however its disadvantage is complexity, and big amount of training 

data. 

  



   

 

17 

 

4 Creating the simulation environment 

Although the amount of traffic data being collected increased steadily over the past few years, it 

is still difficult to obtain them both because they are expensive and might not contain all the 

parameters that we would like to use to train out models [42]. By simulating traffic scenarios, we 

have control over the whole network, its roads and even the traffic anomalies that potentially lead 

to congestions. It is also easier to create large amounts of data using a simulation, which is 

especially useful when training neural networks. This chapter introduces the simulation 

framework, describes the created simulations and shows how data can be obtained from them. 

 

4.1 Introducing the SUMO framework 

Simulation of Urban MObility (SUMO) is an open-source simulation framework used to create 

versatile traffic simulations. It is developed by the German Aerospace Center (DLR) and licensed 

by the Eclipse Foundation. SUMO is not just a single software, it offers a wide variety of tools that 

assist in the creation, evaluation, and visualization of the simulations [43] [44]. 

The simulation software and its capabilities can be extended through its public API called Traffic 

Control Interface (TraCI). The TraCI library is available in multiple programming languages, with 

varying numbers of features [45]. There are some third-party simulation softwares that make use 

of this API, most notably Artery, which is a V2X simulation software using multiple network 

simulation frameworks to implement ETSI ITS-G5 protocols. Artery uses SUMO as a backend 

through TraCI and simulates the wireless communication between vehicles and infrastructure 

separately [46]. 

Traffic networks can be created using the “netedit” application, which allows the user to define 

the road segments, lanes and their connections, junctions, traffic lights and additional points of 

interests. There is also a tool which can import a network from OpenStreetMap (OSM). Networks 

are treated as the base of any simulation and therefore do not contain any traffic information 

themselves. This makes networks reusable in multiple scenarios that might use a different number 

or types of vehicles.  
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After a network has been designed, the ongoing traffic should be defined separately to create an 

executable simulation. Traffic configuration consists of three main elements: routes, trips, and 

vehicles.  

Routes can be defined by listing all the edges in the order a vehicle should travel through them. A 

vehicle always enters the simulation on the first edge and exits the simulation as soon as it reaches 

the last edge. Routes can be external or internal based on where they are defined. External routes 

can be associated to any vehicle while internal ones are declared within a vehicle block and 

therefore are associated to a single vehicle or vehicle type.  

Vehicles can be instantiated individually with an assigned route or generated using the flow block. 

Flows generate vehicles using the defined distribution, parameters, and route. It is easier to 

simulate vehicles that would take the same route because a single flow can handle any number of 

vehicles.  

SUMO is also capable of creating the route of a vehicle by itself with the use of trips. Trips only 

require two parameters, a departing and a destination edge. After defining a trip, the software 

calculates the fastest route the vehicle will take. This behavior can be fine-tuned with parameters 

like “viaJunction” that will include designated junctions in the route.  

To create a complete simulation, a “sumofile” should be created which references the files where 

the network, routes and trips are defined. Simulations can be executed in the SUMO GUI app by 

importing the created sumofile. However, apart from debugging the simulation, the GUI app can 

be difficult to handle in complex cases. To generate the necessary outputs in the desired format, 

the more versatile command line should be used. The CLI version of SUMO has various options 

for creating outputs: it is possible to generate aggregated and disaggregated vehicle and edge 

information, and with the use of TraCI, any information about the simulation can be queried at any 

time. Output files are generated in XML format and could be converted to a CSV for consumption. 

4.2 Creating the simulation network 

Serving as the base, networks are the most important part of any simulation. We made sure that 

our network was chosen carefully and was able to replicate real-life scenarios. Therefore, we have 

decided to use the OSMWebWizard tool to import the base of the network from a real city [47]. 

Using the tool, we selected certain roads from the city of Budapest. There are 58 edges in total, 

each representing a single lane of a road. Every road has two lanes, going in each direction. There 
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are two junctions with traffic lights. Figure 5 shows the visualization of the network. Each lane is 

assigned a unique identifier. 

 

 

Figure 5: the network of the simulation 

4.3 Generating traffic and anomalies 

Many things must be considered when creating traffic for a simulation. The traffic needs to be 

tailored to the network, so that it conforms to what real life traffic would look like.  

Although SUMO can handle custom vehicle types with varying sizes and driver behaviors and 

even public transportation such as buses, we have decided to focus solely on cars to keep the task 

less complex and potentially achieve better results. Therefore, we defined multiple types of cars 

with some of them having abnormal behavior, causing congestion. There are “slow cars” which 

have a lower maximum speed and cars that stop either by performing an emergency brake or by 

gradually slowing down and stopping at the side of the road. 

Regular traffic is generated using the OSMWebwizard tool mentioned in Chapter 4.1. This tool 

not only imports maps but is also capable of generating traffic. It will leave an executable script 

with editable parameters. We have edited these parameters, more specifically the maximum speed 

and density parameters to create the base of the traffic. The previously mentioned anomalies are 

then injected using “flow” blocks. Each flow has a predefined route and vehicle type associated 
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with it, as well as a parameter that tells the software how many of these vehicles should be 

generated per hour. 

