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Kivonat

Az elosztott környezetben történő multitaszk tanulás egy meglehetősen fontos probléma
a federált tanulás területén belül. Számos gyakorlati alkalmazás során emberi vagy gépi
szakértők törekszenek különböző, de nagy mértékben korreláló feladatok (taszkok) meg-
oldására. Ez alapján teljesítményük kollaboráció bevezetésével javítható, figyelembe véve
azt, hogy privát adatkészleteiket üzleti és adatvédelmi okokból nem oszthatják meg a többi
résztvevővel. A szakirodalomban már publikált federált multitaszk megoldások az alábbi
hiányosságokkal rendelkeznek:

• A multitaszk tanuláshoz szükséges tudás transzfer sok esetben a modell paraméterek
vagy gradiensek megosztásával történik, ami nem megvalósítható olyan problémák
esetén, ahol a privacy elvek miatt a használt modell üzleti titoknak minősül.

• Egyes módszerek esetében a tudás transzfer során nincs figyelembe véve a taszkok kö-
zötti korreláció, ezzel hátráltatva a ténylegesen hasonló feladatokat tanuló modellek
közötti fokozott információ áramlást.

A félig ellenőrzött tanulás manapság is aktívan kutatott terület, melyet legfőképp a
reprezentáció tanulás során felhasználható, ingyen hozzáférhető, nagy mennyiségű, cím-
kézetlen adathalmazok felhasználása motivál. Az ismert félig ellenőrzött federált tanulási
módszerek jelentős része úgynevezett pseudo labeling technikát alkalmaz, ezzel szemben
az általunk javasolt megoldással bemutatjuk, hogyan lehet a címkézetlen adatokat a kolla-
borációban résztvevő kliensek közötti tudás megosztás megvalósítására felhasználni. Ezen
munka eredménye a FedLinked eljárás, mely az előbb említett három tématerület (fe-
derált -, multitaszk -, és félig ellenőrzött tanulás) előnyeit kovácsolja össze egy komplex
eljárás-blokk formájában, illetve képes az előbbiekben említett feltételeknek, megszorí-
tásoknak is eleget tenni. A FedLinked egy adatvédelmet megőrző, kollaboratív tanulási
eljárás, működése a résztvevő kliensek kereszthasznosságával súlyozott reprezentáció regu-
larizáción alapszik. Mivel a tanult taszkok klienspáronként nem diszjunktak, továbbá azok
hasonlósága is feladatpáronként eltér, ezért a disztilláció előtt reperezentáció átképzést is
bevezetünk, ezzel növelve a multitaszk tanulás hatékonyságát. A FedLinked eljárást kiér-
tékeljük képosztályozási problémákon, továbbá teljesítményét összehasonlítjuk multitaszk
környezetben egy FedAvg alapú módszerrel, illetve az egyszerű, nem kollaboratív tanulási
eljárással. Emellett a javasolt FedLinked eljárás részletes elemzését is biztosítjuk.
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Abstract

Multi-task learning in distributed environments is an important problem in the field of
federated learning. In many practical problems, human or machine experts try to solve
different, but highly correlated tasks, thus their performance can be improved through
collaboration, but their private datasets cannot be shared with other participants because
of business and privacy issues.

The already published federated multitask learning methods have the following deficien-
cies:

• Knowledge transfer for multitask learning is often done by sharing model parameters
or gradients, which is not feasible for problems where model parameters must be kept
secret due to privacy principles

• Many federated multitask methods does not take into account the correlation be-
tween task, which degrades the effectivity of knowledge transfer between models that
learn similar tasks.

Semi-supervised learning is also actively researched nowadays, which is motivated by the
utilization of the usually free, large set of unlabeled data in concept and representation
learning. Most of the known semi-supervised federated learning methods utilize pseudo
labeling techniques for clientwise self teaching, whereas in this paper we show how these
unlabeled samples can be utilized in the knowledge sharing of the participants (without
labeling them) during their collaboration.

