
Budapest University of Technology and Economics
Faculty of Electrical Engineering and Informatics

Department of Telecommunications and Media Informatics

Efficiency analysis of cloud native architectures on
interdependent data stream processing

Scientific Students’ Association Report

Author:

Márton Géza Pfemeter

Advisor:

Balázs Fodor
Dr. Balázs Sonkoly

2023

Contents

Kivonat i

Abstract ii

1 Introduction 1

2 Related work 3

3 Theoretical and technical background 4
3.1 Containerization . 4

3.2 Container orchestration platform . 5

3.2.1 Principal idea . 5

3.2.2 Kubernetes . 6

3.2.3 Horizontal Pod Autoscaling (HPA) 7

3.3 Function-as-a-Service computing model (FaaS) 7

3.3.1 Principal idea . 7

3.3.2 Knative Function-as-a-Service . 8

3.3.3 Comparison to containerization . 9

3.4 Microservice architecture . 10

3.5 Distributed cache . 11

3.6 General Transit Feed Specification (GTFS) 11

3.7 Document based database . 12

4 System architecture 14
4.1 Design considerations . 14

4.1.1 At the edge of the memory context 14

4.1.2 The right metric . 15

4.1.3 Dedicated data stream processing tools 16

4.1.4 General Transit Feed Specification (GTFS) considerations 16

4.1.5 Alternative processing flow topologies 16

4.1.6 Further parallelization . 17

4.1.7 Choice of programming languages 17

4.1.8 FaaS and containerization . 17

4.1.9 Database constraints . 18

4.2 Problem definition . 18

4.3 Architecture . 18

4.3.1 Global design . 19

4.3.2 Data flow design . 20

4.3.3 Component design . 23

5 Results 26
5.1 Test design . 26

5.1.1 Testing resource tiers . 26

5.2 Test results . 26

5.3 Development experience . 27

6 Conclusion 28
6.1 Possible future work . 28

Acknowledgements 29

Bibliography 30

Kivonat

A felhő manapság egy kiforrott technológia, számos felhasználási területtel. Olyannyira a
mindennapjaink részévé vált, hogy szinte már elképzelhetetlen olyan tárgyterület, ahol az
ott alkalmazott szoftvermegoldás ne használná fel azt. Ilyen széleskörű felhasználás mellett
bármilyen fejlesztés ezen a területen komoly hatást tud elérni.

Az egyik leggyakoribb feladata a felhőnek nagy mennyiségű adat feldolgozása. Ez az
adat sokfajta formában lehet elérhető, azonban legtöbbször rekordok folyamaként érdemes
rá tekintenünk, melyeket valamilyen módon módosítanunk, kezelnünk kell. Ennek a formá-
tumnak köszönhetően lehetséges a folyamatos és párhuzamos feldolgozás megvalósítása,
amire a felhőarchitektúrák tökéletes megoldást nyújtanak.

Bizonyos tulajdonságai a felhasznált adatforrásoknak azonban megnehezíthetik ezek-
nek az architektúráknak az implementációját. Nehézséget okozhat például amennyiben
több, egymástól függő adatforrásból szeretnénk előállítani egyazon kimeneti adatrekordo-
kat. Ezenfelül még amennyiben több lehetséges megoldási terv is születik, nem lehetünk
biztosak benne, hogy az adott feladatra melyik milyen hatékony, de még abban sem melyik
a leghatékonyabb az összes közül. A dolgozatomban egy konkrét implementációs feladaton
szemléltetem a korábbi problémakört, ahol egy General Transit Feed Specification (GTFS)
szabvány szerinti közlekedési adatforrást dolgozok fel. A GTFS szabvány jellegéből adó-
dóan, a feldolgozás során több különböző, de egymástól függő adatfolyamot kell egyszerre
kezelni egy közös kimeneti rekordhalmaz előállításához. A feladat példaként szolgál egy
tipikus esetre, amikor is egy külső, számunkra módosíthatatlan formátumú adatforrást
szükséges lefordítani egy általunk definiált belső reprezentációra.

Dolgozatomban több különböző architekturális és implementációs párosítást is meg-
vizsgálok a hatékonyságuk szempontjából a GTFS szabványú adatforrás feldolgozására.
Összehasonlítok egy mikroszolgáltatásokon, és egy függvényeken (Function-as-a-Service,
FaaS). Elemzésemben egy általam kialakított vizsgálati környezetben végzem a teljesít-
ménymérést a javasolt megoldási módszereken. A mérési környezetben különböző erőfor-
ráshasználat (CPU, memória) mellett hasonlítom össze a felhasználó számára legfontosabb
metrikát, a teljes válaszidőt (a program teljes futásidejét). A mérhető eredmények mellett
bemutatom az egyes megközelítések egyéb előnyeit és hátrányait.

i

Abstract

Cloud computing today is a well established technology, with numerous use cases. In fact,
in recent years, it has crept into nearly every domain in which software solutions are being
used. With such a wide range of applications, any advancement in this field is due to have
a significant impact.

One of the most common applications of cloud computing is for the processing of large
amounts of data. This data can come in many forms, though it can most commonly be
considered as a stream of records which need to be manipulated in some way. Due to this
format of the data sources, continuous and parallel processing is possible, for which cloud
native architectures provide the perfect solution.

However, certain characteristics of the data sources being used can make the implementa-
tion of these cloud native architectures difficult in practice. Notably, challenges can arise
if multiple interdependent data streams are used to produce a single set of outputs. Fur-
thermore, even if multiple candidates for implementation are developed, the performance
of each one for the task at hand, or even the relationship of their performance is unclear.

In my work, I present the aforementioned topic on a specific implementational problem,
where I process a public transit data source that conforms to the General Transit Feed
Specification (GTFS). Due to the format of the GTFS standard, multiple separate, yet
interdependent data streams need to be handled simultaneously to produce a set of output
records together. The task is a typical example where we have to use a data source that
is in a predefined standard, which we would like to convert to a format we define.

In my paper, I explore multiple different architectural and implementational combinations
to handle processing a GTFS standard conforming data source, and compare them based
on their performance. Namely, I compare a microservice, and a Function-as-a-Service
(FaaS) solution. I use a testing environment that I defined to conduct performance analysis
on the aforementioned solutions. In this environment I compare the most important metric
for the end user, which is the total execution time (total runtime), at different levels of
available resources (CPU, memory). Apart from the measurable outcome of my tests, I
present other advantages and disadvantages of the different approaches.

ii

Chapter 1

Introduction

In recent years, the focus of application development seems to be shifting towards cloud
computing. While the idea of centralizing resources, in this case processing power, and
sharing it with others is not new, its scale definitely is. With the advent of advanced net-
working technologies, each data center can be accessed from essentially anywhere, making
sharing them trivial. Albeit its relative novelty, even cloud computing is already becom-
ing more democratic, for an increasing number of organizations demand to have their own
private cloud infrastructure, further confirming that this is the next innovational trend,
currently in the phase of being adopted by more and more people, and continuously being
improved upon.

Although cloud computing has its potentials, it also has its limitations, especially if it is
not used wisely. In general, information technology requires two separate aspects of it to
work together, namely hardware and software engineering. Neither can exist, or deliver
adequate solutions without the other. Therefore, no matter how much of an improvement
the cloud may be on the hardware side, should it not be used wisely from the software
side, its benefits diminish.

Moreover, the handling of large data sets can be challenging due to their scale, turning even
small adjustment applied to every data record a monumental task. Additional challenges
may arise, should the data to be processed is derived from not just one, but multiple
sources, which are dependent on each other in some way, like to formulate the result
records together.

Multiple cloud native architectural solutions exist for the latter data processing task, such
as microservice based, or Function-as-a-Service based approaches. However, determin-
ing the performance of each architecture is difficult, if not impossible in practice without
rigorous testing. Furthermore, although such testing can lead to practical results, it re-
quires the implementation of both architectures, which is practically not feasible for most
projects to undertake, and undermine the general usefulness of the results, as they will be
heavily dependent on the underlying software implementation.

A great example of having to process multiple data streams is the General Transit Feed
Specification (GTFS) (Section 3.6), which specifies multiple data sources for the descrip-
tion of a single type of information, which are public transit schedules. In the case of
GTFS, the problem could be solved by simply uploading the normalized data structure
to a relational database. However, that would result in the need for JOIN operations for
nearly every query, as the data schema is normalized, which in turn would increase the
response time of each query. On the flip side, by spending some processing time on de-
normalizing the data records according to the most frequent queries made to the database

1

before uploading them there, and storing the denormalized data, response times could be
decreased, as JOIN operations would no longer be necessary. The reason this is a suffi-
cient approach, is that GTFS data describes static schedule data, which only changes at
most weekly, but usually monthly, or a few times a year. Therefore, due to the infrequent
updating of the data stored, spending time denormalizing the data records and storing
them that way does not seem to have the traditional downsides of storing denormalized
data, like inconsistencies after an update operation.