In total, we have created six scenarios, each representing a real-world single day scenario: 

• Morning peak 

• Morning peak with anomalies 

• Traffic under unfavorable weather conditions 

• Traffic under unfavorable weather conditions with anomalies 

• Weekend peak 

• Weekend peak with anomalies 

Peaks have higher maximum speed and density while there are fewer cars driving slower during 

certain weather conditions. 

The output of the simulation is focused on the data of individual vehicles. We used the netconvert 

tool to simulate accurate coordinates and generated Floating Car Data (FCD) output to obtain 

vehicle speed, position and trajectory. 
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5 Data preprocessing 

Since we get the raw output of the SUMO simulation, we need to preprocess it to get the necessary 

parameters. The raw output from the simulation are the vehicle’s id, speed, position, angle, and 

type. We used the map of the network, the vehicle’s id and its trajectory data to aggregate the 

dataset, thus creating a data frame which contains the parameters for every road in every five 

minutes. These parameters are road length, mean speed, mean travel time, flow and density, and a 

flag that shows whether any vehicle passed the road in the current timeframe. Both the clustering 

and prediction model use these or some of these parameters, so it is important to calculate their 

values accurately. The preprocess code was written in Jupyter notebook, for managing data frames 

we used pandas and NumPy libraries [48] [49] [50]. 

 

5.1 Overview of the preprocessing pipeline 

The output of the SUMO simulation gives vehicles parameters such as id, speed, position, angle 

and type, and saves it in a csv file. We read the csv file into a pandas DataFrame, which is a 2-

dimensional labeled data structure, which has rows and columns. Then, we selected the necessary 

columns, which are: vehicle id, x coordinate, y coordinate. If the trajectory data is not accurate, 

we need to use map matching, which corrects these coordinates. This occurs when we use real 

time data. Trajectory data can get noisy, it can cause problems in the preprocess later on. Because 

we worked with simulated data, our trajectory data was accurate enough, therefore we did not use 

map matching while testing. However, because of the inaccuracy of real-life datasets, map 

matching usually cannot be omitted, thus we built our system to be able to use map matching, 

which will be presented in the next subsection.  

Trajectory data does not give us information about which road the vehicle is on. To overcome this 

problem, we fitted polygons onto the map to identify the roads, and to calculate traffic flow 

parameters for each road. If we place a polygon in all junctions, then every pair of polygons defines 

a single road section. We iterated through every vehicle’s data to match them with the proper road 

section and calculated its travel time. The vehicle’s travel time on a single road section is calculated 

from the time difference between entering the entry and exit polygon. We created a data frame 

which contains every vehicle’s travel time on each road. Finally, we calculated the aggregated 

parameters from the mentioned data frame, which are mean travel time, mean speed, flow, density, 
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flag that shows whether a vehicle passed the road in the current timeframe, and the length of the 

road, which is equal to the distance between the polygons. 

 

5.2 Map matching 

While working with real life datasets, trajectory data can be inaccurate because of the noise. For 

example, in CAM messages longitudinal position error’s median can be 3 m [51]. This error could 

cause problems in our solution. While calculating travel times, we detect the timesteps when the 

vehicle is inside a polygon. If our trajectory data is inaccurate, and a vehicle enters an intersection, 

coordinates can show wrongly that the vehicle is off the road, so it is possible that we do not detect 

the vehicle’s entry if the polygon is not big enough. We could place a bigger polygon on the 

junction, but it would increase the travel time calculation’s error. So, the best solution is map 

matching, which corrects these data, thus the coordinates will be on the road. 

For map matching, Valhalla’s Map Matching Service [52] has been chosen, which is an open-

source routing engine and uses OpenStreetMap data. It has multiple modules but the relevant for 

map matching is Meili. It matches the sequence of coordinates to the road network using Hidden 

Markov Model and Viterbi Algorithm. Since Valhalla has a docker image, the easiest way to use 

it is through docker. After pulling the docker image, and downloading the OpenStreetMap data of 

the country, we can turn on the server for Valhalla. 

We use a python function [53], which gets pandas DataFrame with the vehicle’s trajectory data as 

input and gives back the same DataFrame with the corrected longitude and latitude coordinates. 

This function first converts the DataFrame into a json file and formats it. It makes the request for 

the docker server, reads the respond, then converts it back to pandas DataFrame. 

As we mentioned before in Chapter 5.1, map matching has not been used in the evaluation, because 

it was not necessary, as the data comes from an accurate simulation. But while working with 

inaccurate real-life data, map matching is an essential part of the preprocessing pipeline. 
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5.3 Parameter calculation and aggregation 

The goal of the aggregation is to get every road parameter in every five minutes from the input 

dataset. These parameters are road length, mean speed, mean travel time, flow, density and a flag, 

which is True if no vehicle passed to road in the 5-minute timeframe. Travel time is the length of 

time to pass through the road, and mean travel time is the average of travel times in the timeframe. 

