
Budapest University of Technology and Economics
Faculty of Electrical Engineering and Informatics

Department of Measurement and Information Systems

Machine learning and reasoning
for exploratory data analysis

Scientific Students’ Association Report

Author:

András Földvári

Advisor:

Prof. Dr. András Pataricza

2019

Contents

Kivonat i

Abstract ii

1 Introduction 1
1.1 Context of the work . 1
1.2 Requirements and objectives . 2
1.3 Structure of the report . 4

2 Workflow 6
2.1 Measurement campaigns . 6
2.2 Background knowledge . 6
2.3 Discretization . 7

2.3.1 Clustering . 7
2.3.2 Cluster boundaries . 7

2.4 Modeling techniques . 8
2.4.1 System models . 8
2.4.2 Model fusion . 8
2.4.3 Objective . 9

2.5 Running example . 9
2.5.1 Evaluation of the benchmark . 10

3 Causality 11
3.1 Ladder of Causation . 12
3.2 Causal models . 13

3.2.1 Directed Acyclic Graph . 13
3.2.2 Casual interpretation of DAG . 14
3.2.3 Covariates . 14
3.2.4 Types of causal graphs . 15

3.3 Building causal models . 16

3.4 Example: Causal model . 17

4 Qualitative Modeling 19
4.1 Qualitative models . 20
4.2 Operational regime . 20

4.2.1 Defining operational modes . 20
4.2.1.1 Clustering . 20

4.2.2 Detection of rare events . 21
4.3 Threshold identification . 22
4.4 Example . 23

4.4.1 K-means clustering . 23
4.4.2 Boundary identification . 24

5 Knowledge Representation 25
5.1 Knowledge graph . 25

5.1.1 Grakn . 26
5.1.2 Knowledge graph building with Grakn 26

5.2 Example: Knowledge graph . 27

6 Answer Set Programming 28
6.1 Propositional setting . 28

6.1.1 Building blocks of ASP . 29
6.2 ASP solving process . 30

6.2.1 Modeling in ASP . 30

7 Information fusion 32
7.1 Knowledge graph representation with ASP 32
7.2 Representing causality with ASP . 33

8 Inductive Reasoning 35
8.1 Inductive logic . 35
8.2 Inductive Learning of Answer Sets . 36

8.2.1 ILASP . 36
8.2.1.1 Building blocks of the search space 37
8.2.1.2 Example . 38

9 Automated Model Extraction 39
9.1 Qualitative Comparative Analysis (QCA) 39

9.1.1 Example . 40

9.2 Inductive reasoning on the benchmarking example 40
9.3 Reasoning: Observed Variables . 41

9.3.1 ILASP program . 41
9.3.2 Results . 42
9.3.3 Validation . 42

9.4 Reasoning: Hidden Causal Effects . 43
9.4.1 ILASP program . 43
9.4.2 Results . 44
9.4.3 Validation . 44

9.5 Reasoning: Fault Indication . 44
9.5.1 ILASP program . 44
9.5.2 Results . 45
9.5.3 Validation . 45

9.6 Variable ordering and probabilities . 45
9.7 Efficiency considerations . 46

10 Summary 47
10.1 Evaluation of the work . 47

10.1.1 Automated model extraction . 47
10.2 Further research . 48

10.2.1 Traditional machine learning techniques 48
10.2.2 ILASP functionality . 48
10.2.3 Design patterns . 48

Acknowledgements 49

List of Figures 51

Bibliography 51

Kivonat

A dolgozat célja a komplex rendszerek ellenőrzésének és diagnosztikájának bemutatása
tudásfúzió és az induktív logika segítségével. A módszer a konzisztencia ellenőrzése és a
hibadiagnosztika céljából a rendszerre vonatkozó előzetes tudást egyesíti a megfigyelések-
kel. Továbbá, induktív logikán alapuló következtetést használ a megfigyelések általánosí-
tásához és az automatikus modellépítéshez.

Kritikus kiber-fizikai rendszerek megbízhatóságának és ellenállóképességének biztosí-
tása tapasztalati ellenőrzést igényel. A rendszerek teljesítménymérése és a működési naplók
elemzése jelenti az elsődleges eszközt a kritikus és a megbízható viselkedés biztosításához.
A feltáró adatelemzés (EDA) támogatja az összegyűjtött adatok jobb megértését a szak-
értők és az előzetesen rendelkezésre álló tudás segítségével. Az így meghatározott modell
később alkalmazható a rendszertervezés és az rendszerüzemeltetés során.

A vizuális elemzés segíti a szakértőket a rendszer viselkedésének megértéséhez és meg-
határozza a tüneti modelljének alapját. Az ok-okozati viszony meghatározása a begyűjtött
adatokban igen nehéz lehet (önmagában az adatok közti korreláció nem jelent kauzali-
tást). Előzetes ismeretek a rendszerről (pl. architektúra, működési részletek) segíthetnek
egy pontosabb kép meghatározásában.

A cél, az EDA-t gépi tanulással és következtetési technikákkal való támogatása az
absztrakt modell lépésről lépésre történő konzisztenciájának és teljességének vizsgálatá-
val. A kvalitatív modellezés és a gráf alapú tudásreprezentáció egy absztrakt szemantikus
keretet adnak. A deduktív következtetés ellenőrzi a modellek megfelelőségét és teljességét,
míg az induktív következtetés automatizált mechanizmusként szolgál a megfigyelt rendszer
kompakt és absztrakt modellezéséhez.

A kvalitatív modellek átláthatóbb képet adnak a folytonos rendszerekről szimbolikus,
könnyen érthető módon. A vizuális módszereken és gépi tanuláson alapuló klaszterezési
technikák (pl. döntési fa) a folytonos adatokat egységes működési módoknak megfelelően
csoportosítják. Ezzel a kvalitatív modellek tetszőlegesen skálázhatók, és a diszkrét modell-
ben támogatják a kauzalitás vizsgálatát.

A diszkrét modell és az előzetes tudás a rendszer felépítéséről ábrázolhatók egy ontoló-
gia stílusú tudásreprezentációs gráfban. A modell alapján ellenőrizhető az adatok helyessé-
ge. Az így meghatározott inkonzisztenciák megmutathatják az adatsorból kilógó értékeket.

Az Answer Set Programming (ASP) egy deklaratív megközelítést nyújt a rendszer-
ben lévő kauzális összefüggések és a rendszer architektúrájának leírására. Optimalizálási
technikákkal (gyenge kényszerek) szűrhetővé válnak a zajos adatok. Végül, induktív kö-
vetkeztetéssel az ASP-n meghatározható a rendszer egy általános modellje a megfigyelések
alapján.

Ezekkel az eszközökkel támogatható a (vizuális) EDA azáltal, hogy a kiértékelés so-
rán ellenőrizhető a meghatározott magas-szintű modell teljessége és konzisztenciája. A
megfigyelésekből épített modell lehetővé tesz további formális ellenőrzéseket a rendszer
követelményeknek való megfelelésről. Továbbá, a rendszer hibás működése esetén a mód-
szer kiterjeszthető a hibát kiváltó okok elemzésére is.

i

Abstract

The report presents the combination of discretization, knowledge fusion, inductive logic-
based automated system model identification for validating and diagnosing complex sys-
tems. It uses a sequence of steps of quantization, knowledge base construction merging
priory knowledge and observations and inductive logic-based reasoning for generalization
of the observed results for automated model extraction, consistency checking, and fault
diagnosis.
Assurance of dependability and resilience of critical cyber-physical systems necessitates
empirical validation. Benchmarking and operational log analysis are the primary means
to ensure critical and reliable behavior. Exploratory Data Analysis (EDA) supports a
better understanding of the collected data by integrating the priory knowledge of the
domain expert with the observations. It extracts a model of the phenomena used later in
system engineering and operational supervision.
Visual exploration helps the domain experts to validate the behavior of the system and to
formulate the root causes in the form of phenomenological models. Finding the causality
driving the observed associations in the collected data is frequently tricky. It is hard
accurately reason about from effects to their potential causes (correlation does not imply
causation). However, prior knowledge (e.g., architecture, dynamics) about the system
could provide a more precise view.
Visual technics are efficient as they can rely on the expertise of the analyst. However, the
diagrammatic technics represent the observations only by low dimensional projections, like
histograms or scatterplots. These perform the “visual pattern analysis” process performed
by the analyst to a sequential one with how any guarantees on the consistency of the
individual steps.
The goal was to support EDA with machine learning and reasoning technics performing
step-by-step a consistency and completeness check on the abstracted model. Qualitative
modeling and knowledge graph-based management of the model provides an abstract se-
mantic framework for model extraction. Deductive reasoning checks the compliance and
completeness of the observations and their respective evolving model. Inductive reasoning
serves as an automated mechanism delivering a compact abstract model of the observed
system.
Qualitative models provide a clear representation and reasoning about continuous systems
in a symbolic, human-like manner. Visual and machine learning-based clustering technics
(e.g., decision tree) collect the continuous data into groups corresponding to uniform modes
of operation. This way, qualitative models are scale independent and support root cause
analysis well over a discrete model.
Extending the discrete model with prior knowledge about the system architecture deter-
mines the knowledge base. Implementation as an ontology-styled knowledge graph checks

ii

the conformance of the data instances with this model. Instance-model inconsistencies
highlight outliers.
Answer Set Programming (ASP) provides a declarative approach to represent the causal
and architectural aspects of the system. The underlying optimization functionality handles
noisy data. In the final process, inductive reasoning infers a qualitative model out of the
ASP corresponding to an abstract model of the system and its observed behavior.
This way, the toolchain supports (visual) EDA by checking the completeness and consis-
tency of the evaluation process and identifies a high-level abstract system model based on
the observations. The end-to-end solution for the observation to model building process
prepares further formal checks on the compliance with the requirements against the sys-
tem. Moreover, the extension of metamodels with the notion of fault facilitates diagnostic
root-cause analysis.

iii

Chapter 1

Introduction

1.1 Context of the work

The purpose of cyber-physical systems (CPS) [7] is to observe and control the physical world
through intelligent mechanisms. They operate over continuous and discrete signals
originating in the physical world, for which they consist of physical and computational
components interacting through communication layers [25].
The potential use cases of CPS cover a variety of application domains from manufacturing
through autonomous cars to the smart ecosystem. There is an increasing need for creating
and operating CPSs, as they serve a primary means of optimization and control of complex
physical processes. Ensuring the proper operation of the services delivered by CPS involves
fulfilling both the functional and extra-functional requirements (timeliness, throughput,
reliability, availability, etc.) simultaneously.
Typically, CPSs have an extra-long lifetime originating in the physical infrastructure and
the interface elements connected to them. However, functional modifications are frequent
by exploiting the flexibility of the computational part, especially by the easy modification
and extension of the functionalities implemented by programs. This way, the functionality
required by the user is frequently subject to evaluation and occasionally involved by on-
demand services.
The main paradigm of CPS construction is system integration. The notion of integration
means here, on the one hand, integrating components and subsystems into a single entity
under uniform control and on the other hand, cooperatively performing the designated
functionality. Such a flexible and universal integration paradigm necessitates an easy and
steady interfacing of the individual components and subsystems. This flexibility provides
easy augmentative and technical maintenance and structural changes and upgrades. For
instance, publish-subscribe is one of the popular architectural paradigms for the integration
middleware, as it delegates all the deployment-related details of the middleware an exposes
only the functional interdependence between sub-services.
Preparing the system for such a functionality [24] requires dynamic system integration
middleware (e.g., DDS[34], OPC-UA[33], MQTT [5]) and a scalable model both in design
and operation time that can handle these changes. The purpose of the system integra-
tion middleware is to manage the related topological and technological challenges (e.g.,
automatic discovery of new components, interoperability between systems [1]).
In-field resources of a moderate capacity are typically limited to performing the core
functionality. As communication is usually the bottleneck in the performance domain, they

1

perform data pre-processing in order to reduce communication. The level of intelligence of
a CPS heavily depends on both the resources available for processing and the intelligence
and background information of the processing algorithms.

