
Budapest University of Technology and Economics
Faculty of Electrical Engineering and Informatics

Department of Measurement and Information Systems

Formal Modeling and Verification of Process
Models in Component-based Reactive Systems

Scientific Students’ Association Report

Author:

Ármin Zavada

Advisor:

dr. Vince Molnár
Bence Graics

Contents

Kivonat i

Abstract ii

1 Introduction 1

2 Background 3
2.1 Model-based Systems Engineering . 3

2.1.1 Systems Modeling Language . 4

2.2 Formal Verification . 6

2.2.1 Model Checking . 6

2.2.2 Petri Nets . 7

2.2.3 Activities as Petri Nets . 8

2.3 Gamma Statechart Composition Framework 9

2.3.1 Example Statechart . 10

2.4 Extended Symbolic Transition System . 12

2.4.1 Formal Definition . 12

2.4.2 Traffic Light Controller Example . 13

2.5 Related Work . 15

3 Gamma Activity Language 16
3.1 Language Design . 16

3.1.1 Supported SysML Feature Subset . 16

3.2 Formal Definition . 17

3.2.1 Formal Behaviour . 18

3.3 Language Gramar . 24

3.3.1 Metamodel . 24

3.3.2 Concrete Syntax . 29

4 Integrating the Activity Language Into Gamma 31

4.1 Activities Alongside Statecharts . 31

4.1.1 Calling Activities . 31

4.1.2 Activities Defining Components . 32

4.2 Integration Semantics . 33

4.2.1 Preprocess Components . 33

4.2.2 Transform Components and Activities 33

4.3 Implementation Remarks . 34

5 Evaluation 36
5.1 Case Study - Compilation . 36

5.1.1 Modeling . 36

5.1.2 Results and Conclusion . 37

5.2 Case Study - Simple Space Mission . 37

5.2.1 System Modeling . 38

5.2.2 Results and Conclusion . 40

6 Conclusion 42

Acknowledgements 43

Bibliography 44

Appendix 47
A.1 XSTS Language . 47

A.2 Gamma Activity Language . 49

A.3 Spacecraft Model . 52

Kivonat

A biztonságkritikus rendszerek komplexitása folyamatosan növekedett az elmúlt években.
A komplexitás csökkentése érdekében a modellalapú paradigma vált a meghatározó mód-
szerré ilyen rendszerek tervezéshez. Modellalapú rendszertervezés során a komponensek
viselkedését általában állapotalapú, vagy folyamatorientált modellek segítségével írjuk le.
Az előbbi formalizmusa azt írja le, hogy a komponens milyen állapotokban lehet, míg az
utóbbié azt, hogy milyen lépéseket hajthat végre, valamint milyen sorrendben. Gyakran
ezen modellek valamilyen kombinálása a legjobb módja egy komplex komponens viselke-
désének leírásához.

Formális szemantikával rendelkező modellezési nyelvek lehetővé teszik a leírt visel-
kedés (kimerítő) verifikációját. Formális verifikáció használatával már a fejlesztés korai
fázisaiban felfedezhetőek a hibák: a módszer ellenőrzi, hogy a rendszer egy adott (hibás)
állapota elérhető-e, és amennyiben elérhető, ad hozzá egy elérési útvonalat. A formális veri-
fikációs eszközök emiatt gyakran csak alacsony szintű, állapotalapú modelleken működnek,
melyek messze vannak az emberek által könnyen érthető nyelvektől. Ezért, hogy magas
szintű viselkedési modelleket tudjunk verifikálni, implementálnunk kell egy olyan modell
transzformációt, mely megtartja a folyamat- és állapotalapú modellek szemantikáját azok
kombinációja után is.

Ebben a dolgozatban megvizsgálom a folyamatalapú modellek szemantikáját, vala-
mint a kapcsolatukat egyéb hagyományos állapotalapú modellekkel. Emellett megoldáso-
kat vetek fel a potenciális konfliktusokra a kombinált alacsonyszintű modellben. Munkám
során a Gamma állapotgép kompozíciós keretrendszerre építek, mellyel komponensalapú
reaktív rendszereket modellezhetünk és verifikálhatunk. Mivel a Gamma még nem támo-
gatja az aktivitásokat, bevezetek egy új aktivitás nyelvet, melyhez a SysMLv2 szolgál
inspirációként. Ezzel együtt implementálom hozzá a szükséges transzformációkat a Gam-
ma alacsony szintű analízis formalizmusára. Végezetül pedig kiértékelem a koncepcionális
és gyakorlati eredményeket esettanulmányokon és méréseken keresztül, valamint felvetek
lehetséges fejlesztéseket és alkalmazásokat.

i

Abstract

The complexity of safety-critical systems has been increasing rapidly in recent years. To
mitigate said complexity, the model-based paradigm has become the decisive way to design
such systems. In model-based systems engineering, we usually define the behaviour of
system components using state-based or process-oriented models. The former formalism
describes what states the component can be in, while the latter describes what steps it
can perform and in what order. Oftentimes, the best way to model the behaviour of a
complex component is to combine these models in some way.

Modelling languages with formal semantics enable the (exhaustive) verification of the
described behaviour. Formal verification may be used to detect errors early during de-
velopment by checking if a given (erroneous) state of the system can be reached, and if
so, providing a way to reach it. Formal verification tools often require low-level state-
based mathematical models, which are far from human-understandable languages. Thus,
to enable the verification of high-level behavioural models, a model transformation must
be implemented that preserves the semantics of both process-oriented and state-based
models, even when combined.

In this report, I analyse the semantics of process-oriented models, as well as their relation
to traditional state-based models, and propose solutions for the possible conflicts in a
combined low-level model. In my work, I build on the Gamma Statechart Composition
Framework, which is a tool for modelling and verifying component-based reactive systems
based on statecharts. Since Gamma does not support activities yet, I introduce a new
activity language inspired by SysMLv2 and implement the necessary transformations to
Gamma’s low-level analysis formalism. Finally, I evaluate the conceptual and practical
results through case studies and measurements then propose potential improvements and
applications.

ii

Chapter 1

Introduction

Reactive systems, such as embedded control systems in the railway, automotive and
aerospace industries, are getting more and more complex as user requirements proliferate.
As a result, such systems are generally not centralized; they consist of heterogeneous com-
ponents distributed among several computing nodes, which constantly interact with each
other and external resources (e.g., cloud computing via the Internet) while carrying out
critical tasks.

In order to tackle the increasing development complexity, new approaches and tools have
been introduced to supervise the design, verification and implementation of reactive sys-
tems. Component-based systems engineering (CBSE) and model-based systems engineer-
ing (MBSE) aim to support the development process based on the integration of reusable
components defined in high-level modeling languages, preferably with automatically deriv-
able implementation and verifiable design.

UML and SysML, the de facto language standards in CBSE and MBSE methodologies,
offer the State Machine Diagram and the Activity Diagram to describe reactive component
behaviour. These diagram types are often combined: state machines describe changes in
component states, whereas activities can define continuous and batch process behaviour
in active states and during transitions. Unfortunately, UML and SysML do not provide
formal execution semantics for state machines and activities, hindering the verification of
the design models. In turn, modeling languages with formal semantics with the necessary
tooling can support the verification of component behaviour early during the development
process – an essential facility in the context of critical systems.

This work focuses on process-based (activity) behavioural models and their usability in
traditional state-based descriptions, and aims to propose solutions for the formal verifica-
tion of the combined models. I build on and integrate my work into the Gamma Statechart
Composition Framework, a modeling tool for the design and analysis of component-based
reactive systems. Gamma supports the semantically sound composition of state-based
components and provides system-level formal verification and validation (V&V) by map-
ping composite models into analysis formalisms of integrated model checker back-ends.
The framework facilitates the implementation process with automated code generators.
So far, Gamma has lacked support for activities.

As a novelty, I introduce the following contributions to aid the formal modeling and
verification of process models in component-based reactive systems.

1

• I introduce an activity language with formal semantics inspired by SysMLv2 and
integrate it into the modeling language family of the Gamma framework, allowing
for the combination of state-based and process-oriented behaviour.

• I define and implement a model transformation that maps activity descriptions into
the analysis formalism of Gamma (eXtended Symbolic Transitions Systems - XSTS),
enabling the formal verification of combined state-based and process-based behaviour
with integrated model checker back-ends.

• Finally, I evaluate the theoretical and practical results of my work on case stud-
ies from the aerospace domain and identify improvement possibilities and potential
applications.

The rest of the work is structured as follows. Chapter 2 introduces the background neces-
sary to understand the rest of the work. Chapter 3 presents the Gamma Activity Language
including its metamodel, textual syntax and the formal semantics of the model elements.
In Chapter 4, I introduce questions regarding the interplay of state machines and activities,
propose solutions for them and I integrate the Gamma Activity Language into Gamma.
Chapter 5 presents three case studies showcasing the capabilities and correctness of the
modeling language and its integration into the Gamma framework. Lastly, in Chapter 6,
I draw the conclusions of the work, and lay down possible future enhancements.

2

Chapter 2

Background

In this chapter, I present the theoretical foundations of my contribution. In Section 2.1, I
introduce the concept of model-based systems engineering, which is a well-known approach
for complex system design. This section also goes into detail about SysML (Section 2.1.1),
which is a general-purpose modeling language for system design. Next, I talk about the
concept of formal verification in Section 2.2, and introduce Petri nets (Section 2.2.2) and a
mapping between UML/SysML Activity Diagrams and Petri nets (Section 2.2.3). Lastly,
I introduce the Gamma Statechart Composition Framework, which is a tool for modeling
and verifying component-based reactive systems based on statecharts (Section 2.3), and a
low-level formalism called XSTS (Section 2.4) used as an intermediary language for model
checking by Gamma.

2.1 Model-based Systems Engineering

The INCOSE SE Vision 2020 defines model-based systems engineering (MBSE) as:

“The formalized application of modeling to support system requirements, de-
sign, analysis, verification and validation activities beginning in the concep-
tual design phase and continuing throughout development and later life cycle
phases. MBSE is part of a long-term trend toward model-centric approaches
adopted by other engineering disciplines, including mechanical, electrical and
software. In particular, MBSE is expected to replace the document-centric
approach that has been practiced by systems engineers in the past and to in-
fluence the future practice of systems engineering by being fully integrated into
the definition of systems engineering processes.” [1]

Applying MBSE is expected to provide significant benefits over document-centric ap-
proaches by enhancing productivity and quality, reducing risk, and providing improved
communications among the system development team [2].

In MBSE, one of the most important concepts is the term “model” itself. Literature gives
various definitions for models:

1. A physical, mathematical, or otherwise logical representation of a system, entity,
phenomenon, or process [?].

2. A representation of one or more concepts that may be realized in the physical
world [10].

3

3. A simplified representation of a system at some particular point in time or space
intended to promote understanding of the real system [5].

4. An abstraction of a system, aimed at understanding, communicating, explaining, or
designing aspects of interest of that system [8].

5. A selective representation of some system whose form and content are chosen based
on a specific set of concerns. The model is related to the system by an explicit or
implicit mapping [14].

2.1.1 Systems Modeling Language

Systems Modeling Language (OMG SysML [12]) is a general-purpose modeling language
that supports the specification, design, analysis, and verification of systems that may
include hardware and equipment, software, data, personnel, procedures, and facilities.
SysML is a graphical modeling language with a semantic foundation for representing re-
quirements, behaviour, structure, and properties of the system and its components [10].

This work focuses only on the behavioural modeling facilities SysML provides. In the
following section, I present two of the most used diagram types in SysML: State Machine
Diagrams and Activity Diagrams.

State Machine Diagram

Reactive systems are all around us in our daily lives: in smartphones, avionics systems or
even our calculators. Oftentimes, reactive systems appear in areas, where safety-critical
operation is crucial, as even the slightest error can have catastrophic consequences.