In our work, we aim to address the uncertainty around the performance of the different
kinds of architectures on data processing tasks. Specifically, we demonstrate the perfor-
mance of multiple architectural solutions, by implementing them on the task of GTFS
data processing, and measuring their response times.

The rest of this paper is organized as follows. In Chapter 2, we present the academic
works published before our research, which are related to it, and which we used as a basis
for our own work. The theoretical background required to understand the rest of the
paper is presented Chapter 3. The fundamental concepts are explained, with references
to more detailed resources for further reading. Chapter 4 is dedicated to explaining the
design decisions we took during implementation and the reasoning behind them. The
architecture of the different levels of the implementation are also detailed. Chapter 5 is
devoted to the methodology of our experiments, the way we conducted tests, and the
results of the tests. At the end of the paper in Chapter 6 we draw an overall conclusion
of our work, and list a few possible future directions of research deriving from this article.

2

Chapter 2

Related work

The performance analysis of cloud computing solutions, and in particular containerized
microservices, on data processing is a moderately studied topic, with correspondingly
moderate understanding of the effects of the different parameters on the end performance
of the system at hand.

As early as 2011, the authors of article [17] investigate ways of optimizing data processing
workflows. They look at optimizing the processing workflow for the cost of the resources
used, for the time it takes to process the data, and for a compromise between the two
latter aspects.

More recently an overarching analysis of the different dedicated data processing frame-
works was published [16]. Dedicated data processing frameworks offer a completely dif-
ferent approach compared to writing a custom data processing framework for the specific
task at hand using containers [7] or functions [9]. The article presents the advantages and
disadvantages of each framework, and consequently for what use cases they are best suited
for.

Guaranteeing performance or response time in cloud computing is a very difficult task,
however the authors of article [22] demonstrate a possible solution to this problem. They
investigate which aspects of a microservice architecture determine the end response time
perceived by the user, the most typical constraint formulated in Service Level Agreements
(SLAs). The authors also present a prototype implementation of a possible algorithm
for dynamically scaling the resources of the services running, for the achievement of the
predetermined SLA, and conduct performance tests on their implementation.

In our work, we aim to compare containerized and Function-as-a-Service environments,
like the authors of [16] did for dedicated stream processing tools. Additionally, we use
our own software implementation, and conduct performance tests on it, similarly to the
authors of [22]. Contrary to the latter article though, we do not try defining a specific
algorithm for improving the performance of the two systems analysed.

3

Chapter 3

Theoretical and technical
background

3.1 Containerization

Containerization [7] is a software delivery and running architecture, which allows for the
standardized handling of software products.

Writing programs which can be run on many hardware platforms is a difficult task, mainly
due to two key issues: dependencies and runtime environments. The former means that
even if our software runs as expected on one platform, it is not guaranteed that all of the
other programs it depends upon do too, should they be available on that platform with
the same version requirements in the first place. The latter problem arises from the fact
that most programming languages are interpretable to humans, but not to machines, thus
requiring compilers to “translate” between the two worlds. The problem is that "trans-
lating" to every possible hardware platform every version of our program is practically
infeasible, and consequently rarely ever done.

Some programming languages tried solving this problem [31, 23] by inserting an abstrac-
tion layer between the programming language’s code and the machine readable code,
introducing a cross-platform runtime environment between the two. While this does solve
the latter issue to some extent, the former is still there, but now exaggerated due to the
fact that the runtime environment is a brand new dependency that needs to be available
on the host machine.

Historically, the evident solution was creating virtual machines [15], as they could be recre-
ated on demand, packaged the software and all of its dependencies, and were guaranteed
to run on the platforms they were designed for, as they included the operating system in
them. The grave downside to this approach however, is the greatly increased size of the
software package, which is often in the GBs, if not tens of GBs range.

Deriving from the ideas and benefits of using virtual machines, containerization [7] was
developed as an alternative approach. Just like virtual machines, containers have every
dependency needed to run the containerized software in them. Though virtual machines
contain the entire operating system as well, containers do not, leading to a much reduced
storage volume, in the hundreds of MBs or sometimes few GBs range. Furthermore, by
not internalizing the entire operating system, containers have a much faster boot time,
and greatly reduced processing resource usage.

4

The key difference of containerization from using a programming language’s virtual ma-
chine, is that while the latter only works for a single or a few programming languages, the
former is completely programming language agnostic.

The pioneer of containerization technology was the Docker Engine [4], essentially becoming
the industry standard. Docker provides all of the necessary development and runtime
management tools needed for successfully delivering containerized software, in a multitude
of use cases. As the Docker Engine is an open source project [5], it can easily be built
upon and integrated into new software solutions.

Over recent years, most container runtime platforms adopted the format of the Open
Container Initiative (OCI) [42] for the description and running of containers. Due to this
standardization of the technology, competition and alternative runtimes can be introduced,
leading to further advancements in the field.

In our work, we use containerization extensively, using Docker for building and running
the containers we create.

3.2 Container orchestration platform

3.2.1 Principal idea

A container orchestration platform [6] is a software environment, that allows for the han-
dling of a large number of containerized software packages at the same time.

With the widespread adoption of containerization came the need for the standardized
handling of containers. Albeit containerization was created as a standardization of software
packages, it did not solve every problem. While the starting, running, and stopping
of containers was standardized from a technical perspective (for computers), it was not
standardized enough from the point of view of the operator (for humans). Even though
the latter tasks were relatively simple to execute for a limited number of containers, the
original solutions were not scalable enough. Taking into account everyday networking
tasks, the providing of dynamic environment variables on the start of a container, or the
scaling up and down of the number of containers, to cite a few examples, the handling of
containers indeed needed a better solution.

Container orchestration platforms aim to solve the above problems, and many more, by
standardizing, and automating the interaction with containers. Platforms like these allow
for the handling of not just a few, but hundreds of containers at the same time, and can
automate a variety of tasks, simple and complex alike.

The existence, and widespread use of orchestration platforms is very likely due to their
use in cloud computing. Providing services to not just a few, but hundreds, thousands,
or even millions of users at the same time is a monumental task, even if all of them are
using the same basic software service. Even if one could somehow start that many software
instances and let their users use them, without the use of container orchestration platforms,
the handling of faulty containers, or the scaling of the number of instances would be a
difficult task, that would need to be handled apart from starting all the instances in the
first place.

Orchestration platforms help alleviate these challenges, by abstracting away and automat-
ing the basic issues. Such solutions allow the handling of many container instances at the
same time, with minimal effort, and with the right configuration the automation of most
tasks.

5

Platforms build on the standardization of container interfaces, and extend them by allow-
ing the declarative description of deployments and tasks. The advantage of declaratively
describing workflows, instead of doing so imperatively, is that it leaves room for optimiza-
tion for the execution engine. Indeed, if every step is described imperatively, the software
executing those steps cannot improve much on them. This is not a problem, should the
programming engineer be able to comprehend the system being programmed. However, in
the case of cloud computing, keeping in mind every aspect of the system at hand is usually
a much too complex task. Therefore even though optimization engines are not perfect for
every possible deployment scenario, they are still better than writing individual imperative
software for each of those scenarios.

It needs to be said, that a container orchestration platform is still only a software environ-
ment, not a service. The crucial difference is that while the latter is available on demand
from various providers through the internet, the former requires infrastructure to run on.
Admittedly, the former can be run by a provider as a service, but strictly speaking the
technology itself is only the software necessary to run such services.

3.2.2 Kubernetes

Kubernetes [32] is an open source container orchestration platform, with much of the same
benefits as described above, and many more.

Kubernetes describes the environment comprising of itself and the software container de-
ployed using it as a Cluster [33]. A Cluster needs computers to run on, which are called
Nodes [36], and the containers being run are named Pods [38]. Kubernetes hides much of
the complex logic behind operating a Cluster, allowing for one to focus on the logic and
components strictly necessary for one’s application.

Kubernetes provides an abstraction layer above the container level, allowing for easier
management of Pods. The basic component of this layer is called a Deployment [34],
although there are more fine grained options [41] as well. A Deployment describes an
application, which uses a type of container (a container image) to run, and the instances
of this type of container. It can have any number of Pods running in it, or even none
at all. This abstraction layer allows for the standardized description and configuration
of a software application, and assumes that it does not matter which container serves
the requests to said application. In consequence, on their own, Deployments cannot have
states, as it is not deterministic which container instance is going to handle a specific
incoming query, and should a Pod restart, all of its stored information is lost.

Although Deployments are a great tool in managing clusters of containers, they are not
enough on their own. Firstly, Deployments cannot manage stateful applications by them-
selves. Several solutions exist to this problem, for example by storing data for every Pod
in the Deployment in an external storage, such as a distributed cache (Section 3.5) or a
PersistentVolume [37]. Kubernetes’ own solution to storing state or other persistent infor-
mation, is a StatefulSet [40], where each Pod in it has its own dedicated PersistentVolume,
and should a Pod fail, the replacement Pod is connected to the same PersistentVolume.

