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Kivonat

A konténerizáció jelenleg egy felkapott technológia az ICT világában. A távközlési iparban
hálózati funkciókat szoftveresen készítenek és becsomagolnak a konténerekbe, melyeket a
felhőszámítástechnikai környezetben Kubernetes kezel. A Kubernetes egy ipari standard
a konténereket tartalmazó Pod-ok orkesztrálására (létrehozás, felügyelet, megszüntetés),
amely rugalmas és költség-hatékony erőforrás-gazdálkodási (skálázási) lehetőséget ad a vál-
tozó előfizetői forgalom kezelésére. A Kubernetes beépített dinamikus skálázó megoldása
azonban nem veszi figyelmebe a szolgáltatás minőséget, másnéven Quality of Service (QoS).
Kutatásra és tapasztalatszerzésre van szüksége az operátoroknak a költség-hatékony beál-
lítások megkereséséhez és QoS garanciák biztosításához.

Jelenleg nincs szabadon használható tesztkörnyezet Container Network Function
(CNF) rendszerek skálázására, így mi terveztünk és implementáltunk egy CNF alapú IP
Multimedia Subsystem (IMS) környezetet. A megvalósított környezetben tudjuk emulálni
többféle forgalmi helyzetet (beleértve a városban lezajló hívás-létesítése a különböző napi
időszak szerint) valamint tudjuk tesztelni és össszehasonlítani a különböző üzemeltetési
megközelítést (pl. a hagyományos kapacitás tervezési eljárás, automatikus skálázás).
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Abstract

Containerization is a trending technology in Information and Communications Technolo-
gies (ICT). The industry creates CNFs from those containers and deploys them into Kuber-
netes (K8S). Kubernetes is the de facto standard for container orchestrations. Kubernetes
manages Pods which are the smallest deployable unit in Kubernetes. Kubernetes creates,
monitors, manages, and destroys those Pods. With Kubernetes, the possibility is opened
to create industry-ready systems that are dynamically scalable on the demand of incoming
traffic.
Configuration and validation of the scaling are first needed to achieve the industry’s re-
quirements. However, the currently built-in dynamic scaling solution of Kubernetes could
not consider the QoS requirements of ICT systems. Research and experiments are needed
to help the Operators use Kubernetes and CNFs for ICT systems. To improve the us-
ability of Kubernetes in ICT systems, freely available proofs-of-concept, demos, and test
environments are needed.
However, there is no publicly available testbed for scaling CNFs when writing this paper.
We plan and implement an IP Multimedia Subsystem (IMS) environment similar to the
Operators’ environment where scaling experiments can be performed. Then we test CNFs
with the traditional capacity planning approach. After that, we test the scaling approach
of the built-in dynamic scaling. In the end, we will run an experiment driven by traffic
created from a publicly available dataset of customer behavior.
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Chapter 1

Introduction

In the last decade, user behavior changed dramatically [1]. Phones were made with better
hardware and more intelligent software that enabled customer features beyond Short Mes-
sage Service (SMS) or phone calls. Video, e-mail, online or offline gaming, and much more
features attracted many customers. Those media features have real-time network traffic
with strict Quality of Service (QoS) needs [2]. The new media features created the need
for the logical separation of the core network and the media services. Those media services
were grouped, and an ecosystem called IP Multimedia Subsystem (IMS) was created to
provide signaling for multimedia over IP [3]. Soon the Voice over LTE (VoLTE) feature
was added to the 4G network to allow simultaneous call, and mobile data traffic [4] [5].
Some parts were dedicated physical hardware called Physical Network Function (PNF).
A new trending technology, virtualization, began to rise, which gave the idea that some
network functions could be implemented and deployed in a virtual environment instead of
the physical network equipment. First, Virtual Machines (VMs)s are used, and the group
of one or more VMs is called Virtual Network Function (VNF) [6]. However, there was a
problem with VNFs. They are running on a shared server environment called Hypervisor.
One server is not strong enough to compete with dedicated hardware, so the solution was
to group the Hypervisors into larger compute groups called Clusters to handle the traffic
that PNFs served previously.
With 5G, a new era has started with the cloudification process, which was inspired by
other fields of Information Technology (IT). The cloud-native systems offer scalability
that can expand services on demand, flexibility to operate systems easier, resiliency to
make fault-tolerant systems, shorter development to market time, and much more. A new
approach was necessary to use the advantages of cloud computing: containerization and
building the system from those loosely coupled containers. A container is an isolated group
of processes that runs on top of the Kernel of the host Operation System (OS). Compared
to VMs, containers use fewer resources because containers use the same Kernel as the host
OS. Containers boot much faster than VMs, which means if we could follow the rate of
the traffic change with the required running number of containers, then we would save
compute resources, which means we could save money as well. That was one of the main
reasons that inspired the standardization of Service Based Architecture (SBA) of the 5G
core by 3rd Generation Partnership Project (3GPP) [7]. The SBA contains interconnected
Container Network Functions (CNFs) that can be scaled up to handle the incoming traffic.
With thousands of containers, the need arrives instantly to manage, control, synchronize
and monitor those containers distributed between hundreds of servers. For that purpose,
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K8S is the de facto standard currently. It is a container orchestration platform developed
by Google, but now, it is a project of Cloud Native Computing Foundation (CNCF) [8].
With IMS, we also see the same tendency of cloudification, where the increasing number of
users and demand forces the industry to the scalable functions, where the CNF comes in,
which offers the possibility of Horizontal scaling, to dynamically match the user demand
and QoS. This type of scaling is only available in Kubernetes, but it is not as ready for an
IMS system as it seems initially. This is why we want to try the current scaling operator
and find the problems for the future development of a more suitable scaling algorithm that
can work on a full IMS and 5G core. HPA is the de-facto solution in the web-development
world, but the efficient operation of HPA in the telecommunication environment is not
explored yet.
In this TDK, we want to experiment with scaling the IMS systems in this cloud-native
environment because we see a rising demand from mobile operators to scale their IMS
systems based on user demand and QoS. After all, this Cloud-Native IMS in Kubernetes
could run on consumer-type hardware that costs less, and it does not have to run at full
speed every time of the day because it can Scale up and down based on the Load and
QoS. Nevertheless, we need our small testing environment to test with, and we find that
the SIP proxies would be a good start because it has been used in IMS signaling. It would
be an excellent start to scale and experiment with that in Kubernetes.
The rest of this TDK is organized as follows. In the second chapter, we discuss the
components of IMS and the problems we want to solve. In the third chapter, we present
the plan and the implementation of our test environment with the SIP system, the traffic
generator and the monitoring component. In the fourth chapter, we carry out benchmarks
and scaling experiments with traffic generated according to a data pattern captured by a
real operator.
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Chapter 2

Problem Description

In this Chapter, we shortly overview a practical problem that motivates our work. We
explain the context of operating Cloud-native IMS systems and the need for setting HPA
scaling algorithm in operators’ environments.

2.1 Cloud-Native Operator’s system

These vast and complex ICT systems built from Kubernetes applications are run by op-
erators and used by millions of end users daily. These systems are made from connected
CNFs with many moving parts. For a better understanding of building these systems
based on Kubernetes, we would like to present a practical example. Once upon a time,
Telecommunication Engineers were asked to plan parts of the 5G core or implementation
of IMS inside Kubernetes [9], [10].
The IMS provides important services such as VoLTE in a 4G network or Voice over NR
(VoNR) in a 5G network. The IMS uses SIP as the signaling protocol for calls. The
first Network Function (NF) element of IMS is Proxy - Call Session Control Function (P-
CSCF). It acts as ingress and egress for the IMS and forwards traffic to the Serving - Call
Session Control Function (S-CSCF). S-CSCF relays SIP messages e.g. Invites to other
parties if needed. It also acts as a SIP registrar, which means it handles SIP Registrations
with the help of the Home Subscriber Server (HSS) in a 4G network. The HSS acts as a
user database, so it stores the required user data for S-CSCF. The architecture of IMS is
visualized on figure 2.1.
In creating the CN IMS, the next step is understanding the role of the following Kubernetes
components. They are listed in the order in which the inward traffic meets them. The
traffic that comes from the users into Kubernetes is first met with the Ingress. The
Ingress act as an external load balancer. It distributes the traffic between the nodes.
Inside the nodes, Services handle the traffic and load balancing the packets to the Pods.
The service knows which Pods are healthy and forwards the traffic only to them. Pods are
controlled by a deployment or a stateful set, which belongs to only them. HPA instruments
the deployment to scale up or down according to the scaling algorithm. Kubernetes
components can be seen on figure 2.2.
With knowledge of the parts of the IMS and the required Kubernetes components, we
can start planning the cloud-native IMS. Firstly we need to containerize the software that
acts as S-CSCF, P-CSCF, and HSS. After that, we need to create a Deployment, which
will create the Pods for the P-CSCF (because it is a stateless application), one Stateful
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Set for S-CSCF and another one for HSS. We might need persistent storage for HSS,
so we will mount volumes for the container in the HSS Pod. The next step is to create
individual Services for P-CSCF, S-CSCF, and HSS. With that, our Pods can communicate
with each other. To make the Service of the P-CSCF externally available, we also need to
create an Ingress. The system presented previously is shown on figure 2.3. The arrows are
drawn in the direction of data flow from source to destination. Black dashed arrows mean
alternative SIP data paths with load balancing. Gray dotted arrows mean Kubernetes
control processes, e.g., scaling commands for deployment. Blue dotted arrows mean non-
SIP data paths, e.g., User data from HSS. The figure shows the HSS as a single DataBase
(DB). However, it is a stateful set with many Pods, but in our IMS-focused perspective,
we access it via a Kubernetes Service, which hides the Pods from us. The arrows between
P-CSCF and S-CSCF symbolize session-aware load balancing, which means no matter
which P-CSCF Pod gets the packet that belongs to the same SIP messages(grouped by
SIP Call-id) it will be forwarded to the same S-CSCF.