The defining characteristic of reactive systems is their event-driven nature, which means
that they continuously receive external stimuli (events), based on which they change their
internal state and possibly react with some output [16]. Statecharts [17] are a popular
and intuitive language to capture the behaviour of reactive systems [18, 29].

Figure 2.1: SysML State Machine describing the behaviour of a traffic light controller.

SysML State Machines extend the concept of automata with hierarchical state-refinement,
orthogonal regions, action-effect behaviour and state machine composition. These ad-
vanced abstraction constructs support the concise modeling of state machines for engi-
neers, making their formal verification harder. This abstraction gap can be bridged using
a transformation tool, such as Gamma (see Section 2.3) that maps these high-level con-
structs into low-level analysis formalisms.

4

Figure 2.1 shows a state machine modeling the behaviour of a traffic light controller. The
TrafficLightCtrl component has three ports, two inputs (Control and PoliceInterrupt) for
user input, and one output (LightCommands) for controlling (turning on and off) the
specific light it is connected to. The state machine changes between the red-green-yellow
lights, upon a toggle command (Normal state - main cycle). However, if a police signal
is received, it starts turning on and off the yellow light every 500ms (Interrupted state -
blinking cycle).

Activity Diagram

Using State Machines, it is harder to describe the complicated semantics of distributed
systems with concurrent, parallel behaviour, where the interesting thing is what the sys-
tem does step-by-step (e.g., batch processing). SysML Activity Diagrams are a primary
representation for modeling process based behaviour [12] for distributed, concurrent sys-
tems. Figure 2.2 shows the set of modeling elements related to this work. In the following,
I introduce the different modeling elements of SysML activities and show an example of a
SysML activity diagram.

Ini�al

Ac�vity Final

Ac�on

Flow Final

Receive Signal

Send Signal

Decision

Merge

[g1] [gn]

…

…

Fork

Join

…

…

Central Buffer

P

Pin

Figure 2.2: Artifacts of SysML activity diagrams.

SysML Activity Diagram is a graph-based model, where the nodes are connected via flows.
The dynamic behaviour of activity diagrams comes from tokens travelling from node to
node; based on the given node’s semantics, a connected flow removes tokens from the
source node and transfers them onto the target node. Flows can also have guards, which
are expressions specifying when the given flow is enabled or not; only enabled flows can
transfer tokens.

Tokens are a way of controlling which node can run, and which cannot; a given node is
considered running, only when it contains a token from all of its input flows. Tokens flow
between nodes, carrying with them a given value - this value can also be of type void,
which makes it a control token.

The different nodes represent the different semantic “tools” at our disposal; they can
represent different actions, or introduce interesting token flow semantics. Simple actions
represent a single step of behaviour that convert a set of inputs to a set of outputs. Both
inputs and outputs are specified as pins, which get their data from connected flows -
making that flow a data flow. Execution starts from the initial node and ends with a Flow
Final or Activity Final node. Fork nodes generate tokens on all of their output flows, and
Join nodes forward the tokens, only when all input flows contain one - thus, the two nodes
complement each other. On the other hand, Merge nodes do not wait for all flows, they
forward any token they receive instantly, complimenting Decision nodes, which take one
token from its input flows, and send it out on its single enabled output flow.

5

The detailed specification for SysML Activity Diagrams can be found in the OMG speci-
fication [12].

Edit

Read1 Compile1
P PIn

[errors] [no errors]

Read2 Compile2
P PIn

Link

Figure 2.3: The activity of editing, compiling and linking two files.

Figure 2.3 shows an example activity diagram, modeling the process of editing, compiling
and linking two files. First, the files have to be read, after which they are transferred to
the compilers. We want to compile the two different files in parallel, thus we split the
control flow using a fork node. Once the files are compiled, we link them - since linking
requires both files, it is preceded by a join node. Finally, if the resulting code contains
errors, we edit the source files and start over - otherwise we are done.

2.2 Formal Verification

In order to ensure the reliability of system models, various analysis techniques are used
to verify their correctness. Among these techniques are unit tests, module tests, system
tests and acceptance tests. However, no matter how many kinds of tests we use, the test
cases can not cover the entire system. Formal verification tools are meant to extend these
analysis techniques by not specifying a given sequence of events, but rather specifying the
undesirable state of the system [6]. Formal verification methods are primarily based on
theoretical computer science fundamentals like logic calculi, automata theory and strongly
typed systems [?]. The main principle behind formal analysis of a system is to construct
a computer-based mathematical model of the given system and formally verify, within a
computer, that this model meets rigorous specifications of the intended behaviour. Due
to the mathematical nature of the analysis, very high accuracy can be guaranteed.

2.2.1 Model Checking

Model checking is a formal verification method to verify properties of finite systems, i.e.,
to decide whether a given formal model M satisfies a given requirement γ or not. The
name comes from formal logic, where a logical formula may have zero or more models,
which define the interpretation of the symbols used in the formula and the base set such
that the formula is true. In this sense, the question is whether the formal model is indeed
a model of the formal requirement: M 6|= γ?

Model checker algorithms (see Figure 2.4), such as the ones used in UPPAAL1 [4] or
Theta2 [30] can answer this question, and can even return a proof (i.e., a diagnostic trace
of the model) that M indeed does satisfy said requirement3.

1https://uppaal.org/
2https://inf.mit.bme.hu/en/theta
3These proofs usually come in the form of an execution trace

6

Formal model
Formal

requirement

Model Checker

Proof
Trace

Figure 2.4: An illustration of model checking.

2.2.2 Petri Nets

H2

O2

2

T

H2O

H2

O2

2

T

H2O

2 2

(a) Petri net before firing (b) Petri net a�er firing

Figure 2.5: An example Petri net modeling the process of H2O molecule creation.

Petri nets are an example of formal models, and thus can be formally verified. Petri nets
are a widely used formalism to model concurrent, asynchronous systems [24]. The formal
definition of a Petri net [3] is as follows (see Figure 2.5 for an illustration of the notations).

Definition 1 (Petri net). A Petri net is a tuple PN = (P, T,W,M0)

• P is the set of places (defining state variables);

• T is the set of transitions (defining behaviour), such that P
⋂
T = ∅;

• W ⊆ W+⋃W− is a set of two types of arcs, where W+ : T × P → N and W− :
P × T → N are the set of input arcs and output arcs, respectively (N is the set of
all natural numbers). The number returned is an arc’s weight;

• M0 : P → N is the initial marking, i.e., the number of tokens on each place. �

The state of a Petri net is defined by the current marking M : P → N. The behaviour of
the systems is described as follows. A transition t is enabled if ∀p ∈ P : M(p) ≥ W (p, t).
Any enabled transition t may fire nondeterministically, creating the new marking M ′ of
the Petri as follows: ∀p ∈ P : M ′(p) = M(p)−W−(p, t) +W+(t, p).

In words: W describes the weight of each arc from a transition to a place, or from a place
to a transition. Firing a transition t in a marking M consumes W−(pi, t) tokens from

7

each of its input places pi, and produces W (t, po) tokens in each of its output places po.
One such transition t is enabled (it may fire) in M if there are enough tokens in its input
places for the consumptions to be possible.

2.2.3 Activities as Petri Nets

Formal verification requires models to be specified using mathematical precision, i.e., the
modeling language must have a formal syntax and semantics. However UML/SysML does
not have precise semantics [23, 25, 20]. Huang et al. in [19] propose a way to partially
map SysML Activity Diagrams to Petri nets, giving a denotational semantics to the subset
of SysML Activity Diagrams. In the following, I will summarise their work, as my main
contributions (see Chapter 3) build on it.

Constrained Subset of SysML

Since UML/SysML Activity Diagrams do not have precise execution semantics, the Petri
net mapping can be defined only for a limited subset of the modeling elements: actions,
initial nodes, final nodes, join nodes, fork nodes, merge nodes, decision nodes, pins and
object/control flows, which have precise execution semantics as defined in the Foundational
Subset for Executable UML Models [15].

The paper also assumes the following constrains:

1. The value of tokens is not considered.

2. Control flows with multiple tokens at a time are not considered.

3. Optional object/control flows are not considered, i.e., multiplicity lower bounds are
strictly positive.

These constraints allow the mapping between activities and Petri nets, however, the con-
structed Petri net will not be semantically equivalent - data cannot flow between nodes.
This fact is the motivation behind formalising a more-complete mapping (see Chapter 3).

Mapping Rules

Activity elements can be grouped into two sets: load-and-send (LAS) and immediate-repeat
(IR).

LAS nodes are fired when all their inputs have tokens. When an LAS node fires, the
number of tokens associated with the input flows/pin is consumed and the number of
tokens associated with an output flows/pin is added. In SysML activity diagrams, the
execution semantics of all nodes - except decision and merge nodes - are LAS, because
these nodes are fired when all their input nodes have at least one token. As a result, these
nodes can be mapped to transitions in the resulting Petri net.

In contrast, as soon as an IR node receives a token from any input, it immediately adds
a token to its output nodes. For SysML activity diagrams, merge nodes, decision nodes
are IR nodes, because they are fired immediately when any token is received. As a result,
these nodes can be mapped to places in the resulting Petri net.

Given the set of assumptions in Section 2.2.3, control flows and object flows in an activity
diagram can be mapped to arcs in a Petri net.

8

Finally, after mapping the elements, the resulting Petri net may contain transition-
transition and place-place arcs, which are not valid; as the final step, these arcs must
be split in two by inserting a transition or a place in the middle (with a weight of 1),
making the model conform to the formalism.

Example Mapping

Ini�al Merge Edit Decision Final

Fork Compile1

Compile2

Read1

Read2

Join

Link

Figure 2.6: Example mapping from activity diagram to Petri net.

Figure 2.6 shows an example mapping from the activity Figure 2.3. The resulting elements
are annotated with the names of their counter parts in the activity diagram.

For more about the Petri net mapping, please refer to [19].

2.3 Gamma Statechart Composition Framework

The Gamma Statechart Composition Framework4 [11] is an integrated tool to support
the design, verification and validation of, as well as code generation for component-based
reactive systems. The behaviour of each component is captured by a statechart, while
assembling the system from components is driven by a domain-specific composition lan-
guage5. Gamma supports the formal verification of the assembled system by mapping
composite statecharts to a back-end model checker. Execution traces obtained as wit-
nesses during verification are back-annotated as test cases to replay an error trace or to
validate external code generators [21].

The workflow of Gamma builds on a model transformation chain depicted in Figure 2.7,
which illustrates the input and output models of these model transformations as well as
the languages in which they are defined, and the relations between them. The modeling
languages are as follows.

• The Gamma Expression Language (GEL) is a lightweight expression language,
created to describe value expression (addition, subtraction, etc.) in actions.

• The Gamma Action Language (GAL) is a lightweight action language, created
to describe actions on statechart transitions.

• The Gamma Statechart Language (GSL) is a UML/SysML-based statechart
language supporting different semantic variants of statecharts.

4https://inf.mit.bme.hu/en/gamma
5The composition language bears close similarities to the ibd language in SysML

9

G
am

m
a

Statech
art

Lan
gu

age

Gamma
statechart

Gamma
statechart

V
alid

a�
o

n G
am

m
a

C
o

m
p

o
si�

o
n

Lan
gu

age

GCL model

G
am

m
a Trace

Lan
gu

age

Abstract test
cases

G
en

eral-p
u

rp
o

se
p

ro
gram

m
in

g lan
gu

age

System
implementa�on

Test suite
implementa�on

Execu
�

o
n

Statechart language
(frontend)

Engineering
statechart

Statechart language
(frontend)

Engineering
statechart

Property

Property

··Analysis
model

Analysis language
(backend)

Property

Property

Analysis language
(backend)

··Analysis
model

G
am

m
a

P
ro

p
erty

Lan
gu

age

Property

Property

··„Annotated” GCL model

„Reduced” GCL model

G
am

m
a

G
en

o
m

d
el

Lan
gu

age

Coverage
criteria

2

1

3

4

5

Figure 2.7: The overview of model transformation chains and modeling languages of the
Gamma framework [11]. The parts relevant to this work have been marked
with red outline.