Secondly, while Deployments can run independently, and initiate IP requests, they cannot
be the target of such requests. Kubernetes provides the Service [39] resource type for
this use case. A Service allows a Deployment to receive requests from the IP network,
and describes which domain names, IP addresses, and port numbers it can be reached
on. Kubernetes has a complete IP network model implemented, allowing every Pod in the
cluster to communicate with each other using it, and requests to be received from outside

6

the Cluster. Though most of the complexity of managing an IP network is configured
automatically, various options can be specified manually. Kubernetes also provides built
in load balancing capabilities, ensuring that Pods running in a Deployment, behind a
Service, process roughly the same number of incoming requests.

We used Kubernetes as the backbone of our research. We chose it because it is widely
used, supported with libraries and third party components, and open source.

3.2.3 Horizontal Pod Autoscaling (HPA)

Kubernetes Deployments allow for the standardized handling of containers which run the
same software. Since Deployments assume it does not matter which Pod serves the incom-
ing request, it is natural that more Pods in the Deployment can handle more requests.

This is called horizontal scaling [24], for an increasing number of the same kind of contain-
ers are deployed in parallel (i.e. horizontally) to handle the increasing number of requests.
In contrast, vertical scaling describes the practice of providing more computational re-
sources, such as processing power or memory capacity, to the same container to increase
its capacity of handling incoming requests. In containerized cloud environments horizon-
tal scaling is favored to vertical scaling, as while the latter is limited, for the processing
capacity of a single CPU is limited, the former is theoretically limitless, for in theory any
number of containers can be running at the same time, as long as a matching number of
computers are available to run said containers.

Horizontal Pod Autoscaling (HPA) [35], as its name suggests, is Kubernetes’ built in
implementation of the principle of horizontal scaling. While the number of running Pods
can be configured manually at any given time, this feature automates this task. The great
advantage of this automatic implementation, is that the Cluster can automatically adapt
its Deployments to the incoming workload, without the need for external intervention.
HPA dynamically increases or decreases the number of running Pods based on the Pods’
CPU and memory usage. Once the desired limit for the consumed resources of a single
Pod, and the optimal percentage of said limit used are configured, the algorithm launches
or stops Pods based on whether the other Pods are above or below the defined optimal
percentage.

A known limitation of HPA is that it can only scale down to a single running Pod. This
behaviour is due to the fact that a single instance of the container always needs to be able
to instantly respond to incoming requests. For even though the launching of a container
is far quicker than the launching of a virtual machine, its boot time is usually still not
negligible compared to typical IP request response times.

3.3 Function-as-a-Service computing model (FaaS)

3.3.1 Principal idea

Function-as-a-Service computing model (FaaS) [9] is a cloud native architectural pattern,
and the services implementing it, aiming at simplifying the development and deployment
of cloud software.

Most advancements of the cloud introduce a new layer of abstraction above the existing
options, thereby further simplifying the development and deployment of applications to

7

the cloud. FaaS is no exception in this regard, as it essentially provides a more convenient
platform for developers to use when programming for the cloud.

More often than not, deployments in the cloud are already stateless, and therefore the
instances of an application running at any given time are interchangeable. Moreover,
combined with this interchangeability of the instances, their scalability is just as important,
not to waste valuable resources. Indeed, should the infrastructure that one’s cloud software
is running on be a third party cloud service provider, every resource waste can be directly
quantified as economic loss for one, derived from the price of the resource wasted at said
provider.

One of the significant challenges of scaling cloud applications is the overhead of starting
and of stopping an instance of the application. This overhead is quantifiable as the time
it takes for the instance to start before, or to stop after it actually performs the task it
was designed to do.

The obvious answer to reducing this overhead is to reduce the complexity of each instance
of one’s software. FaaS aims at doing just that, by reducing the amount of programming
needed to deploy an application to just the code necessary for the application’s primary
purpose. Consequently, theoretically, no additional programming or configuration is re-
quired to run an application. In practice though it is greatly reduced, minimal amounts of
it, like the configuration of the different application components’ relation, is still required.

Behind the scenes, making FaaS function can be done in multiple ways. The most obvious
method is to leverage existing containerized environments, and use their scaling mecha-
nisms, essentially providing a wrapper software around existing solutions. This approach
can be extended by providing a more fine grained control of the scaling, by making each
container run many instances of the same application packaged as a function. Further-
more, provided the deployment and running of a function be standardized enough in the
particular FaaS implementation, the same kind of containers can be deployed en masse,
all of them capable of running any function written for that FaaS implementation. The
benefit of the last approach, is that by standardizing the containers running the functions,
many function instances can be aggregated on the same container instance, reducing the
number and amplitude of scaling required on the container level.

An additional upside of using FaaS for a developer, is that by trying to simplify the
deployments, a standardized, and usually automatic, way of declaring and including third
party libraries and dependencies in one’s code is provided. This feature makes the functions
run by the provider more uniform, allowing for further optimizations while running them,
and relieves the developer of yet another implementational overhead standing in the way
of solving the actual problem at hand.

3.3.2 Knative Function-as-a-Service

Knative Function-as-a-Service (Knative FaaS) [19] is a practical implementation of the
above listed FaaS principles.

Knative FaaS allows for the rapid development and deployment of simple function based
applications. It automatically generates a starting programming project for one to work
on, providing a basic framework for handling incoming HTTP requests. It supports several
programming languages, though since its implementation is entirely open source and well
documented, it can be extended to support any kind of languages.

It also helps tremendously in the deployment of one’s applications. Knative handles the
compiling of the application into a container, and the configuring of the container’s pa-

8

rameters in the cloud. Should a change occur in the application’s code, the redeployment
of it is just as fast and as effortless, as it was the first time.

Knative FaaS builds upon Kubernetes, leveraging the latter’s capabilities to improve upon
them. Due to this dependency, it uses regular Kubernetes Pods behind the scenes [20],
only being able to scale on the container level. Knative tries improving on this inher-
ent limitation by creating starting programming projects that can be compiled into pure
function running containers for that application. Consequently, a single container can run
multiple functions in parallel.

Knative FaaS is part of the Knative library for Kubernetes [18], which is a software
solution designed at facilitating the handling and communication between containerized
applications in Kubernetes. Knative also provides its own autoscaling engine, the Knative
Pod Autoscaler (KPA) [21]. It uses this engine in its FaaS implementation, allowing
for dynamic scaling of applications based on either the incoming requests per second
(RPS), or the number of parallel running functions in a single container (concurrency).
Combined with the fact that Kubernetes HPA can be used as well, KPA provides great
alternative metrics to scale by, while not sacrificing traditional resource consumption based
approaches, should the particular application demand it, as this setting can be defined on
a per application basis.

As a consequence of building upon Kubernetes, Knative FaaS itself is just a software
environment, not a readily available service. In order to operate it, one needs to have an
existing Kubernetes cluster, which in turn requires infrastructure to run on as well.

We chose to use it as a FaaS runtime, because it is easy to integrate with Kubernetes,
which we were already using, and that because Knative is open sourced.

3.3.3 Comparison to containerization

From the features and characteristics described above, it is clear that FaaS is similar to
regular containerized deployments. This similarity is no surprise, considering some FaaS
implementations are built upon containerized environments, like Knative FaaS.

Containerized applications have the advantage in development and configuration flexibility.
These days, there is practically no limit to what applications can be run inside a software
container, and containerized environments allow for meticulous control over what goes
into the container, and how the container behaves with its environment.

In contrast, FaaS applications have somewhat limited options in what can be deployed as
a function. The reason for this is that FaaS environments try to manage as many aspects
of the deployment procedure as possible, and do so automatically, for additional room
for optimization when running the functions. Undoubtedly, having most aspects of de-
ployment preconfigured is convenient for the developer, although it does become a burden
should a very niche deployment case arise, which requires ample custom configuration.

On the other hand, by reducing the room for flexibility in the deployment procedure, FaaS
environment allow for much more flexibility when running the applications, compared to
pure containerized deployments. Indeed, while the latter can only be scaled at the con-
tainer level, the former allow for a more fine grained control, as capacity can be increased
or decreased on a per function basis. Moreover, in the case of a FaaS environment which
enables functions to be deployed on homogeneous containers, resource allocation can be
even more precise.

9

3.4 Microservice architecture

Microservice architecture [10] is an architectural pattern in cloud computing, with the goal
of building complex software structures from simple, small, and decoupled components,
that can be maintained and developed independently.

