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Kivonat

Az elmúlt években a világ központi bankjai a Digitális Jegybak Pénzek (CBDC) lehetséges
bevezetését kutatták; digitális valutákét, amelyeket közvetlenül a központi bank fedez. A
CBDC modellek és kiszolgálási architektúrák széles skáláját vizsgálták meg, a klasszikus
bankszámla jellegű digitális pénztől a Bitcoin-stílusú pénzügyi eszközökig, valamint a köz-
pontosított megoldásoktól a decentralizált rendszerekig. A nyilvánosságra hozott kísérletek
nagy száma ellenére azonban a nyílt forráskódú prototípusok rendkívül ritkák, valamint az
identitáskezelés és a titoktartás kulcskérdései többnyire nyitva maradnak, egyszerű hivat-
kozással arra, hogy ezek a jegybank politikai döntéseitől függenek. Ugyanakkor a digitális
személyazonosság-kezelés saját forradalmán megy keresztül. Az olyan kezdeményezések,
mint a Self-Sovereign Identities (SSI) és a Decentralized Identities azt a közös elképze-
lést vallják, hogy egy személy sokféle identitását valamilyen személyes „pénztárcához” kell
kötni, és erre kell hitelesítő okiratokat kiadni. Az elosztott főkönyvek fontos szerepet ját-
szanak ezen megközelítésekben. Azt azonban csak nemrég ismerték fel, hogy az SSI-nak a
CBDC biztonságának, auditálhatóságának és adatvédelmének fontos elemét kell képeznie
– a konkrét lehetséges megközelítésekre vonatkozó elemzések egyelőre gyakorlatilag nem lé-
teznek. Ebben a munkámban az első hozzájárulásom azoknak a fizetési identitás-támogató
képességeknek a feltérképezése és prototípusának elkészítése, amelyeket a vezető SSI tech-
nológiai halmaz, a Hyperledger Aries és az Indy hozhat a gyakorlatilag egyetlen nyílt
forráskódú CBDC fizetési rendszerhez, az MIT Digital Currency Initiative-jából származó
openCBDC-hez. Az implementált funkciók közé tartozik az „Ismerd meg ügyfeled” köve-
telmények támogatása, valamint a hitelesítés és a fizetésre való authorizáció. A második
pedig, hogy bár a CBDC-k titoktartást tekintve általában nem készpénzszerűek – mivel
digitális eszközökről van szó –, el kell ismerni a közvélemény igényét a készpénz által biz-
tosított titoktartás szintjére. Javaslom, hogy egy speciális CBDC eszköz egy teljes CBDC
ökoszisztémában, amely mesterséges készpénzszerű „terhekkel” rendelkezik – mint például
a maximálisan tartható összeg, a pénz alacsony sebessége, valamint a fizető és a kedvezmé-
nyezett fizikai közelsége – elősegíthetné a készpénzszerű titoktartást. Ebből a célból, egy
SSI protokol rendszerre támaszkodva, egy fizetési protokollt és egy prototípust készítek
az openCBD-hez, amelyet a Chaum-i DigiCash ihletett, amely egyrészt lehetővé teszi a
felhasználók számára, hogy tetszőleges számú Bitcoin-szerű pszeudonímát használjanak a
Bitcoinban ismert adatvédelmi szint mellett., másrészt biztosítja ezen (paraméterezhető)
„terhek” működését, amelyek a készpénz fizikai tulajdonságait hivatottak emulálni.
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Abstract

In recent years, central banks around the world have been researching the possible intro-
duction of Central Bank Digital Currencies (CBDCs); digital currencies which are directly
backed by the central bank. A wide range of CBDC models and hosting architectures have
been explored, from classic bank account like money to Bitcoin-style bearer instruments,
and from centralized solutions to compositions of decentralized systems. However, despite
the large number of publicized experiments, open prototypes are extremely scarce and key
questions of identity handling and privacy are mostly left open with a simple reference of
these being dependent on central bank policy decisions. At the same time, digital identity
handling is undergoing its own revolution. With markedly different emphases, “flavors”
and relationships, but initiatives as Self-Sovereign Identities (SSI) and Decentralized Iden-
tities share the common idea that the many identities of a person should be tied to personal
“wallets” and credentials should be issued against these. Decentralized ledgers form an
important part in securing these approaches. However, it has only been recognized that
SSI should form an important component in CBDC security, auditability, and privacy –
as of now, analyses on the specific possible approaches are practically nonexistent. In this
work, my first contribution is mapping out and prototyping the payment identity sup-
port capabilities that the leading SSI technology stack, Hyperledger Aries and Indy can
bring to the practically only open source CBDC payment processor solution, openCBDC
from the Digital Currency Initiative of MIT. Importantly, the use cases include Know-
Your-Customer requirement support and authentication and authorization for payment.
Second, while CBDCs will not generally be cash-like in their privacy – as they are digital
assets – the need of the public for the level of privacy provided by cash will have to be
recognized. I propose that a special CBDC asset in a full CBDC ecosystem, which has
artificial cash-like encumbrances – as maximum holdable amount, low speed of money
and physical proximity of payer and payee – could be allowed to function with cash-like
privacy. To this end, drawing on the presence of an SSI stack, I propose and prototype a
payment protocol for openCBDC, inspired by Chaumian DigiCash, which on the one hand
enables users to utilize any number of Bitcoin-like pseudonyms with the default level of
privacy in Bitcoin, and on the other hand, ensures the presence of these (parameterizable)
“encumbrances”, which mimic the physical properties of cash.
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Chapter 1

Introduction

After the preliminary research and experimental evaluation ramping up in recent years, it
is expected that a many central banks around the world will issue Central Bank Digital
Currencies (CBDC) and make them available for pubolic use. It is likely that identification
and authorization funtions related to CBDC will be ralized with Self-Sovereign Iden (SSI),
which in themselves represent a major, ongoing wave of innovation in Information Tech-
nology. Meanwhile, innovation based on CBDC managing smart contracts and workflows
is seriously hampered by the fact that freely accessible CBDC prototypes are scarce and
often only exist as proof-of-concept software. An important development at the beginning
of 2022 was that MIT (in collaboration with the Boston FED) made a preliminary CBDC
system public, called openCBDC. Analysing the capabilities of, and design possibilities
regarding such a system is crucial in pushing forward the possibilities of CBDCs.

Two key issues in CBDC design are performance and privacy, into which a marriage of
SSI solutions and a publicly available CBDC prototype would surely grant insight.

Surveying existing research, there is yet to be any analysis of adding SSI-based manage-
ment capabilities to openCBDC, and research regarding the use of SSI in closed-source
CBDC solutions is scarce.

In this paper, as SSI has been identified as a point of interest in CBDC development,
and numerous use cases have been identified where SSI may extend the capabilities of
payment workflows, I put forward the following contributions with the goal of getting a
clearer picture how SSI would help CBDC development.

I gave a structured argument for the benefits of using SSI technologies as the identity layer
of future CBDC schemes. Such are surprisingly missing from the relevant literature, while
SSI is being noted as an option to support.

I’ve proposed and prototyped an SSI-based fully auditable payment scheme for the
openCBDC transaction processor prototype from MIT and The FED Boston.

I’ve proposed a private payment scheme over openCBDC which relies on Self-Sovereign
Identities, draws on ideas from Chaumian Digicash, and enables considering Bitcoin equiv-
alent privacy in a subset of openCBDC transactions by enforcing "encumbrances" on money
flows, which imitate the behaviour of physical cash.

The paper is organised as follows: In Chaper 2 I introduce concepts and technologies on
which the payment schemes will be based on.

First, I summarize existing research regarding a Central Bank’s motivation for and possible
design choices in the development of a Central Bank Digital Currency. Then I highlight
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the advantages of openCBDC, and enumerate the components of the system my schemes
will interact with.

After, I introduce the key principles of Self-Sovereign identity, with focus on the ToIP pro-
tocol stack. Lastly, I present an existing implementation of an SSI stack, the Hyperledger
Indy/Ursa/Aries stack.