• The Gamma Composition Language (GCL) is a composition language for the
formal hierarchical composition of state-based components according to multiple
execution and interaction semantics.

• The Gamma Genmodel Language (GGL) is a configuration language for con-
figuring model transformations.

• The Gamma Property Language (GPL) is a property language supporting the
definition (CTL*) properties and thus, the formal specification of requirements re-
garding (composite) component behavior.

• The Gamma Trace Language (GTL) is a high-level specification language for
execution traces of (composite) components.

The component integration and verification workflow in Gamma is as follows. Optionally,
statechart models defined in supported modeling tools (front-ends) can be imported into
Gamma (Step 1), which can be integrated according to well-defined execution and interac-
tion semantics (Step 2). The resulting composite model is processed and transformed into
the input formalisms of integrated model checker back-ends (Step 3). The model checker
back-ends provide witnesses (diagnostic traces) based on specified properties, which are
back-annotated, resulting in abstract traces (Step 4). Finally, the abstract traces are
mapped into concrete (executable) traces tailored to the targeted execution environment
(Step 5). For a more detailed description, see [11].

2.3.1 Example Statechart

Listing 2.1 shows the Gamma Statechart representation of the SysML State Machine in-
troduced in Figure 2.1. The Gamma Statechart Language is highly expressive language,
capable of defining composite statecharts with ports, timeout triggers and composite ac-
tions. My work builds the activity language on top of this formalism.

10

� �
1 package TrafficLightCtrl
2 import "Interfaces"
3 statechart TrafficLightCtrl [
4 port Control : requires Control
5 port PoliceInterrupt : requires PoliceInterrupt
6 port LightCommands : provides LightCommands
7] {
8 timeout BlinkingYellowTimeout3
9 timeout BlackTimeout4

10 region main_region {
11 state Normal {
12 region normal {
13 shallow history Entry2
14 state Green {
15 entry / raise LightCommands.displayGreen;
16 }
17 state Red {
18 entry / raise LightCommands.displayRed;
19 }
20 state Yellow {
21 entry / raise LightCommands.displayYellow;
22 }
23 }
24 }
25 state Interrupted {
26 region interrupted {
27 initial Entry1
28 state Black {
29 entry / set BlackTimeout4 := 500 ms;
30 raise LightCommands.displayNone;
31 }
32 state BlinkingYellow {
33 entry / set BlinkingYellowTimeout3 := 500 ms;
34 raise LightCommands.displayYellow;
35 }
36 }
37 }
38 initial Entry0
39 }
40 transition from Yellow to Red when Control.toggle
41 transition from Normal to Interrupted when PoliceInterrupt.police
42 // ...
43 transition from BlinkingYellow to Black when timeout BlinkingYellowTimeout3
44 transition from Black to BlinkingYellow when timeout BlackTimeout4
45 }� �
Listing 2.1: The traffic light controller state machine in the textual representation of the

Gamma Statechart Language.

11

2.4 Extended Symbolic Transition System

In this section, I introduce the Extended Symbolic Transition System [22] language, which
is a low-level modeling formalism designed to bridge the abstraction gap between engi-
neering models and formal methods.

2.4.1 Formal Definition

Definition 2 (Extended symbolic transition system). An Extended symbolic tran-
sition system is a tuple XSTS = (D,V, VC , IV ,Tr , In,En), where:

• D = {dv1 , dv2 , . . . , dvn} is a set of value domains;

• V = {v1, v2, . . . , vn} is a set of variables with domains {dv1 , dv2 , . . . , dvn};

• VC ⊆ V is a set of variables marked as control variables;

• IV ∈ dv1 × dv2 × · · · × dvn is the initial value function used to describe the initial
state. The initial value function IV assigns an initial value IV (v) ∈ dv to variables
v ∈ V of their domain dv;

• Tr ⊆ Ops is a set of operations, representing the internal transition relation; it
describes the internal behaviour of the system;

• In ⊆ Ops is a set of operations, representing the initialisation transition relation; it
is used to describe more complex initialisation, and is executed once and only once,
at the very beginning;

• En ⊆ Ops is a set of operations, representing the environmental transition relation;
it is used to model the system’s interactions with its environment. �

In any state of the system, a single operation is selected from the sets introduced above
(Tr , In and En). The set from where the operation can be selected depends on the current
state: In the initial state - which is described by the initialization vector IV - operations
only from the In set can be executed. Operations from the In set can fire only in the
initial state and nowhere else. After that, operations from En and Tr are selected in an
alternating manner.

Operations op ∈ Ops describe the transitions between states of the system, where Ops
is the set of all possible transitions. All operations are atomic in the sense that they are
either executed in their entirety or none at all. XSTS defines the following basic and
composite operations.

Basic operations Basic operations contain no inner (nested) operations.

• Assignments assign a given value v from domain dn to variable Vn.

• Havocs behave likewise, except the value is not predetermined, giving a way to assign
a nondeterministic value to a variable.

• Lastly, assume operations check a condition, and can be executed only if their con-
dition evaluates to true.

12

Composite operations Composite operations contain other operations, and can be
used to describe complex control stuctures.

• Sequences are essentially multiple operations executed one after the other.

• Parallels are execute all operations in parallel.

• And lastly, choices model non-deterministic choices between multiple operations;
one and only one branch of the choice operation is selected for execution.

Note that while these are composite operations, their execution is still atomic; i.e., a
potential false evaluation of a containing assume operation prevents the execution of all
operations in that particular branch. E.g., if a sequence’s second operation is an assume
operation, which cannot execute, then the whole sequence operation will be prevented
from execution.

2.4.2 Traffic Light Controller Example

Listing 2.2 shows the example traffic light controller statechart (Figure 2.1) transformed
into the textual representation of XSTS, using the Gamma framework. It shows how the
different states and regions are modeled, and clearly showcases the structure of XSTS. For
a more exact presentation see Section A.1.

13

� �
1 type ActivityNodeState : { __Idle__, __Running__, __Done__ }
2 // ...
3 type Operating_Controller : {
4 __Inactive__, Priority, Init,
5 PriorityPrepares, Secondary, SecondaryPrepares
6 }
7 var PoliceInterrupt_police_In_Controller : boolean = false
8 // ...
9 ctrl var main_region_Controller : Main_region_Controller = __Inactive__

10 ctrl var operating_Controller : Operating_Controller = __Inactive__
11 var SecondaryTimeout2_Controller : integer = 0
12
13 trans {
14 // ...
15 choice {
16 assume (main_region_Controller == Interrupted);
17 // ...
18 } or {
19 assume (main_region_Controller == Normal);
20 // ...
21 }
22 PoliceInterrupt_police_In_Controller := false;
23 }
24 init {
25 SecondaryTimeout2_Controller := 2 * 1000;
26 // ...
27 PriorityPolice_police_Out_Controller := false;
28 choice {
29 assume (operating_Controller == __Inactive__);
30 operating_Controller := Init;
31 } or {
32 assume !(operating_Controller == __Inactive__);
33 }
34 // ...
35 }
36 env {
37 havoc PoliceInterrupt_police_In_Controller;
38 // ...
39 SecondaryPolice_police_Out_Controller := false;
40 }� �
Listing 2.2: Gamma XSTS Language representing the traffic light controller statechart.

14

2.5 Related Work

In this section, I showcase various works in the area of process-based model formal verifi-
cation.

Rik Eshuis [9] translates activity diagrams to NuSMV code. The mapping is based on a
state machine, and follows the following steps: (1) Inserting a WAIT node for each edge
entering a join, (2) Inserting a WAIT node between a join and a fork, (3) Replacing object
nodes and flows by wait nodes and control flows, (4) Eliminating pseudo-nodes and define
hyperedges. The resulting NuSMV can be checked with LTL temporal logic.

Samir Ouchani et al. in [26] introduce an abstraction approach for SysML Activity Dia-
grams that helps mitigate the state-explosion problem. They defined two algorithms for
this, the first one eliminates the parts of the model which are irrelevant to the formal
requirement, while the second merges nodes, thus abstracting the model.

Samir Ouchani et al. in [27] propose a mapping from SysML Activity Diagrams to prob-
abilistic automata written in PRISM language. They have done this by first defining a
mapping from the model elements to NuAC terms, which are then mapped to PrismCode
using a simple algorithm traversing the activity model. This mapping then was checked
by comparing the semantics of the Activity Diagram with the resulting PA.

Huang et al. in [19] propose a partial mapping algorithm from SysML Activity Diagrams
to Petri nets, using a constrained subset of SysML. More about this work in Section 2.2.3.

Jan Czopik et al. in [7] introduce a mapping from SysML Activity Diagrams to Coloured
Petri Nets. Coloured Petri Nets is a formalism that extends the semantics of Petri nets
with distinguishable tokens. The highlight of this work is the incorporation of data tokens
into the resulting formal model.

Messaoud Rahim et al. in [28] introduces a modular and distributed verification process
for composite SysML Activity Diagrams mapped to Petri nets. They achieve minimal
state-space for the underlying model checker algorithm, by separating the resulting Petri
nets into modules, and only explore the state-space of other activities, if the corresponding
SysML Activity Diagram called, or is called by the other module. Thus, the resulting state
space is significantly reduced.

These works mainly focus on the verification of sole activities, without incorporating state
machines; to the best of my knowledge, there is no work in the literature focusing on
the formal verification of combined high-level state-based and process-based behaviour
descriptions.

15

Chapter 3

Gamma Activity Language

The high-level nature of SysML activities means they are easy to use for modeling compli-
cated behaviours of distributed systems, but their complexity encumbers formal verifica-
tion. As discussed in Section 2.2.3, we can define a semantic-preserving mapping between
activities and Petri nets (which have a formal semantic), however, that mapping is not
complete as it disregards (among many things) the data contained in tokens.

The Gamma Statechart Composition Framework (Section 2.3) implements a model trans-
formation pipeline (see Figure 2.7) for the formal verification of collaborating statecharts,
however, it does not include activity diagrams. In order to support the definition and ver-
ification of activities in the Gamma framework, I propose the Gamma Activity Language
(GATL) (Chapter 3) and integrate it (Chapter 4) into the transformation pipeline.

3.1 Language Design

The purpose of GATL is twofold: it should support as many features from SysML activity
diagrams as possible, while also having formal semantics. In order to make the trans-
formation easier, the language supports only a constrained subset of the SysML feature
set.

3.1.1 Supported SysML Feature Subset

Compared to SysML activity diagrams, GATL supports the following language constructs:

• control and data flows;

• Initial and activity final nodes;

• Decision and merge nodes - without probability;

• Fork and join nodes;

• Action nodes – which can contain inner activities (Call behaviour in SysML) or
specific internal actions1 that can calculate values, and send signals through specific
ports.

• Pins on action nodes.
1Written in the Gamma Action Language

16

3.2 Formal Definition

In order to offer mathematical precision, formal verification methods require formally
defined models with clear semantics. In this section I present the formal definition of the
GATL formalism.