A significant challenge when developing software for a complex task, is that the solution is
often very complex as well. The more complex a component is, the more likely it is that an
error will occur during development, which is only made worse if changing said component
may break several others as well, meaning that they are strongly coupled. The obvious
answer to this problem is to divide the complex software into smaller, more manageable
components, and decouple them as much as possible. Dividing helps with the complexity
of each component, while decoupling enables said component to be handled independently
of the others.

Traditional software architectures already use the principles of division and decoupling,
however the decoupling of the components can only be so strong as long as all of the com-
ponents are running in the same memory space. Microservice architecture mandates strong
decoupling, by keeping the components in separate memory spaces, and only letting them
communicate through the IP network, often using REST APIs [14]. Enforcing separation
of the components in this way ensures that proper decoupling does take place, resulting in
micro sized services (hence the name of the architecture). Furthermore, while it is possible
for an inefficient division of the software to go unnoticed when every component is running
in the same memory space, the inefficiencies are exaggerated when communicating over
the IP network, therefore motivating one to develop a better solution to the problem. The
reason that it is beneficial that these inefficiencies are made obvious, is because while they
may be efficient enough when run in a single memory space, they still cause improperly
decoupled components to exist, which negatively impacts the further development of those
components.

Even though microservices warrant the use of IP network communication between them,
this does not necessitate the use of containerized technologies, or any kind of particular
technology for that matter. On the other hand, containerized or FaaS deployments can
leverage the principles of microservices well, as they inherently provide the division of
larger software into more manageable components. Therefore, microservices are not a
technical specifications, but rather an overarching concept for the entire software service
that one wants to provide.

The benefit of implementing the principles of this architecture are numerous. Firstly,
they help software development, by being able to work on smaller, easier to understand
components of it at a time, without having to worry about the consequences a change
is going to have on the other components, as long as the REST API does not change of
the service. Secondly, as the services can be developed quasi independently of each other,
they can all use differing programming languages and technologies. Indeed, considering
that the services only communicate using REST APIs, the only requirement is that the
programming language and technologies used support that API. Thirdly, the independence
of the components means that should a particular part of the application receive more
requests than the rest, for example the authenticating component, it can be scaled up
without having to scale the rest of the application with it, saving valuable resources.

In our work, we separate the components of our application using the principles of mi-
croservices, although we do not strictly use REST APIs for communicating between the
components.

10

3.5 Distributed cache

A distributed cache [8] is a software solution facilitating the storage of simple state vari-
ables for the running deployments in a cloud environment.

A common problem for initially purely stateless applications is the eventual need to store
some state information, for example session IDs. Traditional solutions to this problem, like
storing it in memory, do not work, as each request may be serviced by another container
which uses a separate memory context, therefore either losing the data or even worse, using
outdated data. On the other hand, using entire database management systems (DBMS)
for such a simple task would waste too many resources both in terms of CPU and memory
usage to run the database, and in terms of unduly elongating the overall response time
due to the overhead of searching in a complex database environment, which is persisted,
further increasing the response time.

Combining the benefits of both worlds, distributed cache systems allow for the storage of
small amounts of data, key value pairs more precisely, which are stored in memory, but
in separate and dedicated containers for this purpose. Consequently, the data is stored
securely without having to worry about which container serves a particular request from
a deployment, and response times are still fast, as only simple keys need to be searched
with simple values to return, and everything is stored in memory.

Apart from the basic usage of storing small amounts of data, using distributed caches can
be used as the single source of truth. In distributed cloud environments, even if different
parts of a cluster are consistent on their own, they may not be in sync even though they
should be. Instead of using proprietary software for synchronization, distributed caches
solve this problem with robust and fault tolerant algorithms tested at up to thousands of
requests per second.

Various implementations of distributed cache systems exist, but the most widely used are
the open source Redis [12] and etcd [8] tools. Redis allows for the storage of a greater
variety of data structures than etcd, and stores its data in memory, providing faster
response times as well. In contrast, etcd only allows for the storing of simple string key
value pairs, and stores its data in persistent storage. As a result, while etcd may have to
slightly increase its response time, in turn it can achieve much better fault tolerance.

Kubernetes’ control plane internally uses the etcd distributed cache. This is a crucial
component of the orchestration platform, as it allows for the configuring software to know
the state of the cluster and the Pods in it at any given time, and make decisions based on
that information.

We use etcd in our cluster as well, for the tracking of the progress of the processing task
accross multiple Deployments. The reason we chose etcd was its fault tolerance, and its
widespread adoption in the industry, most notably by Kubernetes.

3.6 General Transit Feed Specification (GTFS)

The General Transit Feed Specification (GTFS) [25] is an open standard for digitally
describing public transit schedules.

Originally named Google Transit Feed Specification, as it was developed by Google and
was only later open sourced and renamed, GTFS helps transit agencies to publish their
schedules online in a standardized format. This helps agencies by sparing them the effort

11

of coming up with a publishing format, and also helps promote their schedules, as any
mapping provider can use the standardized data the agencies publish.

GTFS is a global standard, and therefore is designed to handle any and all kinds of transit
agencies possible. Since each one is different, the standard contains numerous possible
attributes, only a subset of which are required and therefore guaranteed to have a value.
Consequently, parsing GTFS data requires robust algorithms, which can handle many
missing fields in the data set.

While the main purpose of GTFS data sets is the publication of public transit schedules,
other related information can be described with it as well, for example the fares required
to use the described transit routes. Additionally, GTFS can contain GPS coordinates
for the routes described in the schedule, enabling mapping applications to display them.
Moreover, GTFS Realtime [26] allows for the real time publication of vehicle locations
and delays compared to the original schedule, giving riders further information on their
planned trip.

The standard specifies a data structure which is normalized, meaning there is no redun-
dancy in the storing of data. Each agency is required to publish a ZIP file, containing
TXT files with CSV formatted data in them. Each file contains data for a specific entity
in the standard, where the rows of the file are the records conforming to that entity. The
data files can also be regarded as data streams, when processing them line by line, each
stream providing a flow of records to be processed.

In our project, we use GTFS data as the basis of the processing task that we implemented.

3.7 Document based database

Document based, or NoSQL databases [11] are database implementations which allow
for more flexibility in the storage of records compared to relational databases, especially
regarding the handling of optional record fields.

Document based databases developed as an alternative for relational databases [13]. While
the latter are great for normalized, predetermined database schemas, they handle the
storage of optional fields poorly, as the fact that an attribute does not hold data needs to
be stored as a NULL value. Due to having to store NULL values explicitly, should the
schema of a table change, for example be extended by another attribute, that attribute’s
value needs to be given for every already existing record.

In contrast, document based storage does not define schemas in advance, but rather allows
any kinds of records to be stored in a collection, and let the applications using the records
handle if a field does not have a value. This approach is better for today’s software
development patterns, as most applications are continuously developed with incremental
changes, whereas always updating the corresponding database can be a monumental, and
mostly unnecessary task. Indeed, in a the case of already handling optional fields, from
the client’s perspective, receiving the field with a NULL value or not receiving the field at
all are practically equivalent scenarios.

Another paradigm shift in document based storage compared to relational based storage
is the abandoning of the normalization of the data stored. While normalization is great for
keeping a database consistent, and reducing redundancy, in some applications these aspects
are much less important than the overall response time to a database query. Indeed, if all
the data needed for a particular query are stored in the same record, a JOIN operation’s
execution can be saved compared to storing the data normalized.

12

One of the industry leading document based databases is MongoDB [27], implementing
all of the above described characteristics. A significant advantage of using MongoDB
is that it has a freely available community version with most of the core features of
the proprietary product, and that application libraries, or database drivers, are available
for a great number of programming languages, allowing for flexibility in the choice of
programming language to access the database.

We chose document based storage to facilitate faster response times, and we chose Mon-
goDB in our project due to its support of many programming languages.

13

Chapter 4

System architecture

4.1 Design considerations

As with any research project, we had many ideas along the way that are still open for
debate. In this chapter, we would like to present a few of them, and explain our decisions
regarding them. Additionally, we are also going to present some of the challenges that we
had to consider when implementing this project.

4.1.1 At the edge of the memory context

Originally, we had the idea to analyze the difference between a monolithic, a microservice,
and a Function-as-a-Service (FaaS) based implementation of the same data processing
problem. The reason we wanted to investigate these particular architecture patterns, was
that at a high enough level of abstraction, they essentially work the exact same way with
one key difference: where the edges of the memory contexts are, and where IP network
communication is necessary.

Consider that a particular data processing task has a software written for solving it using
a monolithic architecture, meaning every component of the application runs and commu-
nicates in the same memory space. If the interfaces of the internal components of said
application are well designed, and provide a sufficient level of decoupling, then converting
the monolithic architecture to a microservice based one is rather simple. One has to move
a component’s original implementation into a separate service, and fill the gap at the orig-
inal location of the component with a mock implementation (Section 4.3.3). The mock
implementation’s only purpose is to fulfill the original interface contract, and forward any
internal function calls over the IP network to the newly separated original implementation.
This procedure has to be repeated for every component to achieve a microservice based
implementation instead of the monolithic one.