In Chapter 3 I summarize the motivations a Central Bank may have for implementing an
SSI based identity layer over an CBDC.

In Chapter 4 I explore and argue for a specific design model of payment schemes over a
CBDC. I designate two possible design stances within this model. These will become my
payment schemes.

In Chapter 5 I present my proposal and prototype for a fully auditable payment scheme
utilising SSI technologies.

Then Chapter 6 I propose and define a privacy-preserving payment scheme, inspired by
Digicash, enabling for the enforcement of "cash-like encumbrances".

Lastly, in Chapert 7 I discuss the results of my findings.

2



Chapter 2

Background

2.1 Central Bank Digital Currencies

Central Bank Digital Currencies are "a digital form of central bank money that is
different from balances in traditional reserve or settlement accounts." [1] They are a digital
form of fiat currency, denominated in the national unit of account, that is a direct liability
of the Central Bank [2] ,

Their development, along with other forms of digital money, has gone on for decades. Still,
in recent years - partly due to the popularity of cryptocurrencies - the introduction of a
general-purpose CBDC in the near future seems more and more like a possibility.

While conceptual research around CBDCs is abundant, the technology is still very much in
the developing stage. Many nations have begun conceptual research, with proof-of-concept
and pilot work ramping up in 2021. [3] While reports are widely available on a large
subset of proof-of-concept and pilot systems - such as e-CNY [4] –, they are yet to launch
in a production setting and mostly remain closed source, with some notable exceptions,
including openCBDC[5]. It is difficult to reproduce their findings, confirm their claims on
resilience, robustness, and performance - key points of interest in developing a CBDC -or
integrate them into payment processing systems.

The following sections explore the motivations, possible models, and design choices of
CBDC - as laid out by Auer and Böhme, 2020 [6]. My protocol’s design considerations
are closely tied to ones made in the underlying CBDC, mainly in terms of architecture
and access technology.
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2.1.1 Motivations for CBDC development

While motivations for Central Banks to adopt CBDCs are numerous [2], from transaction
speed to cross-border payments, I will focus on ones relevant to my paper.

• Financial inclusion CBDCs may provide lower cost and larger access alternatives
to Retail Bank money and cash in under-banked and cash-lacking areas of a country,
regardless of the user’s identity.

• Security and Resilience With a well-developed, robust payment system that
functions 24/7 may serve as a backup in the event of bank outages or cash shortages.
If the CBDC supports offline payments, the system may function through sporadic
electricity outages.

• Auditability The digital nature of CBDCs allows greater and finer control for
policymakers to enforce anti-money laundering and anti-terrorism laws and detect
other illegal activities. With multiple methods of payment, or even multiple CBDCs
within a financial ecosystem, with different levels of traceability and privacy, indi-
viduals may choose if they want cash-like privacy or the convenience of retail bank
transfer-like payments.

• Integration into digital payment processing systems CBDCs being digital
assets, they offer the opportunity to be included in digital workflows. Compared to
cash, they offer much greater speed and ease of transfer; and compared to digital
retail bank money, they provide a government-backed alternative to the numerous
already existing payment processor platforms, which are impeded by the diversity
of used technological frameworks, and the policies of the underlying retail banks -
for example, bank holidays [7] .

• Privacy A public need has been identified for private, untraceable, anonymous
digital payment systems[2, 6, 1, 8], well illustrated by the success of cryptocurren-
cies like Monero [9] https://coinmarketcap.com/hu/view/privacy/. If a Central
Bank would be to introduce such a payment system, it would be much easier to
regulate than private solutions and may provide functionality that falls in line with
the intent of policymakers

As CBDCs will be part of an existing financial ecosystem, they will take a peculiar place
alongside existing financial instruments, a subset of which is illustrated by Fig. 2.1. Whole-
sale CBDCs are like current digital Central bank reserves, as they are only accessible to
commercial banks, unlike retail CBDCs, which may be universally accessible to all types
of consumers, regardless of their identity.

4
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Figure 2.1: Types of money, Bech and Garratt 2017 [10] Graph 3

Figure 2.2: CBDC Pyramid, BIS 2020 [6] Graph 1

2.1.2 Design choices

To identify relevant design choices in the development of a retail CBDCs, BIS [6] has
developed a framework that focuses on consumer needs, and identifies the dependencies
across these design choices, the CBDC pyramid Fig. 2.2. The following few sections
explore the relevant levels of the pyramid

2.1.3 Architecture

CBDCS, being a form of digital money, must keep track of the owner of the funds, the
claim on the Central bank. The sum of these records is conceptualized as a ledger of
transactions or a registry of account balances. While many CBDCs use these kinds of
storage frameworks, an exception to be noted here is openCBDC, which stores only a
representation - the hash - of the unspent funds. Still, the following architectures not only
show how the claims may be technically organised, but how they may be legally organized.
These, in order, as illustrated by 2.3, are:

5



Figure 2.3: CBDC models, BIS 2020 [6] Graph 2

• Indirect Consumers do not directly claim CBDC through the CB but rather
through intermediaries, denoted CBDC Banks in the figure. These are also called
"Two-tier" or "Indirect" CBDCs

• Direct They are no intermediaries involved, the consumers have a direct claim
on the Central bank, it handles KYC

• Hybrid Consumers have a direct claim on the Central Bank, but transactions
and KYC are handled through intermediaries.

2.1.4 Infrastructure

We may compare "conventional" and DLT solutions, as Auer and Böhme, 2020 [6] did, in
ways that will be relevant when we look at the threat model of both openCBDC and our
protocol. As for now, keep in mind that openCBDC uses a Raft-based storage solution,
that is, it doesn’t provide blockchain-like Byzantine fault tolerance, and achieves much
larger performance than its DLT-based contemporaries.

This difference in performance is due to the way the two systems update their registries.
While on a conventional ledger, you only need to interact with the leading node, the
authoritative entity, in a DLT-based ledger, the consensus mechanism - through which
updates have harmonized all nodes - represents a large overhead.

The use of Distributed Ledger Technology (DLT - Distributed Ledger Technology) can
be a solution to increase robustness. Since the traditional infrastructure also stores
data in several physical locations, the main issue is the distribution of authority for data
modification. Because if the authoritative entity (e.g. leading node) is compromised in
the case of a traditional infrastructure, it is much easier to achieve malicious effects than
if it were one node among many in a DLT infrastructure.
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In terms of resilience, both infrastructures are vulnerable, just in a different way. The
most important vulnerability of the traditional architecture is the failure of the upstream
node, for example, through a targeted hacking attack. The most important vulnerability
of DLT is the consensus mechanism, which can be put under pressure by, for example, a
denial-of-service (DoS) attack.

2.1.5 Access Technology

Identity-based access Similar to traditional banking, access to money is linked to
some authentication (e.g. showing an identity card; username:password). This has various
disadvantages, such as ensuring the robustness of authentication or making the chosen
identifier available to everyone (for example: In the United States, many people do not
have a generally accepted identity document [11]).

Token-based access The user authenticates themselves with some cryptographic
mechanism. One example is the use of the private-public key pair. This solution is
truly universal since everyone can generate such keys, and is inherently private. one of
the downsides is that the keys are managed by the end user, who can easily lose them
or deny law enforcement access to them. Two main parts of maintaining confidentiality
with regard to CBDCs are how much data the parties share with each other during a
transaction and how much data can fall into the hands of an attacker in the event of an
attack on the users or the entire system.

Key Lesson
A reliable and widely usable retail CBDC must be secure and accessible, offer cash-like
convenience, and may maintain privacy and confidentiality. Different technical solutions
meet these criteria to varying degrees, and it is worth determining the trade-offs associated
with them.

7



2.2 OpenCBDC

OpenCBDC is a token-based transaction processor prototype of a hypothetical direct,
general-purpose, retail CBDC, which borrows many techniques from blockchains and Dis-
tributed Ledger Technologies, but itself not decentralized. It was created as part of Project
Hamilton [5], a joint project of the MIT Media Lab and the Boston FED. It is open source,
and available to everyone.