Node - nthP - CSCF

Pods

controlls

 P - CSCF
Deployment

P - CSCF
Service

S - CSCF

Pods

HPA

controlls

controlls

User Data
HSS

S - CSCF

Stateful Set

Node

Incoming traffic
Ingress

Kubernetes Cluster with many nodes

Figure 2.3: Cloud-native IMS in an Operators’ system

However, the previous system might operate well we would face an issue sooner or later.
The traffic that comes from the users is changing rapidly. We need to plan the capacity of
the system according to that. We must choose between two things. Using a fixed number
of Pods most of the time would make the capacity more significant than the maximum
required. So we would run more Pods than needed, wasting resources and money. If we
make the capacity lower than the maximum required, we can sometimes not serve all the
users, which violates the contract, and we might lose customers in the long run. We should
put some dynamic scaling into the system, which acts as the size of the customers that
use the system at that time.
Kubernetes can increase the available resources for the deployed applications horizontally
or vertically to help the Operators defeat the challenges successfully. Vertical scaling means
adding more power to the Pods, which means increasing the defined Central Processing
Unit (CPU) or upper memory bounds of the Pod. Horizontal scaling means increasing
the number of Pods for the same purpose. For vertical scaling, the hard upper limit is the
hardware on which the Pods run. Because of the hardware limitation and because Ku-
bernetes was also developed with flexible node management (adding or removing physical
nodes to the cluster), horizontal scaling with HPA seems a better approach.
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HPA is the built-in solution for horizontal scaling in Kubernetes. According to the Ku-
bernetes documentation [11], HPA makes the scaling decision periodically, calculated with
the following equation:

desiredReplicas = dCurrentReplicas · CurrentMetricValue
DesiredMetricValue e (2.1)

Where CurrentMetricValue in Equation 2.1 is an average calculated across all healthy
pods from the given metric, DesiredMetricV alue is a fixed given value from the same
given metric set by the Operator during deployment. CurrentReplicas is the number of
currently running healthy Pods of a given deployment or stateful set. The right side of
Equation 2.1 is surrounded by ceil operator, which means round it up to the nearest whole
number. The evaluation of Equation 2.1 at any given time gives us the desired number of
pods for the given deployment or stateful set. However, rapid fluctuation might happen
in the selected metric value. Kubernetes does not immediately apply for the calculated
desired Pod number. Instead, there is a stabilization window in which Kubernetes apply
only the highest replica count in that time window. Currently, two types of scaling values
are supported. The easier one is the built-in resource metric based, e.g., CPU or Memory
utilization. The second one is complicated. It fetches metrics using the built-in custom.

metric.k8s.io Application Programming Interface (API). To populate the custom.metric.k8s.io

with data, we should provide an Adapter that queries external data from a data source,
e.g., Prometheus [12]. Prometheus is a monitoring system that collects, stores, and makes
metric data easily accessible for further use. More on that in Section 3.4.2. The CPU
utilization-based metric is far from optimal for scaling in CN IMS because the SIP signaling
uses only tiny bursts of CPU, which changes rapidly.

2.2 Motivation and Goals

One of the Operators’ open questions is to choose the right algorithm for the horizontal
scaling of the Kubernetes Pods. However, a built-in solution exists for scaling, HPA, which
was developed for CPU usage-based scaling. According to earlier research [13] and [14] in
this field, it is possible to create a better horizontal scaler for the operators’ environment
than the CPU usage-based HPA.
However, at the time of writing this paper, there is no available ease-to-use, packed working
environment to test scaling possibilities for CN IMS. This paper aims to describe that
CN IMS environment for scaling, provide a better option for scaling in the operators’
environment, and show proof of concept.
Our idea is to measure the response time of the Pod and scale based on that value. The idea
seems promising because the length of a signaling message is shorter than the traditional
load for which the HPA was built.
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Chapter 3

A testbed for scaling experiments

In this chapter, we plan, create and validate the environment needed to experiment with
scaling. An overview of the testbed can be seen at Figure 3.1.

Node - 1 Node - 2

Kubernetes

SIP ClientScenario
Controller

SIP Client SIP Proxy - 0 SIP Load
Balancer

SIP

Controller

2 <= n <=100

pods

debends on
HPA

100 pods

1 <= n <=100

pods
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Figure 3.1: Testbed Overview

Planning in Section 3.1 is the first step toward the testbed. The planned testbed has three
main parts. The first part is the SIP system which is detailed in Section 3.2. Second is
the traffic generator detailed in Section 3.3. The third part is the monitoring that makes
scaling possible, more details in Section 3.4. The traffic generator creates traffic based on
a real-world traffic shape. The SIP system processes incoming calls while the monitoring
collects statistics, e.g., the system’s response time. The HPA scales based on the value
the monitoring provides, and the feedback loop closes. Last but not least, we close this
chapter by validating the testbed in Section 3.5.

3.1 Plan a testbed from CN IMS

The next step is creating the Kubernetes environment where the components can run.
We have two physical servers available at the university laboratory to create the testbed.
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Also, we wanted to run bare-metal Kubernetes nodes for more precise CPU measurements.
With those limitations in mind, we decided to create a single Kubernetes cluster with two
bare-metal nodes acting as workers and the first node acting as a Kubernetes master.
We decided to generate the traffic inside the same Kubernetes cluster. Further details
are in Section 3.3.3. We disabled the ingress for SIP traffic because there is no need
to access the cluster externally. We can do that because there is no principal difference
between internally originated traffic and traffic arriving through the ingress observed in
the perspective of P-CSCF. P-CSCF sees traffic arrive from a routable IP address. The
only difference is that it is a private IP address instead of a public one. To eliminate
the possibility of fake measurements, clients that generates user traffic are physically
separated from the server-side part of the testbed. We have achieved that with the help of
Node Selector [15], which restricts the client Pods to running on the first node while the
server-side components run on the other node. With that simplification, we removed the
complexity of using an Ingress for SIP and the requirement to distribute the incoming SIP
traffic among nodes with an external load balancing. Also, we made an environment for
the clients to quickly scale them up for more significant load generation like Figure 3.2.

SIP Client - A

SIP Client - B

Kubernetes node 1 

SIP Proxy - 0

External
DB

Kubernetes node 2

subscriber information

SIP

SIP

Figure 3.2: Testbed node separation with Node Selector

The next task is selecting the required Kubernetes components for each testbed compo-
nent. We decided to use a stateful set [16] instead of deployment [17] for the SIP Proxy,
as mentioned earlier, it will be a stateful application. More information on that is in
Section 3.2.1. Also, we created a service that will act as an internal load balancer for the
SIP Proxies. We decided to use a deployment for the SIP Clients for faster boot time.
Also, we created a Pod with a scenario-controller deployment to drive the clients as shown
at Figure 3.3. More details can be found later about traffic generation in Section 3.3
While planning the Kubernetes components, we faced our first major roadblock. We
realized the Kubernetes service could not load balancing according to our needs. Packets
with the same Call-ID belong to the same SIP call session, so they must be routed to the
same SIP proxy. The default session affinity [18] in a Kubernetes Service is none, which
means round-robin load-balancing. The other option is source-IP-based session affinity,
which is not enough in our case. Clients can change their source IP, for example, when
roaming. We realized that there is no built-in Kubernetes solution for that kind of Load
Balancing. We made a Pod act as a SIP load balancer called sip-loadb to solve the
problem. This change is displayed on figure 3.4. The sip-loadb is a modified sip-proxy
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Figure 3.3: Testbed deployments, stateful sets, and services

to act as a stateless load balancer. The Kubernetes Service is moved before the sip-loadb
with the default round-robin Load Balancing. To work with the new setup, we changed
the clients to send the invite message to the service of the sip-loadb. The service chooses
a round-robin method for the packet’s destination, a sip-loadb. Then the sip-loadb
forwards the invite to the proxy selected by the hash of the Call-ID. More details on
sip-loadb in Section 3.2.2.
However, the load balancer must know the location in the form of IP addresses of the
proxies to route the traffic to them. Also, the state of the proxies is needed for the
load balancer to know if the proxies are working. To solve that problem, we created
another Pod called SIP controller. When a proxy is created or starts terminating, it
calls a REpresentational State Transfer API (REST API) endpoint of a Pod called SIP
Controller. The SIP Controller notifies the load balancers when the state of the proxies
changes. The SIP Controller is responsible for waiting for the graceful periods. To solve
the other problem, the SIP Controller manages a DB. The location information in the
DB is modified when the state of a proxy changes. The Load Balancer refreshes that
information from the DB when the SIP Controller orders it. Gray arrows mean control
messages on the Figure 3.5. More information on SIP Controller is in Section 3.2.3.
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Call id
hashing

SIP Load Balancer

SIP
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SIP Client-1

SIP Client-2

Kubernetes node 1 
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HTTP
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Figure 3.4: Call-ID based load balancing

Finally, we reached the point when we could talk about scaling. For scaling the sip-proxy,
the HPA is used. HPA makes the scaling decision based on CPU usage or on custom
metrics provided by an Adapter that gathers data from an external source. That piece is
added on the Figure 3.6. More details on scaling are in Chapter 4.
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Figure 3.6: Testbed with HPA added
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However, we are not done yet because we forgot something. When the HPA scales the
Proxy up, its location table is empty. No Address-of-Record (AoR) records exist, so the
proxy can not route invites to the clients. To solve that problem, when a new sip-proxy
starts, it sends a Distributed Message Queue (DMQ) message to a proxy discovered via
the DMQ service to ask for the content of the in-memory database, which holds the
information of the registered clients. More information on DMQ in Section 3.2.1. On
Figure 3.7, the new DMQ service is added.
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Figure 3.7: Testbed with DMQ service added

Finally, we finished planning our testbed. After implementing each component, we pack-
aged the project into Helm Charts to make the testbed deployment easier. Helm is the de
facto package manager for Kubernetes. We created multiple packages, known as Charts,
for the deployment process. It is possible to populate the Charts with variables defined
in deployment time with the built-in templating feature. The {{expression}} syntax is
used to evaluate and substitute an expression at deploy-time. More details can be found
on each testbed component in the following sections.
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3.2 SIP System

In this section, we want to talk about the SIP environment we use for testing and how it
works. First, we want to talk about the SIP Proxy in the Section 3.2.1, how it works, and
how we check if it is ready for SIP messages. Second, we talk about the LoadBalancer and
how it works when the number of Proxies increases and decreases. Then we talk about
the SIP Controller, how it controls the load balancer based on how many Proxies there
are, and watches if the Proxy is ready or not.
In the following subsection, we want to talk about load Generation, how we designed the
clients to be independent of the scenario and what controls them based on the scenario file.
First, about the Clients in the Section 3.3.1, next about their controller in the Section 3.3.2,
and third, about the scenario file generation, which the scenario controller works from.