The above procedure can also be adapted to move from a microservice based approach to
a Function-as-a-Service based one, executing each step described above, but this time for
the functions of the implementation instead of its components.

The two main challenges that would need to be overcome using this approach are how
to write monolithic software with sufficient decoupling, and how to deal with the charac-
teristic of FaaS environments not inherently supporting returning values to the caller like
in memory function calls do. The former may be difficult, but not impossible, as most

14

standard, object oriented programming design patterns aim at doing just that, creating
components with a low level of coupling between them.

The latter problem arises from the fact that while in memory function calls can use
the stack to call one another, then return and keep processing in the caller function,
FaaS functions do not have that luxury. While simple, single level, calls can be made
asynchronously in a function, nesting these calls can lead to significantly increased overall
response times, potentially leading to timing out at the original caller function. Therefore,
most FaaS environments prefer a linear calling structure, meaning the processing task
moves from one function to the next, without returning to the starting function. Adapting
this linear calling structure for in memory calls however, would lead to very deep, almost
infinitely long stacks, with the potential of a stack overflow error. Even if the returning
problem were to be solved, using multiple threads for example, the basic logic of the
monolithic software would need to be rewritten, as this is a very rare pattern to use
when using a single memory context for execution. Moreover, using such an uncommon
approach in the monolithic implementation of the program would annul any results of this
decomposition, as the monolithic version would not be at all authentic.

To summarize, while it does seem like an interesting topic to investigate, it still requires
more research to properly evaluate its value.

4.1.2 The right metric

Deciding upon using the final response time as our key performance indicator was not
evident at the start of our research either. This approach had to be selected from multiple
other possible metrics to measure, some of which we list here.

The overall CPU or memory usage can be measured as well of the running containers,
alongside the number of containers and/or functions invoked. The reason these are partic-
ularly interesting metrics, is because most often these are the basic components by which
our application running in the cloud is billed. Consequently, perhaps combining the results
with the running time of a processing task, a price estimate could be given using a linear
combination of all of these parameters. In our case though, we are not using public cloud
providers to run our programs, meaning that firstly we can only estimate, and not verify,
the final price of a single running of our tasks, and secondly that we do not have access
to infinite amounts of available resources to provide our containers with. Due to these
reasons, pursuing these metrics did not seem relevant in our case.

Other than the resource usage and performance of the individual containers, the IP net-
work between the containers can cause a bottleneck too. To find out if this is the case, most
likely because of the components and APIs used emit too many messages, one could mea-
sure the overall volume of traffic going through the network. Additionally, the database
engine can be the bottleneck in a data processing task as well, therefore using a metric
describing the throughput of the database, like its input/output operations per second
(IOPS) can argued for. While these latter two approaches have potential use cases, they
also require further research in order to verify their value.

All in all, while several other metrics have arguments for them to be used, we decided
upon using the end-to-end response time of a processing task, for this is the final and only
metric the user of an application is going to perceive, and is therefore the most important
one, in our opinion.

15

4.1.3 Dedicated data stream processing tools

Apart from writing custom programs for a data processing task, dedicated tools exist
for it too, such as Apache Kafka [1]. Such tools are optimized for the processing and
transforming of data streams, therefore have the potential for much faster processing times
than the microservice or Function-as-a-Service based approaches. The main downside of
using such an approach, and comparing it to writing custom code for the task, is how
different the two can be. Considering how much more complex the internal logic of such
a tool can be than the custom implementations one can write, it can be argued that the
performance difference between the two could simply be down to the efficiency of the
custom implementation, and not to the frameworks like microservices or Function-as-a-
Service used.

We decided against including a dedicated tool like Apache Kafka because comparing its
performance to our custom implementations would be irrelevant.

4.1.4 General Transit Feed Specification (GTFS) considerations

We chose General Transit Feed Specification (GTFS) (Section 3.6) as a data source format
to be processed because of our personal interest in public transit, and because we find it
has some unique challenges in the way it stores its data.

As we mentioned in the introduction (Chapter 1), the GTFS standard is a very general
specification, aimed at any and every kind of transit agency possible, therefore containing
many optional fields, which are difficult to handle. As an optimization to our processing
algorithm, we only handle the strictly necessary fields of the specification, of which almost
all are required to not be empty, and we only handle the smallest set of data streams that
are still enough for meaningful output. As an example, we do not handle the possible GPS
coordinates of the routes, and we do not handle possible exceptions on specific dates in
the schedule, only the regular service hours. These and the other optimizations that we
made when processing the data streams, in our opinion, do not contribute enough to the
output records that it would be worth the effort of implementing their processing as well,
especially not in a time constrained project like this is.

The real challenge of handling GTFS data is its multiple data streams, combined with our
aim of denormalizing its data structure. As we are denormalizing the data structure of
the standard, multiple data streams include the data for a single type of output stream,
the order of the upload of which input streams matters as well. The reason that this
order matters, is because naturally, the input stream containing the primary key of the
output stream is required to be processed first, to create the records of the output stream,
where the other input streams can upload their own data. This is the interdependency
of the GTFS data structure referenced in the title of this paper, which dependencies are
contained in the order in which our algorithm processes the various data streams, as
illustrated in Figure 4.1.

4.1.5 Alternative processing flow topologies

The main difficulty of the processing task is the interdependency of the data structure, as
we explained earlier in this paper (Section 4.1.4). There are most likely numerous solutions
to this problem, of which we thought of three, and decided upon implementing only one.
We are going to explain the other options that we were considering in this chapter, that
could form the bases of further research projects.

16

One of the options that we were considering was quite similar to our final implementation.
Both solutions built upon the idea, that by deciphering the exact dependencies that created
an output record stream, and those that only provided additional information to that
stream, a graph could be defined, with directed edges pointing in the direction of the
dependencies (the edges pointing towards the dependent nodes). A topologic order can be
defined in this graph, as shown in Section 4.3.1. A simpler solution however, is first creating
each output record from the corresponding input stream which contains its primary key.
This can be done all in parallel for each input stream, as each output record is only
dependent on one input stream for its primary key. Afterwards all of the additional
information can be uploaded from all of the input streams in parallel, as all of the output
records will have been created at that point. While this is a simpler option, we decided
against it because we think that the option we did implement holds more potential and
provides better performance, however this does need further research to be confirmed.

A completely different approach is to upload all of the input records as-is to the database all
in parallel, and let the database deal with creating proper output records from them. The
key component in this solution is using database trigger functions [29], and setting them
to trigger updates in the database at each new insertion. This methodology essentially
moves all of the processing to the database itself, which is while an interesting concept, we
believe is not likely to be an efficient one as well. The reason for our scepticism regarding
this solution, is that even when the database does not have any processing to do, only to
insert and update records, it turns out to be the main bottleneck in the system. Putting
additional processing in the database is probably going to make this bottleneck worse, and
hence why we did not implement this solution.

4.1.6 Further parallelization

During our implementation, we tried parallelizing the processing task in as many ways as
possible, however we did omit it in one possible scenario, which is the initial parsing of
the raw data files. we could have parallelized this step as well, since the records in a data
source file are independent of each other. On the other hand, by keeping this component
as a single instance, the tracking of the progress of the processing of a particular input
stream was much simpler, as every upload process responded with its status to this single
component. This simplification in the development convinced us to accept this minor
inefficiency in terms of upload performance.

4.1.7 Choice of programming languages

Most of our development experience is in the Swift programming language [2], and there-
fore we started implementing this project in it as well. However, since the Knative
Function-as-a-Service (Section 3.3.2) environment does not have built in support for Swift,
we decided on taking the opportunity to deepen our knowledge in the Node.js [30] pro-
gramming language, as it did already have built in support.

4.1.8 FaaS and containerization

We decided upon running the row-distributor (Section 4.3.3) component as a container
even during our Function-as-a-Service based experiments, which arguably hinders their
results. We believe this choice to be well founded however, considering our choice of
limiting parallelization in the row-distributor component (Section 4.1.6), and how we

17

wrote that component in Swift which is not supported by the Knative Function-as-a-
Service environment (Section 4.1.7).

4.1.9 Database constraints

During our implementation, we constantly experienced performance issues, where requests
sent from the row-distributor (Section 4.3.3) component would time out. After a lot of
investigation of the possible cause of the issue, we noticed that scaling up our other custom
implemented components did not help the problem, only the scaling up of the database
engine. We initially only tried running the database engine as a single instance, but even
after vertically scaling that instance up, the timeout issues still persisted.

A probable next step in properly solving the issue would be to try MongoDB’s database
sharding technology [28], essentially the horizontal scaling of the database. Another,
simpler approach however, is to replace the database with a mock implementation (Sec-
tion 4.3.3), that returns HTTP status code 200 to every request.