Their goal was to create a geographically scalable transaction manager capable of handling
at least 100,000 transactions per second, most transactions within 5 seconds, and focusing
on confidentiality and flexibility of token management.

In this regard, they were more than successful. It is an outstanding result among CBDC
prototypes. The system can perform 1.7 Million transactions per second according to their
own measurements. Although in its current state, it covers a small subset of potential
functions of a CBDC [2], it is an interesting path for further exploration. Among the laid
down CBDC developmental paradigms [6], it made decisions precisely in accordance with
the laid out goals. The system achieves unique functionality and robust performance by
using ideas from cryptography, distributed systems, and blockchain technologies. The next
phase of Project Hamilton focuses on system-level auditability, programmability, privacy
issues, the role of intermediaries, and resistance to DoS attacks.

2.2.1 Core design features

UHS Similar to Bitcoin [12], the system uses the UTXO currency model, as opposed
to the Account/Balance model - used by Ethereum[13], for example. This means that the
system records Unspent Transaction Outputs (further ”spendable” through appropriate
digital signatures), not the balance of individual wallets.

The system only stores the 32-byte hashes representing individual UTXOs. This hides
transaction details such as sender and receiver addresses and the amount of currency
sent. In addition, it reduces storage requirements and allows for higher performance. One
consequence is that there is need for direct communication between payer and payee. This
data structure is the Unspent fund Hash Set (UHS).
This data structure is not stored on a blockchain - due to the generally low throughput of
Byzantine Fault Tolerant (BFT) consensus algorithms and other new consensus protocols
[14], but within a Raft cluster. Raft is a high performance, but ”only” crash fault tolerant
group consensus protocol.

Transaction-local validation The transaction format created for the UHS can vali-
date transactions in such a way that it has no information about the state of the entire
system. This is achieved by making the outputs dependent on the local parameters of
the transaction, rather than on the state of the system. This protects against double
spend, replay and MIM attacks. Such a transaction is called a compact transaction within
openCBDC.

System Architecture To facilitate the efficient commitment of atomic transactions
into the UHS, two resilient, high-performance architectures have been created. The Atom-
izer, which creates the true order of transactions, and the 2-Phase Commit (2PC), which
does not. The main difference between the two architectures is their performance, the
Atomizer has a throughput of 170,000 Tx/s, the 2PC has a throughput of 1.7 M Tx/s
with the same resources. Also, the horizontal scalability of the 2PC has been shown to be
linear, while the Atomizer reaches a plateau.
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Figure 2.4: System diagram and inter-component data flow
for the 2PC architecture of OpenCBDC [5]

The components of the 2PC architecture are:

Clients Client software running on the end user’s machine, includes the wallets, which
store the UTXOs and the cryptographic keys required to manage them. They build
the full transactions to be sent to the transaction processor.

Sentinels The system’s interfaces with the outside world. They convert the transactions
into a compact transaction, that is, they perform the transaction-local validation.
They also forward the status of the transaction to the client. Sentinels are stateless.
The consequence of this is, for example, that if a user did not receive the packet
confirming the successful completion of the transaction, he has to query them again.

Transaction Coordinators Executors of the transactions, they keep track of individual
compact transactions, organize them into batches, and send them to the shards.

Shards They are the implementation of the UHS, where each corresponds to a disjoint
domain of hashes within it. They perform the swap operations on the hashes repre-
senting individual records, i.e. UTXOs.

9



2.2.2 Threat model and security properties

OpenCBDC assumes that "the transaction processor is faithfully executing our design, that
users’ wallets are able to maintain secret keys, and that the users are able to use a secure
channels to communicate with the transaction processor."..."[They] aim to protect against
an adversary who can freely interact with the system as a regular user, and as such make
no additional assumptions about an adversary’s capabilities or behaviour. For example,
the adversary is free to create arbitrarily many identities and wallets, receive funds from
other users, and engage in elaborate transaction patterns. Some of [their] designs are
multi-server systems, and the adversary is free to attempt concurrent attacks against all
externally-exposed parts of the system."[5]. In this paper, I inherit these assumptions, and
they will be crucial when I analyse attack vectors.

2.2.3 Client

The currently implemented client is a command-line application compiled from C++,
running in docker, along with the other parts of the system.

10



2.3 Self-Sovereign Identity

Self-Sovereign Identity is an emerging model, which according to Brian Behlendorf, GM
for Blockchain, Healthcare, and Identity at the Linux Foundation, is "the most crucial
fix for today’s broken Internet." It is a collection of ideologies, design paradigms, protocol
frameworks, cryptographic principles, and, recently, software solutions that aim to provide
an alternative to centralized and federated identity management. It is a decentralized,
peer-to-peer identity model where each peer has almost total control over how their identity
is stored and used. Among its many goals is to replace a physical, pre-internet system
that has proven to be very effective and highly resilient. While some CBDCs aim to
digitalize cash in our wallets, one of the central aims of SSI is to digitalize our plastic
identity cards, and paper records associated with institutions such as the government,
banks, utility companies, etc. In this chapter, I will briefly summarize the conceptual
building blocks of SSI I will interact with within my protocol, as laid out by Drummond
Reed in the book Self-Sovereign Identity [15].

2.3.1 ToIP protocol stack

One interesting protocol stack, which shall serve as my entry point into the introduction of
SSI, is the Trust Over IP (ToIP) protocol stack. It aims to bring together and standardize
the main ideas in SSI as a trust layer over the internet. I will mainly focus on the technology
side. Although Governance frameworks may offer solutions for a CBDCs technical and
legal challenges, such as how we delegate the trust in and claim on the Central Bank to
Intermediaries in an indirect or hybrid CBDC, these solutions are beyond the scope of this
paper. Luckily, the ToIP foundation offers an interactive tool to quickly understand their
protocol stack at https://trustoverip.org/wp-content/toip-model/

One thing to note is the lower two levels focus on meeting the technical requirements of
digital trust, with blockchains, and secure and private transaction protocols. In contrast,
the top two layers focus on meeting human requirements, with cryptographic and generated
credential protocols. If I were to classify my protocols, they would fit neatly on the top
layer, as they are workflows for facilitating transactions with verified credentials from
trusted sources.

In summary, ToIP can establish trusted, secure, and private peer-to-peer connections,
issue, exchange, and verify digital credentials, and store public credential data on Verifiable
Data registries, which may use decentralized or distributed record-keeping technologies.

2.3.1.1 Verifiable Credentials

"A verifiable credential is a tamper-evident credential that has authorship that can be
cryptographically verified."[16]

Credentials contain claims about their subject made by their issuers, although they may
not always be controlled by their subjects.

These claims can be verified by presenting a Verifiable Presentation to the party requesting
verification.

Digital credentials are held within digital wallets, which are digital structures designed to
store Verifiable Credentials securely.
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Figure 2.5: Trust Over IP Stack source: https://trustoverip.org/toip-model/

A Credential Schema is the definition of what data and claims a Verifiable Credential
issued over that schema contains. They are published over the web or queriable from
Verifiable Data registries.

A Credential Definition is a declaration from an issuer what exact schema the issued
credential uses, what claims are in it, the public key used later to identify the issuer,
and other metadata. It is used by a specific issuer to issue a specific version of Verifiable
Credentials.

Anonymous Credentials [17] allow their controllers to prove some statement about their
attributes without revealing their identity or even the underlying attribute. An often-
used example is that at the bar, to prove that we are past the legal drinking age, show
our photo ID, revealing our name, date of birth, and other sensitive attributes, even
though they are not in contention. Anonymous Credentials use Zero-Knowledge Proofs
that enable verifiably answering the question, "Are you above the legal drinking age?"
without revealing any sensitive data.

Another important concept is the link secret [18], which allows users to prove that a
credential is bound to them and that if they present multiple credentials within a single
Verifiable Presentation, the credentials all belong to the same holder.