3.2.1 SIP Proxy

The SIP Proxy is one of the core components of the testbed. As mentioned earlier, it is
responsible for handling Registers and Invites. We decided to use Kamailio as the SIP
software. It is an open-source, well-documented, mature project with many pluggable
modules, including stateless and stateful message handling, authentication and autho-
rization, support for external DB connection, and many others. A Docker image is also
available at DockerHub [19]. On the internet, many tutorials are also found, e.g., Nick vs
Networking [20].
Firstly, we created our own Docker image, available at Section A.3 using the original
image as a base. We mainly added debug tools, e.g., tcpdump, iproute2, netcat, etc.
We also created a symbolic link to tcpdump to fix a temporary bug related to ksniff [21]
and its built-in tcpdump upload. We also created a bash script that runs on the start
of the container and replaces placeholder text with the value of environment variables,
and starts Kamailio. At the end of the script, there is a clever trick. The command
tail -f /dev/null will run forever, which means that after the crash of the Kamailio
application, it will not terminate the container, which would cause a restart. In production,
we would love it if our application would restart itself in case of a fatal error. However,
in a laboratory environment where we test the software limits, we are interested more in
the exact error message that a fatal error would create, or we would like to enter into the
container and investigate the situation after a crash. The entry point script is available at
Section A.4.
Secondly, we created the config of Kamailio available at Section A.5 of the SIP Proxy. We
started with the example config and made modifications to make it capable of acting as a
Registrar and handling Invites statefully. We decided to use DMQ to synchronize AoRs
among proxies. We changed the User Datagram Protocol (UDP) port for DMQ messages
to 5061 from the default 5060 UDP port. With that, we separated the DMQ traffic from
the measured SIP traffic. When a Register successfully creates an AoR, it will send that
information to the other proxies. When a new SIP Proxy starts, it will request AoRs from
another already running Proxy. With that, we opened the possibility to scale the SIP
Proxies.
We created the stateful set available at Section A.6. We added the required environment
variables as well. Also, we added a readiness Probe which means the Kubernetes will send
Hyper Text Transfer Protocol (HTTP) requests to SIP Proxy. We added a module called
xHTTP that can handle those HTTP messages. Creating a readiness probe is required to
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know when the Proxy is finished booting and able to serve requests. We also created the
Kubernetes service for DMQ.
Finally, we created the Helm Chart, and all the configs will be attached as config maps
available at Section A.11 to the Pod at deployment time.

3.2.2 SIP Load-Balancer

The load balancer is the next component to discuss after SIP Proxy. Its most important
responsibility is to distribute traffic between proxies based on the hash of the Call-ID.
This component uses the same Kamailio Container image presented at Section 3.2.1.
The SIP Proxy presented at Section 3.2.1 is stateful because it fulfills the definition from
Table A.1. We had two options for choosing the type of load balancer. Use a stateful
proxy as a load balancer or a stateless proxy as a load balancer. If we choose the stateful
option, we would use CPU time and increase the response time of the overall system to
handle all the things that come with transactions. If we choose the stateless option, we
would ignore the transactions and forward all the packets with more straightforward logic.
Firstly, we decided to use a stateless solution because we maintain the transactions with
forwarding based on the hashing over Call-ID, which is persistent across all transactions
in a dialog.
We created the Kamailio config available at Section A.8. The config is much simpler due
to the stateless behavior of the load balancer. The two main parts of the config are error
handling plus sanity check and the dispatcher logic. The load balancer, due to the behavior
of the Kamailio dispatcher module, can load the list of the existing destinations from a
file or an external DB. We decided to use an external DB because it is more scalable than
a locally available file.
Thirdly, we also created the deployment available at Section A.9 of the load balancer and
the service available at Section A.10 with round-robin mode. We provide the Kamailio
configs for the Pods as we did at the SIP Proxy.
Finally, we created the Helm Chart similarly to the SIP Proxy. However, we have not fully
solved the question of load balancing. We have not said a word about when we should
route or not route traffic to a Proxy. In the Dispatcher module of Kamailio, there are two
ways to change the state of a destination. The first method is the active probing mode,
which periodically probes all the proxies, and after k times a successful response, the
load balancer allows traffic to that destination. After x times a failed request, it disables
that proxy. The second method is the manual mode, which means we can manually
adjust the forwarding rule. The first method might sound better but think about it with
the Operators’ heads. The Operators, for example, need maintenance time to manually
disable proxies on specific nodes. Also, if we think on a bigger scale, the load of active
probing will increase significantly and burn the critical and expensive CPU time, reducing
the system’s capacity. However, we automate the manual mode if we create a controller
that turns on or off proxies with a given rule. The automated manual method is what we
have chosen. More information is in the next section Section 3.2.3.

3.2.3 SIP Controller

SIP Controller was born with the need to control the load balancers according to the
lifecycle of the proxies. There are two built-in Kubernetes hooks to manage the lifecy-
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cle of Pods. The Post-Start hook is called immediately after the container is created.
The Pre-Stop hook is called after the graceful period of the container and immediately
before the container is terminated. The approach means if we create an application,
e.g., a web server with REST API, it can handle those hook calls and control the load
balancers. We created that API endpoints to contain the hostname of the proxy, e.g.,
/proxy/enable/sip-proxy-0 where the hostname is a variable. Go programming lan-
guage was used to create Kubernetes, so it is not surprising that Go has a powerful
Kubernetes library. We use that to create the SIP Controller.
We added another responsibility to the SIPs Controller. After the boot, it prepares and
populates the DB for the Proxies and load balancers. We thought it fits logically better
into the server-side SIP controller than the client-side scenario controller. It inserts into
the DB all the pre-generated users from id 0000 to 9999 and the proxies from 0 to 99.
Those numbers can easily be adjusted if needed.
We also added a helpful feature to the controller. A REST API endpoint exists that
collects all the registered client ids from the proxy-0. This information is used in the SIP
Scenario Controller.

14



3.3 Traffic Generation

3.3.1 SIP Client

We wanted a small and scalableSIP client that observes theSIP RFC, so we wrote a
program that can be controlled from a central point (Scenario Controller) and startsSIP
calls on command. Hence, it is independent of the scenario. We also put it in a Kubernetes
environment to scale it quickly if we want more traffic to hit the proxies. Up to 100 clients
can send and receive invites simultaneously inside one Pod. We need this because, on one
Kubernetes node, there only could be 250 Pods which cannot create nearly close enough
traffic that we want to test the proxy with.
BecauseSIP is the industry standard for signaling. There are many implementations. We
tried a couple of them, but either it was not written to be scalable or a big spaghetti code
without documentation, so we decided to write our client in Go.
Why go? It is a lightweight, compiled, c-like, not object-oriented language, so everything
is given for writing a lightweight, scalable, fast program so that we can run multiple
instances at once without overloading the server as seen on Figure 3.9 and Figure 3.8.
First, the go library we tried to use for theSIP client was faulty. It can not handle the
Call-IDs and branches correctly, so after registering to the proxy, the call would not be
received by any clients because of the faulty branches [22].
We decided to use the second library, but it was not bugless. We had to fork the git
repository and fix the Via handling in the library because the writers did not think someone
was trying to use their library with multiple hops. We had to fix the authentication
header’s building because if not all fields had values, it would have built a faulty package
and sent it to the proxy [23].
The invite response was the last thing we had to fix because it would not change the source
and destination address.
The Client we implemented could be controlled on a WebSocket connection. The controller
sends a JavaScript Object Notation (JSON) on the connection, which the client can parse
and act according to, for example, register on the proxy and send an invite to the correct
Pod. It is all we need because we want to simulate how a call would be established and
do not need the actual Real-time Transport Protocol (RTP) connection to be created.