The mean speed of a single vehicle is calculated by dividing the road length with the travel time 

of the vehicle. By averaging the mean speeds of every vehicle in the current timeframe, the 

required mean speed parameter is resulted. Flow shows how many vehicles passed the road in one 

hour, while density is the flow divided by road length. The core idea in aggregation is to place a 

polygon in every intersection, thus a pair of polygons identify a road section, and we can detect 

when a car enters and when it leaves the road. For minimizing the travel time calculation’s error, 

we need to place a polygon as small as possible, which just covers the intersection. However, we 

need to consider how frequently the vehicle sends data, because if it is possible that it enters and 

leaves an intersection between two samplings, then we might miss the detection. In our simulation 

vehicles send data in every 0.1s, which is the minimum generation time of CAM message [54], 

and the speed limit is 50km/h, which means that it moves 1.39 meters between two samplings if it 

obeys the speed limit. Since our intersections have width about 6 meters it cannot cause problem.  

For placing the polygons in the intersections, we used Mapbox’s geojson.io [55], where we can 

draw polygons in the map manually, and it gives back their coordinates. These coordinates are 

stored in a python file, we give ID to each polygon, and put them in a NumPy array. The 

coordinates are converted into Shapely’s [56] Polygon geometry type because it has some 

beneficial functions, such as giving back the center of the polygon, or determining whether a point 

is inside the polygon or not. As we mentioned before (Chapter 5.1), two polygons identify a road 

section, so for defining roads, we created a NumPy array, which contains its ID, the entry 

polygon’s ID, the exit polygon ID, and the road length. Road length is calculated by the distance 

between the centers of the entry and exit polygons. For this calculation we used GeoPy’s 

great_distance function, which computes the shortest distance between two points on earth’s 

surface [57].  

The dataset contains each vehicle’s id, longitude and latitude in every 0.1 seconds. To use 

Shapely’s functions, we converted each vehicle’s longitude and latitude to Shapely’s Point 
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geometry type. Next, we calculated all vehicle’s travel times on every road that it used. For this, 

we iterated through each vehicle’s every data point and detected when it entered a polygon. First, 

the vehicle enters the network, soon gets to an intersection and gets detected using the polygon 

method described above. Since this is the first time it is inside a polygon, we cannot calculate any 

parameter, so only the timestep and the polygon’s ID that it entered are stored. The vehicle moves 

on and when it enters a polygon again, the system detects it and compares the current timestep 

with the previously stored timestep. The difference between the stored entering and leaving time 

returns the vehicle’s travel time on the road, while the stored and current polygon define the road 

section. We replace the stored polygon ID and timestep with the current ones and repeat the process 

until the vehicle leaves the road. Using this method on all vehicles gives a dataset which contains 

all the calculated travel times on every road. To optimize the computation of this process, it is not 

necessary in every timestep to determine if the vehicle is inside a polygon . If the shortest road’s 

length, the vehicle’s max speed and the data sending frequency are known, some data points can 

be skipped. For example, in our simulation the shortest road’s length is 98 meters, the max speed 

is 60km/h and SUMO’s data sending frequency is 10Hz. This means that a vehicle can move 1.67 

meters between two samplings, thus on the shortest road it sends at least 55 data points while 

moving from the entry polygon to the exit polygon. If we skip the next 50 data points after the 

vehicle leaves the entry polygon, because we know that it takes 55 steps to reach the next 

intersection, then we save computation time, and speed up the process. 

Since the data sending frequency is 10Hz, it causes errors in the travel time calculation. When a 

vehicle enters or leaves a polygon, we do not know when it exactly entered in the 0.1 second 

interval. Thus, it causes a maximum of 0.1 second error on both the entry and the exit polygon, 

which is 0.2 second summary. The formula of the relative error is shown in Equation 5.1, where 

𝑓 is the data sending frequency, 𝑠 is the road length, and 𝑣 is the mean speed of the vehicle. In our 

simulation, roads have an average length of around 150 meters, and the speed limit is 50 km/h, 

which gives 1.85% maximum relative error. This error does not affect our method significantly. 