2.3.1.2 Digital Agents

Digital Agents are the software interface of an SSI system. They manage verifiable cre-
dentials in digital wallets and allow the users to communicate with other SSI applications,
such as other agents and Verifiable Data Registries. They issue and receive VCs, and
request and create Verifiable Presentations. They can be run on various hardware, from
mobile devices to cloud platforms. To use a simile, they represent actors within an SSI
system, like attorneys represent legal entities within the judicial system. One actor may
have have multiple agents, with custom rules about what each agent can reveal about
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them, what kind of connections they are allowed to establish, and what cryptographic
commitments they are allowed to update with Verifiable Data Registries.

2.3.1.3 Decentralized Identifiers - DIDs

Decentralized IDentifiers(DIDs) [19] - like URIs - identify subjects in a verifiable and
decentralized way. They associate this subject with a DID document (DIDDoc). A DID-
Document contains cryptographic information with which the controller of the DID may
prove ownership of the DID. They may also contain service endpoints, which are URLs
through which the controller of the DID may be reached.

The DID scheme may be implemented over various types of verifiable data registries.
Over general-purpose blockchains[19, 20], purpose-built blockchains [21, 22], or even using
a peer-to-peer model (pairwise and n-wise DIDs)[23].

2.3.2 Axes of identity

One interesting perspective, in which the difference between my two protocols can be
clearly formulated, is put forward by Daniel Hardman and Jason Law [24]. They outline a
multidimensional model of identities to which SSI components map cleanly onto. While an
SSI-based payment processor system may have considerations on all three axes and planes
of this model, my two proposed protocols in their current state of development show a
notable difference on the Relationship-Attributes axis, the "Who knows what about me?"
plane, in that we have different relationships with the Central Bank, in one we are audited,
in the other we are not, and also share different parts of our identity.

In this context, my protocols share space with Gross et al.’s CBDC proposal [25], in the
sense that in the high-level architecture model they also propose a private and transparent
payment workflow.
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2.4 The Hyperledger Aries/Indy/Ursa stack

The Hyperledger Identity Stack contains Indy, Ursa, and Aries. They are an implemen-
tation of the previously established SSI building blocks. The stack started with Indy,
Hyperledger’s first identity-focused blockchain framework. As the codebase evolved, parts
of it separated into their own project. First, Ursa in 2018 from indy-crypto as a package of
cryptographic primitives, then Aries as an extension of the indy-sdk to help others develop
applications that use the building blocks of SSI.

2.4.1 Hyperledger Ursa

Hyperledger Ursa [26] produces cryptographic packages and develops primitives for other
Hyperledger projects, focusing on peer-to-peer interactions. Its cryptographic primitives
are packaged and embedded in other Hyperledger projects, such as Indy and Aries. It
enables the generation of public/private keys, encryption and decryption, signing and
verifying, hash functions, and Zero-Knowledge Proof(ZKP) technology, allowing the veri-
fication to of Zero-Knowledge Proofs built from Verifiable Credentials.

2.4.2 Hyperledger Indy

Indy [21] is the core component of Hyperledger’s identity system. It implements a per-
missioned public distributed ledger, with indy-node serving as the blockchain’s backbone,
verifying ledger transactions and indy-sdk, indy-vdr, and indy-shared-rs, enabling clients
to interact with the ledger.

As a permissioned blockchain, indy supports different roles for clients interacting with the
ledger, such as trustees, stewards, and endorsers [27]. These roles govern how the clients
can transact on the blockchain. For example, one needs to be at least an endorser to add
schema definitions to the blockchain. Everyone can read the unencrypted transactions on
the ledger, as the ledger contains no private data. It does not natively support querying,
so one cannot simply ask for, for example, all defined DIDs. The agents must know about
a transaction of interest to easily find it, either because they wrote it in the first place, or
because they are configured to find it.

2.4.3 Hyperledger Aries

"Hyperledger Aries is infrastructure for blockchain-rooted, peer-to-peer interactions as de-
fined in the Trust over IP Technical Stack, Layers 2 (secure peer to peer communications)
and 3 (data exchange protocols). It defines messaging protocols and implements those
protocols in shared, reusable, interoperable tool kits designed for initiatives and solutions
focused on creating, transmitting and storing verifiable digital credentials" [28]. Its core
functions include interfacing with the Identity Provider blockchain, securely storing cryp-
tographic secrets and verifiable credentials encrypted peer-to-peer communication [29],
and issuing and proving verifiable credentials.

2.4.4 Aries Cloudagent Python

ACA-Py [30] is a server application built on Aries features and concepts. It provides an
openAPI interface to facilitate Aries functions. A controller application may send HTTP
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requests and receive webhook notifications to create DID-based connections, issue and
verify Verifiable Credentials etc. It is a complete Aries Agent with which one can build
applications and workflows utilising SSI services. It is easy to use and has language-specific
APIs, e.g. for Java.

15



Chapter 3

Motivation

3.1 Self-Sovereign Identity and Central Bank Digital Cur-
rency

Self-Sovereign Identity has received significant attention within CBDC research [31, 25, 32].
Still, beyond identifying it as a possible solution for identity management within or between
CBDC frameworks, no one has developed a framework for using it over an existing CBDC
transaction processor. The technology has been dismissed as immature.

3.1.1 A secure and long-term identity layer of a CBDC

The goals of SSI align with cash-like retail CBDCs. Both fundamentally require long-
term cryptographic privacy and anonymity, peer-to-peer interactions, and flexibility of
governance frameworks and policies. Long-term cryptographic privacy and anonymity
mean that no actor - external users or even the Central Bank - should be able to access or
derive any identifiable data on the atomic transactions, set of transactions, or the Identity
of the transacting parties.

By long-term, I mean that a cash-like retail CBDC shall not be vulnerable to the depre-
cation of cryptographic primitives, the way, for example, many cryptocurrencies currently
are [33]. Suppose we store encrypted private data on the blockchain. In that case, the
encryption algorithm will always be a vulnerability because if it deprecates and becomes
breakable, by the immutable nature of a ledger, a malicious actor can get access to this
data. Even if only cryptographic keys are encrypted, in many frameworks, they still can
be or are explicitly associated with the Identity of the transacting party. For this rea-
son, current SSI implementations, as shown in Sect. 2.4, already provide this long-term
solution because they don’t store any private data on their ledgers.

This long-term resilience of privacy is important because, as stated in Sect. 2.1.1, pri-
vacy has been identified as a key question in CBDC development, being second only to
performance [2].

3.1.2 Aiding policy decisions

Existing Self-Sovereign Identity solutions also provide answers to issues raised in terms
of identity management. As a separate identity layer, creating applications across which
actors share identities is easier. And because identities are managed by their holders, while
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identifiers are managed by their issuers, it resolves the hierarchical tension current Identity
Management solutions on the internet have, as explored in Sect. 2.3. Policymakers may
introduce artificial encumbrances on user identities, but the control over a user’s Identity
is inherently shared between the authorities and the subject.

Verifiable Credentials are tools that allow Central Banks and Governments to create and
enforce flexible policies. Because Credential Schemas inherit from each other, can have
multiple definitions, and a Credential’s issuance may be tied to the existence of another
credential, Governments may create large, diverse, and flexible credential ecosystems.

They support no-contact revocation, which eases the technical load on the Central Bank’s
systems. Also, compared to physical paper-based credentials, digital credential revocation
aids enforcement, e.g., a citizen doesn’t have to give up their invalidated driver’s license
to the DMV in case of pre-term revocation. The revocation is initiated by the authority
and realized by the identity layer, the citizen does not have to be compelled. VCs may
also be incorporated into complex payment and exchange workflows that the responsible
authority may define.