3.3.2 SIP Scenario Controller

The scenario controller controls the clients based on the scenario file generated by the
Jupyter notebook.
The implementation to control the clients with a centralized controller was based on, that
we, as observers, do not know how many clients (client Pods) there will be and how we can
reach them. So we figured out that it would be easier if all the client containers connect to
a controller on WebSocket, so we know precisely how many of them there are, and through
the WebSocket, we can send them commands on what to do. In contrast, we do not have
to know all clients’ IP addresses. Only the clients must resolve the Scenario Controller’s
IP by Domain Name System (DNS) and connect to its WebSocket.
The Scenario Controller makes the clients independent from the scenario, and they do not
have to know what they will do in the future.
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Figure 3.8: SIP client’s memory usage

Figure 3.9: SIP client’s CPU usage
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These CSV files are inside the scenario controller’s container, so we have to select which
scenario we want to run on its control page, and the controller starts sending the control
messages seen on Figure 3.10.
We wrote the controller to be fast and easy to use. That is why we also choose the go
language for this, to keep up with the controlling of more than 1000 invites per sec, and
we can also implement a small webpage inside it, where the operator can start the scenario
on a webpage by selecting which one he wants to run efficiently.

Figure 3.10: Scenario Controller’s user panel, where the Register
messages and Scenario selection and Start can be
controllerd

3.3.3 Input generation for the Scenario Controller

As mentioned previously in Section 3.3.2, a CSV file is used to drive the Scenario Con-
troller. This CSV generator is a Jupyter notebook that creates the CSVs in offline mode.
Then the generated CSVs are uploaded into the scenario controller during deployment
time.
The output CSV uses the following format:
caller;callee;wait_before_next_in_ms;seconds_since_start;arrival_rate_in_s
4600;4700;1000;0;1
7000;7100;1000;1;1
9400;9500;1000;2;1
8600;8700;1000;3;1
7600;7700;1000;4;1
3000;3100;1000;5;1
3200;3300;1000;6;1
9200;9300;1000;7;1
[...]
9000;9100;1000;1797;1
1200;1300;1000;1798;1
1400;1500;1000;1799;1

The first line is the header of the file. The following k rows are interpreted line by line,
and each line contains the properties of one call. The meaning of the parts, each separated
by a semicolon in order, are the following: the Identity string (ID) of originating client
of the call, the ID of the terminating client of the call, the time in milliseconds that the
scenario controller should wait before sending the following command, the seconds elapsed
since the start of the scenario and the arrival rate (λ(t)) in that second.
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3.4 Measurment setup

After creating the testbed at Section 3.1, the next step towards scaling is to create mea-
surements and collect the data for scaling. We have two main goals to solve. Firstly,
we need an environment prepared for what we can use to validate the testbed (more on
validation in Section 3.5) and collect data for debugging. Secondly, we need online, al-
most real-time data processing for scaling. Those two different use cases are illustrated
on Figure 3.11.

Kubernetes
Cluster

Service Monitor

SIP Proxy Service

Raw data

 collection

SIP Proxy - 0 Pod

SIP Proxy
Container

SIP Proxy
Analyzer
Container

eth0

SIP Proxy - 1 Pod

SIP Proxy
Container

SIP Proxy
Analyzer
Container

eth0

Prometheus
Server

Time Series

DB

HTTP

ServerExpose metrics

Collector Store metrics

pull metrics

pull metrics

expose metrics

collect pod metrics

Kubelet

Kube API Server

Node 2

Observe

Grafana Dashboards

Observe and control

Jupyter Notebook

Operator

Grafana
Server

HTTP

Server

Dashboards

Grafana Ingress

Persistent Volume

Grafana Service

Persistent Volume

Data Source

Offline
Processing

Figure 3.11: Measurement Setup with 2 use-cases

Two important notes for Figure 3.11. First: Although only Node 2 is displayed, all the
other components inside the Kubernetes Cluster also run on nodes. The node on which
they run is not essential. It can be any available node. For the components inside the Node
2 box, it is mandatory to run on that particular node. Second: Although Prometheus
Server and Grafana server are displayed as logical boxes, they consist of pods, configs,
services, and many more Kubernetes components. We do not want to focus on them now
for simplicity.
The first and most crucial component is the SIP Analyzer (more on that in Section 3.4.1)
side-car container in the SIP Proxy pod. This captures traffic and, from that, calculates
response times. Then the calculated response time is stored in internal storage, which
has two external interfaces. The first is a REST API which creates JSON output. The
REST API is for short scenarios and only for offline local debugging purposes. The second
and more important one is also a REST API, but it returns or exports data in a format
Prometheus can process. The program is why it is also called a Prometheus Exporter.
Prometheus contains a Time Series DataBase (TSDB) for storing the collected data known
as metrics. Prometheus uses a pull architecture, which collects data periodically from
resources. Service Monitor Custom Resource Definition (CRD) is used to discover pods
exposed with a Kubernetes service. Prometheus also collects Kubernetes internal metrics,
e.g., CPU usage from the Kube API. On each node, the Kubelet, also responsible for pod
scheduling, collects metrics from the pods that run on that particular node and exposes
those metrics to Kube API. Prometheus exposes those metrics with a HTTP server and
makes it possible to run queries with calculations on those time series data. That is
where Grafana comes in handy to use Prometheus as a Data Source. Grafana can run
Prometheus Queries and visualize those results in real-time on customized dashboards,
e.g., Figure 3.12. The data from Grafana can be exported to CSV files for long-term
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storage and later further processing. We also use Python’s data-science tool pack, e.g.,
Pandas, NumPy, Matplotlib, and Jupyter, for offline processing.

Figure 3.12: Grafana dashboard during scenario

3.4.1 Analyzer

The analyzer is a go program we designed to run in a sidecar in the proxy’s pod and
watch the incoming traffic. We use the gopacket library to monitor interfaces and give a
structure to handle packets efficiently. The interface listening is possible by the libpcap
that the lib uses and sped up with Extended Berkeley Packet Filter (eBPF). Side-car means
it is another container in the Kubernetes pod, and because it is in the same namespace as
the prox, it sees all the incoming and outgoing packets, which makes it the perfect solution
for this task.
This way, with this program, we can capture the incoming and outgoing packets, which
we can stand in pair by the Call-ID and calculate the difference in time as their arrival
and forwarding.
Let us say an invite arrives at the proxy. We record the packet type, then search if its pair
is already recorded. If yes, we calculate the response time. If not, we store the packet’s
essential aspects in a map to be easily searchable by Call-ID.
We are interested in 3 packet pairs in this measurement. The first is the unauthenticated
invite and its response time. The Second is the authenticated invite, which takes time to
forward to the called client. The third is the 200 OK that the called client sends to the
caller, which the proxy has to forward, as shown in figure Figure 3.13 above.
These recorded response times are stored in two ways. One is the Prometheus exporter,
where we record how many packets arrived and left and the response time. In the exporter,
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Figure 3.13: Sequence diagram of a call

we only note the response time in buckets, which is explained in the following subsection.
The second way is to record in memory, so with a request at an endpoint, it gives all the
recorded response times back in a JSON format, which we can use to analyze how good or
bad the scaling algorithm was and to create a visualization of the changing of the response
time.

3.4.2 Metrics Collector

The Collector we use to get the measurements from the proxies is Prometheus. It is the
industry solution to get data about servers/services/apps and pods in Kubernetes. It has
a built-in feature to work with Kubernetes, so we do not have to implement a way to
get the proxy’s IP and measurements in real-time. It is already implemented. The only
downside is that it "scrapes" the pods every 30 seconds, so the data flow is delayed by this
a bit, which in the real world is not much, but when we use it in sped-up scenarios, it
could delay the scaling of the proxies. The other downside is that it uses buckets, which
show the limit of the single response time. So example, if the response time was 13ms and
we have the buckets of 1, 2, 4, 6, 10, 14, it falls into the buckets that are smaller than the
response time, in our case, into 1, 3, 4, 6, 10, so we only know the distribution of the data.
The data is enough to compute the 99th percentile. We want to scale based on that.
Working with this is beneficial because it reduces the overhead on the clients, making long
scenarios possible to compute in almost real-time.

3.4.3 Visulaization

For visualization, we use Grafana. It is a tool to display data from Prometheus. It runs
a query written in Prometheus Query Language (PromQL) to get the desired values in
almost real time.
If we see the scenarios as real-world tests, it is like what an operator sees from the incoming
traffic to its system.
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Prometheus and Grafana are excellent tools to monitor as an operator, but they are not
meant to use as long-term storage and visualization tools. It has 15-day retention, so if
we want to store the scenarios, we must find another way to store them. For this, we
implemented the second approach on the analyzer to collect the results in JSON format.
When the scenario ends, we curl the endpoint and convert its return into a CSV file, which
we can store long-term and visualize and analyze using a Jupyter notebook for validation
and processing.
The Jupiter notebook uses Matplotlib, pandas, and NumPy for data processing and visu-
alization. These results can be seen in Section 4.1
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3.5 Validation

In the previous chapters, we talked about our results, but for those measurements to be
valid, the test bed has to be validated.
Validation of this distributed system is not a simple task if we want to do it as one big
system. However, suppose we slice it into four logical parts and validate the logical parts
by themself. In that case, we can easily validate the system because it is a separate system
that only gets input from those components.
The first part is the scenario file because the scenario controller sends commands to the
clients based on this file. Second the Scenario Controller. It needs to send the correct
command to the correct client at the given time, as the scenario file says. The third is the
client. It has to follow the SIP RFC, send out only the required packets without error,
and handle the incoming ones as the RFC requires. Fourth is the analyzer because even
if everything is correct above, we cannot record the proxy’s or load balancer’s response
time. If it is not accurate, then the whole measurement is invalid.