The main purpose of our experiments still holds up with this simplification too, as even
with the mock implementation all of the network traffic that would take place between
the components and the database does take place. Therefore, we saved implementational
time while not sacrificing the goal of our research.

4.2 Problem definition

We now define the exact scope of the project, what it tries to achieve.

The program handles a single, predefined GTFS ZIP archive, reads each file line by line in
the defined dependency order (Section 4.3.1), and uploads the data according to a newly
specified database schema.

The city of Szeged’s local public transit schedule [3] is used as a data source. Most data
files in the data source have record numbers in the couple hundreds or couple thousands
range, but the data file including the planned departure times at each stop for each trip
(stop_times.txt) include as many as 138000 records. Evidently, the latter data file required
the greatest amount of resources to be processed, and took the longest to do so on average.
The database itself is a mocked implementation that only simulates the saving of the data.

Almost all of the containers, with the exception of the row-distributor (Section 4.3.3)
component (Section 4.1.7), are implemented using the Knative Function-as-a-Service (Sec-
tion 3.3.2) framework, allowing each container to run in both a purely containerized envi-
ronment, and a FaaS based environment as well.

4.3 Architecture

In this Section we present our implementation, going into detail on its structure at different
levels of abstraction.

18

4.3.1 Global design

Globally, the main determining factor of how the data can be processed, is the data itself.
In particular, the interdependency between the different data streams of the input impacts
greatly the order of their processing.

The dependencies between the data streams can be divided into two categories. Either
an input stream creates the output records, or it just provides additional information
for them. In the former case, the input stream contains the primary key of the output
records, therefore it is necessary for the creation of those records. In the latter case
however, the input stream only contains additional information, with which it can update
already existing output records.

Consequently, during processing, each stream of output records needs to be created before
it can receive updates from additional information providing input streams. Drawing
the input and output data streams as nodes, and the dependencies as directed edges,
where each edge is pointing towards the dependent node, a directed graph can be defined.
This graph can be seen in Figure 4.1, where the dashed lines represent the additional
information providing dependencies, the thin solid lines the creating dependencies, the
blue boxes the output streams, and every other colored box the input streams.

Regarding the above defined directed graph, it clearly does not contain any cycles, there-
fore it is a Directed Acyclic Graph (DAG). We know that DAGs have a topological order,
and using that topological order an order for the data processing can be defined. Since
only the input data streams need to be processed, we only need to define their order for
the processing task. The only requirement is that no additional information is uploaded
to any output record streams before that stream was created. This means, that in the
order we define, iterating over each node, none of them can have a creating dependency
towards an output stream that has an additional information dependency towards a node
that preceded the node at hand.

The thick blue edges define an order of the input streams that satisfies the criteria defined
above, and therefore is the precedence order that we use in our implementation.

The colored input nodes all represent an input file in the GTFS ZIP data source. They
are aptly named stop_times.txt for RawStopTime, stops.txt for RawStop, and so on. The
second row of blue nodes represent the main output streams, corresponding to the three
main entities in the data source. A Route is a transit route with particular stops, a Stop is
a transit stop or station, and a Trip is an instance of a Route at a particular time and date.
The first row of blue nodes represent embedded information in the three primary entities.
Their names are self explanatory, for example RouteTrip represents Trip instances that
use that Route, StopDeparture represents departure times for that Stop, etc.

19

RawStopTime

RawTripRawStop

RawRouteRawCalendar

StopDepartureRouteTrip RouteStop TripStop

StopRouteTrip

creating dependency
additional info dependency
precedence dependency

Figure 4.1: Data dependencies between the different GTFS data streams.

4.3.2 Data flow design

The processing of a single input data stream has multiple steps as well, which Figure 4.2
illustrates. The solid lines represent the flow of the data records as they are transformed
and then sent to the next component for further processing, whereas the dashed line
means the constant progress reporting from the processing components to the distributed
cache. The thick black line at the top and bottom of the Figure means input or output
communication outside the scope of the processing of the single data stream at hand.
The green colored nodes represent custom implemented components that were written in

20

Node.js, the orange node stands for the custom component implemented in Swift, the blue
node represents Kubernetes’ Service type as a load balancer for the requests between the
first two components, and the pink node represents etcd distributed cache (Section 3.5)
as a directly installed component.

Both the final input and output of the processing flow are requests to start the processing
of the next data input stream, but do not directly contain said input stream, as that data
is already packaged into the row-distributor (Section 4.3.3) component’s container. The
output is generated once all of the records are processed from this data stream.

The row-uploader (Section 4.3.3) component is shown multiple times in the third row of
the Figure 4.2 to show that it can be horizontally scaled up or down.

The progress tracking is done in a push model, meaning the row-distributor (Section 4.3.3)
component uploads the progress of the upload after every x records were either uploaded
or failed to upload, where x is a predefined constant.

21

Breaking up
the input file
line by line

(row-distributor)

Distributing
HTTP requests

(k8s Service)

Parsing line
inputs, and

uploading to DB
(row-uploader)

Parsing line
inputs, and

uploading to DB
(row-uploader)

Parsing line
inputs, and

uploading to DB
(row-uploader)

Mocked database
(mock-db)

etcd
distributed cache

Receive GTFS file input

Send processing done notification

flow of data records
progress tracking
external input/output messaging
third party component, only installed
custom NodeJS component
custom Swift component
Kubernetes built in component

Figure 4.2: Flow of the data records while processing a single GTFS data stream.

22

4.3.3 Component design

Figure 4.3 shows the flow of records and requests on the component level, and the types
of the components involved. The solid black lines represent the flow of the data records as
they are transformed and uploaded to the database, or in this case its mocked version (Sec-
tion 4.3.3). The dashed lines represent the route of the progress tracking requests, which
ensure that the progress of the processing is saved to the distributed cache (Section 3.5).
The solid red lines on the other hand represent simple HTTP requests without any data,
that control the starting of the processing of a new data stream once the previous one is
done. The green and orange nodes represent custom implemented components in Node.js
using the Knative Function-as-a-Service (Section 3.3.2) template, and in Swift respectively.
The pink node represents etcd distributed cache as a directly installed component.

While data uploading packages do contain data, and therefore their size is relatively bigger,
progress tracking requests only contain a key-value pair, and the new process starting
requests only a few request parameters.

It is important to note that while the Figure 4.3 does not emphasize it, Node.js compo-
nents implemented using the Knative FaaS (Section 3.3.2) template can be scaled in both
microservice and FaaS environments, whereas the Swift component could be but is never
scaled (Section 4.1.6) in either environment.

Additionally, even though the only external component currently listed is the etcd cache,
the database would be an external component as well, had everything gone as planned
during implementation and preliminary testing (Section 4.1.9).

Resource limits and autoscaling options are explained in the Chapter (5).

request-entrypoint This Node.js component serves as the starting point to all data
stream processing. It receives simple HTTP requests with only a few parameters, and
decides which processing to start next based on those parameters.

This component communicates with the distributed cache to upload the initial starting
time and the final ending time of the processing tasks.

etcd-connection In order to access the etcd cache from the row-distributor (Sec-
tion 4.3.3) component written in Swift, a custom adapter was required, as the standard
etcd accessing library was not available in this language. Since it was required anyway,
other components use this Node.js one as well as a proxy to the real etcd cache.

It exposes basic etcd operations as HTTP endoints, namely the inserting, getting, and
deleting of specific values, the resetting of the cache. Additionally, it also supports watch-
ing the values of a specific key’s value, and sending an HTTP request to the specified
endpoint with the specified parameters once the value of the watched key reaches the
given value.

row-distributor The only component implemented in Swift, and that does not support
FaaS deployment. Its purpose is to process the data files stored in its container, and create
separate HTTP requests from the header and each of the rows of those files.

This component is also responsible for the tracking of the progress of each request it sent
out, by systematically waiting for a reply, and tracking the request as an error should
it reach the predefined timeout limit. This progress is sent to the etcd-connection (Sec-
tion 4.3.3) component after every x number of requests, where x is a predefined constant.

23

The reason for not updating the etcd cache on every request’s response, is that from
preliminary tests it hinders the performance of the data processing task.

In order to avoid overwhelming of the system, a sliding window approach is used for the
sending of requests. It only allows for a configurable number of requests to be in the
“unknown” status, meaning they were sent out already, but did not receive a response.
Consequently, as replies to the requests sent out come in, the counter of “unknown”
requests decreasing, allowing for other requests to be sent, essentially sliding the window
along to the next requests in the queue.

row-uploader This Node.js component is responsible for taking the parsed rows of
the data streams it receives, and uploading it to the database in the correct format by
generating the corresponding database queries.