Definition 3 (Gamma Activity Language). AGamma Activity is a tuple of GATL =
(D,V,N, P, F,G, FAction), where:

• D = {d1, d2, . . . , dn} is a set of value domains;

• V = {v1, v2, . . . , vn} is a set of variables with domains {dv1 , dv2 , . . . , dvn};

• N = NIR
⋃
NLAS is a set of Nodes, where NIR contains the immediate-repeat nodes

and NLAS contains the load-and-send nodes (see Section 2.2.3). NAction ∈ NLAS is
a special set of nodes, which are the Action nodes;

• P ⊆ PIn
⋃
POut is a set of two types of pins, where PIn : NAction → {p−1 , . . . , p−n } and

POut : NAction → {p+
1 , . . . , p

+
m} are the set of InputPins and OutputPins, respectively,

with domains {d1, . . . , dn} ⊆ D;

• F ⊆ FC
⋃
FD, where FC = {fC1 , . . . , fCn} and FD = {fD1 , . . . , fDn} are the control

and data flows, respectively. Let us denote the input/output flows of node n as δ(n)
and ∆(n), and the source/target pins of flow f as φ(f) and Φ(f). For any given node
n, δ(n) 6= ∆(n) and for any given action node na, ∀f ∈ FD

⋂
δ(na) : Φ(f) ∈ PIn(na)

and ∀f ∈ FD
⋂

∆(na) : φ(f) ∈ POut(na) shall always hold. This means, that a flow
cannot be input and output to the same node at the same time, and for a given
action node, all input/output flows shall be associated with an input/output port,
respectively;

• G : F ⊆ g1 × g2 × · · · × gn is a function mapping an expression to each flow.;

• FAction ⊆ a1 × a2 × · · · × an is a function mapping an action to each node. �

Informally, Gamma Activities are composed of nodes and flows in between them. A given
Action node may have any number of pins with domain d ∈ D, for which there must be
one and only one flow connected to the node.

A node n ∈ NAction may define the composition of activities when its effect is to call a
specific subset of nodes. The subset is denoted as GATLn .

NIR contains the nodes decision/merge, while NLAS contains the nodes fork/join,
initial/final and action nodes. For the most part, these elements have similar behaviour
as their SysML counterparts; however, there is a crucial difference regarding how a flow
transmits a token. Figure 3.1 shows a simple data flow between two nodes, connected via
their pins. Upon token transfer, the data inside the pins are transferred instantly, without
any intermediate state in between.

Node1 Node2P1 P2

Figure 3.1: An example SysML data flow.

Contrarily, in GATL, the equivalent data flow does indeed contain the given token, creating
an intermediate state, where the token is in neither of the nodes. This behaviour could

17

be modeled using a Central Buffer in SysML (Figure 3.2). The reason for this solution is
simplicity; by creating this intermediate state (and others), it is easier to define the set of
transitions necessary to formally define the semantics of the language.

Node1 Node2P1 P2Central Buffer

Figure 3.2: An example SysML data flow with a central buffer node.

3.2.1 Formal Behaviour

The behaviour of GATL is defined using the XSTS (Section 2.4) formalism:

Definition 4 (Gamma Activity Behaviour). In the context of XSTS, the defined set
D becomes an XSTS domain set, the set V becomes an XSTS variable set. On a similar
line, the functions G and FAction return an assume and a sequence operation, respectively.

The XSTS describing the behaviour of GATL is the following: XSTSGATL =
(D,V, VC , IV ,Tr , In,En), where:

• D = GATL〉D
⋃
dNodeState

⋃
dFlowState, where GATL〉D is the domain in GATL,

dNodeState = {Idle,Running,Done} and dFlowState = {Empty,Full} are the node and
flow state domains representing their internal state. Node state Idle means a node
is ready for a token, Running means it is currently executing and Done means it is
done (but still contains a token). Flow states Empty and Full represent whether the
flow contains a token;

• V = GATL〉V
⋃
VNS

⋃
VFS

⋃
VNV

⋃
VFV

⋃
VPV , where GATL〉V is the variables in

GATL, VNS = {vNS1 , vNS2 , . . . , vNSn} is the variable representing the state of the
nodes with domain dNodeState, VFS = {vFS1 , vFS2 , . . . , vFSm} is the variable repre-
senting the state of the flows with domain dFlowState and VNV , VFV , VPV are the
variables representing the values contained inside flows, nodes and pins respectively;

• IV sets all variables to their default value;

• VC = VNS
⋃
VFS are the control variables;

• Tr = T , where T is single transition (defined at the end of the section);

• In sets all values of variables associated with InitialNodes to Running;

• En = ∅ is the empty environment transition, as simple activities do not have envi-
ronments. �

We also define the following helper functions:

• SN : N → VNS is a function that returns the state variable of a node;

• SF : N → VFS is a function that returns the state variable of a flow;

• VNIn : N × F → VNV is a function that returns the input value variable of a node
regarding a specific connected flow;

18

• VN : N → VNV is a function that returns the value variable of a node;

• VF : F → VFV is a function that returns the value variable of a flow;

• PVN : N × P → VPV is a function returning the value variable of a pin inside a
node.

Informally, the behaviour of Gamma Activities is determined by the nodes’ state (Idle,
Running, Done), the nodes’ and their pins’ values, the flows’ state (Empty, Full) and their
values. For example, given an action node n and one of its pins p1, PVN (n, p1) would give
us the exact value that p1 contains in this instance. This gives us the power – contrary
to the Activity-PN mapping introduced in Section 2.2.3 – to formally define the values
contained in tokens.

Each flow and node may only contain one flow at a time; creating and destroying them on
each transfer. The flow of tokens is modeled by changing the value of the state variables
in such a way, that keeps the defined semantics. In the following, I incrementally build up
these change operations and then construct the resulting XSTS.

Let us define a shorthand function for finding a node’s input variable associated with a
given flow:

VNIn (n, f) =
{

PVN (n,Φ(f)) if n ∈ NAction

VN (n), otherwise

And a shorthand function for finding a node’s output variable associated with a given
flow:

VNOut (n, f) =
{

PVN (n, φ(f)) if n ∈ NAction

VN (n), otherwise

Next, I define various functions that return operations, which will be used to construct
the transition T . In the next section, I use the following notations for XSTS operations:

• sequences are represented as operations after one another, or sequence(op), where op
is a set of operations;

• parallels are represented as parallel(op), where op is a set of operations;

• choices are represented as choice(op), where op is a set of operations;

• assumptions are represented as assume(e), where e is an expression;

• assignments are represented as assign(v, value), where v and value are a variable
and a value, respectively, with the same domain.

Definition 5 (Flow Transition Operations). Let us denote the source/target node of
flow f as θ(f) and Θ(f) respectively. OFlowIn(f) is a function returning a sequential
operation, which takes a token from a flow to a node:

19

assume(SF (f) = Full)
assume(SN (Θ(f)) = Idle)
assign(SF (f),Empty)
assign(SN (Θ(f)),Running)
assign(VNIn (Θ(f), f), VF (f))

Informally, the returned operation checks that the flow’s target node is in Idle state and
the flow is in Full state. In which case it transfers the token by changing the state of
the target node to Running, and its state to Empty. It also transfers its value to the
correct value variable of the node. Let OFlowOut(f) be the function returning a sequential
operation, which transfers a token from a node to a flow:

G(f)
assume(SF (f) = Empty)
assume(SN (θ(f)) = Done)
assign(SF (f),Full)
assign(SN (θ(f)), Idle)
assign(VF (f), VNOut (θ(f), f))

The returned operation checks that the node is Done and the flow is Empty and enabled,
in which case it transfers the token by changing their states. Note, that it also calls the
function G, which returns an assume operation for the given flow. �

Definition 6 (Node Token In/Out Operations). Given the different behaviours of
IR and LAS nodes, we must construct different operations for their in and out transitions.
OIRNodeIn(n) is the function returning a choice operation that represents the “token intake”
of an IR node:

OIRNodeIn(n) = choice

 ⋃
f∈δ(n)

OFlowIn(f)

And OIRNodeOut(n) is the function returning a choice operation that represents the “token
output” of an IR node:

OIRNodeOut(n) = choice

 ⋃
f∈∆(n)

OFlowOut(f)

On a similar note, the functions constructing the LAS node “token intake” and „token
output” operations are the following:

20

OLASNodeIn(n) = parallel

 ⋃
f∈δ(n)

OFlowIn(f)

OLASNodeOut(n) = parallel

 ⋃
f∈∆(n)

OFlowOut(f)

For the sake of simplicity, I define the following functions to merge all the node in/out
operations:

OLASNodeIO(n) = choice
(
OLASNodeIn(n)

⋃
OLASNodeOut(n)

)
OIRNodeIO(n) = choice

(
OIRNodeIn(n)

⋃
OIRNodeOut(n)

)
ONodeIO(n) =

{
OIRNodeIO(n) if n ∈ NIR

OLASNodeIO(n), otherwise
�

In which case, ONodeIO(n) returns an operation that can transfer the tokens in/out of the
specified node.

Informally, these operations realise the semantics of the LAS and IR nodes, by either
putting the flow in and flow out operations inside a parallel or a choice, respectively.

Definition 7 (Node Run Operations). Node transition operations take the given
node from Running state to Done state, while also executing the underlying operation.
Generally, ONodeRun(n) function is defined as:

assume(SN (n),Running)
assign(SN (n),Done)

However, some nodes have special behaviours. If the node is an Action node, it can contain
either a Gamma Action expression, or a composite Activity.

• If the node contains Gamma Action, the contained action is mapped to an operation
OAction(n), and added to ONodeRun(n). Let us call this function O′NodeRun(n)

• If the node contains an Activity, the contained activity first has to be started, and
the state of the node can change only when the contained activity is done. Let us
call this function as O′′NodeRun(n).

21

O′Run(n) function is defined as:

assume(SN (n),Running)
OAction(n)
assign(SN (n),Done)

In contrast, O′′NodeRun(n) has to be defined to start and wait for the contained activity.
Let In(n) and Fin(n) be the sets of initial and final nodes in GATLn .

OStart(n) = sequence

 ⋃
nIn∈In(n)

(
assume(SN (nIn) = Idle)

⋃
assign(SN (nIn),Running)

)
OFinish(n) = sequence

 ⋃
nFin∈Fin(n)

assume(SN (nFin) = Done)

⋃ assign(SN (n),Done)

OActivityRun(n) = choice
(
OStart(n)

⋃
OFinish(n)

)

O′′NodeRun(n) = sequence
(
assume(SN (n),Running)

⋃
OActivityRun(n)

)
�

Informally, the returned operation checks if the node is in state Running, and then chooses:
it either sets the contained activity’s initial nodes Running if they are currently Idle, or
sets the node’s state Done if the contained activity’s final nodes are Done. Thus, the node
is considered Done only when the contained activity is also done.

Definition 8 (Composite Node Operation). Putting all of the work together, we can
define a function returning the operation representing all behaviour of a given node:

ONode(n) = choice
(
ONodeIO(n)

⋃
ONodeRun(n)

)
�

Informally, ONode(n) returns a choice operation, that either moves the tokens in/out, or
executes the internal action of the node. The various operations defined in the previous
sections can be seen in Figure 3.3.

As the final step, the transition T is constructed by applying the ONode(n) function on
each node, and wrapping them with a parallel operation:

T = parallel
(⋃
n∈N

ONode(n)
)

22

SF SF

SF

SF

SF

SF

set of input flows set of output flows

SN

ONodeIn

ONodeRun

ONodeOut

ac�vity node

(a) ONode operations for a LAS node.

SF SF

SF

SF

SF

SF

set of input flows set of output flows

SN

ONodeIn

ONodeRun

ONodeOut

ac�vity node

ONodeOutONodeIn

(b) ONode operations for an IR node.

ONodeRun

SIni�al

composite node

SFinal

ONodeRun

(c) ONodeRun operations for a composite action node.

Figure 3.3: An illustration of the state change operations.