3.5.1 Validation of the Scenario File

A Jupyter notebook generates the scenario file, but it needs to be checked to be sure it
implements what we wanted. For example, the first generated files did not follow the
convention that the even pod number calls the one higher odd-numbered pod. The pod
numbering is a 4-digit number. The first number, 2, is the pod id, and the second 2 is the
softphone’s number. In the first version, the Jupiter notebook has not added a 0 padding
for the pod id, so for example, the 7 ID’s pod was 700 instead of 0700.
In the first implementation, there was a simple bug. For example, if the scenario controller
got the caller id 711, it parsed it to pod number 71 instead of pod 07.
This bug was discovered when we looked at the traffic recorded by Wireshark at the proxy
for debugging purposes because the sip load was not what we expected. As it turned out,
the client IDs were not what they should be, so we started investigating where it went
wrong and saw this bug.
To validate the CSV file, we looked at the generated CSV to check the pod and client
IDs matching when we found that the IDs were incorrect. We also checked that the time
between the two invites is generated according to the load. For example, if the load is 1,
the file says to wait 1000ms before sending the following invite command.
After finding and fixing this bug, we tested the scenarios by running them and watching
the output of the Scenario controller with Wireshark and logging.

3.5.2 Validation of the Scenario Controller

The scenario controller’s job is to control the clients according to the scenario file. We
validated the scenario file, so next is the controller.
The easiest way to validate the controller was to watch the outgoing commands to clients
to validate that it worked the way we designed it. We first added logging to the controller,
so we could see on its STDOUT what the controller wanted to send out and compare it
with the Wireshark capture and that capture with the scenario file to see if the density of
the invites is equal in all three places.
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Figure 3.14: Beginning of the Load1.csv

(a) First part of the log (b) Second part of the log

(c) Third part of the log (d) Fourth part of the log

Figure 3.15: Scenario Controller log
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After the comparison, we saw that the controller sends the correct command at the correct
time to the correct client.
The problems were not with the control. Only in the development of the controller we
experienced a couple of bugs, which could be fixed in no time after its discovery. Figure 3.15

3.5.3 Validations of Clients

It is essential to send the correct invite packet at the correct time and respond correctly
to the invite and the register messages to create the required load. We had to validate the
clients.
For validation of the clients, we used Wireshark. We captured the incoming and outgoing
sip messages on the clients and load balancer. On proxies, we can see that the invites are
sent according to the scenario file, so the difference between the sent invites is precisely
what the scenario file declares to be. It follows the sip RFC, so everySIP packet file is filled
correctly. We had to validate the library that we wanted to use for the clients because it
is a third-party open-source library [24] and to be sure that it also follows theSIP RFC,
its validation was essential.
The first library failed its validation, so we had to search for a new one, where we chose
the Kalbi project [24]. This library was not perfect either. We had to fork it from GitHub
and make some changes, for example, fixing the via handling.
Before every test, to be sure all clients are registered and begin working as they should,
we always checked on the proxy with the kamctl ul show | grep Records command,
which will give back the number of registered clients. After we see the correct number, we
start the scenario on the controller.

3.5.4 Validations of the Analyzer

As the most important slice of the system, we had to validate the analyzer. It has to
be the last one to validate because it is the most important out of them, and to be 100
percent sure that the validation is correct, we had to leave it last.
Before validating the other elements, we tried to work with the analyzer. However, it
never showed the expected measurements because the bugs in other components made the
results invalid, and we thought it was the analyzer’s fault, but it was not.
We validated the analyzer by recording the incoming and outgoing packets with Wireshark
on the proxy. After the test, we compared the .pcapng with the recorded data by the
analyzer, and we found it valid.
As the 2 picture shows on Figure 3.16 and Figure 3.17, it logs out the second received
packet from the pair and the ms difference between the pairs. As shown in the pictures,
the logged difference can be validated by Wireshark.
Even if there are a couple of jumping response times, the Wireshark capture received it
the same way, so even if it is strange and looks like some bug, the captured packets show
the same.
For testing the calculation, we programmed a debug mode into the analyzer. An environ-
ment variable can turn it on. After turning it on, it will write the currently calculated
packets to the STDOUT, and we can validate by hand that the correct packets are calcu-
lated. This log can be seen below in Figure Figure 3.18
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Figure 3.16: Output of the proxy analyzer

Figure 3.17: Captured packets corresponding to the figure above

Figure 3.18: Curently calculated packet’s details. 10.42.1.43 is
the IP of the Proxy, which we are validating.
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Chapter 4

Scaling experiments

In this chapter, our goal is to explore to possibilities of horizontally scaling the system
in response to changing traffic load. We will focus on QoS requirement, which means the
99th percentile of the response times (the processing time of SIP messages) should stay
below a certain threshold(P0). In our experiments, we set the threshold to P0 = 1000 ms.
However, this threshold can be changed based on the request of the Operators for that
particular environment.
Our environment uses the following specific configuration. The proxies run in pods within
the Kubernetes cluster. As mentioned in Section 3.4, this data is scraped from the Ku-
bernetes API. According to Kubernetes documentation [25], CPU resource is measured in
CPU units. One unit equals 1 Hyperthreaded thread because we use a bare-metal Ku-
bernetes cluster that runs on Intel i7-10700 (16) @ 4.800GHz with Hyperthreading
enabled. Kubernetes often use mCPU or milliCPU as CPU resource notation. 1 CPU
equals with 1000 mCPU and 0.1 CPU equals with 100 mCPU and so on.
In this work, we focus on the scaling of the SIP proxy because it is likely the bottleneck
component of the system. Also, the investigation by Rotter and Do [13] shows that using
homogeneous components (i.e., with the same capacity) could reduce the complexity of
setting scaling parameters, so we apply the SIP proxies with the same capacity in each
experiment. We will perform the following steps:

• In the benchmark step at Section 4.1, we would like to know the processing capability
and limit of each proxy in handling static traffic (i.e., we would like to explore how
much traffic the single SIP proxy could handle to satisfy the QoS requirement).

• In Section 4.2, we will create a scenario with a deterministically changing load. We
will calculate the optimal scaling decision from the processing capability of each
proxy.

• In Section 4.3, we will prove our calculation by executing the scenario with the
calculated fixed number of proxies. This approach is called capacity planning (i.e.,
we know the maximum arrival rate of the incoming traffic and prepare the system
to handle that with a fixed number of components that always run)

• In Section 4.4, we will enable the built-in HPA and execute the scenario again with
dynamic scaling enabled. We will try to finetune the HPA to find the most optimal
performance.
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• We will execute a scenario generated from traffic shape that was collected on a
real Operator’s environment with real customers. For the scenario, we will use the
approach that worked better.

4.1 Benchmarking

As mentioned earlier, the first step is benchmarking the proxy’s behavior. We configured
the CPU limit of the proxies to 30 mCPU. We created the scenario with λ(t) = constant
and set the measurement’s length to 30 minutes. We are going to change the λ(t) to find
the arrival rate at which the proxy fails the QoS threshold of P0 = 1000 ms.
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(a) Benchmarking: 100th percentiles of response times compared to arrival rates
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(b) Benchmarking: 99th percentiles of response times compared to arrival rates

Figure 4.1: Benchmarking: Percentiles compared to arrival rate

On Figure 4.1, response times are compared to arrival rates at different CPU limits. The
displayed percentile values are chosen as the following: 100th percentile is equivalent to
the maximum, and 99th percentile is the value that comes from the definition of QoS.
Next, compare the Figure 4.2 with the Figure 4.1. If we observe λ(t) at 9, 10, and 11, then
the percentiles of the response times are increasing but remain close to each other. When
the arrival rate is 12, the QoS requirement is failed. The increasing response time was a
more precise indicator of reaching the QoS threshold. The CPU usage was high between
50% to 80 %, but even the maximum response time was far less than the threshold.
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(a) Benchmarking: CPU usage and response time at λ(t) = 9 with limit of 30 miliCPU (mCPU)
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(b) Benchmarking: CPU usage and response time at λ(t) = 10 with limit of 30 mCPU
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(c) Benchmarking: CPU usage and response time at λ(t) = 11 with limit of 30 mCPU
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(d) Benchmarking: CPU usage and response time at λ(t) = 12 with limit of 30 mCPU

Figure 4.2: Benchmarking: CPU usage and response times during
a measurement with 30mCPU
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4.2 Scenario with Step funcion

The next step is to plan a scenario that forces scaling with a deterministically changing
load. From Figure 4.2, we know that one proxy can handle a maximum of 11 invites/sec
with the given QoS threshold. To create a small error margin, we will calculate with 10
invites/sec that a Proxy can handle maximum. That margin is required to calculate with
the slight unevenness of Call-ID-based hashing. Plus, every 50 minutes, the clients must
re-register, which creates an additional load.
We created a scenario where λ(t) is a step function that can be seen on Figure 4.3. The
step function starts from λ(t) = 12, and every 5 minutes, it increases with 6 invites/sec.
The scenario is 30 minutes long. That six invites/sec is half the first arrival rate that one
proxy can not handle.

λ(t) = 12 

λ(t) = 18

λ(t) = 24

λ(t) = 30

λ(t) = 36

λ(t) = 42

2 proxy  3 proxy 

no scaling

no scaling

2 proxy 

no scaling

2 proxy 

scaling

2 proxy  2 proxy 

3 proxy  3 proxy 

scaling
3 proxy  4 proxy 

5 proxy 4 proxy 

scaling

Figure 4.3: CSV of the first Scenario with Step function from
λ(t) = 12 invites/sec with 6 invites/sec steps.

We also plotted the optimal scaling decision for each step on the Figure 4.3. The arrows
mean the change in the number of proxies.