We propose a method, called FedLinked, which combines the capabilities of these area
(federated, multi-task and semi-supervised learning) related algorithms in the form of a
complex solution-block and is able to cope with the above described constraints. FedLinked
is a privacy preserving collaborative learning method, which is implemented through the
regularization of representation learning based on the cross-utility of participating clients.
Since the learned tasks are not disjoint per client pair, and their similarity varies by
task pairs, we also introduced and utilize representation transormation before knowledge
distillation to increase the efficiency of multitask learning.

We evaluate FedLinked on image classification problems and compare its performance to
FedAvg based and non-cooperating clients based solutions in multi-task scenarios. Besides,
a detailed analysis of our proposed method is provided.
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Chapter 1

Introduction

Nowadays, the use of intelligent service provider devices is becoming increasingly common
both in industry and among end users. Examples include the widespread use of smart,
wearable devices, the emergence of self-driving cars or even machine learning-based ser-
vices used internally in larger companies. In many cases, the size and the diversity of
locally available training dataset proves to be a bottleneck in the performance of these
services. This motivates collaboration between machine learning systems with different
local datasets, but have the same or at least similar tasks. A major barrier to this type of
cooperation is that in most cases participants cannot share sensitive but valuable informa-
tion about their local datasets without violating certain privacy principles. The concept
of federated learning offers solutions to these problems by enabling effective collaboration
between participating clients under the orchestration of a central server, while respecting
the necessary privacy principles.

The term federated learning (FL) was introduced by [17]. The authors focused on a
federated setting with a large number of mobile devices with limited computational power
and availability. This approach has proven useful in numerous practical applications,
for example Google Gboard [7] or certain features of Android Messages. After Google
pioneered many benefits of centralised federated learning systems, the field became even
more popular. Apple’s natural language processing algorithm called "Hey Siri" also utilizes
federated learning methods. In other use cases, federated methods that utilize orders of
magnitude fewer, but more reliable clients are preferred. In such cases, larger companies,
organisations and groups of companies are seeking to apply secure collaborative learning
for example in financial risk forecasting or pharmaceutical research [21]. The FedLinked
approach, proposed in this thesis, is more suited to this type of large enterprise tasks, in
which the privacy compliance is more critical than usual.

In case of several problems, clients participating in federated learning have to solve dif-
ferent tasks, which may correlate more or less. Therefore multi-task learning (MTL)
approaches [4] can be useful in these federated learning scenarios. Researches in medical
imaging [15] is an example, where collaboration is desirable, however HIPAA is regulating
the use and protection of health information.

In certain cases, where sufficient amount of data is available, labelling them can still
be an expensive task in terms of time and resources. To solve these type of problems,
semi-supervised learning(SSL) solutions [24] help to improve the performance of machine
learning models by using all the labeled and unlabeled data. To the best of our knowl-
edge, not many published methods are available at the intersection of these three areas
(federated learning, multi-task learning, semi-supervised learning), despite the many prac-

1



tical applications mentioned above. In this thesis we propose a method called FedLinked,
that combines the capabilities of these area related algorithms in the form of a complex
solution-block. The proposed method is designed to be efficient for federated multitask
learning problems where neither datasets nor model parameters can be shared due to strict
privacy rules. Beside utilizing the whole solution, each component of FedLinked can be
used separately for collaborative learning tasks.

The remainder of this thesis is organized as follows: Section 2 briefly overviews related,
commonly used federated, multi-task and SSL approaches, highlighting their advantages
and shortcomings. In Section 3 we present our proposed method - FedLinked - and all of its
components. Section 4 contains the description of datasets and models we use to evaluate
FedLinked. Section 5 provides the description of our experiments including comparison
between FedLinked and other approaches and a detailed analysis of the experimental
result. In Section 6 we provide an ablation study, where impact of the main components
are examined in terms of model performance. Finally the concluding remarks are presented
in Section 7.
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Chapter 2

Related work

2.1 Cross-device versus cross-silo federated learning

Two well-known and widely used federated learning schemes are Cross-device and Cross-
silo federated learning. The main characteristics of the Cross-device training process are
the following:

• A large number (up to 1010) of low-performance clients (usually mobile or IoT de-
vices) train a central model to solve certain problems (usually computer vision,
natural language processing or sensor data analysis)

• Each client has its own local, private dataset and cannot access the private data of
other clients

• A central server controls the federated learning process, but it does not see the
private datasets of the clients.