23

3.3 Language Gramar

Similarly to the Gamma Statechart Language, the Gamma Activity Language is intended
to be a first-class citizen in the Gamma Framework, thus it must have a grammar to
support the representation of models in a textual way. This grammar definition incorpo-
rates elements from the SysMLv2 [13] language design, while also fitting into the already
existing language family of Gamma (Section 2.3). In the following, I define the metamodel
and the grammar created to realise the formalism specified in Section 3.2.

3.3.1 Metamodel

Due to the complexity of the final metamodel of the language, I have split it into mul-
tiple parts for easier understanding: Pins, Flows, Activity Nodes, Structure, Composite
Activities and Data-, Pin-reference.

Pins

Pins are categorised into two sets, InputPins and OutputPins. All pins have a Type2

associated with them, which define their domain. Figure 3.4 shows this section of the
metamodel.

Pin

 type : Type

InputPinOutputPin

Figure 3.4: The pin metamodel diagram

Flows

Flows have two kinds, ControlFlows and DataFlows. All flows have a guard of type
Expression3, which can evaluate to a boolean value; if it evaluates to True, the flow is
considered enabled. Figure 3.5 depicts the relation of flows in the metamodel.

Control Flow ControlFlows have a reference to their source and target nodes.

Data Flow DataFlows contain a DataSourceReference and a DataTargetReference,
which can either be a Pin, or a DataNode. A data token may contain a value of any
kind, but that token can travel only to and from data sources and targets. This will be
explained in more detail below.

2Types come from the Gamma Expression Language
3Written in the Gamma Expression Language

24

ControlFlow DataFlow

Flow

 guard : Expression

ActivityNode DataSource
Reference

DataTarget
Reference

[1..1] sourceNode[1..1] targetNode

[1..1] dataSourceReference [1..1] dataTargetReference

Figure 3.5: The Flows structure.

Activity Nodes

In the following, I will talk about the different kinds of ActivityNodes and their special
meanings. The metamodel described in this section can be seen in Figure 3.6.

ActionNode

ActivityNode

DataNode

DecisionNode

FinalNode

ForkNode

InitialNode

JoinNode MergeNode

PseudoActivityNode

Figure 3.6: The Activity Node structure.

Action Node ActionNodes represent a specific action the activity may execute. This
action can be defined in multiple ways.

Pseudo Activity Node PseudoActivityNodes are nodes that do not represent a specific
action, however are needed to convey specific meanings, e.g., the initial active node, or a
decision between flows.

Initial Node InitialNodes represent the entry point of the activity.

25

Final Node A node representing the final node of the activity.

Data Node DataNodes encapsulate the meaning of data inside activities.

Fork Node ForkNodes are used to model parallelism by creating one token on each of
its output flows when executed.

Join Node JoinNodes are the complementary elements of fork nodes; the additional
created tokens are swallowed by this node by transfering out one token, regardless of the
number of input flows.

Decision Node DecisionNodes create branches across multiple output flows. An input
flow’s token is removed, and transfered out to a single output flow – depending on which
of the output flows are enabled4.

Merge Node MergeNodes forward all incoming tokens as soon as they arrive, one by
one. They are used to merge different flow paths (created using decisions).

Root Structure

The root structure defines where the elements of the activity reside in the model. The
metamodel described in this section is depicted in Figure 3.7.

ActionDefinition

 action : Block

ActivityDeclaration

ActivityDefinition

 variableDeclarations : VariableDeclaration

ActivityNode

BehaviourDefinition

Flow

 guard : Expression

NamedActivity
Declaration

Pin

 type : Type

InlineActivity
Declaration

[1..1] definition [0..*] pins

[0..*] flows[0..*] activityNodes

Figure 3.7: The root structure of the language.

Activity Declaration All elements inside an activity are contained in a root Activity-
Declaration element. It contains Pins needed for value passing and a BehaviourDefinition.
Declarations can be InlineActivityDeclarations, which means they are declared in an other

4In the case when multiple flows are enabled one is chosen nondeterministically

26

declaration, or NamedActivityDeclaration, which is a standalone activity declaration –
NamedActivityDeclaration can be referenced from other parts of the model, while Inline-
ActivityDeclaration cannot.

Behaviour Definition BehaviourDefinitions define how the activity is described; using
activity nodes, or by the Gamma Action Language. ActionDefinition contains a single
Block5, which is executed as is when the activity is executed6. ActivityDefinitions contain
ActivityNodes and Flows, and are used to compose activities.

Composing Activities

ActionNodes may contain a single ActivityDeclarationReference to an ActivityDeclaration7,
in which case the execution of said node will also include the execution of the underlying
ActivityDeclaration. This construction gives us the power to pre-declare, or inline specific
activities in the model; and use any behaviour definition defined above (Section 3.3.1) for
them. Figure 3.8 shows this part of the metamodel.

ActivityDeclarationReference

InlineActivityDeclaration

NamedActivityDeclaration

NamedActivityDeclaration
Reference

ActionNode

[1..1] namedActivityDeclaration

[0..1] activityDeclarationReference

Figure 3.8: The action node containment hierarchy.

Data Source Reference and Data Target Reference

In order to correctly set a data flow’s data source and data target, the model has to store
where the pins are referenced. A given InputPin can be considered a DataTarget from
outside of the associated Activity, however, it is a DataSource from inside the Defintion.
DataNodes can be considered both data sources and data targets. See Figure 3.9 for the
corresponding metamodel part.

5A Block contains multiple Actions which are executed one after the other
6This means, that upon execution the given activity is executed atomically; it will not be interlaced

with other XSTS transitions. See Section 4.1.1.
7If the node does not have any, it is considered a simple node, without any implementation

27

DataFlow

DataNode DataNodeReference

DataSourceReference DataTargetReference

InsideInputPin
Reference

InsideOutput
PinReference

OutsideInput
PinReference

OutsideOutput
PinReference

[1..1] dataSourceReference [1..1] dataTargetReference

[1..1] dataNode

Figure 3.9: The Data Source-Target reference structure.

Example of inside-input/outside-output pin Figure 3.10 shows an example for the
multidirectional effect of pins. From the perspective of the flow P1 → P2 the pin P1 is
a DataSource and the pin P2 is a DataTarget. However, from the perspective of the flow
P2 → P3, the pin P2 is a DataSource – because the latter flow is inside the composite
activity.

Node1 P1 P2 Node2P3

Figure 3.10: The Data node reference structure.

Pin Reference

Pin references are used to define a rigid pin-reference structure in the model. InputPin-
References have a reference to a specific InputPin, OutputPinReferences have a reference
to a specific OutputPin. InsidePinReferences and OutsidePinReferences are used to define
the direction in which the reference sees the given pin; inside references see it from the
inside, outside references see it from the outside. The OutsidePinReference must also have
a reference to the specific ActionNode the pin is associated with8. See Figure 3.11 for the
corresponding metamodel part.

8Note that the inside pin reference does not have a node reference, because the node must be the
activity that contains the pin

28

ActionNode

InputPin

InputPinReference

InsideInputPin
Reference

InsideOutput
PinReference

InsidePinReference

OutputPin

OutputPinReference

OutsideInput
PinReference

OutsideOutput
PinReference

OutsidePinReference

PinReference

[1..1] inputPin [1..1] outputPin

[1..1] actionNode

Figure 3.11: The Pin reference structure.

3.3.2 Concrete Syntax

In order to make it easier to test and visualise activities, I defined a grammar for the
metamodel in Xtext. The SysMLv2 language served as the main inspiration for the lan-
guage, however, much of the syntactic sugars have been omitted for the sake of simplicity.
Listing 3.1 is the activity Figure 2.3 example written in GATL. For the exact grammar
definition, please see Section A.2.

29

� �
1 activity CompilationProcess {
2 var errors : boolean := false
3
4 initial Initial
5 merge Merge
6 fork Fork
7
8 action Read1 : activity (out pr1 : integer)
9 action Compile1 : activity (in pc1 : integer)

10 action Read2 : activity (out pr2 : integer)
11 action Compile2 : activity (in pc2 : integer)
12
13 join Join
14 action Link
15 decision Decision
16 action Edit
17 final Final
18
19 control flow from Initial to Merge
20 control flow from Merge to Fork
21 control flow from Fork to Read1
22 control flow from Fork to Read2
23
24 data flow from Read1.pr1 to Compile1.pc1
25 data flow from Read2.pr2 to Compile2.pc2
26
27 control flow from Read1 to Join
28 control flow from Read2 to Join
29 control flow from Join to Link
30 control flow from Link to Decision
31 control flow from Decision to Edit [errors]
32 control flow from Edit to Merge
33 control flow from Decision to Final [!errors]
34 }� �

Listing 3.1: Gamma Activity Language representation of the compilation activity.

30

Chapter 4

Integrating the Activity Language
Into Gamma

In the previous chapter, I introduced the Gamma Activity Language – the important parts
of its metamodel along with the semantics of the model elements and their textual syntax.
However, in order to formally verify activity models, the language has to be integrated
into the Gamma transformation pipeline (see Figure 2.7). I present the important aspects
of this integration, I start by defining the semantics of activities alongside statecharts
in Section 4.1, after which I define the integration semantics in Section 4.2. Finally, I
overview the implementation details in Section 4.3.

4.1 Activities Alongside Statecharts

In this section, I present the various questions that arose when I integrated GATL into
the statechart language of Gamma, and present my solutions and reasoning for them.

4.1.1 Calling Activities

In order to create a connection between statecharts and activities, the user needs an
interface to do so. In SysML, there are many ways to call activities from statecharts. In
the following I summarize them, and chose one for the language.

Transition Actions One possible solution is calling activities from transition actions.
At first glance, this makes the most sense, however transitions have to be executed in a
single step, meaning they can not contain loops and recursions. As activities are inherently
parallel in nature, the resulting implementation would have to flatten the activity model.
Because of time constraints, this solution was implemented.

Do Behaviours In SysML, states may have do behaviours. This means, that the be-
haviour (activity in our case) is under execution while the state machine is inside the given
state, and halted when the state is left. However, there are many questions:

How does an activity know to halt?

• The state signals the activity that it should end, and waits until it halts – in this
case a synchronisation step is created;

31

• The activity checks if it should run, that is, whether the state machine is in the
given state. However, this adds an extra assume operation per each node and flow.

What happens, when a state has a transition into itself, while also having a do behaviour
action?

• Either a new activity is created each time the state is entered;

• Or the same activity is used after reset.

For the sake of simplicity, I choose the last option of each for do behaviours:

• The activity should check if its state is active before each operation;

• The entry action of the transition resets the activity.

Note that these questions have a critical impact on the semantics of composing state ma-
chines and activities, and unfortunately, SysML does not give an exact answer. Figure 4.1
shows the added elements to the Gamma metamodel.

CallActivityAction
ActivityDeclaration

 definition : Definition
 pins : Pin

Statement

[1..1] activity

(a) Call activity action

State

 regions : Region
 invariants : Expression
 entryActions : Action
 exitActions : Action
 annotation : StateAnnotation
 doActions : Action

(b) Do action on states

Figure 4.1: Extensions to the Gamma metamodel

4.1.2 Activities Defining Components

In SysML, components’ behaviour may be defined directly by activities. However, in
Gamma, all components use reactive semantics, which would have been difficult to imple-
ment, in the context of activities. Thus, SysML components that use Activity Diagrams
as their behaviour must be mapped wrapper statechart calling the activity.

Although this constrains us to only use statecharts directly, we can still utilise the reactive
nature of components, by adding a special activity node, that listens for such events.

TriggerNodes extend the activity semantics, by adding an additional assumption operation
inside the ONodeRun operation function, checking if the given event has been received. The
example in Listing 4.1 shows a trigger node, which is only executed when it has a token
from the initial node, and the start event is received from the Control port.