1.2 Requirements and objectives

The breakthrough idea behind the CPS was to integrate the omnipresent resources avail-
able through the Internet (like cloud computing) and the rich intelligence available in
the cyber-world as remote data and Algorithms as a Service (AaaS). This way, a typical
CPS has a hierarchical functional abstraction layer integrating the potentially unlimited
resources and intelligence performing the more demanding tasks in addition to a local
processing layer over limited resources and intelligence .
This structural flexibility and adaptability necessitate the proper dimensioning of the
components as their workload can not be fixed in design time due to this structural
adaptability. This way, running the components of a CPS in various environments under
different workloads could require the invocation of additional resources (runtime resource
allocation) and scaling the service infrastructure. Both infrastructure scaling in design
time and dynamic resource allocation in runtime require the building of a unified model
merging requirements, system architecture, and metrics into a single framework. Assuring
this need necessitates empirical exploration of the actual characteristics of the system
configuration.
CPS models depend on several physical and technical parameters. In design time, the
operational modes and characteristics of CPS systems cannot be described analytically
with realistic faithfulness due to their highly nonlinear and multi-parameter properties.
This complexity also requires a scalable system model (e.g., when applying the same
algorithm to tasks of different sizes, or differently large runtime platforms the model must
be adapted to the actual size of the given task).
A discrete (qualitative) model of the system is a highly abstract form of describing the
logic of its architecture and behavior with no details on the actual values. It assures
portability and technological independence of the core phenomena during operation. It
allows reasoning about the system behavior by highlighting potential phenomena at a logic
level. Moreover, it allows running simulations after parametrization of the qualitative
model to a quantitative one. Although, discrete modeling has many advantages, due to
the high level of abstraction it may also cause ambiguity.
When building the unified model by system identification, it should be usually performed
by processing benchmark measurements or operational logs through empirical exploratory
analysis.
The hybrid modeling approach (Fig. 1.1) sketched above fits well into this task. Hybrid
modeling takes the advantages of both the qualitative and continuous models. It
characterizes size-independent operational ranges with discrete values and scales the
qualitative ranges by choosing their boundaries. The approach allows integrating all
available knowledge into one united model.
The discrete model aggregates the subspace of the state space into a single abstract state
(on observations, this corresponds to assigning a single element to an entire cluster). The
engineering reason behind the hybrid modeling technique is that elements inside of a
domain corresponding to a homogeneous operation regime posses similar behavior, which
can be modeled as identical ones and map into a single state. This extremely high level

2

Figure 1.1: Hybrid modeling

of abstraction can reduce highly complex state spaces according to the individual state,
probably of infinite cardinality into a few tens of hundreds of discrete states.
Creating a hybrid model as part of the system identification process necessitates cluster-
ing of the data into domains (operational regimes), which show qualitatively identical
behavior of the system. This task referred to as discretization can be performed by and
expert manually or by automated means.
Manual methods executed by an expert have the advantage that the discretization process
can rely on the background knowledge of the expert is able for instance use his domain
skills for variable selections, etc. On the other hand, if the number of the measured
characteristics is large as required for finite granular models, a pure expert based approach
become impossible.
One of the most effective methods of system identification is visual EDA, where the rela-
tionship between measurement data displayed in different graphs in space and time. These
graphs are examined by a domain expert using background knowledge and requirements
of the system.
EDA requires a heuristic examination of the system. For complex systems, the heuris-
tic approach is challenging. It can be tedious to examine all the variables and aspects
manually.
Machine learning techniques (e.g., neural networks) support the automatic model extrac-
tion from a continuous system, for instance by clustering. However, the explainability of
these approaches is unsatisfactory. It is hard to tell which effect influenced the result.
Our goal was to support EDA with machine learning in the form of supervised learning.
Reasoning techniques will perform step-by-step checks of the abstract model in order
to assure consistency and completeness. The method is the combination if discretization,
knowledge fusion, deductive and inductive logic based automated system model extraction.
Qualitative modeling and knowledge database (implemented by a knowledge graph)
management of the model provides an abstract semantic framework for information
fusion from different sources and automated model extraction. They define the op-
erational modes of the system and makes it possible to verify the ranges by discrete value
representation.

3

Figure 1.2: Machine learning and reasoning for EDA

Deductive reasoning checks the compliance and completeness of the observations and
their respective evolving models. Inductive reasoning (on answer set programs (ASP))
extracts by an automated mechanism delivering a compact abstract model of the observed
system.
The model extraction supports both the scalable model building in design time and the
demand-driven dimensioning (e.g., dynamic resource allocation) in runtime.
This way, the toolchain in Fig. 1.2 supports (visual) EDA by checking the completeness
and consistency of the evaluation process and identifies a high-level abstract system model
based on the observations. The end-to-end solution for the observation to model building
process prepares further automatic checks on the compliance with the requirements against
the system. Moreover, the extension of metamodels with the notion of fault facilitates
diagnostic root-cause analysis.

1.3 Structure of the report

The report is separated into four main parts:

• Chapter 2 gives a quick overview of the workflow of the method by describing the
main steps with the respectively used modeling approaches.

• Chapters 3-8 present each step in detail:

– Chapter 3 introduces causality as a core concept in learning observations in
the form of associations into technically sound model fragments.

– Chapter 4 defines the principles of qualitative modeling. It presents the
extraction of such models concerning the identification of operational regimes
in detail, guided by an example.

– Chapter 5 introduces a uniform platform for knowledge representation and
fusion of heterogeneous information based on the general-purpose notion of
knowledge graphs.

– Chapter 6 presents a specific declarative programming paradigm called An-
swer Set Programming (ASP). ASP will be used in the rest of the report

4

for executing information fusion and reasoning over the abstract notions and
measurement data hierarchical by the knowledge graph.

– Chapter 7 elaborates on the utilization of the ASP for model fusion. The
transformation of the knowledge graph and the causal model is guided by an
example.

– Chapter 8 introduces the principle of inductive reasoning for proposing gen-
eralizations out of the priory knowledge and observations in the form of rule
proposals together with a tool for inductive learning of ASP programs.

• Chapter 9 presents the automated model extraction method in detail.

• Finally, Chapter 10 summarizes the work and gives a brief overview of further re-
searches based on the evaluation of the results.

5

Chapter 2

Workflow

2.1 Measurement campaigns

The input information of the method is a set of observations that usually came from
benchmarks or operational logs. They describe the system (output metrics) under specific
workload parameters.
The first step is to analyze the measurement campaign on its own. Experts have to take
into account the context of the measurement and outlier data.
The context of the measurement covers determines the measured parameters and bound-
aries of the measurement campaign. Outlier data can warn about a non-functional oper-
ation of the system or indicates that the measurement is not trustworthy.
However, different parametrizations of the same experiment (i.e., different resource allo-
cation) may expose profoundly different phenomena. A scalable model has to merge all of
this even potentially different behaviors. This way, the model building has to be adopted
to the fundamental configuration settings.

2.2 Background knowledge

Processing the measurement requires having (partially) the system architecture and func-
tional model. The information extracted from these models can be used during the eval-
uation phase. The design and development phase of the system provides background
information on different abstraction levels.
However, it is possible to work with partial knowledge about the system. It is not necessary
to know all the details (e.g., third-party components as a black box, only the input-output
parameters are known with integration details).
Analysis of a system requires the collection of all priory knowledge that is available for
the analyst. The background knowledge comes from different sources and covers differ-
ent aspects of the system and includes the architecture, functional, resource allocation,
installation, and causal model of the system.
The system architecture and the functional model provides a high abstraction about the
system components and their objectives. A model like causal models can be built by
extract information from them.

6

The resource allocation model closely connects to the functional model. It describes which
component uses which resource (e.g., networking capabilities, CPU, RAM). The installa-
tion model presents the physical or logical layout of the system.
The causal model expresses the causal connections in the system based on the priory
knowledge about the domain and the previous models. Furthermore, it is possible to
extend the causal model by adding external (out of the measurement campaign context)
causal connections to the model.
Collecting and systematizing the background knowledge is necessary for further analysis.

2.3 Discretization

A discrete (qualitative) model of the system is a highly abstract form of describing the
logic of its architecture and behavior with no details on the actual values. It assures
portability and technological independence of the core phenomena during operation. In
the workflow, discretization means the identification of operational modes (operational
regime) and the transformation of the continuous properties into qualitative values.

2.3.1 Clustering

The goal of the clustering is to aggregate the fundamentally similar behaviors into a
uniform qualitative state. Clustering helps to identify the operational modes. There are
two different approaches to achieve this goal:

• Visual EDA: Visual EDA uses graphs (e.g., scatter plots, time-series diagrams) to
identify the boundaries of each operational mode. Because it is a manual process, it
requires comprehensive domain knowledge.

• Machine-learning based clustering: Machine learning-based clustering tech-
niques (e.g., decision tree, k-nearest neighbor) collect the discrete data into groups
corresponding to uniform operation modes. These are algorithmic processes that
should verify manually. However, they provide a great base for further analysis.

Clustering helps to build scalable models, and the representativity of the collected data is
easily verifiable with the operational modes.

2.3.2 Cluster boundaries

Transforming the continuous variables into qualitative values requires the definition of
thresholds. Threshold helps in the data processing and later during monitoring the system
in the following ways:

• Input data: The input of the monitoring tool is quantitative data. The classification
(into operational modes) of the continuous incoming data is based on the identified
thresholds.

• Magnitude of the actuation: Thresholds can be used to identify the magnitude
of the actuation. This way, it can provide a more precise value for actuation by
transforming the qualitative values into continuous.

7

2.4 Modeling techniques

2.4.1 System models

• System engineering models: Traditional system engineering methods
(ISO/IEC/IEEE42010:2011 [25]) are not always comprehensive for CPSs. Designing
a CPS is a challenging task due to the constantly changing environment. Several
reference architectures (e.g., OpenFog [3]) and frameworks (e.g., NIST CPS Frame-
work [22]) were presented to ease this problem by defining a unified context. System
engineering models include architecture, functional, resource allocation, installation
models. These models give the foundation for the later analysis.

• Causal model: The causal model extracts the root causes and their manifesta-
tions in associations. With the causal model, the inputs and outputs for qualitative
simulations are observable. The goal of the causal model building is to explore the
(hidden) causal connections and to check the independence of the assumed inde-
pendent variables. It requires the representativity of the independent factors and
removing of false associations.

• Qualitative model: The qualitative model provides a clear representation and
reasoning about continuous systems in a symbolic, human-like manner. Visual and
machine learning-based clustering techniques (e.g., decision tree) collect the contin-
uous data into groups corresponding to uniform modes of operation.

• Answer Set Programming (ASP): The goal of the ASP is to provide a uni-
form framework for information fusion and reasoning. ASP provides a declarative
approach to represent knowledge about the system. Later, it can be used for induc-
tive reasoning, which infers a qualitative model out of the ASP corresponding to an
abstract model of the system and its observed behavior.

2.4.2 Model fusion

Model fusion merges the previously constructed models into a uniform model. It is made
up of the architectural, causal models, and qualitative measurement data.
The knowledge representation capabilities of ASP enables to model all the required knowl-
edge in one framework. In the final process, inductive reasoning infers a qualitative model
out of the merged ASP corresponding to an abstract model of the system and its observed
behavior.

8

2.4.3 Objective

Automated model extraction The goal of the report is to answer questions about
both the observable and unobservable causal connections to support the system diagnosis
and the automated model extraction.

For instance, we will show from the observation instances that we can create general
hypotheses that seem to be valid for all the data. Such hypotheses can appear at a
higher level of abstraction (i.e., if the experiment describes the dependence between the
inputs and outputs of a component, then a hypothesis can generalize the faulty behavior
for all the similar component types). This way, if the validity of the hypothesis is proved,
a reusable bias of knowledge can be gained.