∆𝑡

𝑇
=

2 ∗
1
𝑓

𝑠
𝑣

=
2 ∗ 𝑣

𝑠 ∗ 𝑓
 

(5.1) 
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The last step is to create the aggregated data frame and calculate its parameters from the previously 

mentioned data frame that contains the travel times. The aggregated data frame should contain 

every road’s parameters in 5 minute frames. We iterate through each timeframe in every road and 

select those vehicles’ data which were on the road in the current timeframe. This data contains the 

vehicle’s ID, the timestep when it left the road and its travel time. These values and the length of 

the road are enough to calculate the aggregated data frame parameters. For mean travel time, we 

simply average the selected vehicles’ travel times. For mean speed parameter, we calculate the 

mean speed of each vehicle by dividing road length with travel time, then averaging them. Flow 

shows how many vehicles passed the road in an hour, thus we count the number of vehicles in the 

5-minute frame, and multiply it by 12 to stretch the time to one hour. Density is calculated by 

dividing the flow with the road length. It is possible that no vehicle passes the road in a timeframe, 

thus there is no travel time data. This can happen in a low-density road when the road is empty, or 

in a really crowded network, where vehicles cannot enter the intersection for a long time. In this 

situation, we calculate the parameters according to the speed limit, so the mean speed will be the 

speed limit, and the mean travel time is the road length divided by the speed limit. Also, we created 

a flag, which shows if no vehicle passed the road in the current timeframe. 

 Overall, the aggregated data frame contains the traffic flow parameters of each road in five 

minutes long timeframes. Aggregation allows us to use clustering and to train predictions models, 

therefore it is essential in our solution. 
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6 Training the machine learning models 

After it has gone through the preprocessing pipeline, the aggregated data is then forwarded to 

clustering. The algorithm focuses on time series clustering and produces an output that contains 

the list of road segments per cluster as well as the outliers. The number of clusters is determined 

automatically. Using this information, SVR and LSTM machine learning models are then trained 

on each cluster and outliers separately. 

 

6.1 Clustering the data 

The input of the clustering pipeline is the concatenation of the preprocessed and aggregated data 

from every simulation. It contains the road length, flag, mean speed, mean travel time, flow and 

density as features in the form of multivariate time series. 

The input data cannot be used with a clustering algorithm and must go through some processing 

steps first. A popular solution for time series clustering is dynamic time warping (DTW) [58]. We 

have used DTW to calculate the distance matrix that can then be used as an input for the clustering 

algorithm. 

After the distance matrix has been constructed, it could be used to perform clustering. However, 

we have decided to implement dimension reduction (DR) as an intermediary step. Dimension 

reduction has proven to be useful as it allows for visualization and therefore better understanding 

of the dataset. Among the many solutions, Uniform Manifold Approximation and Projection for 

Dimension Reduction (UMAP) has proven to be the most accurate [59]. UMAP has a property that 

allows for setting the distance metric. If precomputed is chosen, the required input is a distance 

matrix. At this step, we set the target dimension and provide the precalculated distance matrix as 

the data input. Plotting the data points already makes it apparent which cluster certain road 

segments belong to and can reveal connections between them. 

The last step is the clustering itself using HDBSCAN from the scikit-learn python library. The 

output from the previous step is passed to the algorithm to produce the clusters.  
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6.1.1 Adjusting the parameters of the algorithms 

Clustering relies just as heavily on its parameters as it does on the input data itself. Since we use 

three different steps using three different libraries, we must ensure that each of them is 

parameterized so that it produces desirable results. The method implements dynamic time warping 

has a quadratic time complexity, and therefore has parameters that limit its total runtime. 

Fortunately, the dataset and the runtime are not large enough to warrant the use of any of these 

parameters. UMAP has multiple parameters that revolve around the relations of the datapoints. 

The most important one is n_neighbors, which determines whether the process should prioritize 

local or global structure. In our case, focusing on local structure has produced better results and 

we have decided on a value of 15. Figure 6 presents a comparison between a small and large 

n_neighbors value. 

 

The metric parameter of UMAP is set to “precomputed” since the precalculated distance matrix is 

provided by the methodology described in Chapter 6.1. DBSCAN’s most important parameter, the 

epsilon does not exist in the case of HDBSCAN but that does not mean that we have no ability to 

control cluster structure. Minimum and maximum cluster sizes, as well as the cluster selection 

method can be specified. The two types of selection methods are Excess of Mass (eom) and leaf. 

We have decided on leaf as it produces more accurate clusters [60].  

 

Figure 6: UMAP outputs using a small (left) and high (right) n_neighbors value Figure 6: UMAP outputs using a small (left) and high (right) n_neighbors value 
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6.1.2 Visualizing the results 

Visualization of machine learning models is just as important as constructing them. It helps us to 

understand the dataset and compare the results of using different parameters. One of the reasons 

why we decided to use dimension reduction is to be able to plot the data points on a two-

dimensional chart. 

The result of the clustering algorithm can be observed using a scatter plot. The individual data 

points are represented by dots and colored according to the cluster that they belong to  

(see Figure 7). Noise is determined as defined in Chapter 3.2.1 and classified as outliers. They are 

displayed as crosses to indicate that they do not belong to any cluster. Additionally, the recorded 

centroids can also be plotted.  