4.3 Capacity planning approach

As displayed on Figure 4.3, we planned that we would need to serve λ(t) = 42 invites/sec.
If we calculate with the max 10 invites/sec per proxy, then 42/10 = 4.2 proxies ≈ 5
proxies needed to handle the traffic of the scenario. We executed the scenario with that
five proxies, and the results can be seen at Figure 4.4
If we observe the results from Figure 4.4a, we will know that the traffic generation works as
expected. Also, we can conclude that the load balancing was acceptable. From Figure 4.4b,
we can see that the maximum CPU utilization was 10 mCPU. From Figure 4.4c, we can
see that we were below the QoS target which means we made the QoS requirement. From
Figure 4.4d, we can see that all the invites were successful.
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Figure 4.4: Scenario Step Load with 5 SIP Proxies
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4.4 Scaling with built-in HPA

We set the HPA to scale out when the average CPU utilization across all proxies reaches 25
mCPU and stays above that for at least 10 seconds. We selected 25 mCPU first because
this was the value at Figure 4.2c. We also set scale-out and scale-in maximum rates at
one proxy every 60 seconds, which means the HPA must wait at least 60 seconds before
adding or removing a proxy from the stateful set.
We executed the scenario, and the results are on Figure 4.5. If we observe the curve of the
sip-loadb on Figure 4.5a, we will see the arrival rate of the incoming invites on the Load
Balancer changes according to the step function defined previously. We can also conclude
that the load balancing of the incoming request works because each proxy’s arrival rate
converges to the same value even after a new proxy starts. From Figure 4.5b, we can see
that the 25 mCPU HPA target was too close to 30 mCPU CPU limit. The new proxy
had no time to boot up and start taking some of the load. From the Figure 4.5c, we can
observe that the QoS threshold was already failed when we started to reach the λ(t) = 24,
which was benchmarked previously that one proxy can handle maximum λ(t) = 11. Also,
we found that when the CPU usage of the proxy reaches the limit, it starts sending more
200 - OK responses, which can be seen at Figure 4.5d.
We decided to rerun the same configuration for the following scenario but change the
target of the HPA to 20 mCPU. We predict this change will trigger the scaling earlier
and save time for the additional proxy to start. The scenario results are displayed on
Figure 4.6 in a similar format as earlier. If we look at the results, especially Figure 4.6c,
we will see that there was a 5-minute time window between 00:20:00 and 00:25:00 where
we again stayed below the QoS threshold after scaling. However, at 00:22:00, the HPA
realized that we had reached the target of 20 mCPU, and after the 3 minutes stabilization
window, it started scaling down the proxies. It has been killing five proxies in a row with
the defined maximum rate of 1 proxy/60 seconds. The CPU usage started rising, and when
it killed the 5th proxy, it created a new one. The QoS Threshold failed again. With the
previous scenario’s experience, we decided to rerun the last scenario but set the target of
the HPA at 10 mCPU. The 10 mCPU utilization was observable between 00:20:00 and
00:25:00.
After executing the scenario, we got the results on Figure 4.7. Although we made better
QoS results, we can see that we scaled too much. If we observe the CPU usage on
Figure 4.7b and compare it with HPA target, we will see no matter how much we scaled
we were above the target, so we scaled more. We can also see from the results that the
HPA does not give enough boot time to the proxies, so it scaled up too fast. For the
next experiment, we decreased the rate of the proxy adding or removing of the HPA to
1 proxy/120 s and increased the stabilization window to 30 seconds. With that changes,
we believe it will further improve our results.
The results of the changes can be observed on Figure 4.8. From Figure 4.8c we improved
compared to our first try on Figure 4.5c. However, on Figure 4.8d we can observe two
camelback humps at 00:09:30 and 00:13:00 on the time of those humps there are percentile
peaks on Figure 4.8c, and that time there were two CPU peaks on Figure 4.8b. Those
details mean the first scaling was late. We tried to improve that, so we decreased the
target of HPA to 5 mCPU.
The last step scenario results can be seen on Figure 4.9. We again improved, and the
camelback humps are disappeared too. However, we reached that with almost always
scaling, which is not what we want. We have got the limits of our testbed. To improve
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Figure 4.5: Scenario Step Load with 25 mCPU HPA target
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(d) SIP 200 - OK Response rates.

Figure 4.6: Scenario Step Load with 20 mCPU HPA target
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Figure 4.7: Scenario Step Load with 10 mCPU HPA target
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(d) SIP 200 - OK Response rates.

Figure 4.8: Scenario Step Load with 10 mCPU HPA target, with
1 proxy/120 s proxy changing rate and with stabiliza-
tion window of 30 s
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(d) SIP 200 - OK Response rates.

Figure 4.9: Scenario Step Load with 5 mCPU HPA target, with
1 proxy/120 s proxy changing rate and with stabiliza-
tion window of 30 s
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the scaling, we have to eliminate our major issue, which is the limitation of the stateful
set scaling. With a stateful set, we cannot do batch scaling because a pod of the stateful
set stays in a pending state until the previous stateful set pod is running. We will discuss
this idea in Chapter 5. The HPA configuration with 10 mCPU target can be found at
Section A.7.
We can conclude that capacity planning currently outperforms the HPA with CPU
utilization-based scaling of stateful sets in our testbed. However, further testing is needed
because we should also experiment with scaling of deployments. However, we have de-
feated a significant roadblock to converting the stateful set into deployment and factoring
out the state of dialogs to fast in-memory databases like Redis [26].
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4.5 Scenario with real-world traffic shape

After successfully using the capacity planning approach with the Step function scenario,
we wanted to test the System with more natural traffic. However, our testbed is not
mature enough to deploy and test it with customers. Our Load generator can use any
λ(t) function until it fulfills the criteria described in Section 3.3.3. We created a function
that computes λ(t) according to a dataset [27] collected from a Telecommunication (Telco)
network that is used by users every day. The visualization of the calls generated from the
first week of the dataset can be found at Figure 4.10. We have scaled down the λ(t) to fit
our testbed’s size. We also created a shorter scenario from the first day of the dataset for
initial testing.

Figure 4.10: CSV of the Scenario created from Milano Dataset.

We decided to run the shorter and faster version of the dataset, displayed on Figure 4.11.
We will use the capacity planning approach. We can read from the Figure 4.11 that
40 < max λ(t) < 50, so we would need five proxies to handle the scenario successfully.
The results are displayed on Figure 4.12. We can conclude that we successfully executed
the scenario. We almost managed to keep the QoS requirement. If we compare Figure 4.12c
with Figure 4.12e we can see that 99th percentiles increased at the same time when clients
sent the Register requests. That requests mean an additional 2 requests/sec for each
Proxy. That can easily cause a Percentile increase. Even if the registers are not counted
in the percentiles, they mean an additional load for the Proxies.
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Figure 4.11: CSV of the Scenario created from Milano Dataset. 3
hours version.
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Figure 4.12: Faster Milano Scenario with 5 proxies
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Chapter 5

Summary and plans for the future

As presented in Section 2.2 we had three main goals. Firstly plan a CN IMS environment
capable of executing scaling experiments. Secondly, find the limitations of CPU utilization
based HPA and provide a better alternative for scaling. Thirdly, create a proof of concept
for the testbed and the alternative.
We have planned and created a Kubernetes-based testbed capable of scaling experiments.
The idea of separating the SIP client controller and CSV generation worked well. We
also learned that testing and debugging a complex system is not straightforward. Our
approach to validate the system from traffic generation to metric collection showed a few
mistakes we would never find and correct with the test of each component individually.
We also realized the importance of stateless applications if we want the scale the system
fast and dynamically.
It is worth emphasizing that we successfully find the limitations of the HPA. We also
demonstrated that CPU usage-based scaling alone is ineffective. However, with the pre-
sented approach of benchmarking, then finding the optimal HPA configuration with the
guidelines of QoS parameters and validating the configured HPA with real-world traffic
shape improved the HPA far more than expected. We also realized that CPU utilization
is valuable information, and combining it with other metrics can cross-validate the scaling
decision.
Finally, improving the testbed with a professional IMS system and the load generator is
one of our future works. Also, we would like to investigate further scaling possibilities
based on the combination of CPU usage and QoS parameters.
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Appendix

A.1 Intro into SIP RFC

As mentioned earlier in Section 2.1, IMS participates heavily in the setup of modern phone
calls. One of the most important protocols in IMS is SIP. SIP was standardized as RFC
standard with the number 3261 [28]. SIP was inspired by HTTP message format, so
similarities and references can be found. SIP uses a client-server architecture, meaning
requests and responses are received. The definitions are cited from RFC 3261 at Table A.1
to clarify some important terms related to SIP.

Table A.1: Relevant SIP terms and its definitions

Term Definition
Call A call is an informal term that refers to some communication between

peers, generally set up for the purposes of a multimedia conversation.
Dialog A dialog is a peer-to-peer SIP relationship between two UAs that

persists for some time. A dialog is established by SIP messages,
such as a 2xx response to an INVITE request. A dialog is identified
by a call identifier, a local tag, and a remote tag.

Registrar A registrar is a server that accepts REGISTER requests and places
the information it receives in those requests into the location service
for the domain it handles.

Session From the SDP specification: "A multimedia session is a set of mul-
timedia senders and receivers and the data streams flowing from
senders to receivers. A multimedia conference is an example of a
multimedia session "

SIP Transaction A SIP transaction occurs between a client and a server and comprises
all messages from the first request sent from the client to the server
up to a final (non-1xx) response sent from the server to the client.
If the request is INVITE and the final response is a non-2xx, the
transaction also includes an ACK to the response. The ACK for a
2xx response to an INVITE request is a separate transaction.

Stateful Proxy A logical entity that maintains the client and server transaction state
machines defined by this specification during the processing of a
request, also known as a transaction stateful proxy.

Stateless Proxy A logical entity that does not maintain the client or server trans-
action state machines defined in this specification when it processes
requests. A stateless proxy forwards every request it receives down-
stream and every response it receives upstream.