The method uses deductive and inductive reasoning about the constructed uniform
model to achieve this goal.

2.5 Running example

The running example is based on the dataset from the paper Exploring uncertainty of
delays as a factor in end-to-end cloud response time [21] .
The paper reports about benchmarking a cloud-based web-service and the investigates
instability of its performance and the delays induced by the communication channel when
measured from multiple client locations.

Figure 2.1: Benchmark architecture with parameters

The requests were sent from clients to data centers, which are located in the United
Kingdom and South America. Each request was sent at different times of the day with
different client types.
The dataset includes the following observed variables:

• ip: IP address of the client.

• location: Location of the client. (e.g. Newcastle, Secaucus, Chicago, Ottawa)

• Country: Country of the client.

• client.type: Technology being used by the client. (e.g. Java, Microsoft)

9

• RTT: Network (the Internet delay) round trip time.

• DC: Location of the data center (Redmond, Dublin)

• RPT: Request processing time by a benchmark web service deployed in the cloud.

• RT: End-to-end response time (RT = RTT + RPT)

• start.time: Start time of the request in milliseconds since the UNIX epoch (January
1, 1970 00:00:00 UTC).

• pm.pa: Day time of the request (AM/PM)

• Time: Time difference between the client and data center.

2.5.1 Evaluation of the benchmark

Over-aggregation of the data suppresses interesting details like outliers. In high availability
systems, however, the system has to perform with the availability of many lines after
the decimal point accordingly, outliers may endanger the fulfillment of extra-functional
requirements.

Figure 2.2: RTT values over locations indicates an anomaly in
Secaucus

The assumption about the measurements is that the clients and the servers are processing
the same algorithm. This way, a homogeneous result is expected. Most of the data points
have equal distribution except for some outliers, that indicates potentially inhomogeneous
behavior. The priory assumption and knowledge does not explain these outliers.
The authors of the original paper did not discover an important anomaly. Previous re-
searches pointed out that there is some strange (dis)functionality in Secaucus (Fig. 2.2),
which was ignored in the original paper.
The rest of the report uses this example to guide through the steps of the presented
method.

10

Chapter 3

Causality

Causality is a natural, universal concept, so deeply present in our everyday life that we
instinctively think in causal relations without pondering about their actual complexity
and importance. The whole physical world around us is fueled by causality. It is the
connection through which -under certain circumstances- one thing (the cause) influences
another(the effect) in a deterministic way.
Causal explanations must be compatible with human notions of causality. The exploration
of causality in complex technical domains has led to the development of sophisticated
accounts of causality in continuous systems.

Figure 3.1: Model derivation

Causal models [35] [36] allow the exploration of the causal context of a system and the
detection of independent properties and events. Two events are statistically independent
if the occurrence of one does not affect the probability of the other. It is necessary to
check the validity of the possible independent variables to verify the correctness of the
representation.
Causal models also help the domain experts in EDA to explore a more detailed view of
the system.
The presented methodology uses causal models to explore the causal behavior of the system
by combining the priory knowledge with the system model (Fig. 3.1).

11

At first, this chapter presents the Ladder of Causation by Judea Pearl [35]. Each level of
the ladder represents different cognitive abilities that a causal learner must achieve. The
final goal of an inference system is to achieve the top level of the ladder.
Nowadays, most of the machine learning approaches (e.g., neural networks) are on the
first level of the ladder. Traditional machine learning approaches do not provide a proper
explanation of their results (i.e., what effect influenced the outcome).
Later this chapter, the directed acyclic graph (DAG) representation of the causal models
will be presented with its mathematical background and techniques on how domain experts
can use the graph for causal analysis.
The last part presents how the causal model build of the functional and resource allocation
model of the system. By using these models, the causal connection between the functional
building blocks and their resources (e.g., memory, networking, etc.) will be observable.

3.1 Ladder of Causation

Judea Pearl introduced the Ladder of Causation (Fig. 3.2) in his book Causality[35]. The
three levels represent different abstractions. Association (seeing) expresses regularities
and patterns as correlation. Intervention (doing) expresses special causal relationships
between events. Counterfactuals (imagining) constructs a theory of the observed phe-
nomenon that explains why specific actions have specific effects and what happens in the
absence of such actions.

Figure 3.2: Ladder of Causation[36]

Association Two objects associate if the observed probability of one object indicates
the probability of the other.
For example: What does an observable variable tell about a disease? High RTT could
indicate a only a noisy data or it could indicates the faulty behavior of the system.

P (faulty_operation|rtt(high))

12

Associations have no causal implications, as correlation does not imply causation. One
event could cause the other, the reverse could also be true, or some third event could cause
both events.

Intervention The main difference between Association and Intervention is, that Inter-
vention predicts the effects of deliberate actions. This asserts causal relationships between
the events. Causality is assessed by experimentally performing some action that affects one
of the events. Causality cannot be established by examining history because some other
unknown reasons (independent from history) may cause the occurrence of the observed
event.
For example: If I change the configuration, will the system operates normally? Intervention
predicts the causal relationship between changing the configuration and normal operation.

P (normal_operation|do(configuration_change))

In this example, do (do-calculus) is an operator that means experimental intervention.
Without using the do-calculus, it could be other actions that cause the normal operation.

Counterfactuals The counterfactual level involves consideration of an alternate version
of past events. Models that can reason about counterfactuals allow interventions. It means
that the consequences of an action can be predicted.
For example, Was it the configuration change that leads the system back to normal oper-
ation? Answering yes to this question asserts the existence of a new causal relationship
between the configuration changing and the normal operation.

3.2 Causal models

Causal models describe the causal mechanism of a system. Causal diagrams include causal
loop diagrams, directed acyclic graphs, and Ishikawa diagrams. The report uses causal
graphs to model causality in the benchmarking example.
A causal graph is a Directed Acyclic Graph (DAG), where the relations represent the
causation among the variables.

3.2.1 Directed Acyclic Graph

Graph is an ordered pair G = (V,E), where V is a non-empty set and E ⊆ V × V . The
elements of V are called vertices and the elements of E are called edges.
If G is a graph then V (G), and E(G) denote the sets of nodes and edges. v(G) and
e(G) denote the number of the nodes and edges.

Directed and Undirected Graph In undirected graphs the edge (x, y) is identical to
the edge (y, x). In directed graphs, the values of the edges have orientations.

Simple Graph If e = (v1, v2) ∈ E then (v1, v2) are the end points of the edge. If v1 = v2
then e is a loop. Two or more edges that connect the same two vertices are called
multiple edges. A simple graph is graph without multiple edges or loops.

13

Directed Acyclic Graph (DAG) DAG is a finite directed graph with no directed cy-
cles. It consists of finitely many vertices and edges. DAG has a topological ordering,
a sequence of the vertices such that every edge is directed from earlier vertex to later
vertex in the sequence.

Figure 3.3: Directed Acyclic Graph (DAG)

3.2.2 Casual interpretation of DAG

A causal diagram includes a set of variables (vertices) and the directed edges between
them. If two vertices are connected, that means there is a causal relationship between
them. The arrow determines the direction of causality. A → B means A influences B.
The relation between vertices from the viewpoint of causality:

Ancestor An ancestor role represents a direct cause (i.e., parent) or indirect cause (e.g.,
grandparent) of a particular variable.
For instance on Figure 3.3, A is an ancestor of B and C . B is an ancestor of C .

Descendant A descendant role represents a direct effect (i.e., child) or indirect effect
(e.g., grandchild) of a particular variable.
For instance on Figure 3.3, B and C are descendants of A . C is descendant of
B .

Figure 3.4: Casual Interpretation of DAG

Two variables of interest are distinguishable (figure 3.4): the exposure (independent
variable, cause) and the outcome (dependent variable, effect). Other variables (whether
measured or not measured) are called covariates.

3.2.3 Covariates

Covariates 3.5 can be categorized into several roles; only some of these roles are mutually
exclusive. The report uses the terminology of DAGitty [43].

14

(a) Confounder

(b) Mediator

(c) Proxy Confounder (d) Competing Exposure

Figure 3.5: Covariates

In the following examples, A is the exposure and C is the outcome.

Confounders are variables that are ancestors of both the exposure and the outcome
(along a path that does not include the exposure). On Figure 3.5a, B is a con-
founder. For example, a resource can be a confounder if two component uses the
same resource (e.g., memory, cpu).

Mediator is a variable that is a descendant of the exposure and an ancestor of the
outcome. On Figure 3.5b, B is a mediator. For example, the data flow in the
system can be modeled as a path of mediators. For example, a proxy confounder can
be a sub-component of the system that uses the same resource with one component
(A) and provides data to an other (B → C).

Proxy confounders are covariates that are not themselves confounders. They are a
descendant of a confounder and an ancestor of either the exposure or the outcome
(but not both; else, it would be a confounder). On Figure 3.5c, D is a confounder
and B is a proxy confounder.

Competing exposure is an ancestor of the outcome, and it is not related to the exposure
(it is neither a confounder nor a proxy confounder, nor a mediator). On Figure 3.5d,
B is a competing exposure. For example, the competing exposure can be a local
resource that influences only the local components.

3.2.4 Types of causal graphs

For gaining a deeper understanding of the causal model, the DAGitty tool comes in handy,
as it supports two additional views of the causal graph.

15

Correlation graph Correlation graphs are undirected graphs. There is an edge between
all the variables that could be statistically dependent on the original causal model.
The variables that are not connected by an edge must be statistically independent.
Pairwise independence must be checked by hand[42].

Moral graph Moral graphs help to identify minimal sufficient adjustment sets. DAGitty
transforms the original causal graph to an undirected graph. This model supports
the verification of the calculation manually[40].

3.3 Building causal models

This section presents a method (Fig. 3.6) for building causal models by using classical
engineering techniques (e.g. SySML[16]). Classical engineering models (e.g., requirement,
system architecture, component, functional) helps to collect the background knowledge
that is required for building the causal model. The causal model is derivable from the
functional model of the system and its resource allocation model.
The functional model describes the continuous processes of the system, which defines the
skeleton of the causal model. The causal model uses the described data flow by
functional model.
Extending the functional model with the resource allocation model also extends the causal
graph with detailed causal relations. This model can present the causal connections
between the resources and the functions (e.g., it is observable if two components using the
same resource)

Figure 3.6: Model derivation

The causal model building process also requires background knowledge about the dynam-
ics and the causal details of the system. This knowledge is usually verified by an expert
who knows the system and its domain in great detail. This addition to the causal model
makes the hidden causal effects observable and reasonable.
This, way the causal model building follows the steps of:

1. Building the skeleton of the causal model from the functional model.

2. Replace the abstract nodes with observable variables.

3. Extend the model with further observable variables that were not part of the
skeleton model.

16

4. Extend the model with unobservable causal relations from the priory knowledge.

3.4 Example: Causal model

This subsection presents the causal model building of the benchmarking example. The
model building process follows the steps described in the previous subsection.

Figure 3.7: Functional model

The functional model (Fig. 3.7) is closely linked with the architecture model. The func-
tional model describes the steps of each message is in measurement campaign:
The process starts by sending a message to the data center (DC). Both the client and DC
routers are involved in the routing process. The message goes through a network that
interconnects the parties. When a DC receives a message, processes it, and sends the
result back to the client by involving the same steps (routing, network transfer) as in the
sending phase.

Figure 3.8: Skeleton of the causal model extended with some ob-
servable variables

This functional model is the bases of the skeleton for the causal model. The skeleton of
the causal model (Fig. 3.8) contains the exact observable variables from the measurement
context (e.g., the DC Process function is expressed by the RPT variable).
The next step connects all the other observable variables to the causal graph. It requires
the prior knowledge of the user about the assumed causal connections.

17

Finally, other unobserved causal connections should be added to the model (e.g., using the
fault model). This example uses the fault model of the benchmarking example to extend
the causal model with unobservable properties.
The final model (Fig. 3.9) contains both observable (benchmark variables) and unobserv-
able (priory knowledge) properties.