 

Figure 7: clusters determined by the HDBSCAN algorithm 

 

To explore the relation between the outcome of the clustering algorithm and the input feature, we 

have developed a visualization function that colors the data points according to the value of a 

single feature, corresponding to a color scale. This heatmap gives us a better understanding of how 

clusters are formed, and which features are prominent (see Figure 8).  
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Figure 8: data points colored based on the value of the feature 

 

Besides scatter plots, we have also constructed a method, based on SUMO visualization tools that 

creates an image of the traffic network with the roads colored based on the cluster they were 

assigned. This graph gives us a better understanding of the network by revealing possible 

connections between road segments (see Figure 9). 

Figure 9: the traffic network with lanes colored based on their cluster (adjacent lanes colored separately) 
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6.2 Training prediction models 

We used prediction models to forecast traffic flow parameters, such as mean travel time, flow, and 

a flag which shows that no vehicle passed the road. In both models we used hyperparameter tuning 

with scikit-learn’s HalvingGridSearchCV [61]. There are three ways to train a model on our 

dataset. We can train a model on every road section, thus it can learn its structure, common 

underlying patterns, and expect the best performance with this method. However, it has high 

computational cost, since we need to train, store and evaluate a separate model for every road. This 

approach scales worse on larger networks, thereby it cannot be used on real urban environments 

without over-simplifying its road infrastructure. The opposite of this method is when only one 

model is trained on the whole network, so it learns the common traffic patterns, but it is not 

specified for one road, however the computation cost will be low. The third way, introduced by 

this paper is to train the model using the additional information coming from clustering. The idea 

behind clustering is that if we group roads with similar parameters their traffic patterns will 

probably be similar, thus the models can learn these specified patterns, while we need to train and 

use way less prediction models. In practise, all these methods can be converted into the clustering 

method. Separate roads means that every road section has its own cluster, while if we use one 

model for all roads means we have only one cluster, which contains every lane. Thus, we can use 

the same method, same code for all these methods as their pipeline are matching.  

Both models predict traffic parameters 10 minutes in advance and use data from the previous 25 

minutes. The pipeline has three main parts. First, we create the necessary input vectors for the 

model in each cluster from the aggregated data frame, split it into train and test sets, and rescale 

their values using scikit-learn’s StandardScaler [62]. Normalization is necessary to eliminate the 

range differences between the features, which could affect the model negatively [63].  If a cluster 

contains multiple roads, then we mix their input vectors to use data from all roads in the cluster. 

In this case, we need to cut the mixed dataset to have the same length as one road’s training dataset, 

so each method will use the same amount of data. Equal number of elements in the dataset provides 

fair comparison between the methods. Next, we train our model on the training dataset for every 

cluster and store the models. Finally, we evaluate the models on each road’s test dataset with 

multiple metrics. For evaluate travel time and flow predictions we used MAE, MAPE, RMSE as 

these are regression metrics. The flag that shows whether a vehicle has passed the road is evaluated 

with binary classification metrics, such as accuracy, precision, recall. Since our models are built 
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for regression, they can’t predict binary flags directly. The model predicts a continuous value, if it 

is below the threshold, it results false, else true. The mentioned threshold is optimized on the 

training dataset. 

 

6.2.1 SVR 

To implement Support Vector Regression as the prediction model, we used scikit-learn library 

[64]. For training SVR, we need to create its input vectors using sliding window technique, then 

train the model while tuning its hyperparameters. 

To create the input vectors for SVR, we iterated through each cluster. If a cluster has multiple 

roads, we created the input vectors for each road, and mix them. Since SVR uses the given features 

for making prediction, we used sliding window technique to create these features. One window 

covers 25 minutes, which is five timeframes, since one timeframe is five minutes long. The output 

vector contains the ground truth predictions, which contains data from 10 minutes afterwards the 

current timeframe. This means that there are 15 features in our one-dimensional input vector, and 

three features in every output vector. In each cluster, we mix every road’s input vectors, then split 

it to train and test datasets with scikit-learn’s train_test_split function [65]. Every road has 1828 

data vectors, so when we train every road segment separately, SVR has this amount of data to 

train. If a cluster contains 𝑛 roads, then it has 𝑛 ∗ 1828 data vectors, which would give it 

advantage. To give equal chances for each method, we resample the training dataset to have a 

maximum of 1828 data vectors. After the resampling, StandardScaler is used to normalize the 

dataset. StandardScaler scales the dataset in a way that it has zero mean and unit variance. The 

transformation is shown in Equation 6.1. 

 𝑧 =
𝑥−𝜇

𝜎
 (6.1)  

Next, we trained the SVR with the given training data. SVR has three main hyperparameters, which 

were mentioned in a previous section: C, epsilon, kernel function (Chapter 3.3.1). Since every 

cluster has different traffic patterns, their models probably need different hyperparameters. These 

parameters have high influence in the accuracy of the model, thus we need to tune them. For 

hyperparameter tuning, we used HalvingGridSearchCV from scikit-learn, which is much faster 

than normal GridSearchCV [66]. It starts evaluating all the candidates with small amount of data, 
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and in each iteration, it selects the best candidates, then increase the resources. To select the best 

candidates, we can use different metrics, such as negative mean absolute error, or negative mean 

squared error. Negative MSE is sensitive for outliers, since it squares the errors, and we find it less 

effective, outliers have too much influence on the selection. Negative MAE gave logical 

predictions with good results, so we decided to use that as the hyperparameter selection metric. 