According to RFC 3261, SIP messages use the following structure:
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Request-Line / Status-Line
*message-header
CRLF
[ message-body ]

In the case of a request, the first line contains the following in order, separated by whites-
pace: a SIP Method, the Request-URI, and the SIP version. The next one or more lines
are the message headers, each at a new line. After that, a mandatory Carrige Return
Line Feed (CRLF) comes. From that until the end of the message, the optional message
body takes place. From the defined six SIP Methods, the following is important to us:
REGISTER to register contact information, INVITE and ACK to setup up sessions, and
OPTIONS for querying server for capabilities. The Request-URI is a SIP or SIP Secure
(SIPS) Uniform Resource Identifier (URI) that identifies communication resources, e.g.,
sip:0000@example-sip.svc.cluster.local where sip means the SIP protocol, 0000 is
the prefix of the client and example-sip.svc.cluster.local is the suffix. SIP version
is SIP/2.0 in our context.
In the case of a response, the structure of the first line changes. In the case of a response,
the first line contains the following in order, separated by whitespace: a SIP version, a
status code, and a reason phrase. The version is the same as presented previously. The
status code is a 3-digit integer to indicate the result of the request. The reason phrase is
similar to the status code but for human beings. The status codes used in our paper are
listed at Table A.2.

Table A.2: Relevant SIP status codes

Status Code Reason Phrase Description
100 Trying request received by the next-hop-

server, processing started
180 Ringing UA received the INVITE
200 OK The request was successful
401 Unauthorized The request requires authentication,

the Registrar sends it
404 Not Found The server knows for sure that the re-

quested user does not exist at the do-
main

407 Proxy Authentication Required The request requires authentication,
the Proxy sends it

483 Too Many Hops Max forward field is zero, which
means the max hop count reached

As mentioned earlier, SIP uses a client-server model. Participants in a SIP call are the
following: SIP Clients on both ends of the communication, stateful or stateless proxies,
and registrars. Those components (except for the stateless proxy) have some standard core
functionality. Depending on the situation, those cores can act as an User Agent Client
(UAC) or as an User Agent Server (UAS). For example, Client - A originates a call so that
it will act as an UAC. Proxy - 0 will accept that request acting as an UAS and forward
that call statefully acting as an UAC to Client - B. Client-B handles that request acting
as an UAS. From the previous example, we can conclude that UACs generates requests,
and UASs handles that request and sends a response back. A component can also act as
an UAC and as an UAS in the same call but a different transaction.
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When UAC generates a request, the SIP message header must contain the following fields:
To, From, CSeq, Call-ID, Max-Forwards, and Via. The To field contains information about
the logical destination of the message. The From contains information about the message’s
originator. CSeq is a sequence number to identify and order transactions. Call-ID is an
identifier to group messages together in a dialog. Max-Forwards serves as a limit of
hops that a message can travel. Similar to Time-to-live (TTL) in the context of Internet
Control Message Protocol (ICMP). The Via header identifies where a request-response is
to be sent. Multiple Via headers are possible in a message, e.g., an Invite arrives at SIP
Client - B from the previous example, then it contains two Vias in the following order.
The topmost Via will contain the address of Proxy - 0, and the next Via will contain the
address of Client - A. When the response is sent back to Proxy - 0, it will remove the
topmost Via and forward the response to Client - A. The order of the Vias works similarly
to stack memory. Put the new Via to the top of the stack. Remove and process the old
Via from the top.
INVITEs originated from SIP Clients acting as a UAC and terminated at another SIP
Clients acting as a UAS. Clients can move, and with that, there is no guarantee to keep
their original IP addresses. However, in SIP, there is a built-in solution for the creation
of bindings between IP addresses and SIP URIs, which are bound to a particular user.
This process is called registration. During registration, a SIP client sends a REGISTER
request to a specific UAS called Registrar. If the Registrar, after the authentication and
authorization of the SIP Client, accepts the request, then an AoR is created in its DB. This
AoR contains contact information in which the IP address of the client is stored. AoR has
an expiration time of often 3600 seconds. In that period, the client can re-register to refresh
that value. After expiration, the AoR record is removed from the DB of the Registrar.
After a successful Registration request, the Registrar sends back a response to the Client
with a status of 200 OK as seen on Figure A.1.1 and Registration at Section 3.2.1.

REGISTER

request

SIP Client

REGISTER 

response

SIP Registrar

subscriber information

for authentication and


authorizaton

External
DB

Figure A.1.1: SIP Register

In our simplified CN IMS, a stateful SIP server will act as a Registrar called SIP Proxy.
This component is also responsible for forwarding SIP INVITEs to the called SIP client.
We decided to merge those components because the number of registrations compared to
the number of invites is negligible. However, it significantly decreased the complexity of
the implementation of the system. In our example, SIP Client - A sends an INVITE to
the SIP Proxy. After successful authentication and authorization, the request is forwarded
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to the terminating SIP Client, in this example, to SIP Client - B. This Client process the
request and answers with a response. This response is sent to the SIP Proxy. Then the
response is forwarded back to the originator, in our example, to SIP Client - A as seen on
Figure A.1.2.

INVITE

request

SIP Client - A

INVITE

response forwarded

SIP Proxy - 0

subscriber information

for authentication and


authorizaton

External
DB

INVITE

response

SIP Client - B

INVITE

request forwarded

Figure A.1.2: SIP Invite

A.2 Horizontal scaling compared to Vertical scaling

Kubernetes can increase the available resources for the deployed applications horizontally
or vertically to help the Operators defeat the challenges successfully. Vertical scaling
means adding more power to the pods, which means increasing the defined CPU or upper
memory bounds of the pod. Horizontal scaling means increasing the number of pods for the
same purpose. For vertical scaling, the hard upper limit is the hardware on which the pods
run. Horizontal scaling seems a better approach because of the hardware limitation and
because the Kubernetes system was also developed with flexible node management(adding
or removing physical nodes to the cluster).

A.3 Kamailio Dockerfile

FROM kamailio/kamailio:5.5.0-xenial
RUN apt update && export DEBIAN_FRONTEND=noninteractive && apt install -yq \

netcat iproute2 net-tools netcat tcpdump iputils-ping host curl \
rsyslog \
&& rm -rf /var/lib/apt/lists/*

RUN ln -s /usr/sbin/tcpdump /tmp/static-tcpdump

COPY entrypoint.sh /entrypoint.sh

COPY defaults/ /etc/kamailio/

EXPOSE 5060
ENTRYPOINT ["/entrypoint.sh"]

A.4 Kamailio entrypoint.sh

#!/bin/bash

sed -i "s/example-sip.svc.cluster.local/$SIP_DOMAIN/g" /etc/kamailio/kamailio.cfg
sed -i "s/SERVER_ADDRESS_PLACEHOLDER/$(hostname -I|xargs)/g" /etc/kamailio/kamailio.cfg
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kamctl address reload
kamailio -DD -E -e
bash -c "tail -f /dev/null"

A.5 SIP-proxy config

/* Main SIP request routing logic
* - processing of any incoming SIP request starts with this route
* - note: this is the same as route { ... } */
request_route {

route(HANDLE_DMQ);

route(REQINIT);

if(method=="OPTIONS"){
sl_reply("200","OK");
exit;

}

if (!is_method("ACK")) {
if(t_precheck_trans()) {

t_check_trans();
exit;

}
t_check_trans();

}

# handle requests within SIP dialogs
route(WITHINDLG);

if(method=="INVITE"){
#xlog("meme: with auth source: $rm");
if (!auth_check("$fd", "subscriber", "0")) {

auth_challenge("$fd", "0");
exit;

}
route(ONNETINVITE);

}

if(method=="REGISTER"){
if (!auth_check("$fd", "subscriber", "0")) {

auth_challenge("$fd", "0");
exit;

}
save("sip-loadb.example-sip.svc.cluster.local"); #http://www.kamailio.org/docs/modules/5.0.x/
modules/registrar.html see 4.1 save(domain, [, flags [, uri]])

#!ifdef WITH_DMQ
dmq_t_replicate();
#!endif
exit;

}
xlog("No idea how to respond to method $rm \n");
sl_reply("501", "Not Implemented");

}

route[HANDLE_DMQ]{
if(is_method("KDMQ")){

dmq_handle_message();
}

}

route[ONNETINVITE]{
if(!lookup("sip-loadb.example-sip.svc.cluster.local")){

sl_reply("404", "User not Registered");
exit;

}
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lookup("sip-loadb.example-sip.svc.cluster.local");
t_relay();
exit();

}

# Per SIP request initial checks
route[REQINIT] {

# no connect for sending replies
set_reply_no_connect();
# enforce symmetric signaling
# - send back replies to the source address of request
force_rport();

if (!mf_process_maxfwd_header("10")) {
sl_send_reply("483","Too Many Hops");
exit;

}

if(is_method("OPTIONS") && uri==myself && $rU==$null) {
sl_send_reply("200","Keepalive");
exit;

}

if(!sanity_check("17895", "7")) {
xlog("Malformed SIP request from $si:$sp\n");
exit;

}
}

# Handle requests within SIP dialogs
route[WITHINDLG] {

if (!has_totag()) return;

if ( is_method("ACK") ) {
if ( t_check_trans() ) {

# no loose-route, but stateful ACK;
# must be an ACK after a 487
# or e.g. 404 from upstream server
if (!t_relay()) {

sl_reply_error();
}
exit;

} else {
# ACK without matching transaction ... ignore and discard
exit;

}
}
#xlog("We should follow the RFC....\n");
sl_send_reply("404","Not here");
exit;

}

#!ifdef WITH_XHTTP
event_route[xhttp:request] {

xlog("L_DBG","Recieved HTTP request with request $hu\n");
xhttp_reply("200", "OK", "application/json", "ok");