Figure 3.9: Final causal model

18

Chapter 4

Qualitative Modeling

Qualitative models [15] provide an abstract representation by discrete values corresponding
to operational regimes of a uniform or nearly uniform behavior over the continuous domain.
They are scale-independent, and the representative quality of the collected data is easily
verifiable.
Qualitative modeling (reasoning) [15] has three main steps that describe its main advan-
tages — namely, model formulation, qualitative state elaboration, and simulation.
The model formulation is about to determine the input description of the system. Input
description takes into account the knowledge of the kinds of entities and phenomena that
can occur (model fragment). It is also necessary to add constraints to the model about the
boundaries of the system — this collected knowledge called domain theory. Knowledge
bases allow storing the domain theory by providing a rich set of functionality (e.g., built-in
reasoning) and representation mechanisms (relations, attributes, rules, etc.).

Figure 4.1: From Measurement to Qualitative Model

The qualitative state defines the active model fragments of the system. It represents the
entities with their parameters. In the context of qualitative modeling, the values of the
parameters are discrete.
Note that there are model fragment sets that never occur in the system. These states
should be defined during the model formulation phase, but it requires a comprehensive
domain and system knowledge. For example, in the case of a set of observations, it should
be declared if a qualitative state is only not represented in the occurrences, or it is not
part of the state space of the system.
Qualitative simulation identifies the sequence of qualitative states that can occur one after
another — defining the collection of all possible behaviors of the system called envisioning.
As the number of the qualitative states can be infinite (even for simple systems), the
qualitative representation should be design with only the required fragments that covers
the task-specific problem.
These building blocks provide portability, scalability, and technological independence.

19

This chapter presents the first step of the method: qualitative modeling (Fig. 4.1). The
goal of this step is to create a qualitative model from the measurement data.
First, it presents the principles of qualitative modeling, and methods to identify the op-
erational modes of a system. The end of the chapter defines the operational modes of the
benchmarking example.

4.1 Qualitative models

Qualitative modeling (qualitative reasoning) is used in a wide range of disciplines. One
of the earliest applications was in the field of engineering problem-solving. Later, this
approach spread across different fields, from economics and decision support to ecology
and bioinformatics.
The qualitative model maps the different operational domains to system states. Clustering
methods identify the domains that describe fundamentally similar behaviors in the system.
The resolution of the models is goal-oriented. It usually covers all the cases (conditioned
by the dimensioning) as a single integrated model.
The principles of qualitative modeling are the following:

• Discretization In the process of discretization, the first step is to identify the
entities of continuous media. Modeling the entities is important because they can
be represented and reasoned about symbolically. Then the continuous parameters
are quantized, so they will only take on a finite number of possible values. It is thus
providing a means of abstraction, a qualitative representation.

• Relevance After the discretization, constraints can be imposed on the resulting
qualitative representation, both deriving from the nature of the system, and the rea-
soning to be done about it. The constraints cannot be formulated properly unless
the qualitative values are constructed and formed in such a way that they represent
the relevant information. Also, the integrity of the regions defined by the discretiza-
tion must be ensured. Within each region, the behavior of the system must be the
same, with respect to some task-specific criteria.

• Ambiguity The downside of working on such a high level of abstraction is the
ambiguity. Such an abstract model often does not represent enough information to
predict the behavior of the system in any given situation.

4.2 Operational regime

4.2.1 Defining operational modes

The goal of the clustering is to aggregate the fundamentally similar behaviors into a
uniform qualitative state. There are two different approaches to achieve this goal: visual
EDA, clustering. This subsection present a clustering in detail.

4.2.1.1 Clustering

Clustering is the identification of a grouping or categorization of the data points in such
a way that data points that are in the same group have similar features, while they differ

20

from data points belonging to another group. Clustering can be interpreted as grouping
datapoints together based on their Euclidean distance in the multivariate space defined by
a subset of their features. The process of clustering is an unsupervised learning method,
and it is a frequently used technique in exploratory data analysis.

K-Means clustering algorithm In this paper, the k-means algorithm is presented as
an example, which is one of the oldest clustering algorithms, and it is still amongst the
most commonly used ones [32]. It uses an iterative algorithm to define k number of groups
in the data. At first, it randomly initializes the centroid for each of the k groups. Then
every datapoint is classified into one of the groups based on its distance from the centroid.
In each iteration, the algorithm adjusts the position of the centroids to be in the center
of the data points classified to belong in the group defined by the previous value of the
given centroid.

Evaluation of clustering algorithms The evaluation of clustering algorithms is chal-
lenging [23], because unlike with supervised learning problems, there is no ground truth
available for comparison. Therefore these metrics cannot measure the validity of the
model’s results, only give an insight on how organized the clusters seem to be, and as such
can be used to compare several model’s abilities of cleaner separation.

Davies-Bouldin Index [23] According to this metric, a clustering is proper if the intra-
cluster distance of the data points is smaller while the inter-cluster distance is bigger.

Dunn Index [6] The idea behind the Dunn index is the same; only the approach is
different. The Dunn index takes the model’s weakest link to evaluate the model, as
the measurement captures the most significant intra-cluster distance and the smallest
inter-cluster distance.

Silhouette Coefficient [39] This metric may be the most accurate, but it is the most
expensive as well in terms of computing complexity. It is computed for each individ-
ual data point, how well it fits into its own cluster. A negative coefficient means the
datapoint should have been assigned to another cluster; a positive coefficient means
it was well assigned. If the coefficient is zero, then the data point is right on the
inflection point of clusters, and its place cannot be decided.

4.2.2 Detection of rare events

The data points that are roughly separated from the rest of the data are called outliers
[37]. They typically rarely occurre in measurements. Most of the time, they can be derived
from measurement errors (e.g., an obvious error may be a value outside the domain of the
variable). If this is the case, the resulting outliers should be ignored after identification.
However, they could also indicate non-functional behaviors. Further investigation is re-
quired in this case. The goal could be to address the need to restore proper functioning
or the ability to forecast the event in the future.
Rare event detection is favorably used in several domains (e.g., in medical diagnosis,
system operation, economy). Algorithmic support for detecting and categorizing outliers
is essential for analyzing high dimensional data sets with many samples (obviously, there is
a higher probability of the occurrence of rare events in data sets that have a large number
of samples). The number of rare events is typically far from the general trend of the data,

21

and the nature of their manifestation (size, frequency, etc.) may vary in different data
sets.
The first step is to determine the characteristics of the attribute space, nature, and the
distribution of the variables. After the boundaries of the normal range are determined,
the out-lying data points can be separated from the others.
The two general algorithmic approaches are:

Distance-based methods Distance-based methods assume that special points are far
from the center of the entire data set.
The center can often be defined by examining a single attribute since the outliers fall
out of the normal value interval. In the case of multiple attributes, a finite subset
of attributes should be selected. Typically, this requires first selecting the set of
clusters that define the normal range.
Several algorithms were introduced in the last decades. However, they have the same
foundations (Mahalanobis distance, Envelope methods, Distance-Based algorithm)

Density-based methods The basic idea of density-based methods is that the degree of
the externality of a point is determined by its difference from its local environment.
In the distance based methods, calculating the distance may not be trivial in many
cases, for example, in a very high dimensional dataset, or if an important feature
is of a sensitive data type. Most of the time, Euclidean distance cannot be applied
for real-world data, especially without prior normalization. This does not pose a
problem when it comes to density-based methods, as they are based on the data
points’ local environment by examining the local density.
Several algorithms have been introduced, for example the Local Outlier Factor, or
the Nearest-Neighbor-Based Rare Category Detection.

4.3 Threshold identification

Traditional quantitative models use real values or floating-point approximations to describe
a specific continuous variable, while qualitative systems identify a finite set of values as
their domain. Therefore the transition from a quantitative model to a qualitative model
can be viewed as a kind of abstraction of the variables.
In qualitative systems, the description of the variables can be either static or dynamic. In
a static model, the value of the variables stays the same during the qualitative reasoning.
However, in a dynamic model, it may change in time (e.g., new data points are added,
thus influencing the values of the threshold).
Several qualitative representations of continuous variables are available. The right one
shall be chosen based on the resolution required by the problem.

Status Abstraction Status Abstraction [4] is one of the simplest qualitative representa-
tions. It classifies the observed variable as normal and abnormal. The classification’s
semantics is context-dependent. Several techniques can help to identify the threshold
that distinguishes the clusters and classifies the observed values (e.g., visual EDA,
fuzzy logic, simple range calculation).
If all the variables in the system use Status Abstraction, the maximal state space is:
2N , where N is the number of the observed variables.

22

Sign Algebra Sign Algebra [11] uses three qualitative values: positive(+), negative(-)
and zero(0). It also enables the addition of integrity constraints: e.g. A value can
not jump directly from - to + without taking the value 0. Sign Algebra is used in
a lot of qualitative systems, however the aspect of ambiguity should be taken into
consideration. Given the following equation:

[a] + [b] = [c]

If the discrete value of a and b is both +, then c must be + too. However, if a is -
,and b is + (or vice versa), then c is ambiguous in the sense of the sign of the result.
In the case of using Sign Algebra, to describe all the observed variables, the maximal
state space is 3N , where N is the number of the variables.

Finite Symbolic Value System This approach describes the continuous values with a
small number of terms. One typical approach is to split the values (e.g. sensor data)
in three intervals: low, medium, high. It is much trickier to apply a consistent
algebra for these terms: e.g., Is medium+ low equals medium or high?
The state-space could be very large (state-space explosion): MN , where M is the
number of the possible qualitative values, and N is the number of the variables.

4.4 Example

4.4.1 K-means clustering

The K-means clustering algorithm was used to identify the operational modes of the
benchmarking example.

Figure 4.2: Clusters

In the benchmarking example, three operational modes are distinguishable (Fig. 4.2):

• Normal operation: The Normal operation mode descries the data points that
correspond to the required operation (e.g., both RTT and RPT are low)

23

(a) RTT Boxplot (b) RPT Boxplot

Figure 4.3: Continuous variables

Variable Discrete values Continuous interval

RTT
low [63,3363]

medium [3363, 32678]
high [32678, 131623]

RPT
low [609,682]

medium [683,788]
high [789,1672]

Table 4.1: Discrete values of the observed variables

• Faulty operation: The Faulty operation mode describes the data points that differ
from the required operation (e.g., high RTT or RPT). These are the rest of the
outliers.

• Unclassified: Unclassified data lies between the normal and faulty data. However,
further classification aspects add constraints (sufficient and necessary) that could
classify the remaining data.

4.4.2 Boundary identification

The benchmarking example contains two continuous variables. The example uses a static
variable description. The first continuous variable describes the latency in the commu-
nication channel (RTT), and the other represents the processing time of the datacenter
(RPT). The example uses Finite Symbolic Value System for representing the continuous
variables (RTT, RPT)(Table 4.1) (Fig. 4.3a, 4.3b). The defined set of qualitative values
is {low,medium, high}.

24

Chapter 5

Knowledge Representation

Knowledge representation plays a central role in qualitative reasoning. The goal is to
collect all priory knowledge into a single qualitative model for further analysis (with ASP)
and for verification purposes.
Ontologies [15] are one way to represent knowledge about a system from different views and
aspects. Traditional mathematics-based modeling systems are informal about ontologies.
Qualitative modeling makes this informal knowledge into explicit form. Ontologies in
qualitative models define what entities should be included in a situation, what phenomena
are relevant, and what simplifications are sensible. Three type ontologies are commonly
used in qualitative modeling: components, processes, and fields.
One way to represent ontologies is the knowledge graph building. Knowledge graphs
are mathematical construction to model relationships between entities. It enables the
composition of the entities and defines them on different hierarchical levels (Fig. 5.1a).
This chapter (Fig. 5.1b) presents a knowledge (graph) representation tool called
GRAKN.AI and a traditional system engineering-based method for graph building on
the benchmarking example.