The uploading procedure is implemented using MongoDB queries, however the component
does have a mock driver as well, which only sends basic HTTP requests to the mock-db
(Section 4.3.3) component.

mock-db Instead of using a real MongoDB instance, this component provides a mocked
version of it, replying with HTTP status code 200 to every request it receives.

The reason for using such a mocked version is related to performance issues experienced
during preliminary testing of the system (Section 4.1.9).

24

Starting new
data stream

processing flows
(request-entrypoint)

Breaking up the in-
put file line by line
(row-distributor)

Parsing line
inputs, and up-
loading to DB
(row-uploader)

Mocked database
(mock-db)

Handling
etcd requests

(etcd-connection)

etcd
distributed cache

Receive parsing request

flow of data records
progress tracking
new process starting request
external input messaging
third party component, only installed
custom NodeJS component
custom Swift component

Figure 4.3: Data and control flow between the application’s components while processing
data

25

Chapter 5

Results

5.1 Test design

As we have seen in Section 4.1.2, the key performance metric is the end-to-end response
time experienced by the user which is the target of our comprehensive analysis. The end-
to-end response time means the time between the request is sent out, and the time the
last record was processed from the last data stream. Both of these timestamps can be
read from the etcd-cache in the cluster once all of the processing is done, as the progress
of the processing is uploaded there (Section 4.3.3).

We designed these tests to measure the performance of our implementation using the
Knative Function-as-a-Service (FaaS) (Section 3.3.2) development template deployed in
a containerized environment. This is possible due to the characteristic of the Knative
FaaS environment, where it builds containers from its function templates, and runs the
containers as functions. Thanks to this characteristic, we are able to run these containers
ourselves, without the help of the FaaS environment.

5.1.1 Testing resource tiers

In order to evaluate the performance our implementation we defined three resource tiers
which can be found in Table 5.1, marked by the letters of the alphabet. To differentiate
between the tiers, we specified different CPU and memory requests, as well as limits for
them. Additionally, we defined two different scaling parameters for the Horizontal Pod
Autoscaler (Section 3.2.3), to measure its effectiveness as well. The limits specified here
were set for all of the FaaS based components, however not for the purely containerized
row-distributor (Section 4.3.3), which was given its own generous resource limits due to
its standalone deployment. The latter received a limit of 20 cores of CPU and 20GB of
RAM, so that this component does not become the bottleneck.

5.2 Test results

Figure 5.1 shows the results of our experiments side-by-side of each other. The y axis
shows the total response time of the test instance, whereas on the x axis, under each bar,
its name can be seen that indicates which similarly named resource tier found in Table 5.1
was used for that test instance. The number values above the bars indicate the bar’s value
on the y axis, the total response time of that instance.

26

Table 5.1: Different resource tiers for experimentation.

Tier Resource request Resource limit Autoscaler
CPU (m) RAM (m) CPU (m) RAM (m) HPA (%)

A1 750 190 1000 250 50
A2 750 190 1000 250 75
B1 1500 375 2000 500 50
B2 1500 375 2000 500 75
C1 3000 750 4000 1000 50
C2 3000 750 4000 1000 75

Looking at the results, we can determine that extremely strict resource limits greatly
increase the processing time, as seen using resource tier A1. On the other hand, it seems
that greatly increasing the available resource limits does not automatically improve the
total response times. On the contrary, even when quadrupling the available resources in
resource tiers C1 and C2 compared to the levels seen in tiers A1 and A2, the response
times did not improve significantly. To find out the root cause of this behaviour, more
experiments are needed, using perhaps other variables as well to influence the outcome of
the tests.

A1 A2 B1 B2 C1 C2
0

200

400

600

800

1,000

1,200 1,139.85

619.26
494.15

623.05
555.63 538.42se

co
nd

s

Figure 5.1: The total response times in seconds of running the data processing at the
different resource limit tiers.

5.3 Development experience

Apart from the quantitative results of our experiments, on the way to implementing the
data processing workflow and conducting the experiments we learned quite a few lessons
in the development challenges of a task like this (Section 4.1). Notably, we analysed
the difficulties of providing similar implementations in monolithic, microservice, and FaaS
based environments, in order to measure and compare their performance. We also found
out that Knative FaaS uses containers in its implementation, leading to the unique scenario
where providing the same data processing implementation for microservice and FaaS based
deployments trivial.

27

Chapter 6

Conclusion

In our work we present the challenges of data processing tasks, and many of the options
to solving them. As demonstration, we implemented a data processing workflow for the
handling data in the General Transit Feed Specification (GTFS) (Section 3.6) format. We
implemented that workflow using templates provided by the Knative Function-as-a-Service
(FaaS) (Section 3.3.2) environment, which allowed us to create components that can be
run in containerized and FaaS contexts as well.

We tested our implementation using multiple tiers of resource limits, and measured its
response time when using these tiers. It can be concluded that extremely low resource
limits implicate a severe increase in the total response time. However, increasing those
limits above a certain threshold does not seem to allow for significant improvements, apart
from the drop in response time after the resource limits specified exceed very scarce limits.

6.1 Possible future work

The experiments can be expanded by running the workloads in the Knative FaaS environ-
ment, using Knative’s own autoscaler solution. This would most likely produce different
results, as this autoscaler uses different metrics than Kubernetes’ own Horizontal Pod
Autoscaler (Section 3.2.3).

Additionally, it would be interesting to analyse the performance of the data processing
implementation when considering other metrics than the total response time. The results
of such experiments would especially be interesting when conducted on a public cloud
provider’s infrastructure, as the price paid for running those experiments would be a clear
indicator of the implementation’s resource efficiency.

28

Acknowledgements

I would like to thank my advisors, Balázs Fodor and Dr. Balázs Sonkoly, for helping me
develop this project from an idea into this work. I am especially thankful for their help
provided not just in the early stages of the project, but throughout its course, and the
significant extra energy they put in to helping me conclude this project.

29

Bibliography

[1] Apache Software Foundation. Kafka documentation. https://kafka.apache.org/
documentation/, 2023. (Last checked: 2023-10-29).

[2] Apple Inc. and the Swift project authors. The Swift Program-
ming Language. https://docs.swift.org/swift-book/documentation/
the-swift-programming-language/, 2023. (Last checked: 2023-10-29).

[3] Citizens of Szeged. Szeged local public transit GTFS data source. http://
szegedimenetrend.hu, 2023. (Last checked: 2023-10-29).

[4] Docker Inc. Docker documentation. https://docs.docker.com, 2023. (Last checked:
2023-10-29).

[5] Docker Inc. Docker Engine documentation. https://docs.docker.com/engine/,
2023. (Last checked: 2023-10-29).

[6] IBM. What is container orchestration? https://www.ibm.com/topics/
container-orchestration, 2023. (Last checked: 2023-10-29).

[7] IBM. What is containerization? https://www.ibm.com/topics/containerization,
2023. (Last checked: 2023-10-29).

[8] IBM. What is etcd? https://www.ibm.com/topics/etcd, 2023. (Last checked:
2023-10-29).

[9] IBM. What is FaaS (Function-as-a-Service)? https://www.ibm.com/topics/faas,
2023. (Last checked: 2023-10-29).

[10] IBM. What are microservices? https://www.ibm.com/topics/microservices,
2023. (Last checked: 2023-10-29).

[11] IBM. What are NoSQL databases? https://www.ibm.com/topics/
nosql-databases, 2023. (Last checked: 2023-10-29).

[12] IBM. What is Redis? https://www.ibm.com/topics/redis, 2023. (Last checked:
2023-10-29).

[13] IBM. What is a relational databases? https://www.ibm.com/topics/
relational-databases, 2023. (Last checked: 2023-10-29).

[14] IBM. What is a REST API? https://www.ibm.com/topics/rest-apis, 2023. (Last
checked: 2023-10-29).

[15] IBM. What are virtual machines (VMs)? https://www.ibm.com/topics/
virtual-machines, 2023. (Last checked: 2023-10-29).

30

https://kafka.apache.org/documentation/
https://kafka.apache.org/documentation/
https://docs.swift.org/swift-book/documentation/the-swift-programming-language/
https://docs.swift.org/swift-book/documentation/the-swift-programming-language/
http://szegedimenetrend.hu
http://szegedimenetrend.hu
https://docs.docker.com
https://docs.docker.com/engine/
https://www.ibm.com/topics/container-orchestration
https://www.ibm.com/topics/container-orchestration
https://www.ibm.com/topics/containerization
https://www.ibm.com/topics/etcd
https://www.ibm.com/topics/faas
https://www.ibm.com/topics/microservices
https://www.ibm.com/topics/nosql-databases
https://www.ibm.com/topics/nosql-databases
https://www.ibm.com/topics/redis
https://www.ibm.com/topics/relational-databases
https://www.ibm.com/topics/relational-databases
https://www.ibm.com/topics/rest-apis
https://www.ibm.com/topics/virtual-machines
https://www.ibm.com/topics/virtual-machines

[16] Haruna Isah, Tariq Abughofa, Sazia Mahfuz, Dharmitha Ajerla, Farhana Zulk-
ernine, and Shahzad Khan. A Survey of Distributed Data Stream Processing
Frameworks. IEEE Access, 7:154300–154316, 2019. ISSN 2169-3536. DOI:
10.1109/ACCESS.2019.2946884. Conference Name: IEEE Access.