32

� �
1 statechart Statechart [
2 port connection : requires Control
3] {
4 // definitions ...
5
6 activity DoActivity {
7 initial Initial
8 trigger AcceptEvent when connection.start
9 final Final

10
11 control flow from Initial to AcceptEvent
12 control flow from AcceptEvent to Final
13 }
14 }� �

Listing 4.1: An example trigger node accepting a start signal.

4.2 Integration Semantics

As presented in the transformation pipeline (Figure 2.7), Gamma transforms the state-
charts and components into an XSTS model instance. In the following, I show how to
merge XSTS created from components with the XSTS created from activities.

The unified transformation is carried out in three steps. Section 4.2.1 presents how we
preprocess the composite model by creating activity instances and adding the initialisation
action to the calling states. Next, in Section 4.2.2 we transform the components using the
Gamma transformation pipeline and then transform the called (now unique) activities.
The resulting XSTS models are merged, resulting in the final XSTS. This XSTS model
then can be forwarded to the model checkers.

4.2.1 Preprocess Components

As the first step, we find all states that contain a call activity do action – denoted as S.
For each s ∈ S, we construct a new ActivityInstance for the called activity SAct , and add
an InitialiseActivityAction to its entry actions. This step ensures that two states calling
the same activity will not have conflicting variables in the resulting XSTS1, and the called
activity is initialised correctly before it is started. Figure 4.2 shows the extensions added
to the Gamma metamodel.

4.2.2 Transform Components and Activities

As the next step, we transform the Gamma components, denoting the resulting model
as XSTSComp, and the activity instances, denoted as XSTSSAct . In order to prevent the
activity from running when the state is not active, an additional assume operation is added
to the ONode(n) function, checking whether the associated state is active or not. Finally,
the resulting XSTS models are merged.

XSTS = XSTSComp
⋃ ⋃

sAct∈S
XSTSsAct

1In XSTS all variables are defined the a global scope, thus they must have unique name

33

ActivityInstanceState

 regions : Region
 entryAction : Action
 exitAction : Action

ActivityDeclaration

 definition : Definition
 pins : Pin

InitialiseActivityAction

[1..1] state

[0..1] activityInstance

[1..1] activity

[1..1] activityInstance

Figure 4.2: Activity instance and initialise activity extensions for the Gamma meta-
model.

4.3 Implementation Remarks

I used multiple technologies during the implementation of GATL. Gamma is implemented
as an Eclipse plugin2, and uses multiple frameworks: Ecore Modeling Framework3 (EMF)
to create the metamodels, Xtext4 to define the language grammars, and Viatra5 to trans-
form the models.

During the implementation, I added a new EMF project and a new Xtext project. I
then had to extend the preexisting Gamma Statechart Language, and the transformation
pipeline.

The contributions include (at the time of writing) 12, 601 line additions, 2, 235 line dele-
tions in 42 commits. There is currently an open pull request to the main GitHub reposi-
tory6.

These changes implemented are visualised in Figure 4.3: added parts are outlined with
green, while edited parts are outlined with orange.

2https://www.eclipse.org/downloads/
3https://www.eclipse.org/modeling/emf/
4https://www.eclipse.org/Xtext/
5https://www.eclipse.org/viatra/
6https://github.com/ftsrg/gamma

34

G
am

m
a

Statech
art

Lan
gu

age

Gamma
statechart

Gamma
statechart

V
alid

a�
o

n G
am

m
a

C
o

m
p

o
si�

o
n

Lan
gu

age

GCL model

G
am

m
a Trace

Lan
gu

age

Abstract test
cases

G
en

eral-p
u

rp
o

se
p

ro
gram

m
in

g lan
gu

age
System

implementa�on

Test suite
implementa�on

Execu
�

o
n

Statechart language
(frontend)

Engineering
statechart

Statechart language
(frontend)

Engineering
statechart

Property

Property

··Analysis
model

Analysis language
(backend)

Property

Property

Analysis language
(backend)

··Analysis
model

G
am

m
a

P
ro

p
erty

Lan
gu

age

Property

Property

··

„Annotated” GCL model

„Reduced” GCL model

G
am

m
a

G
en

o
m

d
el

Lan
gu

age

Coverage
criteria

G
am

m
a

A
c�

vity
Lan

gu
age

Gamma
ac�vity

Ac�vity language
(frontend)

Engineering
Activity

Figure 4.3: Overview of my modification to the Gamma transformation pipeline.

35

Chapter 5

Evaluation

In this chapter, I present two case studies to showcase the usability and verifiability of the
Gamma Activity Language, using a handcrafted simple model and an industry example
model.

5.1 Case Study - Compilation

The first case study is about the running example introduced in Figure 2.3. The goal of
this experiment is to evaluate the formal verification capabilities of the language using a
toy model.

5.1.1 Modeling

The GATL representation of the model has already been presented in Listing 3.1, however,
some modifications have to be implemented in order to run the verification. As activities
can not be verified directly, they must be wrapped within a statechart. Also, because
GPL properties can not reference activity model elements, an additional flag (variable
declaration of type boolean) must be added, to enable the construction of a reachability
property specifying the end of the activity. The modifications can be seen in Listing 5.1.� �

1 statechart CompilationWrapper {
2 var activityDone : boolean := false
3 region Main {
4 initial MainEntry
5 state Wrapper {
6 do / call CompilationProcess;
7 }
8 }
9 transition from MainEntry to Wrapper

10 activity CompilationProcess {
11 // ...
12 action Done : activity [language=action] {
13 activityDone := true;
14 }
15 final Final
16 // ...
17 control flow from Decision to Done [!errors]
18 control flow from Done to Final
19 }
20 }� �

Listing 5.1: The textual representation of the modified compilation example.

36

The next step was to wrap the statechart in a cascade component, and define the reacha-
bility property of the variable activityDone being true:� �

1 cascade Compilation {
2 component CompilationWrapper : CompilationWrapper
3 }� �� �
1 component Compilation
2
3 // Can the variable activityDone ever be true?
4 E F [{ variable CompilationWrapper.activityDone }]� �

Finally, I ran the verification using the Theta and the UPPAAL model checkers.

5.1.2 Results and Conclusion

Table 5.1 contains the execution time of the two model checkers. Interestingly, Theta took
– on average – one order of magnitude more time, then UPPAAL.

The trace Listing 5.2 shows the steps the model checkers took to reach the state described
by the property (activityDone = true). The first step shows the initial values of the system,
while the following steps show how the values change after the component is scheduled.
As can be seen, the second step is repeated 17 times before the variable becomes true. As
there are no transitions in the XSTS model from the statechart, the only transitions that
can be fired come from the activity. The token in the activity goes through eight1 nodes
and eight flows to reach node Done, after which an additional step is needed to execute
its action: thus resulting in a total of 8 + 8 + 1 = 17 steps.

Model Checker Successful Verification Execution Time
Theta Yes 1332 ms

UPPAAL Yes 162 ms

Table 5.1: The execution times for the compilation example.

The reason for the repetition is the lack of trace information regarding the activity model;
the XSTS transitions are executed as expected, however, the trace mechanism of Gamma
can not display these changes.

This case study showed that the Gamma Activity Language formalism does indeed work
for simple examples. However, there is still more work to be done, to let the user choose
activity nodes as reachability properties, and to show activity variables in the resulting
trace (see Chapter 6).

5.2 Case Study - Simple Space Mission

This section introduces an example model from the aerospace domain which we use as
a case study to demonstrate the capability of the Gamma Activity Language to model
complex SysML behavioural models. The example model was proposed by NASA in the
context of the OpenMBEE2 framework. The goal of OpenMBEE is to create a common
model repository to facilitate tool integration, so the ability to handle models in the scope
of this project can raise the relevance of any model analysis tool.

1Merge, Fork, Read(1,2), Compile(1,2), Join, Link, Decision, Edit, Done
2https://www.openmbee.org/

37

� �
1 step {
2 act {
3 reset
4 }
5 assert {
6 CompilationWrapper.Wrapper
7 CompilationWrapper.activityDone = false
8 }
9 }

10 step {
11 act {
12 schedule component
13 }
14 assert {
15 CompilationWrapper.Wrapper
16 CompilationWrapper.activityDone = false
17 }
18 }
19 // 16 more
20 step {
21 act {
22 schedule component
23 }
24 assert {
25 CompilationWrapper.Wrapper
26 CompilationWrapper.activityDone = true
27 }
28 }� �

Listing 5.2: The trace of the run formal verification.

The Gamma models used in this section are a modification of a previous case study [11],
in which the activities were mapped to parallel regions and composite states. For this case
study, I modified the models to use GATL to represent the activities.

5.2.1 System Modeling

The Simple Space Mission SysML model describes how a satellite with limited battery
charge communicates with a ground station, where data transfer results in large power
losses. The state-based behaviour of the system can be seen in Figures 5.1 and 5.2, while
the more complex activities are depicted in Figures 5.3 and 5.4.

The challenge of the mapping is posed by the elements that are not supported in GATL.
The SysML activities use duration constraints to model how much time a given action
takes to execute, along with interrupting edges and internal signals to simplify the models.
The GATL language does not support these elements, however, they can be substituted
with other modeling constructs. Duration constraints can be modeled using timeouts and
trigger nodes to insert waiting before the given action can be executed – although the
time waited will be deterministic, unlike the SysML specification. The behaviour defined
with the interrupting edge and internal signals can be substituted with additional boolean
variables that signal when the execution of the activity should be halted. The easiest way
to halt the activity is to leave its state. To detect the changes in the flags, I added a
timeout that tests for the flags every second. The created Gamma models can be found
in Section A.3

38

Figure 5.1: The state machine describing the behaviour of the ground station compo-
nent.

Figure 5.2: The state machine describing the behaviour of the spacecraft component.

39

Figure 5.3: The activity diagram describing the battery recharge process of the space-
craft component.

5.2.2 Results and Conclusion

To check the conformance of the Gamma model with the original SysML model, I generated
a state covering test set using the test generation functionality of Gamma, which produces
reachability properties for all states in the system. Table 5.2 shows the execution times of
the UPPAAL model checker. The table clearly shows how the state space of the low-level
formalism “exploded” when checking for the Satellite.Battery.Recharging state, hence the
high duration.

State Successful Verification Execution Time
Station.Main.Idle Yes 239 ms
Station.Main.Operation Yes 222 ms
Satellite.Communication.WaitingPing Yes 179 ms
Satellite.Communication.Transmitting Yes 220 ms
Satellite.Battery.NotRecharging Yes 171 ms
Satellite.Battery.Recharging Yes 35,998 ms

Table 5.2: The execution times for the Simple Space Mission system using UPPAAL.

In contrast, Table 5.3 shows the execution times of the Theta model checker. Every
property took significantly more time to run on Theta, moreover, the previous state space
explosion caused Theta to run out of memory.

State Successful Verification Execution Time
Station.Main.Idle Yes 960 ms
Station.Main.Operation Yes 1450 ms
Satellite.Communication.WaitingPing Yes 890 ms
Satellite.Communication.Transmitting Yes 1172 ms
Satellite.Battery.NotRecharging Yes 947 ms
Satellite.Battery.Recharging – out of memory

Table 5.3: The execution times for the Simple Space Mission system using Theta.

This case study showed, that real world SysML models can be mapped to the Gamma
Activity Language, although, some SysML elements may have to be transformed into a
series of GATL elements manually. However, the model verification takes exponentially
more time as we increase the model elements.

40

Figure 5.4: The activity diagram describing the data transmission process of the space-
craft component.