5.1 Knowledge graph

The knowledge graph can be considered as a database to organize complex networks of
data in a queryable fashion. It provides a complex schema to capture entities, real-world
objects, events, situations, and abstract concepts and relationships. With this kind of
representation of knowledge, entities and their relations can be expressed in an explainable
and reusable way, while also providing strong, deductive reasoning capabilities on graph
instances. That is why knowledge graphs are used in a wide range of use cases, like
recommendation systems, information storing, and supply chain management.
One of the major problems in machine learning is the explainability of the predicted
model. The knowledge graph can help to map the explanation to the graph. This way,
it can summarize and describe the prediction and make it traceable. Knowledge graph
models support machine learning in various aspects, e.g., classification, and generation.
In this research, GRAKN.AI was used to store the qualitative benchmarking data. The
next sections present the GRAKN.AI tool and its usage in the research by building the
knowledge graph and reasoning about the information stored in it.

25

(a) Abstraction layers
(b) Workflow

Figure 5.1: Knowledge representation

5.1.1 Grakn

Grakn [2] provides an enhanced entity-relationship schema to model complex datasets.
The schema allows users to model type hierarchies, along with hyper-entities and hyper-
relationships, that can be extended anytime in the database lifecycle.[4] Hyper-entities are
defined to be entities with multiple instances for a given attribute, and hyper-relationships
are defined to be N-ary relationships, nested relationships, cardinality-restricted relation-
ships, or between relations and entities. This enables the creation of complex knowledge
models that can evolve flexibly.
GRAKN.AI is an open-source, distributed knowledge graph for knowledge-oriented sys-
tems.[2][3] It is an evolution of the relational database for highly interconnected data as
it provides a concept-level schema that fully implements the Entity-Relationship (ER)
model.
Grakn’s schema is a type system that implements the principles of knowledge represen-
tation and reasoning. This enables Grakn’s declarative query language, Graql (Grakn’s
reasoning and analytics query language), to provide a more expressive modeling language
and the ability to perform deductive reasoning over large amounts of complex data.

5.1.2 Knowledge graph building with Grakn

Building a knowledge graph means the description of the problem to be solved by defining
the schema.
The schema of the GRAKN.AI knowledge graph is based on ER (Entity-Relationship)
modeling. ER models include entities, relations and attributes. An ER model defines
the objects of the examined world and the relationship between the objects. The objects
could have attributes that describe their properties. GRAKN allows the definition of type
hierarchies, hyper-entities, hyper-relations, and rules.
This way, it is possible to define the knowledge graph on different association levels (Fig.
5.1a). The traceability between the abstraction levels is performed by the built-in reason-
ing mechanism.

26

5.2 Example: Knowledge graph

This section presents the knowledge graph of the benchmarking example.
Each different measurement (see Classification and MDD) was stored in the knowledge
graph. Figure 5.2 presents the schema of the benchmarking example on the Measurement
abstraction level. Yellow boxes indicate the entities, green rhombuses, the relationships,
and blue ovals the attributes of the entities. The labels are the roles that entities play in
a relationship.

Figure 5.2: Grakn - Measurement Graph

The Measurement entity stores the information about the system state (faulty/normal
operation, unclassified). The MeasurementRelation contains the communication hierarchy
between the Client and the Datacenter through a Communication Channel.
The Client entity has three attributes: client_location, client_ip, client_type. Datacenter
entity stores its specific information: datacenter_location and rpt. The Communication
Channel entity represents the connection between the Client and the Datacenter and it
contains the information about the rtt. The CommunicationRealation connects the Client,
Communcation Channel and Datacenter entities.

27

Chapter 6

Answer Set Programming

The goal of the Answer Set Programming (ASP) is to provide a uniform framework for
information fusion and reasoning. Standard ASP supports deductive reasoning techniques
and running diagnoses (i.e., Abductive, Reiter’s diagnosis).
Answer Set Programming (ASP) [8] is a declarative approach to modeling and solving
search and optimization problems. It combines an expressive representation language, a
model-based problem specification methodology, and efficient solving tools.
The ASP language represents domain and problem-specific knowledge, including incom-
plete knowledge, defaults, and preferences. Expressing these ideas in ASP often comes
quite intuitively and naturally.
Answer Set Programming supports rapid prototyping and development of software, be-
cause of its strong declarative aspect. These advantages make it possible to use ASP as
an information fusion framework (Chapter 7).
There are extensions for ASP-like (DLV) [31] implementations that enable logic-based
diagnosis (Abductive-diagnosis, Reiter’s diagnosis) [12] over DLV.
ASP Standardization Working Group at the University of Calabria partly standardizes
the ASP language under the name of ASP-Core-2 [9].

6.1 Propositional setting

ASP is a special kind of declarative logic programming that directly supports advanced
modeling constructs. The ASP notation used in this report follows the stable model
semantics. Stable model semantics means here that the models generated out of the
inputs represent the observations and the structure of the problem in the form of logic
rules. The generated model must exactly fit the observations. However, several constructs
serve to lose this strict requirement of exact fitting in order to deal with typical problems
in processing practical observations. Two example are the following:

• Frequently, the observations are incomplete, which is why the logic has to deal with
incomplete knowledge. Two of the usual engineering assumptions are using default
values and the negation as failure. Negation as failure implements this principle by
assuming the validity of some values unless a counterexample is found.

• This way, a model still cannot incorporate external knowledge: regularities that
the model has to comply with in order to be sound in the engineering sense (i.e.,

28

natural law). However, observations are frequently noisy, virtually violating the re-
quirements of exact fitting to a particular rule. Weak constraints serve to overcome
this difficulty by substituting the requirements of exact fitting by the best fitting
model. Weak constraints similarly optimize the objective function as a linear coller-
ation does require the best fitting data points in terms of some of the Euclidean
distance or in more general terms, like the loss function is minimizing in the case of
neural networks. Several metrics are depending on the problem domain, which can
be implemented in this form, practically every metric measuring the fitting can be
encoded in the ASP.

In the following chapter, we will illustrate the core concept of ASP, and we address the
implementation of different typical modeling fragments like those for causality. The un-
derling solution mechanism this way can deliver a single solution compliant with all the
hard constraints (including fitting to the observations), or the optimal one in the terms
of weak constraints, or the entire solution space. Note that, the structure of a knowl-
edge graph, including all the inherited relations and mutual dependencies of the different
instances and concepts, can be transformed directly to ASP. This way, it is one of the
powerful solution engines to solve large scale problems.
The underling solution engine is typically a sophisticated form of a constraint solver: the
individual instances and concepts are merged into facts, variables and relations. This way
they can be mapped to implication rules by inheritance.
Finally, a question can be formulated, which expresses the purpose of the model to be
derived.

6.1.1 Building blocks of ASP

The building blocks for ASP programs are atoms, literals, and rules. Atoms are elementary
propositions (factual statements) that may be true or false; literals are atoms a and their
negations not b . Rules are expressions in the form:

r ← a1 , . . . , an , not b1 , . . . , not bn .

where r and ai and bi are atoms.
Intuitively, the rule above is a justification to “establish” or “derive” that the head (r) is
true, if all literals of the body (ai, bi) are true in the following sense: a non-negated literal
a is true if the atom a has a derivation, a negated one, not bi , is true if the atom b does
not have one. Facts are special rules without a body. The derivation of facts is always
true.

fact ← .

ASP is based on the stable model semantics of logic programming [19]. The concept of a
stable model is used to define declarative semantics for logic programs with negation as
failure. Negation as failure is used to derive not p (that p is assumed not to hold) from
failure to derive p . In ASP not p differs from the classical logical negation [20] of p (¬p).
For instance, Rule 6.1 means, we do not know about a fault in the system, we can assume
that the system works properly. While, Rule 6.2 means, we know that the there is no
fault in the system. The representation of incomplete knowledge is possible with this

29

construction.

normal_operation ← not fault . (6.1)
normal_operation ← ¬ fault . (6.2)

6.2 ASP solving process

The ASP solving process [17] (Fig. 6.1) consists of three main steps. First, model-
ing transforms a problem into a logic program. Then the solving process in which the
ASP grounder and solver determine the stable models (answer sets) of the logic program.
Finally, the interpretation of the stable models gives the solution.

Figure 6.1: ASP solving process

6.2.1 Modeling in ASP

The ASP modeling process [17] uses the Generate and Test approach common to declara-
tive and logic programs. The Generator generates all the feasible stable model candidates
while the Tester eliminates the invalid ones. This way, the logic program is made up of
facts and rules, generator, tester, and optimizer modules.
The next section presents each building block with a short description and an example
ASP program with its answer sets (under the lines).

Facts and rules (definite rules) Facts represent the propositional Extensional
Database (EDB) knowledge, rules are used to deduct facts as an Intensional
Database (IDB). The simplest example of a rule is if the truth of some statement
depends on the truth of some other statements (e.g., The system operating properly
if the network status is ’ok’ and we assume no fault in the system.). Note that the
Generator, Tester, and Optimizer are also part of the IDB.

network_ok ← . (6.3)
normal_operation ← network_ok , not fault . (6.4)

{network_ok, normal_operation}

Generator (disjunctive rules) Disjunctive rules describe the nondeterministic behav-
ior of the system. A simple case is where we know for sure that at least one of some

30

(two or more) conditions are true, but it is impossible to determine which exactly.

network_ok ← . (6.5)
normal_operation ← network_ok , not fault . (6.6)

1 {server_load_low; server_load_medium} 1 ← normal_operation . (6.7)

{network_ok, normal_operation, server_load_low},
{network_ok, normal_operation, server_load_medium}

The numbers in the beginning and the ending of a disjunctive rule (Rule 6.7) indicate
the minimum and the maximum number of the literals that can be justified as true.

Tester (integrity constraints) Integrity constraints are used to determine the system
boundaries and eliminate the undesired results that the Generator processes. Con-
straints specify conditions that must not become true. They are formulations of
possible inconsistencies.

1 {server_load_low; server_load_medium; server_load_high} 1. (6.8)
← not server_load_high (6.9)

{red_signal}, {white_signal}

The integrity constraint (Rule 6.9) eliminates the server_load_high from the an-
swer sets.

Optimizer (weak constraints) Requirements that should be satisfied can be expressed
with weak constraints. While the violation of integrity constraints eliminates the
models, this does not apply to weak constraints. With the help of weak constraints
optimization problems can be formulated. If an ASP model has weak constraints,
not only the feasible answer sets are calculated, but The Best Models can also be
chosen based on the number of violated weak constraints. A program can have
several best models, where the sets of satisfied weak constraints does not have to
match. Therefore, it is also possible to express an order of importance between
the weak constraints by assigning coefficients to the individual constraints and then
optimizing the sum of the weighted weak constraints. Another slightly different
option is to prioritize the individual constraints. This way during execution, the
constraints are optimized from top priority in descending order, and only one at a
time is being considered.

L99 rule. [level@weight] (6.10)

31

Chapter 7

Information fusion

Information fusion is a crucial part of the workflow. It merges all the background knowl-
edge from the engineering models and the causal model into a uniform qualitative model.
This representation allows reasoning about the system-specific questions.
The input model of the step is the causal model and the information derived from the
knowledge graph. The output model of the step is an ASP program that includes all the
previous information.
This chapter presents the model transformation of the knowledge graph and the causal
model into a uniform ASP representation.

7.1 Knowledge graph representation with ASP

Representing the Knowledge Graph with ASP requires the declaration of the knowledge
schema and the definition of the knowledge instances as ASP rules [10]. The schema
provides the structure and consistency for the instances. All the instances should comply
with the schema.

Knowledge Schema Entities, their Attributes and the Relations between them are the
main building blocks of an ontology-styled knowledge graph. Before adding the instances
to the ASP logic program, the ontology schema has to be transformed into logic program
definitions. This model transformation provides inconsistency checking and verifies if the
hierarchical decomposition is reasonable and suitable for deductive reasoning.