Finally, every cluster’s model and scaler are stored with the cluster ID. 

 

6.2.2 LSTM 

One of the most common deep learning model for traffic prediction is Long Short-Term Memory, 

which is specialized for time series data. We used TensorFlow’s Keras API [67] to build the deep 

learning model, and KerasRegressor [68] from SciKeras to make the regression model. To access 

GPU, we have run our code in Google Colab [69], which is a hosted Jupyter notebook service. 

Colab provides GPU free of charge, so it is well suited for machine learning, especially deep 

learning. 

For LSTM, the process of creating the input vectors is similar as in SVR, which is described in the 

section above. We use the sliding window technique, split the data into train and test set, cut it if 

a cluster contains multiple roads, then scale it with StandardScaler. There is a big difference in the 

structure of the input vectors, because LSTM process the data sequentially. This means, that an 

input vector has two dimensions: timesteps, features. As we use data from the last five timeframes 

and one frame contains three features, the input vector has 5x3 shape. The output vectors contain 

the ground truth prediction values of all three features. 

We tried multiple architecture around LSTM, and we concluded that one LSTM layer is enough, 

if we add more, it does not give any significant improvement in result, but increases the runtime. 

A dense layer with ReLU activation function before and after the LSTM layer gave better results, 
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and every layer contains 15 neurons. We visualized the final architecture with plot_model function 

from tf.keras.utils [70]. The architecture of the final LSTM network is shown on Figure 10. 

 

 

We used hyperparameter tuning on the batch size and optimizer with HalvingGridSearchCV. The 

other parameters, such as loss, epochs, learning rate are not tuned, since it would cause long 

runtime, but we tried many variations, to get better hyperparameters. In SVR, we mentioned that 

the dataset can have outliers, and if we use negative MSE as the metric for hyperparameter tuning, 

it will have too much influence on the model’s training (Chapter 6.2.1). This statement is 

especially important for LSTM, because if we chose mean squared error as the model’s loss 

function, the output predictions are much worse, than with mean absolute error. Thus, we used 

MAE, which will be our main metric in the evaluation. Table 1 shows the hyperparameters of the 

LSTM network. 

 

 

Figure 10: Visualize neural network architecture 
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Table 1: LSTM hyperparameters 

Hyperparameter Value 

Batch size 

Epochs 

Loss 

Optimizer 

Learning rate 

32 

100 

MAE 

Adam 

0.001 
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7 Results 

To conclude the efficiency of the clustering, we need to evaluate the prediction models. We made 

the predictions for every road with their given test dataset and model, then evaluated them using 

different metrics. These metrics are MAE, RMSE, and MAPE for regression problems, while the 

binary flag is evaluated with accuracy, precision, recall, and weighted F1 score.  

MAE averages the absolute differences between the real and the predicted value (Equation 7.1).  

𝑀𝐴𝐸 =
1

𝑛
∗ ∑|𝑦𝑖 − 𝑦𝑖̂|

𝑛

𝑖=1

 

  (7.1) 

RMSE averages the squared errors, then takes its squared root (Equation 7.2). It is sensitive for 

outliers. 

𝑅𝑀𝑆𝐸 = √∑
(𝑦𝑖 − 𝑦𝑖̂)2

𝑛

𝑛

𝑖=1

 

 (7.2) 

MAPE averages the absolute percent differences between the real and the predicted value 

(Equation 7.3).  

𝑀𝐴𝑃𝐸 =
1

𝑛
∗ ∑ |

𝑦𝑖 − 𝑦𝑖̂

𝑦𝑖̂
|

𝑛

𝑖=1

 

 (7.3) 

Accuracy is the correct prediction divided by the number of all predictions (Equation 7.4). 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

 (7.4) 

Precision shows how good our predictions are on the positive predictions, its value is true positives 

divided by all the predicted positives (Equation 7.5). 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
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 (7.5) 

Recall shows how correctly we predict true positives. Its value is calculated by dividing the true 

positives with all the real positives (Equation 7.6). 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 (7.6) 

F1 score is the harmonic mean of precision and recall (Equation 7.7). Weighted F1 score is the 

weighted average of F1 scores of each class. 

𝐹1 𝑆𝑐𝑜𝑟𝑒 =
2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

(7.7) 

In this section, first, we evaluated the prediction results if every road has a separate forecasting 

model. The final error value for each metric is made by averaging the errors of every road. There 

is a road section, which produces the most of the final error values, because it is overloaded if 

traffic has higher density. To reduce the effect of outlier roads and have a real understanding of 

how the models perform on normal traffic, we also calculated the final error values by taking the 

median of the roads’ prediction errors.  