41

Chapter 6

Conclusion

In this work, I have proposed and implemented the Gamma Activity Language that ex-
tends the Gamma Statechart Composition Framework with support for do actions in
states describing activities. I have shown the theoretical background of state-based and
process-based behavioural modelling and motivated the need for formal verification of such
models. After examining the related work, which mainly focuses on verifying activities
alone, I have formalized the precise semantics of the new activity language by provid-
ing a mapping to Gamma’s XSTS language. Combining state machines and activities in
Gamma is now possible with the usage of do actions, which are activities performed while
the component is in a certain state. Finally, I have demonstrated through the simple case
study model used throughout the report as well as a more complex example coming from
the space domain that the proposed approach indeed works. This work will provide the
foundations to more closely examine the possible interactions between state machines and
activities, and create solid foundations to improve upon all the shortcomings of this initial
prototype.

Future Work As direct next steps, I plan to:

• Extend the Gamma Property Language and Gamma Trace Language to integrate
with activity models.

• Implement a broader subset of the SysML formalism to take the language closer to
the user level.

• Extend the semantics of Gamma Activity models with a queueing system for multiple
tokens flowing on the same flow.

• Enable the definition of Gamma components directly with activities - as this would
allow more flexibility in the design of heterogeneous systems.

• Find a way to use activities as transition effects, entry or exit behaviours, which
would require a different mapping of activities to XSTS models.

• Explore alternatives in the XSTS mapping to improve verification performance.

42

Acknowledgements

I would like to express my gratitude to my supervisors, Vince Molnár and Bence Graics,
who have continuously guided me during this work, providing me valuable insights and
feedback anytime I needed it. I would also like to thank András Vörös for starting me
down the path of MBSE and formal verification all those years ago, and giving me the
courage to write this report. And last, but not least, I would like to thank all my friends
for their extreme patience and understanding during the last weeks.

43

Bibliography

[1] Technical operations international council on systems engineering INCOSE. INCOSE
systems engineering vision 2020. technical report.

[2] MBSE wiki.

[3] Petri nets and algebraic specifications. Theoretical Computer Science, 80(1):1–34,
1991. ISSN 0304-3975. DOI: https://doi.org/10.1016/0304-3975(91)90203-E.

[4] David A. Larsen K. G. Håkansson J. Pettersson P. Yi W. Hendriks M. Behrmann,
G. Uppaal 4.0. 2006.

[5] G Bellinger. Modeling & simulation: An introduction. 2004.

[6] Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model Checking. MIT
Press, Cambridge, MA, USA, 2000. ISBN 0262032708.

[7] Jan Czopik, Michael Alexander Košinár, Jakub Štolfa, and Svatopluk Štolfa. Formal-
ization of software process using intuitive mapping of UML activity diagram to CPN.
In Pavel Kömer, Ajith Abraham, and Václav Snášel, editors, Proceedings of the Fifth
International Conference on Innovations in Bio-Inspired Computing and Applications
IBICA 2014, pages 365–374, Cham, 2014. Springer International Publishing. ISBN
978-3-319-08156-4.

[8] D. Dori. Object-process methodology: A holistic system paradigm. New York, NY,
USA: Springer., 2002.

[9] Rik Eshuis. Symbolic model checking of uml activity diagrams. ACM Trans.
Softw. Eng. Methodol., 15(1):1–38, January 2006. ISSN 1049-331X. DOI:
10.1145/1125808.1125809.

[10] A. Moore R. Steiner Friedenthal, S. and M. Kaufman. A practical guide to sysml:
The systems modeling language, 3rd edition. MK/OMG Press.,, 2014.

[11] Bence Graics, Vince Molnár, András Vörös, István Majzik, and Dániel Varró. Mixed-
semantics composition of statecharts for the component-based design of reactive sys-
tems. Software and Systems Modeling, 19(6):1483–1517, Nov 2020. ISSN 1619-1374.
DOI: 10.1007/s10270-020-00806-5.

[12] Object Management Group. OMG system modeling language. .

[13] Object Management Group. Systems modeling language version 2 (SysMLv2). .

[14] Object Management Group. MDA foundation model. OMG document number
ORMSC/2010-09-06. 2010.

44

http://dx.doi.org/https://doi.org/10.1016/0304-3975(91)90203-E
http://dx.doi.org/10.1145/1125808.1125809
http://dx.doi.org/10.1007/s10270-020-00806-5

[15] Object Management Group. Semantics of a foundational subset for executable UML
models. 2018.

[16] D. Harel and A. Pnueli. On the development of reactive systems. In Krzysztof R. Apt,
editor, Logics and Models of Concurrent Systems, pages 477–498, Berlin, Heidelberg,
1985. Springer Berlin Heidelberg. ISBN 978-3-642-82453-1.

[17] David Harel. Statecharts: a visual formalism for complex systems. Sci-
ence of Computer Programming, 8(3):231–274, 1987. ISSN 0167-6423. DOI:
https://doi.org/10.1016/0167-6423(87)90035-9.

[18] Benedek Horváth, Bence Graics, Ákos Hajdu, Zoltán Micskei, Vince Molnár, István
Ráth, Luigi Andolfato, Ivan Gomes, and Robert Karban. Model checking as a service:
Towards pragmatic hidden formal methods. In Proceedings of the 23rd ACM/IEEE In-
ternational Conference on Model Driven Engineering Languages and Systems: Com-
panion Proceedings, MODELS ’20, New York, NY, USA, 2020. Association for Com-
puting Machinery. ISBN 9781450381352. DOI: 10.1145/3417990.3421407.

[19] Edward Huang, Leon F. McGinnis, and Steven W. Mitchell. Verifying sysml activity
diagrams using formal transformation to petri nets. Systems Engineering, 23(1):118–
135, 2020. DOI: https://doi.org/10.1002/sys.21524.

[20] Balcer MJ. Mellor SJ. Executable UML: A foundation for model- DrivenArchitecture.
The Addison-Wesley Object TechnologySeries: Addison-Wesley Professional, 2002.

[21] Vince Molnár, Bence Graics, András Vörös, István Majzik, and Dániel Varró. The
Gamma statechart composition framework: design, verification and code generation
for component-based reactive systems. In Proceedings of the 40th International Con-
ference on Software Engineering: Companion Proceeedings, pages 113–116. ACM,
2018. DOI: 10.1145/3183440.3183489.

[22] Milán Mondok. Extended symbolic transition systems: an intermediate language for
the formal verification of engineering models. Scientific Students’ Association Report,
2020.

[23] Zoltán Micskei Márton Elekes. Towards testing the uml pssm test suite. 2021.

[24] T. Murata. Petri nets: Properties, analysis and applications. Proceedings of the IEEE,
77(4):541–580, 1989. DOI: 10.1109/5.24143.

[25] OMG. Precise semantics of UML state machines (PSSM). formal/19-05-01., 2019.

[26] Samir Ouchani, Otmane Ait Mohamed, and Mourad Debbabi. Efficient probabilistic
abstraction for sysml activity diagrams. In George Eleftherakis, Mike Hinchey, and
Mike Holcombe, editors, Software Engineering and Formal Methods, pages 263–277,
Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

[27] Samir Ouchani, Otmane Aït Mohamed, and Mourad Debbabi. A for-
mal verification framework for sysml activity diagrams. Expert Sys-
tems with Applications, 41(6):2713–2728, 2014. ISSN 0957-4174. DOI:
https://doi.org/10.1016/j.eswa.2013.10.064.

[28] Messaoud RAHIM, Ahmed Hammad, and Malika Ioualalen. Modular and Distributed
Verification of SysML Activity Diagrams. In MODELSWARD 2013, 1st Int. Conf.
on Model-Driven Engineering and Software Development, pages 202 – 205, Spain,
January 2013.

45

http://dx.doi.org/https://doi.org/10.1016/0167-6423(87)90035-9
http://dx.doi.org/10.1145/3417990.3421407
http://dx.doi.org/https://doi.org/10.1002/sys.21524
http://dx.doi.org/10.1145/3183440.3183489
http://dx.doi.org/10.1109/5.24143
http://dx.doi.org/https://doi.org/10.1016/j.eswa.2013.10.064

[29] Gianna Reggio, Maurizio Leotta, and Filippo Ricca. Who knows/uses what of the
UML: A personal opinion survey. In Juergen Dingel, Wolfram Schulte, Isidro Ramos,
Silvia Abrahão, and Emilio Insfran, editors, Model-Driven Engineering Languages
and Systems, pages 149–165, Cham, 2014. Springer International Publishing.

[30] Hajdu A. Vörös A. Micskei Z. Majzik I. Tóth, T. Theta: a framework for abstraction
refinement-based model checking. Stewart, D., Weissenbacher, G. (eds.), Proceedings
of the 17th Conference on Formal Methods in Computer-Aided Design.

46

Appendix

A.1 XSTS Language

In this appendix I introduce the exact language constructs for the XSTS language

Types

XSTS contains two default variable types, logical variables (boolean) and mathematical
integers (integer). XSTS also allows the user to define custom types, similarly to enum
types in common programming languages.

A custom type can be declared the following way:� �
1 type <name> : { <literal_1>, . . . , <literal_n> }
2
3 type Color : { RED, GREEN, BLUE }� �
Variables

Variables can be declared the following way, where <value> denotes the value that will
be assigned to the variable in the initialization vector:� �

1 var <name> : <type> = <value>� �
The variable can only take a value of the specified type.

If the user wishes to declare a variable without an initial value, this is possible as well:� �
1 var <name> : <type>� �

A variable can be tagged as a control variable with the keyword ctrl:� �
1 ctrl var <name> : <type>� �

In which case the variable v will also be added to VC (the set of control variables).

Examples:� �
1 var a : integer
2 ctrl var b : boolean = false
3 var c : Color = RED� �

47

Operations

The behaviour of XSTS can be described using basic and composite operations. Basic
operations include assignments, assumptions and havocs. In the following, you can see an
example for each, where <expr> is an expression returning a value, and <varname> is the
name of a variable.� �

1 assume <expr>
2
3 <varname> := <expr>
4
5 havoc <varname>� �

Composite operations are either non-deterministic choices, sequences or parallels. Nonde-
terministic choices have the following syntax, where <operation> are arbitrary basic or
composite operations:� �

1 choice {
2 <operation>
3 } or {
4 <operation>
5 }� �

Sequences have the following syntax:� �
1 <operation>
2 <operation>
3 <operation>� �

And parallels have the following syntax:� �
1 parallel {
2 <operation>
3 <operation>
4 }� �
Transitions

Each transition is a single operation (basic or composite). We distinguish between three
sets of transitions, Tran, Init and Env. Transitions are described with the following syntax,
where <transition-set> is either tran, env or init:� �

1 <transition-set> {
2 <operation>
3 } or {
4 <operation>
5 } or
6 //...
7 or {
8 <operation>
9 }� �

48

A.2 Gamma Activity Language

The following section gives high level introduction into the syntax of the Gamma Activity
Language.

Pins

Pins can be declared the following way, where <direction> can be either in or out, and
type a valid Gamma Expression type.� �

1 <direction> <name> : <type>� �
For example:� �

1 in examplePin : integer� �
where the direction is in, the name is examplePin and the type is integer.

Nodes

Nodes can be declared by stating the type of the node and then it’s name. The type
determines the underlying meta element.

The available node types:� �
1 initial InitialNode
2 decision DecisionNode
3 merge MergeNode
4 fork ForkNode
5 join JoinNode
6 final FinalNode
7 action ActionNode� �
Flows

The behaviour of the Activity can be described by stating data or control flows between
two nodes. Flows may have guards on them, which limits when the flow can fire. Activities
may only be from the current activity definition’s children. Pins can be accessed using the
. accessor operator, the activity on the left hand side, and the pin’s name on the right.
The enclosing activity’s name is self.