}
#!endif

A.6 SIP-proxy Stateful Set

apiVersion: apps/v1
kind: StatefulSet
metadata:

name: sip-proxy
spec:

replicas: {{.Values.Containers.SipProxy.replicas}}
selector:

matchLabels:
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app: sip-proxy
serviceName: sip-proxy
template:

metadata:
labels:

app: sip-proxy
project: qos-based-scaling
release: prom-stack

spec:
{{ if .Values.HitCluster }}

nodeSelector:
node: sip-node-02

{{ end }}
initContainers:

- name: init-sip-proxy
image: harbor.sch.bme.hu/private-woranhun/kamailio:{{.Values.Containers.SipProxy.version}}
command:

- bash
- ’-c’
- |

cp /tmp/etc/kamailio/* /etc/kamailio/ &&
chmod +x /etc/kamailio/*.sh &&
(until nc -z mysql-0.mysql 3306 > /dev/null; do echo Waiting for MYSQL...; sleep 2;

done;) &&
if [ "$HOSTNAME" = "sip-proxy-0" ]; then /etc/kamailio/db-init.sh; fi

env:
- name: SIP_DOMAIN

value: {{ .Release.Namespace }}.svc.cluster.local
resources: {}
terminationMessagePath: /dev/termination-log
terminationMessagePolicy: File
imagePullPolicy: Always
volumeMounts:

- name: sip-proxy-config
mountPath: /tmp/etc/kamailio

- name: sip-proxy-config-rw
mountPath: /etc/kamailio

containers:
- name: sip-proxy

image: harbor.sch.bme.hu/private-woranhun/kamailio:{{.Values.Containers.SipProxy.version}}
ports:

- containerPort: 5060
protocol: UDP

- containerPort: 8080
protocol: TCP

env:
- name: SIP_DOMAIN

value: {{ .Release.Namespace }}.svc.cluster.local
resources:

limits:
cpu: 30m
memory: 100Mi

requests:
cpu: 20m

terminationMessagePath: /dev/termination-log
terminationMessagePolicy: File
imagePullPolicy: Always
volumeMounts:

- name: sip-proxy-config-rw
mountPath: /etc/kamailio

lifecycle:
postStart:

exec:
command:

[
"/bin/sh",
"-c",
"/etc/kamailio/start.sh"

]
preStop:

exec:
command:
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[
"/bin/sh",
"-c",
"/etc/kamailio/stop.sh"

]
readinessProbe:

httpGet:
path: /health
port: 8080

initialDelaySeconds: 5
periodSeconds: 5
timeoutSeconds: 5

- name: sip-proxy-analyzer
image: harbor.sch.bme.hu/private-woranhun/kamailio-analyzer:{{.Values.Containers.

SipProxyAnalyzer.version}}
ports:
- name: analyzer

containerPort: 9101
protocol: TCP

- name: benchmark
containerPort: 9102
protocol: TCP

resources:
limits:

cpu: 500m
memory: 500Mi

requests:
cpu: 100m

terminationMessagePath: /dev/termination-log
terminationMessagePolicy: File
imagePullPolicy: Always
readinessProbe:

httpGet:
path: /health
port: 8080

initialDelaySeconds: 5
periodSeconds: 5
timeoutSeconds: 5

restartPolicy: Always
terminationGracePeriodSeconds: 30
dnsPolicy: ClusterFirst
securityContext: {}
imagePullSecrets:

- name: harbor-woranhun-private-readonly
- name: harbor-dockerhub-proxy-readonly

schedulerName: default-scheduler
volumes:
- name: sip-proxy-config-rw

emptyDir: {}
- name: sip-proxy-config

configMap:
name: sip-proxy-configmap

A.7 SIP-proxy HPA

apiVersion: autoscaling/v2
kind: HorizontalPodAutoscaler
metadata:

name: sip-proxy-hpa
spec:

scaleTargetRef:
apiVersion: apps/v1
kind: StatefulSet
name: sip-proxy

minReplicas: 2
maxReplicas: 50
metrics:

- type: Pods
pods:
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metric:
name: container_cpu_usage_per_second

target:
type: AverageValue
averageValue: 10m

behavior:
scaleUp:

stabilizationWindowSeconds: 30
policies:

- type: Pods
value: 1
periodSeconds: 120

selectPolicy: Max
scaleDown:

stabilizationWindowSeconds: 30
policies:

- type: Pods
value: 1
periodSeconds: 120

selectPolicy: Max

A.8 SIP Load Balancer Kamailio Config

/* Main SIP request routing logic
* - processing of any incoming SIP request starts with this route
* - note: this is the same as route { ... } */

request_route {

# per request initial checks
route(REQINIT);

# hash over call-id dispatching on gateways group ’1’
if(!ds_select_dst(1, 0))
{

send_reply("404", "No destination");
exit;

}
xlog("L_DBG", "--- SCRIPT: going to <$ru> via <$du>\n");
t_on_failure("DISPATCH_FAILURE");
forward();

}

# Per SIP request initial checks
route[REQINIT] {

if (!mf_process_maxfwd_header("10")) {
sl_send_reply("483","Too Many Hops");
exit;

}

}

route[DISPATCH_FAILURE]{
sl_reply("500", "Failed to relay request");
xlog("DISPATCH_FAILURE: $rm $ci - $fu <-> $du $mb\n");
exit;

}

#!ifdef WITH_XHTTP
event_route[xhttp:request] {

xlog("L_DBG","Recieved HTTP request with request $hu\n");
xhttp_reply("200", "OK", "text/html", "<html><body>OK</body></html>");

}
#!endif
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A.9 SIP-loadb Deployment

apiVersion: apps/v1
kind: Deployment
metadata:

name: sip-loadb
spec:

replicas: {{.Values.Containers.SipLoadB.replicas}}
selector:

matchLabels:
app: sip-loadb

template:
metadata:

labels:
app: sip-loadb
release: prom-stack
project: qos-based-scaling

spec:
{{ if .Values.HitCluster }}

nodeSelector:
node: sip-node-02

{{ end }}
initContainers:

- name: init-sip-loadb
image: harbor.sch.bme.hu/private-woranhun/kamailio:{{.Values.Containers.SipLoadB.version

}}
command:

- bash
- ’-c’
- |

cp /tmp/etc/kamilio/* /etc/kamailio/ &&
until nc -z mysql-0.mysql 3306 > /dev/null; do echo Waiting for MYSQL...; sleep 2;

done;
env:

- name: SIP_DOMAIN
value: {{ .Release.Namespace }}.svc.cluster.local

resources: {}
terminationMessagePath: /dev/termination-log
terminationMessagePolicy: File
imagePullPolicy: Always
volumeMounts:

- name: sip-loadb-config
mountPath: /tmp/etc/kamilio

- name: sip-loadb-config-rw
mountPath: /etc/kamailio

containers:
- name: sip-loadb

image: harbor.sch.bme.hu/private-woranhun/kamailio:{{.Values.Containers.SipLoadB.version
}}

ports:
- containerPort: 5060

protocol: UDP
env:

- name: SIP_DOMAIN
value: {{ .Release.Namespace }}.svc.cluster.local

resources:
limits:

cpu: 600m
memory: 300Mi

terminationMessagePath: /dev/termination-log
terminationMessagePolicy: File
imagePullPolicy: Always
volumeMounts:

- name: sip-loadb-config-rw
mountPath: /etc/kamailio

- name: sip-loadb-analyzer
image: harbor.sch.bme.hu/private-woranhun/kamailio-analyzer:{{.Values.Containers.

SipLoadBAnalyzer.version}}
ports:
- name: analyzer

containerPort: 9101
protocol: TCP
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- name: benchmark
containerPort: 9102
protocol: TCP

resources:
limits:

cpu: 500m
memory: 4Gi

terminationMessagePath: /dev/termination-log
terminationMessagePolicy: File
imagePullPolicy: Always

restartPolicy: Always
terminationGracePeriodSeconds: 30
dnsPolicy: ClusterFirst
securityContext: {}
imagePullSecrets:

- name: harbor-woranhun-private-readonly
- name: harbor-dockerhub-proxy-readonly

schedulerName: default-scheduler
volumes:
- name: sip-loadb-config-rw

emptyDir: {}
- name: sip-loadb-config

configMap:
name: sip-loadb-configmap

strategy:
type: RollingUpdate
rollingUpdate:

maxUnavailable: 25%
maxSurge: 25%

revisionHistoryLimit: 10
progressDeadlineSeconds: 600

A.10 SIP-loadb Service

apiVersion: v1
kind: Service
metadata:

name: sip-loadb
labels:

app: sip-proxy
project: qos-based-scaling

spec:
ports:

- name: sip-loadb
protocol: UDP
port: 5060
targetPort: 5060

- name: sipmetrics
protocol: TCP
port: 9494
targetPort: 9494

- name: analyzer
protocol: TCP
port: 9101
targetPort: 9101

selector:
app: sip-loadb

clusterIP: {{.Values.Containers.SipLoadB.clusterIP}}
type: ClusterIP
sessionAffinity: None
ipFamilies:

- IPv4
ipFamilyPolicy: SingleStack
internalTrafficPolicy: Cluster
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A.11 SIP Configmap

apiVersion: v1
kind: ConfigMap
metadata:

name: sip-proxy-configmap
data:

{{- $files := .Files }}
{{- range $key, $value := .Files }}
{{- if hasPrefix "configs/sip-proxy/etc/kamailio/" $key }} {{/* only when in configs/sip-proxy/etc/

kamailio/ */}}
{{ $key | trimPrefix "configs/sip-proxy/etc/kamailio/" }}: {{ $files.Get $key | quote }} {{/* adapt

$key as desired */}}
{{- end }}
{{- end }}
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