In the second part of this section, we evaluate the efficiency and runtime gain of our method, 

compared to other, simpler solutions. The comparison includes two methods beside ours, when 

there is a model for every road segment separately, and when there is one model for all roads. We 

show the benefits of clustering through the comparison, how it affects training time and prediction 

accuracy. 

 

7.1 Evaluate without clustering 

 It is important to see how our models perform in general if there is a model for every road 

separately, to prove that the prediction models are working accurately. If roads have separate 

models, we expect the best performance, since it can learn the road section’s specified traffic 

patterns. The final evaluation scores for each metrics can be calculated by average every road’s 
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errors. With this approach the results are not seemed to be accurate, it produces higher errors than 

expected. 

 

Table 2: Prediction errors with averaging 

 SVR LSTM  

Travel time MAE 

Travel time MAPE 

Travel time RMSE 

Flow MAE 

Flow RMSE 

Flag accuracy 

Flag precision 

Flag recall 

Flag F1 score 

9.32 

27% 

52.46 

32.73 

45.74 

95% 

93% 

95% 

94% 

8.84 

27% 

45.23 

32.16 

44.91 

96% 

94% 

95% 

94% 

 

 

As shown in Table 2, errors are higher than expected, this is particularly noticeable on the MAPE 

of the travel time, which is 27%. We did not calculate MAPE of the flow, because flows can be 

zero, which could sometime cause division by zero, which is undefined. However, flow has a mean 

of 132.88 secundum, thus its MAE and RMSE values are higher than expected. 

We investigated the cause of the high errors and found that one specific road produces most of the 

errors, because it is always overloaded if traffic has higher density. 

 

 

 

 

 

 

 Figure 11: Overloaded road section 
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Figure 11 shows the overloaded road section, which happens because vehicles cannot enter the 

intersection, while too many vehicles enter the road. This road section has a mean travel time of 

304.69 sec, while its MAE is 195.50 and its MAPE is 7.52. The reason behind these high errors is 

the randomness in the road’s data, and the way we fill travel time if no vehicle passed the road. 

Vehicles in this road can hardly enter the intersection if traffic has high density, because other 

vehicles prevent them. Thus, it is difficult to predict how long does it take to go through the road, 

since it depends on the other roads’ vehicles. The other problem, which causes the huge MAPE on 

this road, is the situation when no vehicle passes the road in the 5-minute frame, we calculate the 

travel time by the speed limit and road length. This approach is good in normal traffic, when there 

are no anomalies, because this usually happens when the road is empty, which means we can drive 

with the highest allowed speed, or in other word, with speed limit. The problem occurs when a 

road is overloaded, or an anomaly happens on it. Then it becomes possible that vehicles cannot 

enter the intersection for more than five minutes, so we detect no vehicles, while there are many 

vehicles on the road. When this happens, the road has sometimes huge travel time if at least one 

vehicle can enter the intersection, because it has waited in the congestion for a long time, and small 

travel time if no vehicle moves for 5 minutes, since we fill these data by the speed limit. In this 

outlier road section, this situation happens many times, which causes the bad error scores. Figure 

12  shows an example of how scattered travel time can be on this road. 

 

Figure 12: Overloaded road's true and predicted mean travel times 
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To give the outlier road less influence on the evaluation, we decided to get the median of the roads’ 

errors. Median gives more realistic picture of how our models predict in normal traffic. 

 

Table 3: Prediction errors with median 

 SVR LSTM  

Travel time MAE 

Travel time MAPE 

Travel time RMSE 

Flow MAE 

Flow RMSE 

Flag accuracy 

Flag precision 

Flag recall 

Flag F1 score 

3.75 

8% 

17.81 

25.94 

34.74 

99% 

98% 

99% 

98% 

3.39 

9% 

19.26 

25.81 

34.48 

99% 

99% 

99% 

99% 

 

 

Table 3 contains the results taking the median of every road’s errors. The result shows that both 

our models are predicting accurately, with less than 10% MAPE on travel time, and MAE is low. 

RMSE is much higher than MAE, because our dataset contains scenarios with anomalies, which 

can produce outliers. Since RMSE is sensitive for outliers, because of squaring, it gives much 

higher value than MAE. On the classification metrics, models have 98% and 99% F1 score. 

Overall, our prediction models are predicting accurately on normal traffic, but in cases, where no 

vehicle passed the road can create outliers, and scattered data if a road overloads. In this situation 

we cannot expect the model to predict correctly, as scattering is random, it depends on the vehicles 

of other roads. However, the problem can occur just in extreme traffic conditions, which is rare. 

 

7.2 Evaluate clustering 

As mentioned before (Chapter 7), there are three main methods for traffic forecasting, which we 

have compared. There can be a model for every road, or for each cluster, or just one prediction 
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model for the whole network. We expect the best performance, if we build a separate forecasting 

model for every road, so it can learn its specific traffic patterns. If there is just one prediction model 

for all roads, then it learns general traffic patterns, which we expect to be less accurate. Our 

method, which uses clustering can learn the roads’ specific traffic patterns, since a cluster contains 

the roads with similar parameters, and it has much less runtime and computational cost, because 

we need to train less models. 