Flows can be declared the following way, where <kind> is the kind of flow, <source> and
<target> is the source/target node or pin, and <guard> is a Gamma Expression returning
boolean:� �

1 <kind> flow from <source> to <target> [<guard>]
2
3 control flow from activity1 to activity2
4 control flow from activity1 to activity2 [x == 10]
5 data flow from activity1.pin1 to activity2.pin2
6 data flow from self.pin to activity3.pin2� �

49

Declarations

Activity declarations state the name of the activity, as well as its pins A.2.� �
1 activity Example (
2 //..pins..
3) {
4 //..body..
5 }� �

You can also declare activities inline by using the : operator:� �
1 activity Example {
2 action InlineActivityExample : activity
3 }� �
Definitions

Activities also have definitions, which give them bodies. The body language can be either
activity or action depending on the language metadata set. Using the action language
let’s you use any Gamma Action expression, including timeout resetting, raising events
through component ports, or simple arithmetic operations.

An example activity defined by an action body:� �
1 activity Example (
2 in x : integer,
3 out y : integer
4) [language=action] {
5 self.y := self.x * 2;
6 }� �

Inline activities may also have pins and be defined using action language:� �
1 activity Example {
2 action InlineActivityExample : activity (
3 in input : integer,
4 out output : integer
5) [language=action] {
6 self.output := self.input;
7 }
8 }� �

A composite activity can be easily created using inline activity definition:� �
1 activity Example {
2 initial Init1
3 final Final1
4
5 action InlineActivityExample : activity {
6 initial Init2
7 final Final2
8
9 control flow from Init2 to Final2

10 }
11
12 control flow from Init1 to InlineActivityExample
13 control flow from InlineActivityExample to Final1
14 }� �

50

� �
1 activity Adder(
2 in x : integer,
3 in y : integer,
4 out o : integer
5) [language=action] {
6 self.o := self.x + self.y;
7 }
8
9 activity Example {

10 initial Initial
11
12 action ReadSelf1 : activity (
13 out x : integer
14)
15 action ReadSelf2 : activity (
16 out x : integer
17)
18 action Add : Adder
19 action Log : activity (
20 in x : integer
21)
22
23 final Final
24
25 control flow from Initial to ReadSelf1
26 control flow from Initial to ReadSelf2
27 control flow from Initial to Add
28 data flow from ReadSelf1.x to Add.x
29 data flow from ReadSelf2.x to Add.y
30 data flow from Add.o to Log.x
31 control flow from Log to Final
32 }� �

Listing A.2.1: Basic adder example.

Example

A simple example activity can be seen in Listing A.2.1. This example shows two read
actions, that return a random value, which are added together and logged to the console.
The addition is defined using a NamedActivitDeclaraionReference.

51

A.3 Spacecraft Model
� �

1 package mission
2
3 import "Interface/Interfaces"
4 import "Groundstation/GroundStation"
5 import "Spacecraft/Spacecraft"
6
7 sync Mission [
8 port _control : requires StationControl
9] {

10 component station : GroundStation
11 component satellite : Spacecraft
12 bind _control -> station._control
13 channel [satellite.connection] -o)- [station.connection]
14 }� �

Listing A.3.1: The wrapper synchronous component.� �
1 import "/hu.bme.mit.jpl.spacemission.casestudy/model/.Mission.gsm"
2 component Mission
3 @ ("station.Main.Idle")
4 E F [{ state station.Main.Idle }]
5 @ ("station.Main.Operation")
6 E F [{ state station.Main.Operation }]
7 @ ("satellite.Communication.Transmitting")
8 E F [{ state satellite.Communication.Transmitting }]
9 @ ("satellite.Battery.Recharging")

10 E F [{ state satellite.Battery.Recharging }]
11 @ ("satellite.Communication.WaitingPing")
12 E F [{ state satellite.Communication.WaitingPing }]
13 @ ("satellite.Check.CheckTimeout")
14 E F [{ state satellite.Check.CheckTimeout }]
15 @ ("satellite.Battery.NotRecharging")
16 E F [{ state satellite.Battery.NotRecharging }]� �

Listing A.3.2: The reachability properties generated by Gamma.� �
1 import "Interface/Interfaces.gcd"
2 import "Mission.gcd"
3
4 analysis {
5 component : Mission
6 language : XSTS-UPPAAL
7 state-coverage
8 constraint : {
9 minimum-orchestrating-period : SCHEDULE_CONSTRAINT ms

10 maximum-orchestrating-period : SCHEDULE_CONSTRAINT ms
11 }
12 }
13
14 verification {
15 language : XSTS-UPPAAL
16 file : "Mission.xml"
17 property-file : ".Mission.gpd"
18 }� �

Listing A.3.3: The definition of the run analysis and verification tasks.

52

� �
1 package interfaces
2
3 interface DataSource {
4 out event _data
5 in event ping
6 }
7
8 interface StationControl {
9 out event start

10 out event shutdown
11 }
12
13 const SCHEDULE_CONSTRAINT : integer := 1501� �
Listing A.3.4: The interface model specifying the signals between the two components.

� �
1 activity ReceiveData {
2 initial Initial
3
4 merge Merge
5
6 trigger DataPacket when connection._data
7
8 action ProcessData
9

10 control flow from Initial to Merge
11 control flow from Merge to DataPacket
12 control flow from DataPacket to ProcessData
13 control flow from ProcessData to Merge
14 }� �

Listing A.3.5: The Gamma implementation of the ReceiveData activity.

� �
1 package groundstation
2
3 import "Interface/Interfaces.gcd"
4
5 statechart GroundStation [
6 port connection : requires DataSource
7 port _control : requires StationControl
8] {
9 timeout pingTimeout

10 timeout autoStart
11
12 region Main {
13 initial Entry
14 state Idle {
15 entry / set autoStart := 30s;
16 }
17 state Operation {
18 do / call ReceiveData;
19 entry / raise connection.ping; set pingTimeout := 10s;
20 }
21 }
22
23 transition from Entry to Idle
24 transition from Idle to Operation when _control.start
25 transition from Idle to Operation when timeout autoStart
26 transition from Operation to Operation when timeout pingTimeout
27 transition from Operation to Idle when _control.shutdown
28
29 activity ReceiveData {
30 // ...
31 }
32 }� �

Listing A.3.6: The Gamma implementation of the Ground Station component.

53

� �
1 activity RechargeBatteries {
2 initial Initial
3
4 merge Merge
5 decision Decision
6 action SetWait : activity [language=action] {
7 set rechargeTimeout := 10s;
8 }
9 trigger Wait when timeout rechargeTimeout

10 action Charge : activity [language=action] {
11 batteryVariable := batteryVariable + 1;
12 }
13 action Full : activity [language=action] {
14 batteryFullyCharged := true;
15 }
16 final Final
17
18 control flow from Initial to Merge
19 control flow from Merge to Decision
20 control flow from Decision to SetWait [batteryVariable < 100]
21 control flow from SetWait to Wait
22 control flow from Wait to Charge
23 control flow from Charge to Merge
24 control flow from Decision to Full [batteryVariable >= 100]
25 control flow from Full to Final
26 }� �

Listing A.3.7: The Gamma implementation of the Recharge Batteries activity.

54

� �
1 activity TransmitData {
2 initial Initial
3
4 fork Fork
5
6 merge TransmitMerge
7 decision TransmitDecision
8 action SetTransmitWait : activity [language=action] {
9 set transmitTimeout := 1s;

10 }
11 trigger TransmitWait when timeout transmitTimeout
12 action TransmitData : activity [language=action] {
13 _data := _data - 1;
14 raise connection._data;
15 }
16
17 merge ConsumeMerge
18 action SetConsumeWait : activity [language=action] {
19 set consumeTimeout := 1s;
20 }
21 trigger ConsumeWait when timeout consumeTimeout
22 action ConsumeEnergy : activity [language=action] {
23 batteryVariable := batteryVariable - 1;
24 }
25 decision ConsumeDecision
26
27 merge Merge
28
29 action SetDone : activity [language=action] {
30 transmitionDone := true;
31 }
32
33 final Final
34
35 control flow from Initial to Fork
36
37 control flow from Fork to TransmitMerge
38 control flow from TransmitMerge to TransmitDecision
39 control flow from TransmitDecision to SetTransmitWait [_data > 0]
40 control flow from SetTransmitWait to TransmitWait
41 control flow from TransmitWait to TransmitData
42 control flow from TransmitData to TransmitMerge
43 control flow from TransmitDecision to Merge [_data <= 0]
44
45 control flow from Fork to ConsumeMerge
46 control flow from ConsumeMerge to SetConsumeWait
47 control flow from SetConsumeWait to ConsumeWait
48 control flow from ConsumeWait to ConsumeEnergy
49 control flow from ConsumeEnergy to ConsumeDecision
50 control flow from ConsumeDecision to ConsumeMerge [batteryVariable >= 40]
51 control flow from ConsumeDecision to Merge [batteryVariable < 40]
52
53 control flow from Merge to SetDone
54 control flow from SetDone to Final
55 }� �

Listing A.3.8: The Gamma implementation of the Transmit Data activity.

55

� �
1 package spacecraft
2 import "Interface/Interfaces.gcd"
3 @RegionSchedule = bottom-up
4 statechart Spacecraft [
5 port connection : provides DataSource
6] {
7 var batteryVariable : integer := 100
8 var _data : integer := 100
9

10 var batteryRecharging : boolean := false
11 var batteryFullyCharged : boolean := false
12 var transmitionDone : boolean := false
13
14 timeout rechargeTimeout
15 timeout consumeTimeout
16 timeout transmitTimeout
17
18 timeout checkTimeout
19
20 region Communication {
21 initial CommunicationEntry
22 state WaitingPing
23 state Transmitting {
24 do / call TransmitData;
25 }
26 }
27 region Battery {
28 initial BatteryEntry
29 state NotRecharging {
30 entry / batteryRecharging := false;
31 }
32 state Recharging {
33 do / call RechargeBatteries;
34 entry / batteryRecharging := true;
35 }
36 }
37
38 region Check {
39 initial CheckEntry
40 state CheckTimeout {
41 entry / set checkTimeout := 500ms;
42 }
43 }
44
45 transition from CheckEntry to CheckTimeout
46 transition from CheckTimeout to CheckTimeout when timeout checkTimeout
47
48 transition from CommunicationEntry to WaitingPing
49 transition from WaitingPing to Transmitting
50 when connection.ping [!batteryRecharging and _data > 0]
51 transition from Transmitting to WaitingPing when timeout checkTimeout [transmitionDone]
52 / transmitionDone := false;
53
54 transition from BatteryEntry to NotRecharging
55 transition from NotRecharging to Recharging when timeout checkTimeout [batteryVariable < 80]
56 transition from Recharging to NotRecharging when timeout checkTimeout [batteryFullyCharged]
57 / batteryFullyCharged := false;
58
59 activity TransmitData {
60 // ...
61 }
62
63 activity RechargeBatteries {
64 // ...
65 }
66
67 }� �

Listing A.3.9: The Gamma implementation of the Spacecraft component.

56

	Kivonat
	Abstract
	Introduction
	Background
	Model-based Systems Engineering
	Systems Modeling Language

	Formal Verification
	Model Checking
	Petri Nets
	Activities as Petri Nets

	Gamma Statechart Composition Framework
	Example Statechart

	Extended Symbolic Transition System
	Formal Definition
	Traffic Light Controller Example

	Related Work

	Gamma Activity Language
	Language Design
	Supported SysML Feature Subset

	Formal Definition
	Formal Behaviour

	Language Gramar
	Metamodel
	Concrete Syntax

	Integrating the Activity Language Into Gamma
	Activities Alongside Statecharts
	Calling Activities
	Activities Defining Components

	Integration Semantics
	Preprocess Components
	Transform Components and Activities

	Implementation Remarks

	Evaluation
	Case Study - Compilation
	Modeling
	Results and Conclusion

	Case Study - Simple Space Mission
	System Modeling
	Results and Conclusion

	Conclusion
	Acknowledgements
	Bibliography
	Appendix
	XSTS Language
	Gamma Activity Language
	Spacecraft Model