[17] Herald Kllapi, Eva Sitaridi, Manolis M. Tsangaris, and Yannis Ioannidis. Schedule
optimization for data processing flows on the cloud. In Proceedings of the 2011 ACM
SIGMOD International Conference on Management of data, SIGMOD ’11, pages
289–300, New York, NY, USA, June 2011. Association for Computing Machinery.
ISBN 978-1-4503-0661-4. DOI: 10.1145/1989323.1989355. URL https://dl.acm.
org/doi/10.1145/1989323.1989355.

[18] Knative Authors. Knative documentation. https://knative.dev/docs/concepts/,
2023. (Last checked: 2023-10-29).

[19] Knative Authors. Knative Function-as-a-Service documentation. https://knative.
dev/docs/functions/, 2023. (Last checked: 2023-10-29).

[20] Knative Authors. Knative Function-as-a-Service build process documenta-
tion. https://knative.dev/docs/functions/building-functions/, 2023. (Last
checked: 2023-10-29).

[21] Knative Authors. Knative autoscaling documentation. https://knative.dev/docs/
serving/autoscaling/autoscaler-types/, 2023. (Last checked: 2023-10-29).

[22] Shutian Luo, Huanle Xu, Kejiang Ye, Guoyao Xu, Liping Zhang, Jian He, Guodong
Yang, and Chengzhong Xu. Erms: Efficient Resource Management for Shared
Microservices with SLA Guarantees. In Proceedings of the 28th ACM Interna-
tional Conference on Architectural Support for Programming Languages and Op-
erating Systems, Volume 1, ASPLOS 2023, pages 62–77, New York, NY, USA,
December 2022. Association for Computing Machinery. ISBN 978-1-4503-9915-
9. DOI: 10.1145/3567955.3567964. URL https://dl.acm.org/doi/10.1145/
3567955.3567964.

[23] Microsoft. What is "managed code"? https://learn.microsoft.com/en-us/
dotnet/standard/managed-code, 2023. (Last checked: 2023-10-29).

[24] Microsoft. Design applications for scaling. https://learn.microsoft.com/en-us/
azure/well-architected/scalability/design-scale, 2023. (Last checked: 2023-
10-29).

[25] MobilityData. GTFS documentation. https://gtfs.org/schedule/, 2023. (Last
checked: 2023-10-29).

[26] MobilityData. GTFS documentation. https://gtfs.org/realtime/, 2023. (Last
checked: 2023-10-29).

[27] MongoDB Inc. MongoDB documentation. https://www.mongodb.com/docs/, 2023.
(Last checked: 2023-10-29).

[28] MongoDB Inc. Sharding in MongoDB. https://www.mongodb.com/basics/
sharding, 2023. (Last checked: 2023-10-29).

[29] MongoDB Inc. What are Database Triggers? https://www.mongodb.com/features/
database-triggers, 2023. (Last checked: 2023-10-29).

31

http://dx.doi.org/10.1109/ACCESS.2019.2946884
http://dx.doi.org/10.1145/1989323.1989355
https://dl.acm.org/doi/10.1145/1989323.1989355
https://dl.acm.org/doi/10.1145/1989323.1989355
https://knative.dev/docs/concepts/
https://knative.dev/docs/functions/
https://knative.dev/docs/functions/
https://knative.dev/docs/functions/building-functions/
https://knative.dev/docs/serving/autoscaling/autoscaler-types/
https://knative.dev/docs/serving/autoscaling/autoscaler-types/
http://dx.doi.org/10.1145/3567955.3567964
https://dl.acm.org/doi/10.1145/3567955.3567964
https://dl.acm.org/doi/10.1145/3567955.3567964
https://learn.microsoft.com/en-us/dotnet/standard/managed-code
https://learn.microsoft.com/en-us/dotnet/standard/managed-code
https://learn.microsoft.com/en-us/azure/well-architected/scalability/design-scale
https://learn.microsoft.com/en-us/azure/well-architected/scalability/design-scale
https://gtfs.org/schedule/
https://gtfs.org/realtime/
https://www.mongodb.com/docs/
https://www.mongodb.com/basics/sharding
https://www.mongodb.com/basics/sharding
https://www.mongodb.com/features/database-triggers
https://www.mongodb.com/features/database-triggers

[30] OpenJS Foundation and the Node.js contributors. Node.js documentation. https:
//nodejs.org/en/about, 2023. (Last checked: 2023-10-29).

[31] Oracle. Java Virtual Machine documentation. https://docs.oracle.com/en/java/
javase/17/vm/java-virtual-machine-technology-overview.html, 2023. (Last
checked: 2023-10-29).

[32] The Linux Foundation. Kubernetes documentation. https://kubernetes.io/docs/
home/, 2023. (Last checked: 2023-10-29).

[33] The Linux Foundation. Kubernetes Cluster. https://kubernetes.io/docs/
concepts/architecture/, 2023. (Last checked: 2023-10-29).

[34] The Linux Foundation. Kubernetes Deployment. https://kubernetes.io/docs/
concepts/workloads/controllers/deployment/, 2023. (Last checked: 2023-10-
29).

[35] The Linux Foundation. Kubernetes Service. https://kubernetes.io/docs/
tasks/run-application/horizontal-pod-autoscale-walkthrough/, 2023. (Last
checked: 2023-10-29).

[36] The Linux Foundation. Kubernetes Node. https://kubernetes.io/docs/
concepts/architecture/nodes/, 2023. (Last checked: 2023-10-29).

[37] The Linux Foundation. Kubernetes PersistentVolume. https://kubernetes.io/
docs/concepts/storage/persistent-volumes/, 2023. (Last checked: 2023-10-29).

[38] The Linux Foundation. Kubernetes Pod. https://kubernetes.io/docs/concepts/
workloads/pods/, 2023. (Last checked: 2023-10-29).

[39] The Linux Foundation. Kubernetes Service. https://kubernetes.io/docs/
concepts/services-networking/service/, 2023. (Last checked: 2023-10-29).

[40] The Linux Foundation. Kubernetes StatefulSet. https://kubernetes.io/docs/
concepts/workloads/controllers/statefulset/, 2023. (Last checked: 2023-10-
29).

[41] The Linux Foundation. Kubernetes workload types. https://kubernetes.io/docs/
concepts/workloads/controllers/, 2023. (Last checked: 2023-10-29).

[42] The Linux Foundation. Open Container Initiative documentation. https://
opencontainers.org, 2023. (Last checked: 2023-10-29).

32

https://nodejs.org/en/about
https://nodejs.org/en/about
https://docs.oracle.com/en/java/javase/17/vm/java-virtual-machine-technology-overview.html
https://docs.oracle.com/en/java/javase/17/vm/java-virtual-machine-technology-overview.html
https://kubernetes.io/docs/home/
https://kubernetes.io/docs/home/
https://kubernetes.io/docs/concepts/architecture/
https://kubernetes.io/docs/concepts/architecture/
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale-walkthrough/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale-walkthrough/
https://kubernetes.io/docs/concepts/architecture/nodes/
https://kubernetes.io/docs/concepts/architecture/nodes/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/concepts/workloads/pods/
https://kubernetes.io/docs/concepts/workloads/pods/
https://kubernetes.io/docs/concepts/services-networking/service/
https://kubernetes.io/docs/concepts/services-networking/service/
https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/
https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/
https://kubernetes.io/docs/concepts/workloads/controllers/
https://kubernetes.io/docs/concepts/workloads/controllers/
https://opencontainers.org
https://opencontainers.org

	Kivonat
	Abstract
	Introduction
	Related work
	Theoretical and technical background
	Containerization
	Container orchestration platform
	Principal idea
	Kubernetes
	Horizontal Pod Autoscaling (HPA)

	Function-as-a-Service computing model (FaaS)
	Principal idea
	Knative Function-as-a-Service
	Comparison to containerization

	Microservice architecture
	Distributed cache
	General Transit Feed Specification (GTFS)
	Document based database

	System architecture
	Design considerations
	At the edge of the memory context
	The right metric
	Dedicated data stream processing tools
	General Transit Feed Specification (GTFS) considerations
	Alternative processing flow topologies
	Further parallelization
	Choice of programming languages
	FaaS and containerization
	Database constraints

	Problem definition
	Architecture
	Global design
	Data flow design
	Component design

	Results
	Test design
	Testing resource tiers

	Test results
	Development experience

	Conclusion
	Possible future work

	Acknowledgements
	Bibliography