 

Table 3: Differences between the methods; benchmark is when every road has a separate model 

 

With 

clustering 

SVR 

One model for 

all 

SVR 

With 

clustering 

LSTM 

One model for 

all 

LSTM 

 

Travel time MAE 

Travel time MAPE 

Travel time RMSE 

Flow MAE 

Flow RMSE 

Flag accuracy 

Flag precision 

Flag recall 

Flag F1 recall 

+0.53% 

+14.90% 

+0.38% 

+3.45% 

+0.12% 

0% 

-0.08% 

0% 

0% 

+26.29% 

+109.43% 

+121.79% 

+5.55% 

+1.69% 

0% 

-0.77% 

0% 

-0.17% 

+12.91% 

-4.65% 

+42.75% 

+1.6% 

-0.6% 

-0.33% 

-0.44% 

-0.22% 

-0.44% 

+57% 

+144.59% 

+81.44% 

+4.76% 

+5.21% 

-0.11% 

-1.32% 

-0.22% 

-0.66% 

 

 

Table 3 shows the differences in percentage between the methods’ errors, the benchmark is when 

every road has a separate prediction model, which we evaluated in the previous subsection. As we 

explained in the previous subsection, if we take the median of every road section’s error, it gives 

more realistic picture of how our models predict in normal traffic, so we used median values for 

the comparison. The results confirm our prior expectations, as clustering does not produce much 

higher errors. In SVR, MAE and RMSE is higher by less than 1%, only travel time’s MAPE is 

worse significantly than with using separate model for every road. With LSTM, differences are a 

bit higher, especially in the RMSE, however MAPE has reduced. Classification metrics show small 

decrease, but it is not significant.  If we use one prediction model for all roads, our errors became 

much larger, thus it wouldn’t be effective for forecasting.   
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We measured the runtime of the training with different methods on the free version of Google 

Colab (2023/10/23 release). If the prediction model is SVR, with using separate models, the 

runtime is 425 sec, with clustering it is 84 sec, which means that training is more than four times 

faster with clustering. If LSTM is the forecasting model, the difference is even larger, with separate 

models, the runtime is 2130 sec, while clustering reduces it to 271 sec, thus it is almost eight times 

less. Since clustering does not produce much higher errors, while runtime decreased by many 

times, we conclude that clustering was successful. 

Table 5 shows that SVR and LSTM have similar performances if each cluster has a prediction 

model, LSTM gives slightly better predictions on the flow, and produces smaller MAE, but 

higher MAPE and RMSE then SVR in travel time. If we use clustering, the results are still 

similar, we can only observe significant difference in RMSE, where SVR gives smaller error. 

Since SVR had much smaller runtime, but similar performance, we draw the conclusion that 

machine learning models can be as efficient as deep learning models in some traffic forecasting 

problems.  

 

Table 5: SVR and LSTM comparison 

 SVR LSTM  

Travel time MAE 

Travel time MAPE 

Travel time RMSE 

Flow MAE 

Flow RMSE 

Flag accuracy 

Flag precision 

Flag recall 

Flag F1 score 

3.77 

10% 

17.88 

26.84 

34.78 

99% 

98% 

99% 

98% 

3.83 

9% 

27.49 

26.23 

34.38 

99% 

98% 

99% 

98% 
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8 Conclusion 

In summary, our work concluded that grouping roads with similar parameters into clusters, and 

training separate prediction models for each cluster reduces computational cost, while remaining 

accurate. We used SUMO to create a traffic simulation with different scenarios to represent real 

life. We aggregated the raw dataset to get every road’s parameters in 5-minute timeframes. Then 

we created the clusters with HDBSCAN, which groups roads by their parameters. For traffic 

prediction, we trained SVR and LSTM models on each cluster. The models were evaluated with 

and without clustering. The evaluation showed that our models are predicting accurately in general, 

however one road section produces huge errors, because it is overloaded, which makes the average 

errors of the roads high. With taking the median of the roads’ prediction errors, the outlier has less 

influence, and it showed that both models are accurate in normal traffic. To evaluate the accuracy 

of the clustering, we compared our clustering method with two other forecasting solutions, as we 

can train a model for each road, or just one model for all roads. After comparing the three methods, 

we concluded that clustering does not produce much greater errors, while its runtime is decreased 

more than four times in SVR, and almost eight times in LSTM. Overall, these results prove the 

effectiveness of clustering. We also compared SVR and LSTM, they produced similar results, but 

SVR had a much smaller runtime. 

In future works, out method can be improved. With generating more data from the simulation, 

models could learn more traffic patterns, making it more robust. It is possible that using more 

complex, hybrid models could give better prediction results. Using hyperparameter tuning on all 

parameters of the deep learning model could also make our model more accurate, since it helps to 

train better on the training dataset. 
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