Entities Definite ASP rules define the Entities, the roles that the given entity plays, and
the argument types that the entity has.
The following example presents the ASP definition of the Client entity from the
knowledge graph. It plays the measurement_part and communication_endpoint
roles, and has three attributes: client_ip, client_location, client_type.

% Client
entity(client).

plays(client, measurement_part).
plays(client, communication_endpoint).

type_has(client, client_ip).
type_has(client, client_location).
type_has(client, client_type).

32

It is also necessary to add integrity constraints to the ASP schema. The integrity
constraint ensures that the assigned values must be of attributes associated with the
given entity.

% Entity integrity constraint
:- isa(I, EType), has(I, A, _), not type_has(EType, A).

Relations Defining a relation requires two types of definite rule. One is to define the
relation itself and one that describes the associations. The example presents the
Communication Channel relation between the endpoints (Client, Datacenter).

% Measurement Result relation
relation(communication_relation).

relates(communication_relation, communication_endpoint).
relates(communication_relation, channel)

Relations also require integrity constraints to restrict the possible associations to the
related to certain entities (entity roles).

% Relation integrity constraints
:- role(RelInstace, _, Role), isa(RelInstace, RelType), not relates(RelType, Role).
:- role(RelInstace, I, Role), isa(I, EType), not plays(EType, Role).

Instances The instances in the knowledge graph can be represented as ASP expressions.
The type of the instance and its attributes should be declared.

isa(secaucus_client, client).

has(secaucus_client, client_location, "Secaucus").
has(secaucus_client, client_ip, "64.20.37.202").
has(secaucus_client, client_type, "Java Client").

ASP representation of a relation contains the definition of the relation itself and the
connections with the corresponding entities.

isa(comm_relation_12, communication_relation).

role(m_relation_12, secaucus_client, communication_endpoint).
role(m_relation_12, redmond_dc, communication_relation).
role(m_relation_12, channel_12, channel)

7.2 Representing causality with ASP

The ASP representation of causal models requires the identification of definite and dis-
junctive rules and the causal chain between the variables. This step requires background
knowledge about the system because it is not always straightforward how to interpret
paths or the branches. For example, a branch could be interpreted as mutual exclusion,
or the source could affect both variables.

Example 1. The ASP interpretation of the causality graph in Figure 7.1 deals with a sin-
gle fault assumption. Dashed arrows represent additional external causal influences, while
the dotted arrow represents a causal chain between the client_send and client_receive
variables. This chain is not part of this example, but the original model contains it in
detail.

{client_router_cfg_error, client_router_hw_error} ← . (7.1)
{sending_cfg_error, receiving_cfg_error} ← client_router_cfg_error . (7.2)

33

Figure 7.1: Causal Model of Client Router Error Modes

client_send ← client_router_hw_error . (7.3)
client_send ← sending_cfg_error . (7.4)

client_send ← (7.5)

client_receive ← client_router_hw_error . (7.6)
client_receive ← receiving_cfg_error . (7.7)

client_receive ← (7.8)

rtt ← client_receive . (7.9)

The examination of the rules in detail:
Rule 7.1 and 7.2 are disjunctive rules. The first rule (7.1) expresses that only one main fault
source can be justified as true. The second (7.2) creates a hierarchy over the configuration
error.
Rule 7.3 and 7.6 present that both client_send and client_receive are affected by the
error of the client router.
Rule 7.4, 7.7 and 7.9 represent simple causal paths.

34

Chapter 8

Inductive Reasoning

Inductive and deductive reasoning are two distinguished reasoning a methods. Logical
reasoning is based on the notion, that given a precondition (called premise), a conclusion
(called logical consequence) can be reached through logical rules. While deductive rea-
soning comes to a certain conclusion by only examining the truth value of the premises,
inductive reasoning results in a probability, thus expressing the uncertainty of the conclu-
sion. The probability is based on the defined logical expressions and the given premises,
which are viewed as evidence.[13] Inductive reasoning derivates general principles from
specific observations.
Causal inference is a type of inductive reasoning. Causal inference draws a conclusion
about a causal connection based on the conditions of the occurrence of an effect. Premises
about the correlation of two things can indicate a causal relationship between them, but
additional factors must be confirmed to establish the exact form of the causal relationship.

8.1 Inductive logic

In inductive logic, conclusion follows not with certainty, but only with some probability
[41] [13].
For example,

(Premise 1) 90% of engineers drink coffee
(Premise 2) Susan is an engineer

(Conclusion) Susan drinks coffee

(Premise 1) Roughly 50% of the mangos are ripe in the market
(Premise 2) Today I bought a mango

(Conclusion) My mango is ripe

The acceptability of the conclusion infers mostly two questions: (i) How strong is the
inference?; (ii) How high does the probability have to be before it is rational to accept the
conclusion?

35

It is usually rather challenging to answer these questions accurately.

8.2 Inductive Learning of Answer Sets

The main idea behind the inductive learning of answer sets [26] is to find a hypothesis
extended with the background knowledge that covers every positive example and does not
cover any negative examples.

Figure 8.1: Sets

Formally (Fig. 8.1),
Given the background knowledge Tbackground, the positive and negative examples
Epositive, Enegative and the search space S, the goal is to find a hypothesis H ⊂ S, where

∀p ∈ Epositive : Tbackground ∪H � p (8.1)

∀n ∈ Enegative ∪ Tbackground 2 n (8.2)

8.2.1 ILASP

ILASP (Inductive Learning of Answer Set Programs) [27] is a machine learning system for
learning ASP programs from examples. ILASP supports many ASP rules (normal rules,
choice rules, hard constraints, weak constraints). ILASP uses Clingo [18] as the underling
ASP solver.
Besides the ASP rules, ILASP also supports the learning of weak constraints [28] and both
the brave and cautious reasoning in the following ways:

Brave induction The task of the brave induction is to find a hypothesis (augmented with
Tbackground) such that it has at least one answer set, which satisfies the examples.

∃ s ∈ Tbackground ∪H

Cautious induction Cautious induction requires that the hypothesis (augmented with
Tbackground) has at least one answer set and that every answer set satisfies the ex-
amples.

∀ s ∈ Tbackground ∪H

36

Figure 8.2: ILASP

Defining an ILASP program (Fig. 8.2) requires the background knowledge that is rep-
resented by an ASP program; positive and negative examples in form of answer sets;
mode declarations that are templates for generating the search space; and generator
properties that restricts the search space generator.

8.2.1.1 Building blocks of the search space

ILASP searches the inductive hypothesis in the search space, so the search space should
be defined in each ILASP program. The conventional way of specifying the search space
is to give a language bias specified by mode declarations.
A mode declaration are rules. These rules will be generated by the search space generator
in different permutations. Three main mode declarations are distinguishable:

Placeholders A placeholder is a term that can be replaced by any variable (#var(t)) or
constant (#constant(t, c).) of type t.

Head declarations Head declaration defines head ASP rules. ILASP supports
normal head declarations (#modeh(var(t)).) and disjunctive head declarations
(#modeha(var(t)).). Disjunctive mode declarations can have optional values that
determines the possible minimum an maximum number of the justification of the
variable.

Body declarations Body declarations defines body ASP rules (#modeb(var(t))), that
can be derived as facts, constraints or the actual body of a rule. ILASP also supports
optimization (weak constraint) declarations (#modeo(var(t))).

Generator properties The is possible to make restrictions about the search space. For
example, the restriction of the maximum number of variables in any rule (#maxv(int)) or
the upper bound of the penalties by weak constraints (#maxpenalty(int)). Lower values
for penalties are likely to increase the speed of computation, but in some cases larger
bounds are needed.

37

8.2.1.2 Example

The example [29] present a simple learning task that present each building blocks of an
ILASP program.

Example 2. Simple learning example
% Background knowledge
p :- not q.
q :- not p.

% Positive examples
#pos(p1, {q},{r}).
#pos(p2, {q,r},{}).
#pos(p3, {p},{}).

% Negative example
#neg(n1, {p,r},{}).

% Head declarations
#modeh(r).
#modeh(s).

% Body declarations
#medeb(r).
#modeb(s).
#modeb(p).
#modeb(q).

For example, the search space contains the following derived rules:
1 ~ r.
1 ~ s.
2 ~ s :- not r.
2 ~ s :- r.
2 ~ r :- not s.
2 ~ r :- s.
2 ~ r :- not p.
2 ~ r :- p.
2 ~ s :- not p.
2 ~ s :- p.
...

Running the ILASP learning algorithm on the program above results as the following
hypothesis H:

s :- not r.
r :- not s, not p.

This way, the answer sets of the solution (Tbackground ∪H) will be:

{p,s},{q,s},{q,r}

38

Chapter 9

Automated Model Extraction

This chapter introduces how ILASP can be applied to reason about different aspects of the
measurement. It uses the unified ASP model extended with the ILASP specific parameters.
Each subsection describes how to define the background knowledge, positive and negative
examples and the search space to answer specific questions.
The first section of the chapter introduces QCA for comparison purposes. Later in this
chapter three questions will be answered about the benchmarking example.

9.1 Qualitative Comparative Analysis (QCA)

Qualitative Comparative Analysis (QCA) [38] is a data analysis technique for determining
which logical conclusions a data set supports. The analysis has three main steps:

1. The analysis begins with listing and counting all the combinations of variables ob-
served in the data set. All distinguishable observation occurs once in the analysis.
These observation can extracted from BDDs or MDDs.

2. It follows the applying the rules of logical inference (inferential logic or bool algebra)
to determine which descriptive inferences or implications the data supports.

3. The third step reduces the number of inferences. It finds the minimum set of infer-
ences supported by the data.

Figure 9.1: QCA

The goal (Fig 9.1) is to find a hypothesis H that explains the selected outcome variable
(E = {Epositive, Enegative, Econtradictions}) by reducing the included condition variables
(Tbackground). Note that, here the background knowledge is restricted only to the observable
variables.

Tbackground ∩H ⇒ E

39

Figure 9.2: Observations

9.1.1 Example

This example present a simple analysis about logical variables (X,Y, Z,OUT). The ob-
servations are labeled with an ID (Fig. 9.2).
Running the analysis indicates (Fig. 9.3 - striped rectangle), that the Z variable with the
value 1 influences the outcome. This way, the result can be formulated as,

Tbackground ∩ Z{1} ⇒ {B,D,F,H}

Figure 9.3: Visualization of the hypothesis

9.2 Inductive reasoning on the benchmarking example

This section present the inductive reasoning on the benchmarking example. Each pre-
sented example covers different cases (answers different questions) about the benchmark-
ing example.
It requires to consider some aspects:

40

• One aspect is the granularity of the diagnosis. It defines the abstraction level of
the answer. In case of an error detection, it refers to the replacement unit (e.g., if
the diagnosis indicates that the client router causes the fault then it requires the
replacement of the router or further analysis should be involved to examine the
details).

• In case of a fault model, it is also required to define the possible number of faults.
There is two possible assumptions to make: (i) Single fault assumption is the as-
sumption that failures are only rarely the result of the simultaneous occurrence of
two (or more) faults; (ii) However, multiple fault assumption deals with multiple
fault occurrences in the same time.

• For the causal models, it is possible to attach probabilities to the causal connections.
ASP allows weights on weak constraints (like a loss function in ML techniques) to
express the probability of the covariates.

9.3 Reasoning: Observed Variables

Objective The objective of this task is to identify, how a subset of observed variables
affects a selected variable or the faulty behavior of the system.

Result The result indicates the relations between the variables (i.e., which exact variable
or value affects the outcome).

Note that, this specific example uses instance abstraction to reason about the out-
come. The other way, is a more abstract reasoning that determines only the the type of
the variable (location) not the specific instance (location(secaucus)).

9.3.1 ILASP program

Backgorund knowledge The background knowledge for the program is made of the
observations and the causal model.
Each observation is an ASP literal (Rule 9.1) with five observed parameters. The
parameters are: client_location, client_type, dc_location, rtt, and rpt.

obs(client_location, client_type, dc_location, rtt, rpt) . (9.1)

The observations are represented as a disjunctive rule (Rule 9.2). This construction
enables to examine each observation at once.