For example, suppose a citizen were to buy any controlled article or substance. In that
case, the check for the relevant permits, and notification of the authorities about the
transfer may be built into the payment workflow. A more specific example would be if a
citizen would like to buy a gun, the digital title transfer workflow would check if he has a
gun permit VC, notify the ATF about the transfer, conduct the payment with a cash-like
CBDC, revoke the previous owner’s digital title, and issue a new one the new owner. In
this scenario, SSI helps policymakers create a cheap and easy technical solution, which
with the accompanying policies, would facilitate the safe transfer of controlled articles.
Currently, in the United States, a similar policy question is often on agenda, dubbed
"The Gun Show Loophole" [34], to which Self-Sovereign Identity may offer a technical
solution. Many similar use cases are explored in [15], many of which a Central Bank and
the government would have some stake in.

If a Government were to create a VC ecosystem, each entity might issue VCs within its
jurisdiction, delegating responsibility down the chain of command. Such a VC ecosystem
may facilitate easy digital interactions between different government entities and promote
standardization. In particular, in a Central Bank, a VC ecosystem may be created to
better manage liabilities, with VCs inheriting from both public and government defined
schemas. Also, if the CB were to diversify its liabilities, for example, with the introduction
of a CBDC or the introduction of a CV-based bond, the existence of an international VC
ecosystem would certainly help with meeting policy goals, and grant better access to
publicly available liabilities to both domestic and international customers.

Verified Credentials help interoperability between institutions because they offer public,
standardized schemas and provide the trust framework needed to facilitate these kinds of
transactions. This interoperability is relevant to CBDC development because one of its
identified goals is the effortless facilitation of cross-border payments [35].

In the context of a general-purpose retail CBDC, VCs may aid Central Banks with meet-
ing KYC requirements, if they take it upon themselves to facilitate direct contact with the
users, issuing a Direct CBDC. It is easy to envision a digital onboarding workflow where
KYC requirements are met by checking relevant Verified Credentials without human in-
teraction.

Also, it could prove beneficial for an entity to have multiple kinds of relationships with a
government authority, to have multiple connections to the same institution on the rela-
tionships axis [24], to differentiate what context their interaction is in, what kind of role
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they each serve through the workflow of their interaction, and to preserve anonymity in
use cases where it would be relevant.

3.1.3 Emerging technologies around SSI

As explored in Sect. 2.3 and Sect. 2.4, in recent years, SSI technology has gone through
a maturation phase. With purpose-built blockchains like Indy [21] and Veress One [22],
general purpose blockchain solutions [20], and complete development tools [28], I think it’s
time to take a look how the implementation of an SSI-based identity layer over a proposed
CBDC would look like. The implementation of my auditable payment protocol in Chapter
5 is such a prototype.

3.2 Open ecosystem

If we separate the Identity layer of a CBDC, we allow for a different kind of interoperability.
Many current CBDC proposals [6, 25] conceptualise identity management as a walled
garden, where the payment processor controls identities directly or indirectly. However,
SSI is building the substrate for open, widely available, secure cross-context identification,
which not only alleviates the need to anchor the CBDC Identity layer in existing solutions
with their known general drawbacks, but also facilitates creating such open ecosystems
where CBDC acts as a controlled, but open ”monetary layer” the same way that SSI is
intended to serve with respect to identities.

3.2.1 Benefits of a CBDC ecosystem

With this layered approach, we may support different transaction processors, transaction
protocols, or payment workflows within a single financial ecosystem. Provide diverse claims
on the central banks based on identity, diversify the types of digital assets they offer, or
allow for more granular control for users on how they would like to technically interact
with their legal claims.

From a technical perspective, a separate identity layer may help CBDCs in development.
A Central Bank may issue different CBDCs in parallel, and test key indicators such as
performance, adoption, customer satisfaction, etc.

The identity layer connects the CBDCs within such an ecosystem, which negates some of
the hurdles of CBDC issuance, mainly KYC. They could also share assets, with techniques
such as "bridging" [36, 37].

There may be also benefits to using different identity layers over a single CBDC transac-
tion. To provide users with multiple paths they can authenticate themselves through. An
important decision in this regard would be to provide granular privacy for the end user.
Such an approach may provide a resolution between the public’s need for privacy and the
Central Bank’s burden for policy compliance, KYC, AML, CTF, travel rule etc. I will
discuss these considerations in the next chapter as I define my two protocols, which mimic
such an ecosystem.
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3.2.2 Generalisability of a private cash-like CBDC

Using a private, cash-like CBDC transaction processor is a requirement if I would like to
test out the full spectrum of privacy in an approach, where the transaction processor and
identity layers are separated. openCBDC, being the first open-source CBDC transaction
processor providing performance indicators, is a great candidate for designing an SSI-
based CBDC payment protocol. Because it relies on cryptographic encumbrances to spend
funds and requires inter-user communication; an identity layer which provides a developer-
friendly wrapper for these functions. Also, being a simple transaction processor, in later
stages of development, it may be easily interchanged with a different CBDC transaction
processor in SSI-based CBDC payment workflows.

Surveying existing research, there is yet to be a payment solution implemented over
openCBDC. In summary, my goal is to provide payment protocols using SSI technol-
ogy over openCBDC, which explore the full spectrum of privacy in the context of a retail
CBDC.
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Chapter 4

Maximum and minimum CBDC
privacy

4.1 Spectrum of privacy

I define a spectrum on which privacy may be understood regarding a retail CBDC, then
designate two positions around the extremes of this spectrum. Each protocol will imple-
ment requirements associated with these selected privacy "classes". I discuss the advantage
of this approach later in Section 4.4.

The spectrum of privacy regarding cash-like CBDCs comes from the tension between the
public’s need to remain anonymous and untraceable and the Central Bank’s responsibility
to serve the needs of its whole financial ecosystem and comply with internal, national
and international policies (KYC, AML, CTF, travel rule, etc.) [6]. In this regard, the
inflexibility of a CBDC is counterproductive.

To get a clearer picture, I will look at the forces defining this spectrum.

4.1.1 The needs of the public

As stated by [6], there is a trade-off between privacy and ease of law enforcement. The
needs of the public in this regard are often articulated in the term that a retail CBDC
needs to be "cash-like". This means that a proposed CBDC solution must be universally
accessible to all citizens, have a low barrier to entry (e.g., the software needed to facilitate
transactions should be able to run on low-end mobile devices effectively), be an easily
enforceable claim on the central bank, and citizens should be able to transact without any
party being able to correlate identities easily, or uncover money flow graphs.

The cryptocurrency field luckily has technical methods to achieve better privacy in
pseudonymous systems , for example, using mixers/tumblers to obfuscate the transac-
tion graph. By building a system that can facilitate such methods, we may get closer to
reaching the public’s need for privacy.

4.1.2 The responsibilities of the Central Bank

For a Central Bank Digital Currency to be worthwhile, it should be able to comply with
existing digital transaction policies such as KYC, AML, CTF, travel rule(note on travel
rule: in the context of a retail CBDC, a much larger proportion of transactions may
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occur directly between private parties, simply because the payment doesn’t require in-
termediaries, such as retail bank today), etc., and provide functions that are beyond the
capabilities of existing digital assets. To enforce such policies, the central bank should be
able to conduct an audit of past transactions in a way that they can correlate identities
between accounts or addresses and the transacting entities. While Zero-Knowledge based
audit protocols are currently being explored [37], a straightforward audit model, where the
central bank controls the transaction graph and can verify the identity of each transacting
party, would still satisfy the Central Bank’s need for auditability. It would also be easier
to implement, allow for finer enforcement of policies, and allow the use of efficient audit
algorithms already used by existing payment processor systems.

4.2 Privacy Classes

According to these needs, I define two privacy classes, which, when both implemented in
a financial ecosystem, may strike a balance between the public’s need for privacy and the
Central Bank’s need for regulatory compliance. These classes resemble the transaction
types used in Zcash [38].

Auditable transactions or "unshielded transactions" to use the Zcash terminology, in
which the sender’s and the recipient’s identity can be uncovered, and a transaction
graph can be constructed.

Private transactions or "shielded transactions" where the transactions satisfy the re-
quirements of being cash-like. Namely, no party can correlate identities easily, and
the transaction graph can be obscured.

In Zcash, there are transaction types between privacy classes, between private and trans-
parent addresses, called "shielding" and "unshielding" transactions. I do not define such
protocols, as their exact specification is beyond the scope of this paper, but if one were
to create a complete payment system based on my protocols, they would need to be
implemented.

An important thing to note is that in such a CBDC ecosystem, the CB may limit the
public’s ability to utilize private, cash-like transactions because they introduce a high risk
of facilitating illegal activities. To combat this risk, a proposal put forward by [36] is
to endow private transactions with limitations, dubbed "cash-like encumbrances". I will
explore these encumbrances when I define the protocols’ privacy goals in Section 4.4.

4.2.1 Better privacy with SSI

As previously mentioned, SSI has been identified as a possible solution for identity man-
agement in a CBDC system. [36] explores a number of possible use cases. They clearly
demonstrate how Verified Credentials could help the KYC process associated with open-
ing a direct CBDC account and provide a possible model for how transactions could be
facilitated on a CBDC using Decentralized Identifiers as addresses.

4.2.1.1 Roles of the Central Bank

I will now explore what responsibilities may the Central Bank take on if an SSI-based
identity layer were to be used over a direct CBDC.
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KYC For citizens to be able to open balances, the Central Bank shall be able to KYC
them. For this purpose, the Central Bank should be able to accept KYC credentials issued
by retail banks, and issue KYC credentials based on relevant VCs. Zero-Knowledge proofs
and Selective Disclosure provided by SSI solutions may certainly aid this process. As laid
out by [36], if a citizen were to prove their permanent residency in a country during KYC,
they only need to prove that specific fact, but not disclose sensitive information, their
whole address.

Tracking Identites If a Central Bank were to implement a retail CBDC facilitating
auditable transactions, tracking the identities of transacting parties could be solved by
simply storing them in an internal database, using their DIDs as CBDC addresses [36], or
issuing credentials which contain some information about their relationship to the Central
Bank, or by using credentials issued by retail banks. In my model, the Central Bank
issues credentials which contain the CBDC addresses of the recipient. This "digital central
bank credit card" opens up the question of who should designate these addresses; the
Central Bank, the citizen, or an intermediary retail bank. This "credit card" model allows
separating the identity layer because we can store arbitrary data structures within VCs.

Facilitating private transactions In my private transaction protocol, the Central
bank needs to store a data structure associated with each citizen to facilitate the Zero-
Knowledge proofs used to meet the "cash-like encumbrances".

4.3 Payment over openCBDC with Hyperledger Aries

My goal is to specify two protocols which implement the layered identity model over
openCBDC using Aries Cloudagent Python [30] as the SSI implementation, connecting
to an existing developmental NYM ledger. One protocol models the auditable privacy
class; the other the private privacy class using "cahs-like encumbrances". OpenCBDC, as
explored in the previous chapter, is a great candidate for my layered identity model, and its
use may demonstrate the generalizability of my protocols. Aries Cloudagent[30] Python is
an open-source implementation of an SSI agent, offering openAPI endpoints through which
we can facilitate the interaction with the building blocks of SSI. It offers automatism for
standard functions of the building blocks, like peer-to-peer connection, credential issuance,
selective disclosure, zero-knowledge proofs etc. By using these building blocks, I will
demonstrate how the layered in the development of a CBDC payment protocol.

4.4 Privacy goals

Some previously laid out privacy considerations are already met by using Hyperledger
Indy and Aries. As stated before, they provide a long-term cryptographic privacy solution
for storing and managing verifiable credentials; and methods for safe and private peer-to-
peer communication based on DIDs. I highlight the fact that Indy doesn’t store encrypted
private data on its blockchain.

The privacy goals specific to the protocols are in order:

Auditable transaction protocol If the citizen maintains basic privacy practices in
their SSI agents, no outside actor should be able to find out any details about his transac-
tions, e.g. how much he paid, who he paid it to, or even what his public he uses to create
his CBDC address.
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Private transaction protocol Clients shall have the ability to send to and receive
from Bitcoin-like addresses in a UTXO setting, without no party being practically able to
correlate identities and money flow easier than it is for Bitcoin. I establish this metric to
make my protocol somewhat comparable to other privacy-preserving techniques.

Limiting the public’s ability to utilise this transaction protocol, making it as or more
inconvenient than current existing forms of electronic money, translates to the following
properties, as laid out by both [36] and [25]:

• No person can hold more than a policy-determined amount at any time.

• No person can send or receive more money in a time frame than allowed. (Amount
and time policy determined.)

• No “handover” may occur without physical closeness.

My model focuses on preventing smurfing - a person or group circumventing these limita-
tions by utilising multiple accounts - across the addresses of a single person.
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Chapter 5

Auditable payment protocol

A currently in development implementation of this protocol is available on GitHub at
https://github.com/BlackLight54/TDK_openCBDC_SSI

At the minimum of privacy, belonging into the privacy class of auditable transactions is
my Auditable Payment Protocol. It enables the Central Bank to store the details of each
facilitated transaction safely, authenticate users using Verifiable Credentials, and correlate
their identities with their payments.

5.1 Actors and Components

Central Bank (CB) issues and manages Verified Credentials. KYCs the customer during
onboarding. Publishes Credential Schemas and Definitions. In particular, it issues a
credential to eligible clients with which they can facilitate transactions.

Sentinel Guard controls the outward-facing interface of the transaction processor, the
Sentinel. Receives transaction requests, based on which request verifiable presentations
to authenticate transaction parties. Maintains a log of received transaction proposals.
Functions as a gatekeeper to the transaction processing system.

Alice and Bob are citizens who open CBDC accounts and make a transaction through
the CBDC system.

All actors above have corresponding cloud agents

Identity Provider maintains registries of decentralized identifiers, credential schemas,
and published credential definitions. In practice, this is an Indy network.

5.2 Preparation to issue Verifiable Credentials

Credential issuance is based on the Alice/Faber ACA-py demo [30]. To issue a credential,
the Central bank must:

• Register a public DID and store it on the ledger;

• Create a schema and register it on the ledger;

• Create a credential definition and register it with the Identity Provider
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Figure 5.1: Technical steps of an Aries peer connection

Note that the central bank must store the issued credential definition in its cloud agent
wallet to use it to later issue credentials on it.

The credential schema contains an openCBDC address and its corresponding public key.
This schema defines our "digital credit card".

5.3 Opening openCBDC accounts

Alice would like to open a CBDC account. She establishes a peer SSI connection to the
Central Bank (Fig. 5.1). First, the CB conducts the required KYC checks (Fig. 5.2). In
the implementation, Alice must present a VP where she proves that she is a national. If
Alice passes all checks, the CB requests a public key from her, based on which a unique
CBDC address can be generated for her. Then the CB issues a Verifiable Credential (Fig.
5.3) containing this address and her public key. It also stores her public key, along with
the KYC data needed to associate Alice with this public key. Now Alice has a CBDC
address only she can use.

5.4 Facilitating transactions

Alice and Bob would like to conduct a transaction over the CBDC system. They both
went through the onboarding process and have credentials issued. Alice sends a transaction
request to a Sentinel Guard, which contains her and Bob’s public DID and the details of
their transaction. The Sentinel uses this DID to look up the public DIDDoc of both Alice
and Bob, from which it can find their public keys and how it can reach them. It then sends
both Alice and Bob a proof request, asking them to provide the VC issued by the CV.
If they provide valid proofs, the Sentinel Guard sends the transaction to an openCBDC
sentinel. It also stores the details of the transaction.

25



Figure 5.2: Onboarding sequence including KYC [36]

Figure 5.3: Technical steps of issuing a credential
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Figure 5.4: Sequence diagram of the Auditable transaction protocol
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Figure 5.5: Component diagram for the entities present in the Auditable Payment Pro-
tocol. Green components are new contributions.