1 {obs1(. . .), obs2(. . .), . . . , obsN (. . .)} 1. (9.2)

This approach requires the examination of each observed variable individually. In
this case, additional rules (e.g. Rule 9.3 and 9.4) splits the observation literal into
individual variables.

client_location(LOCATION) : −obs(LOCATION,_,_,_,_). (9.3)
dc_location(DC) : −obs(_,_, DC,_,_). (9.4)

Examples In the first place, positive examples made up of observations with the opera-
tional mode labels (Rule 9.5). As the goal is the analysis of the faulty behavior, the

41

cluster labels should added to the normal behavioral observations as an exception
(rule 9.6). For example:

#pos(f1, {obs(secaucus, java, redmond, high, low), faulty_operation}, {}). (9.5)
#pos(n1, {obs(peyton, java, redmond, low, low)}, {faulty_operation}). (9.6)

Search space The search space declaration forms the question which the reasoning is
about. In this specific case: The search space contains all the observed variables
with their values (e.g., for locations: Rule 9.7 - 9.9) as body declarations.

#modeb(client_location(lansing)). (9.7)
#modeb(client_location(chicago)). (9.8)

#modeb(client_location(secaucus)). (9.9)
. . . (9.10)

The head declaration contains the outcome variable (e.g., Rule 9.11).

#modeh(faulty_operation). (9.11)

9.3.2 Results

In case of multiple solutions the sequence of the search space determines a priority over the
variables. In this example, two different variable ordering results in two different solutions.
In the first case (Rule 9.12) the prioritized variable was the client_location. While, in the
second case (Rule 9.13), rtt was ahead of the line.

faulty_operation : −client_location(secaucus). (9.12)

and

faulty_operation : −not rtt(low). (9.13)

Rule 9.12 indicates, that the observations from Secaucus infers faulty operation. Rule 9.13
indicated, that faulty operation occurs when the rtt is not low.

9.3.3 Validation

It is possible to check the validity of the result by using the GRAKN query language
or extend the ASP program with the generated rule(s) and perform deductive reasoning
about the solution.
This example results in a cautious reasoning. The validation of the result shows that the
result covers cases that are outside of the faulty operational domain. For example, Rule
9.13 covers the cases where the rtt variable is normal. These data points are categorized
into the ”Unclassified” class, it means they require further analysis.

42

9.4 Reasoning: Hidden Causal Effects

Objective The objective of the hidden causal effect analysis is to determine which non-
observed causal effects could lead to the faulty behavior of the system.

Result The result of the analysis is an ASP rule (or multiple rules) that determine a
causal connection between the non-observed causal effects and the faulty observations.

9.4.1 ILASP program

The ILASP program for the hidden causal effect analysis follows the structure of traditional
ILASP programs. The program should contain both the observations and the causal model
of the system.

Background knowledge The background knowledge for the program is made of the
observations and the causal model.
Each observation is an ASP literal (Rule 9.1) with five observed parameters.The
parameters are: client_location, client_type, dc_location, rtt, and rpt.
The observations are represented as a disjunctive rule (Rule 9.2). This construction
enables to examine each observation at once.
The causal model follows the single fault assumption approach. It means that only
one fault can be evaluate true in an answer set.

{client_router_cfg_err, client_router_hw_err} ← . (9.14)
{sending_cfg_err, receiving_cfg_err} ← client_router_cfg_err . (9.15)

Weak constraints make it is possible to assign probabilities to the specific fault
assumptions. The higher the weight of the weak constraint the lower the prob-
ability of the fault. The following example presents that sending_cfg_err and
receiving_cfg_err have the same probability while client_router_hw_err has a
lower probability.

L99 sending_cfg_err. [1@5] (9.16)
L99 receiving_cfg_err. [1@5] (9.17)

L99 client_router_hw_err. [1@10] (9.18)

Examples In the first place, positive examples made up of observations with the oper-
ational mode labels (rule 9.5). As the goal is the analysis of the faulty behavior,
the labels should added to the normal behavioral observations as an exception (Rule
9.6).

Search space declaration As mentioned before, the search space declaration forms the
question which the reasoning is about. Reasoning about the hidden causal effects
requires head and body declarations. The head declaration is a literal that is the
object of the question. The body declarations are literals that can affect the object.
In the following example, the object is the faulty_operation rule and the body
declarations are the fault modes:

#modeh(faulty_operation). (9.19)

43

#modeb(sending_cfg_err). (9.20)
#modeb(receiving_cfg_err). (9.21)

#modeb(client_router_hw_err). (9.22)

9.4.2 Results

The result of the defined ASP program infers a new ASP rule:

faulty_operation ← receiving_cfg_err . (9.23)

It means, that likely the receiving_cfg_err causes the faulty operation in the system.
Note that, in this example the receiving_cfg_err and sending_cfg_err have the same
probability. In this case the sequence of the body declaration in the search space defines
a priority over the variables. The restructuring of the body declarations is required to get
the other (also valid) solution.

9.4.3 Validation

As the result is an unobservable variable the validation process is not that simple then
is the previous example. The validation process of this task requires a further manual
analysis of the result (e.g., checking the configuration for the client router). Furthermore,
it can require a new measurement campaign with the new configuration.

9.5 Reasoning: Fault Indication

Objective The goal is to identify the phenomenon of a specific event. This approach
uses the observable variables to reason about the unobservable fault candidates.

Result The result of the program identifies the phenomenon that can be observed (e.g.,
during system runtime).

This example uses the result of the Hidden Causal Effect analysis. The goal is to determine
the variables with exact values that indicate the fault.
The main difference between the Observable Variable and this method is the direction
of the reasoning. While the first method defines the faulty operation by the observable
variables, this method determines which observable phenomena occurs in case of the fault.
Note that, because the state space of the observable variables are large, a restriction was
made to the phenomena candidates which requires a sequential diagnosis of the problem.

9.5.1 ILASP program

The structure of the ILASP program for fault detection is similar to the program for hidden
causal effect analysis. The main differences are observable in the state space declaration,
hence the goal of the reasoning is to identify the phenomenon of the faulty behavior.

Backgound knowledge The representation of the observations (Rule 9.1 and 9.2) and
the causal model (Rule 9.14 and 9.15) is the same as in the previous examples.

44

Some other constraints should be added to the background knowledge about the
mutual exclusion in the values of the observed variables (e.g., Rule 9.24)

← rtt(low), rtt(high). (9.24)

Examples The examples covers the observations with the labels as in the previous ex-
amples, but they are extended with observable variable specific rules.

#pos(f1, {obs(. . .), rtt(high), . . . , faulty_operation}, {}). (9.25)
#pos(n1, {obs(. . .), rtt(low), . . . }, {faulty_operation}). (9.26)

Search space The search space contains the previously extracted result (Rule 9.27) as a
head declaration and the observable variables (Rule 9.7 - 9.9) as body declaration.

#modeh(receiving_cfg_error). (9.27)

9.5.2 Results

rtt(low) ← not receiving_cfg_error . (9.28)
rtt(medium) ← not receiving_cfg_error . (9.29)

rtt(high) ← receiving_cfg_error . (9.30)

The result indicates the phenomenon of the receiving_cfg_error is the high rtt value.

9.5.3 Validation

This method also can be checked by the instance based reasoning method (GRAKN query,
ASP reasoning).

9.6 Variable ordering and probabilities

There is two main approaches to prioritize over the fault modes:

• Variable ordering: ILASP takes in account the sequence of the search space. If it
finds a solution at the beginning of the search space then it stops and returns with
re result. This allows the prioritization over the variables. It requires systematic
search to find all the possible outcomes.

• Weak constraints: Weak constraints help to overcome the sequence restrictions of
ASP. It is possible to attach a weight to each variable and this way prioritize them.
This mechanism of ASP enables the construction of loss function like functionalities.

45

9.7 Efficiency considerations

Building an efficient ILASP program requires a careful considerations, as its core is search
based. This way an unfortunate formulation of the model can result in a practically
infeasible run.
The main factors to be taken into account are the following ones:

• The size of the state space influences the performance of the solver. For a large
state space (i.e., a state space sepnd 20 variables and their combinations in the
state space) cause a very long solving time. The proper setting of the state space
declarations can reduce its size and results in an adequate solving time. However, it
is possible to reduce the state space by the iterative process of a problem (sequential
diagnosis) from higher abstraction level to a more specific level.

• The other efficiency constraint can be derived from the ASP itself. Using ASP
variables (Rule 9.32) instead of string literals (Rule 9.31) decreasing the solving
time. Using string literals result in a very slow solving process either in case of small
problems. The comparison of the string literals takes much longer then using ASP
variables.

client_location(secaucus). (9.31)
client_location(”Secaucus”). (9.32)

In summary, the exploitation of the offered generator and search space declaration opti-
mizations by ILASP is required to achieve a proper solving time in case of large problem.
Over and above, the string to variable should be performed in the previously presented
model transformation phase.

46

Chapter 10

Summary

10.1 Evaluation of the work

System identification becomes one of the mainstream technologies for dimensioning flexible
and scalable applications like CPS, cloud computing, etc. Due to the complexity of the
system, faithful models necessitate a solid empirical background. Traditionally, EDA is
used to extract a model out of observation data. However, the growing complexity of
target systems causes EDA to become a bottleneck. In this research report, the objective
was to explore the opportunities offered by machine learning technologies. While, it is in
an initial phase, some results are very promising.
The goal was to support EDA with machine learning and reasoning techniques. Reasoning
techniques perform step-by-step checks of the abstract model in order to assure consistency
and completeness. The method is the combination if discretization, knowledge fusion,
deductive, and inductive logic-based automated system model extraction.
Qualitative modeling and knowledge graph management of the model provides an abstract
semantic framework for information fusion. The information fusion is supported by
ASP, as it has rich knowledge representation capabilities.
Deductive reasoning checks the compliance and completeness of the observations and their
respective evolving models. The inductive learning of ASP programs serves as an auto-
mated mechanism delivering a compact abstract model of the observed system.
This way, the toolchain supports (visual) EDA by checking the completeness and consis-
tency of the evaluation process and identifies a high-level abstract system model based on
the observations.

10.1.1 Automated model extraction

The goal of the report is to answer questions about both the observable and unobserv-
able causal relations on a benchmarking example to support the system diagnosis.

For instance, we will show from the observation instances that we can create general
hypotheses that seem to be valid for all the data. Such hypotheses can appear at a
higher level of abstraction (i.e., if the experiment describes the dependence between the
inputs and outputs of a component, then a hypothesis can generalize the faulty behavior
for all the similar component types). This way, if the validity of the hypothesis is proved,
a reusable bias of knowledge can be gained.

47

Three examples were presented:

• One that identifies the way of observing the effect of a subset of variables on a
selected variable or the faulty behavior of the system. This mechanism is similar to
QCA.

• The next example differs from QCA in the way that it works with unobservable
variables. The objective of the hidden causal effect analysis is to determine which
non-observed causal effects could lead to the faulty behavior of the system.

• The last example presented an inductive inference about the identification of the
phenomenon of a specific event.

This report focuses on a specific aspect of the usage (measurements). However, there are
further potential use-cases (e.g., time-series data).

10.2 Further research

10.2.1 Traditional machine learning techniques

The presented approach shows similarities (e.g., loss function) to traditional machine learn-
ing (ML) techniques. There are uncovered aspects that require further research on how
to apply them in our context.
Now, the verification of the metrics relies on manual checks. The examination of how
the verification metrics of ML fit into this approach is required to provide a more precise
result.
Another possibility is the verification of neural networks. With additional causal infer-
ences, the output of the networks will be explainable in the qualitative domain.

10.2.2 ILASP functionality

Beyond the presented functions of ILASP, there are many more exciting approaches. For
example, ILASP can learn from noisy examples [30], which can ease the pre-processing of
the data by automatically filtering the noisy data.