5.5 Implementation in development

I have begun the development of an implementation of the Auditable Payment Protocol. It
is available on GitHub at https://github.com/BlackLight54/bsc_thesis_openCBDC_
SSI The current infrastructure looks like this :

• openCBDC runs from a prebuilt image in Docker, set up with docker-compose for
the 2-Phase Commit Architecture

• the Aries agents run in a docker-compose network, with endpoint ports and admin-
istration ports(through which the API is reachable) exposed

• A Spring application implements the controllers, realizing the specified workflow.
Each controller is a Spring component, with an overseer orchestrating the protocol.

Currently, the application is able to verify the identity of the citizens and conduct
openCBDC transactions, although not with this exact control and information flow. Right
now, the Sentinel Guard manages the keys used in openCBDC by the clients. After identi-
fication, it simply calls the existing openCBDC CLI client. Because no transparent API is
yet to be available for open CBDC, it may take a while to solve these issues. The schemas
and credential definitions are programmatically defined, with a java API of aca-py, but I
provide example schema definitions that travel over Aries in the ./VC examples/ directory.
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Chapter 6

Private Payment protocol

The following protocol is one instantiation of the Private Payment privacy class. It aims
to make the identities of the transacting parties and the atomic transactions unlinkable. It
is inspired by the Chaumian Digicash, which was a type of private electronic money based
on cryptographic protocols designed by its founder, David Chaum [39]. The company,
unfortunately, went bankrupt, but a modern implementation of their protocol is provided
by Taler Systems in the GNU Taler project [40].

6.1 Notation, and terminology

x := y : let x be equal to y, assignment

hash(x) : collision-resistant hash function

x|y : concatenation, bits of y are concatenated directly after bits of x

salt : essentially random string of bits used to avoid correlation of hashes

sign(x, private_key) : the result of signing bits of x with the private_key with a Digital
Signature Algorithm (DSA)

encrypt(x, private_key) : the result of encrypting x with the private_key

Merkle Tree : binary tree with n leaves, where each leaf := hash(xi), i ∈ 1...n; each
node := hash(left_subtree|right_subree), can be used to Zero-Knowledge Prove
x ∈ x1...xn [41]

Blind signature : a form of digital signature in which the content of a message is dis-
guised (blinded, here encrypted) before it is signed. The resulting blind signature
can be publicly verified against the original, unblinded message in the manner of a
regular digital signature [39].

6.2 Actors and Components

Central Bank issues time- and amount-limited spend- and receive authorizations to cit-
izens.

Extended openCBDC Sentinels consume these authorizations.

Alice and Bob citizens who would like to transact.
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6.3 Data structures

6.3.1 Data kept by the citizen

Citizen Verifiable Credential used to identify the citizen when they ask the Central
Bank for a send- or receive token. Verifiable Credential, issued by the government.

citizen_private_key-s The cryptographic keys used by the citizen as the basis for
Bitcoin-style openCBDC addresses and digital signatures. Kept private.

6.3.2 Data maintained at the CB

6.3.2.1 Data structure associated with each citizen VC

hash(current_balance|salt) commitment on the combined balance of addresses asso-
ciated with the citizen, used to ensure holding limits.

addresses_merkle_root the root of a Merkle tree of the Bitcoin-like openCBDC ad-
dresses of the citizen, used to account for the source and target of each transfer. Algorithms
for proving Zero-Knowledge Set Membership (ZKSM) within Merkle trees are known and
widely used.

last_spend_request_tstp timestamp of the last approved spend request.

last_receive_request_tstp timestamp of the last approved receive request.

6.3.2.2 Data kept by only the CB

CB_private_key the key the Central Bank uses to blindly sign send- or receive tokens.
It rotates periodically to enforce cash-like encumbrances.

policy_holding_limit The Central Banks defines, in policy, a holding limit. This is
the maximum amount of currency a person may hold within addresses contained within
their associated Merkle tree.

6.3.2.3 Data shared between the sentinels and the CB:

CB_public_key the key to check the signature on the access token. To enforce cash-
like encumbrances, it is associated with a fixed amount and a timeframe (e.g., one specific
within-day 5 minute, 10 minute or 1 hour window):

max_amount the maximum spendable and receivable money within the time-
frame by a spend- or receive-token authorized citizen.
usable_until Time frame within which a spend- or receive-token can be used.

sentinelId Numeric identifier, uniquely identifies a Sentinel.

6.3.3 Data used during transactions

from_address the (Bitcoin-like openCBDC) address from which the spender spends
money
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to_address the (Bitcoin-like openCBDC) the address to which the receiver receives the
money

transaction_key a unique transaction identifier agreed on by the payer and payee. They
use it at the sentinel as an anonymous session token like ID for both proving spend and
receive authorization for the same transaction.

transaction_amount the amount of money the spender wishes to send to the receiver

new_balance the citizen’s balance after the transaction

Spend token access token in the format of signed(from_address|sentinelID) blindly
signed by CB_private_key

Receive token access token in the format of signed(to_address|sentinelID) blindly
signed by CB_private_key

6.4 Prerequisites for a receiving spend- and receive autho-
rizations

Citizens must register a commitment on their addresses (addresses_merkle_root) and
current balance (hash(current_balance|salt)) with the Central Bank.

Citizens may update their associated addresses_merkle_root later if they want to ac-
quire new addresses. One issue to note is that currently, there is no defence against
multiple citizens registering the same address, but as that would only limit the "spend-
ing power" or "receiving power" of an address, there does not seem to be any value in
this kind of cooperation. Maliciously registering the address of another citizen is an at-
tack vector; however, I do not detail defences against that here. Options may include,
for example, limiting the size of the Merkle tree for every citizen through a ZKP obli-
gation on addresses_merkle_root change and limiting the frequency of updating the
addresses_merkle_root.

6.5 Preparation for a transaction

The steps of requesting an access token are shown in Fig. 6.1.

When a citizen wishes to spend money from their address, first they must acquire a spend
token.

They give encrypted( from_address | sentinelId) := encrypt(
from_address | sentinelID, citizen_private_key) to the Central Bank
and gets it blindly signed (signed(encrypted(from_address|sentinelId)):=
sign(encrypted(from_address|sentinelId), CB_private_key)).

The blind signature key, CB_private_key corresponds to a max_amount (quasi-note)
and a usable_until timestamp, the end of an intra-day interval (hour, 5 minutes, etc.).
When a Sentinel consumes a token, it checks that amount < max_amount, and the
current time is before usable_until timestamp, and enforces the "speed-of-money" en-
cumbrance, vmoney = currency/t, which means that within a specific time window, a
citizen may only send and receive a policy-determined amount of currency.
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Ideally, the citizen should also prove here that the from address is in its registered address
set in a privacy-preserving way, but that is problematic with current ZKP technology
(encryption proving). This will be checked in the protocol later, anyhow.

After decryption, the citizen has signed(from_address|sentinelID) spend-token.

Citizens are interested in preserving their privacy, which translates to making the issuance
and usage of spend-tokens unlikable.

Unlinkability on the Sentinel side, assuming they may maliciously cooperate with the
CB, requires that usable_until and max_amount cannot be used for correlation effi-
ciently. This can be achieved by only periodically updating usable_untils and the same
max_amount for every issued token.

If the usable_until window is long enough, enough clients use the system, and the clients
all perform a random waiting phase between receiving the token and using it, timing-based
linking of issued and used tokens should not be practically feasible.

The Central Bank is interested in enforcing maximum spend limits(max_amount) for
a policy-defined time (usable_until) window for each citizen. Therefore, it will refuse
to issue another spend token before a cooldown time has passed, e.g. not before the
previously issued has reached its usable_until time. For receiving money, a receive token
(signed(to_address|sentinelID)) is created in a similar fashion. Here to_address is the
address to which the recipient would like to receive the money.

Regarding the receive token, the Central Bank is interested in enforcing maximum hold-
ing limits. Therefore, it will issue the token only if the citizen can present proof
that for the hash-committed current_balance, current_balance + max_amount <
policy_holding_limit. This is simple in ZoKrates and can be interactive ZKP. (ZoKrates
supports non-interactive zk-SNARKs.)

The receive authorization is similarly time managed.