10.2.3 Design patterns

The report presented three possible design patterns that help in measurement data analysis
by answering questions about causal inferences.
The generalization of problems and the automation of the process could help the user to
use it in several contexts.
More problems could be solved with this approach. Applying design patterns to specific
problems can help to speed up the analysis process.

48

Acknowledgements

First and foremost, I would like to thank my advisor Prof. Dr. András Pataricza, for the
valuable assistance and continuous support. Furthermore, I would like to thank Csenge
Kilián for her excellent guidance in machine-learning and the document reviews.
The results presented in the report were established in the framework of the professional
community of Balatonfüred Student Research Group of BME-VIK to promote the eco-
nomic development of the region. During the development of the achievements, we took
into consideration the goals set by the Balatonfüred System Science Innovation Cluster
and the plans of the ”BME Balatonfüred Knowledge Center”, supported by EFOP 4.2.1-
16-2017-00021.
The project was funded by the European Union, co-financed by the European Social Fund
(EFOP-3.6.2-16-2017-00013).

49

List of Figures

1.1 Hybrid modeling . 3
1.2 Machine learning and reasoning for EDA . 4

2.1 Benchmark architecture with parameters . 9
2.2 RTT values over locations indicates an anomaly in Secaucus 10

3.1 Model derivation . 11
3.2 Ladder of Causation[36] . 12
3.3 Directed Acyclic Graph (DAG) . 14
3.4 Casual Interpretation of DAG . 14
3.5 Covariates . 15
3.6 Model derivation . 16
3.7 Functional model . 17
3.8 Skeleton of the causal model extended with some observable variables . . . 17
3.9 Final causal model . 18

4.1 From Measurement to Qualitative Model . 19
4.2 Clusters . 23
4.3 Continuous variables . 24

5.1 Knowledge representation . 26
5.2 Grakn - Measurement Graph . 27

6.1 ASP solving process . 30

7.1 Causal Model of Client Router Error Modes 34

8.1 Sets . 36
8.2 ILASP . 37

9.1 QCA . 39
9.2 Observations . 40

50

9.3 Visualization of the hypothesis . 40

51

Bibliography

[1] OPC UA/DDS Gateway. https://www.rti.com/blog/
announcing-the-opc-ua-dds-gateway-standard.

[2] Grakn Labs Ltd: GRAKN.AI. https://grakn.ai.

[3] OpenFog Consortium. https://www.openfogconsortium.org.

[4] Kathy H Abbott, Paul C Schutte, Michael T Palmer, and Wendell R Ricks. Fault-
finder: A diagnostic expert system with graceful degradation for onboard aircraft
applications. 1988.

[5] Andrew Banks and Rahul Gupta. MQTT version 3.1. 1. OASIS standard, 29, 2014.

[6] James C Bezdek and Nikhil R Pal. Cluster validation with generalized dunn’s indices.
In Proceedings 1995 Second New Zealand International Two-Stream Conference on
Artificial Neural Networks and Expert Systems, pages 190–193. IEEE, 1995.

[7] Andrea Bondavalli, Sara Bouchenak, and Hermann Kopetz. Cyber-Physical Systems
of Systems: Foundations–A Conceptual Model and Some Derivations: the AMADEOS
Legacy, volume 10099. Springer, 2016.

[8] Gerhard Brewka, Thomas Eiter, and Mirosław Truszczyński. Answer set program-
ming at a glance. Communications of the ACM, 54(12):92–103, 2011.

[9] Francesco Calimeri, Wolfgang Faber, Martin Gebser, Giovambattista Ianni, Roland
Kaminski, Thomas Krennwallner, Nicola Leone, Francesco Ricca, and Torsten
Schaub. Asp-core-2: Input language format. ASP Standardization Working Group,
2012.

[10] Domenico Corapi. Is Graql a logic program . https://blog.grakn.ai/
isa-graql-logic-program-8af1258054a4.

[11] Johan De Kleer and John Seely Brown. A qualitative physics based on confluences.
Artificial intelligence, 24(1-3):7–83, 1984.

[12] Thomas Eiter, Wolfgang Faber, Nicola Leone, and Gerald Pfeifer. The diagnosis
frontend of the dlv system. AI Communications, 12(1-2):99–111, 1999.

[13] Aidan Feeney and Evan Heit. Inductive reasoning: Experimental, developmental, and
computational approaches. Cambridge University Press, 2007.

[14] Kenneth D Forbus. Qualitative process theory. Artificial intelligence, 24(1-3):85–168,
1984.

[15] Kenneth D Forbus. Qualitative modeling. Foundations of Artificial Intelligence, 3:
361–393, 2008.

52

https://www.rti.com/blog/announcing-the-opc-ua-dds-gateway-standard
https://www.rti.com/blog/announcing-the-opc-ua-dds-gateway-standard
https://grakn.ai
https://www.openfogconsortium.org
https://blog.grakn.ai/isa-graql-logic-program-8af1258054a4
https://blog.grakn.ai/isa-graql-logic-program-8af1258054a4

[16] Sanford Friedenthal, Alan Moore, and Rick Steiner. A Practical Guide to SysML:
Systems Modeling Language. Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA, 2008. ISBN 9780080558363, 9780123743794.

[17] Martin Gebser, Roland Kaminski, Benjamin Kaufmann, and Torsten Schaub. An-
swer set solving in practice. Synthesis lectures on artificial intelligence and machine
learning, 6(3):1–238, 2012.

[18] Martin Gebser, Roland Kaminski, Benjamin Kaufmann, and Torsten Schaub.
Clingo= asp+ control: Preliminary report. arXiv preprint arXiv:1405.3694, 2014.

[19] Michael Gelfond and Vladimir Lifschitz. The stable model semantics for logic pro-
gramming. In ICLP/SLP, volume 88, pages 1070–1080, 1988.

[20] Michael Gelfond and Vladimir Lifschitz. Classical negation in logic programs and
disjunctive databases. New generation computing, 9(3-4):365–385, 1991.

[21] Anatoliy Gorbenko, Vyacheslav Kharchenko, Seyran Mamutov, Olga Tarasyuk, and
Alexander Romanovsky. Exploring uncertainty of delays as a factor in end-to-end
cloud response time. In 2012 Ninth European Dependable Computing Conference,
pages 185–190. IEEE, 2012.

[22] Edward Griffor, David Wollman, and Christopher Greer. Framework for cyber-
physical systems. , National Institute of Standards and Technology - Cyber Physical
Systems Public Working Group, 2016.

[23] Maria Halkidi, Yannis Batistakis, and Michalis Vazirgiannis. On clustering validation
techniques. Journal of intelligent information systems, 17(2-3):107–145, 2001.

[24] ISO/IEC 25010:2011. Systems and software engineering – Systems and software Qual-
ity Requirements and Evaluation (SQuaRE) – System and software quality models.
Standard, International Organization for Standardization, March 2011.

[25] ISO/IEC/IEEE 42010:2011. Systems and software engineering – Architecture de-
scription. Standard, International Organization for Standardization, 2011.

[26] Mark Law. Inductive learning of answer set programs. 2018.

[27] Mark Law, Alessandra Russo, and Krysia Broda. The ILASP system for learning
answer set programs. https://www.doc.ic.ac.uk/~ml1909/ILASP, 2015.

[28] Mark Law, Alessandra Russo, and Krysia Broda. Learning weak constraints in answer
set programming. Theory and Practice of Logic Programming, 15(4-5):511–525, 2015.

[29] Mark Law, Alessandra Russo, and Krysia Broda. Inductive learning of answer set
programs v3. 1.0. 2017.

[30] Mark Law, Alessandra Russo, and Krysia Broda. Inductive learning of answer set
programs from noisy examples. arXiv preprint arXiv:1808.08441, 2018.

[31] Nicola Leone, Gerald Pfeifer, Wolfgang Faber, Thomas Eiter, Georg Gottlob, Simona
Perri, and Francesco Scarcello. The dlv system for knowledge representation and
reasoning. ACM Transactions on Computational Logic (TOCL), 7(3):499–562, 2006.

[32] James MacQueen et al. Some methods for classification and analysis of multivariate
observations. In Proceedings of the fifth Berkeley symposium on mathematical statistics
and probability, volume 1, pages 281–297. Oakland, CA, USA, 1967.

53

https://www.doc.ic.ac.uk/~ml1909/ILASP

[33] Wolfgang Mahnke, Stefan-Helmut Leitner, and Matthias Damm. OPC unified archi-
tecture. Springer Science & Business Media, 2009.

[34] Gerardo Pardo-Castellote. Omg data-distribution service: Architectural overview. In
23rd International Conference on Distributed Computing Systems Workshops, 2003.
Proceedings., pages 200–206. IEEE, 2003.

[35] Judea Pearl. Causality: models, reasoning and inference, volume 29. Springer, 2000.

[36] Judea Pearl and Dana Mackenzie. The book of why: the new science of cause and
effect. Basic Books, 2018.

[37] Antal Péter, Antos András, Horváth Gábor, Hullám Gábor, Kocsis Imre, Marx Péter,
Millinghoffer András, Pataricza András, and Salánki Ágnes. Intelligens adatelemzés.
2014.

[38] Charles C Ragin. The comparative method: Moving beyond qualitative and quantita-
tive strategies. Univ of California Press, 2014.

[39] Peter J Rousseeuw. Silhouettes: a graphical aid to the interpretation and validation of
cluster analysis. Journal of computational and applied mathematics, 20:53–65, 1987.

[40] Ian Shrier and Robert W Platt. Reducing bias through directed acyclic graphs. BMC
medical research methodology, 8(1):70, 2008.

[41] Brian Skyrms. Choice and chance: An introduction to inductive logic. 2000.

[42] Johannes Textor, Alexander Idelberger, and Maciej Liśkiewicz. Learning from pair-
wise marginal independencies. arXiv preprint arXiv:1508.00280, 2015.

[43] Johannes Textor, Benito van der Zander, Mark S Gilthorpe, Maciej Liśkiewicz, and
George TH Ellison. Robust causal inference using directed acyclic graphs: the r
package ‘dagitty’. International journal of epidemiology, 45(6):1887–1894, 2016.

54

	Kivonat
	Abstract
	Introduction
	Context of the work
	Requirements and objectives
	Structure of the report

	Workflow
	Measurement campaigns
	Background knowledge
	Discretization
	Clustering
	Cluster boundaries

	Modeling techniques
	System models
	Model fusion
	Objective

	Running example
	Evaluation of the benchmark

	Causality
	Ladder of Causation
	Causal models
	Directed Acyclic Graph
	Casual interpretation of DAG
	Covariates
	Types of causal graphs

	Building causal models
	Example: Causal model

	Qualitative Modeling
	Qualitative models
	Operational regime
	Defining operational modes
	Clustering

	Detection of rare events

	Threshold identification
	Example
	K-means clustering
	Boundary identification

	Knowledge Representation
	Knowledge graph
	Grakn
	Knowledge graph building with Grakn

	Example: Knowledge graph

	Answer Set Programming
	Propositional setting
	Building blocks of ASP

	ASP solving process
	Modeling in ASP

	Information fusion
	Knowledge graph representation with ASP
	Representing causality with ASP

	Inductive Reasoning
	Inductive logic
	Inductive Learning of Answer Sets
	ILASP
	Building blocks of the search space
	Example

	Automated Model Extraction
	Qualitative Comparative Analysis (QCA)
	Example

	Inductive reasoning on the benchmarking example
	Reasoning: Observed Variables
	ILASP program
	Results
	Validation

	Reasoning: Hidden Causal Effects
	ILASP program
	Results
	Validation

	Reasoning: Fault Indication
	ILASP program
	Results
	Validation

	Variable ordering and probabilities
	Efficiency considerations

	Summary
	Evaluation of the work
	Automated model extraction

	Further research
	Traditional machine learning techniques
	ILASP functionality
	Design patterns

	Acknowledgements
	List of Figures
	Bibliography