6.6 Facilitaiting transactions

Alice and Bob agree that they want to transact for transaction_amount of money. Alice
gets a spend-, and Bob gets a receive token to the same Sentinel. They agree on a random
transaction_key.

Alice, the payer anonymously turns to the Sentinel, and

• registers the transaction_key,

• presents the spend token, which the Sentinel records to avoid double use,

• declares the transaction_amount.

• signs the whole request with citizen_private_key, to prove that she owns the ad-
dress within the spend token.

Bob does similarly for the recieve token.

At this point, if physical proximity is required for the transfers, infrastructure or hardware
can be involved, which can provide timestamped geolocation attestation for senders and
receivers, e.g. by cell towers for mobile devices.
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Figure 6.1: Requesting and receiving a spend- and receive token from the Central Bank
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Alice now creates a full openCBDC transaction based on the two presented tokens and
sends it into the sentinel

Based on the assumption that the from_address was registered for Alice and she had a
single spend token for that address, the following protocol can be followed.

6.7 Updating the commitments after a transaction

The Sentinel gives Alice a receipt: signed(from_address|transaction_amount|timestamp).
If the spend or receive tokens are not used after all for any reason, then the Sentinel can
be requested, even after the validity of the token has passed, to issue a receipt with zero
value, proving that a transaction did not take place.

Alice turns to the Central Bank, who knows that she had a spend allowance for a time win-
dow, presentshash(signed(from_address|transaction_amount|timestamp)|salt) and
hash(new_balance|salt2) and ZKP proves the following.

• It knows signed(from_address|amount|timestamp) and salt and these lead to the
presented hash.

• The signature is valid for the Sentinel on
signed(from_address|amount|timestamp).

• Timestamp is valid for the issued allowance.

• from_address is in the Merkle tree of the addresses of the citizen.

• It knows salt2, newbalance and salt2 hash to the presented value.

• newbalance is equal to current_balance – transaction_amount.

The Central Bank accepts the receipt, updates Alice’s balance hash commitment -
hash(new_balance|salt2)-, and allows her to get a new token. The same happens on
the receiver side.

The citizen should be able to provide these proofs if the transaction really took place.
Because we checked the compliance with the "cash-like" encumbrances before facilitating
the transaction, he cannot force himself into an illegal state, i.e. he has too much money.
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Figure 6.2: Using the spend- and receive tokens to facilitate a transaction
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Chapter 7

Results and Discussion

I have explored what motivations a Central Bank has for using SSI technology in the
context of a CBDC; how different design principles help a CBDC fit within a broader
financial ecosystem; identified key decisions within a design framework which aims to
strike a balance between the needs of the main stakeholders of a CBDC; and specified two
protocols which adhere to this framework.

Using similar, stakeholder-need-based design processes is not newfangled within existing
CBDC research [6]. My approach focuses on the key issue of privacy. Such exploratory
design may help us break free from base assumptions present in the field and identify novel
solutions. In the future, as both the SSI and the CBDC fields develop, and more inter-
secting research is produced, researchers and developers will surely get a clearer picture of
what other design considerations are to be made and how does system-design affect key
issues in identity management and digital asset development.

Prototyping layered solutions allow developers to pinpoint one issue they would like to
focus on without the need to maintain full focus on systemwide design considerations.
This approach allowed me to focus on privacy as the main issue of this paper because
openCBDC is already proven to be a performant and private transaction processor.

Putting an SSI-based payment solution over openCBDC was also beneficial because I
was able to use existing software building blocks - due to the open-source nature of both
openCBDC and Hyperledger Aries - which served as the foundations of the design process
and enabled easy prototyping of my ideas.

The two protocols I specified are both SSI-based payment solutions over openCBDC and
utilise algorithms for which open-source implementations are widely available. I would
like to discuss the results regarding each one in detail.

The Auditable Payment workflow takes advantage of Verifiable Credentials for citizens
to prove their identities. As stated in Ch. 4, using Verifiable Credentials as the basis
of identification enables the Central Bank to create complex payment workflows utilising
existing SSI infrastructure and freely layer a cash-like under this identity layer. Although
there are other solutions to be explored [36], I have shown that a Verifiable Credential-
based payment workflow is most certainly viable. My design follows the philosophy of
[15] in the sense that Verifiable Credentials can be considered digital versions of existing
physical credentials. In my model, as I stated before, the identifying VC can be considered
a Digital Bank Card.

Aiding the Central Bank in compliance with existing international policies (KYC, AML,
CTF) was a requirement. Using an SSI-based identity layer and storing atomic transac-
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tions, the Central Bank can easily uncover the transaction graph within registered ad-
dresses and associate identities with each address. This way, it can more than comply
with these regulations.

The Private Payment Protocol, inspired by Chaumian Digicash, decouples identity from
spending while enabling cash-like encumbrances by unlinking the permission to spend and
the actual spending with the use of access tokens. Designing a cash-like identity layer
while implementing the previously defined encumbrances is certainly feasible, although
my protocol only serves as an entry point to designing such CBDCs. As mentioned before,
an attempt has already been made by others [25], inspired by Zcash[38].

A brief note on the payment processor system by [25] is that by using the Zcash [38], they
run into some issues present in the cryptocurrency, namely, they store encrypted non-
public data, which makes them vulnerable to the deprecation of cryptographic primitives.

I assumed the CBDC system to be uncompromised and to execute the requested transac-
tions faithfully. Certainly, attack vectors coming from within the Central Bank must be
analyzed. This is beyond the scope of this paper, as I aimed to simply test the viability
of a Verifiable Credential-based protocol and only considered attack vectors originating
outside the defined actors. An attack vector to note in the Private Payment Protocol,
discussed in Ch. 6 is if the CB maliciously chooses very short expiration windows for the
spend- and receive tokens, in which case identities and transactions may be correlated
based on their timing.

Regarding the exploration of the defined privacy spectrum, I think the two protocols
provide proper representative samples from the two extremes of the spectrum. One un-
explored issue is the interaction of these samples. In the previously mentioned Zcash [38]
transaction model, there are transitions between private and transparent wallets. A clear
next step would be the definition of the other two protocols, to enable the interaction of
private and the auditable systems.

Another thing to note is that I cannot provide performance indicators for an identity
layer over openCBDC because I do not have access to the required hardware capacity
for testing the scalability and the peak performance of such a system. Because in both
protocols, the endpoints modify a shared state -beyond the currency transfer-, perfectly
linear horizontal scalability cannot be assumed. However, by utilising existing distributed
system architectures and fine-tuning them for privacy and policy goals, and because the
processing of the currency transfer is decoupled from the identity layer, the performance
loss compared to the "naked" openCBDC may be manageable.
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Chapter 8

Conclusion and Future Work

Given the scarcity of research around Self-Sovereign Identities related to openCBDCs, it
is important to explore the possible design principles regarding systems utilising these
technologies.

The benefits of using Self-Sovereign identities as the identity layer of a CBDC system are
numerous. With clearly defined policy goals, a Central Bank can benefit from a rigorous
design process. I’ve shown how design paradigms focusing on stakeholder needs aid the de-
velopment of CBDC payment schemes and how separating the roles different technologies
play within our system would result in better privacy while maintaining flexibility.

My auditable payment scheme is an important proof-of-concept, in the sense that inte-
grating existing SSI technologies into CBDC payment workflows is not just viable, but
can support a wide array of policy decisions.

Drawing from existing algorithms and workflows, but implementing them in concert with
emerging technologies is widespread within CBDC research.

Proposing a viable fully private payment workflow inspired by Digicash is only the first
step in creating a truly cash-like CBDC, but given its advantages over other approaches,
it should be further analised.

In the future, the formal specification of the protocols must be discussed, and security
analysis must be conducted, although i put it together from known blocks. SSI authenti-
cated singleton access in digicash style only assume proof obligations, which piecewise are
known to be supportable with ZKsnarks proving scheme e.g. Zokrates That being said,
for evaluating practical feasibility, importantly to gauge the computational commitment
necessary from the end users, a prototype implementation has to be created.
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