• Clients are highly unreliable: a large proportion of participants (even more than
5%) may become unavailable during a learning round1 (e.g. due to a power or mains
failure power problems).

In contrast to Cross-device FL, the main features of the Cross-silo FL setting are the
following:

• Typically 2 to 100 clients are involved in the learning process. These clients are
mostly large companies or organisations (e.g. medical or financial) or geo-distributed
datacenters.

• Each client trains the central model on an isolated, relatively large local dataset
(data silo).

• Similar to the Cross-device FL, the process is controlled by a central server.

• Unlike in Cross-device FL, the relatively small number of clients are reliable, failures
or drop outs during training are rare.

1In the centralised case, a learning round is a sequence of steps during which clients perform a few
epochs of local training and exchange information with the central controller (or, in the decentralised case,
between each other)
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Note that these two FL schemes are only two of the relatively commonly used methods,
but there are a number of other approaches. The FedLinked method we propose has
mostly the characteristics of the Cross-silo FL scheme.

2.2 Fully decentralized / Peer-to-peer learning

In the previously presented Cross-device and Cross-silo FL environments, a central con-
troller (server) manages the whole federated learning and at the end of the training process
it stores the model collaboratively trained by the clients. However, there are applications
where it is not justified or even feasible to have a central server: it can potentially be a
single point of failure or bottleneck for a large number of participating clients. In addi-
tion, in some cases, due to privacy principles and data security issues, it is not allowed
for an external partner (the server itself) to be involved in the learning process. These
constraints can also arise even in such federated multitasking problems (for which we pro-
pose a solution by FedLinked), where the participating clients collaboratively train each
other’s model, but locally each client’s tasks differ (even in number), so the goal is not to
build a global model, but to improve the performance of each local model, with as little
information sharing as possible.

Fully decentralised learning (e.g [11], [20]) helps with problems where clients need to com-
municate directly with each other. To increase efficiency, this communication/information
sharing does not necessarily need to happen between every client pair.

It is worth noting that even in decentralised case, it may sometimes be necessary to use a
central controller at the beginning of the process to calibrate the clients, e.g. to determine
which specific algorithm and what hyperparameter values the clients should use or which
client pairs should exchange information, etc.

2.3 Preserving the privacy of client data

Federated learning involves the sharing of information between clients or between client
and server in order to make collaboration effective. This must be done in a way that
takes into account all the privacy principles regarding the local client data and model
parameters, i.e. no sensitive information should be shared.

As the FL process involves multiple participants, the vulnerability of the system increases.
There may be a case where a client’s device is compromised by an attacker and the
messages received from the server are leaked. Similarly, data stored on the server (including
model or client data) can fall into unauthorised hands. This raises a key question for
federated learning: How to achieve effective collaboration without clients sharing their
private data and without the trained model(s) falling into unauthorized hands?

Many federated ([17], [12]) and federated multitask [22] solutions have been published in
the literature that use various methods to protect the privacy of data stored by clients dur-
ing collaboration, but to the best of our knowledge, there are very few federated multitask
learning methods that can provide efficient collaboration without sharing either private
training data or local model parameters. As it was mentioned earlier in the introduction,
our proposed FedLinked method is designed to be efficiently applicable even to those kind
of federated multitask learning problems where sharing private datasets or model param-
eters is not possible. Additionally, in our case, the clients can use networks with different
architecture as well.
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2.4 Commonly used federated learning algorithms

One of the most widely used methods in the field of federated learning is FedAvg [17].
This approach provides a solution to typical federated learning problems where the goal
is to train a single global model in a distributed manner on the local (private) datasets of
participating clients. In each learning round, each client first optimizes an instance of the
current global model on their own datasets, then the updated parameters are averaged to
form the updated global model on the coordinating server. Algorithm 1 summarizes the
main steps of FedAvg according to [17].

Algorithm 1 Federated Averaging (FedAvg)
Server executes:

1: initialize x0
2: for t = 1, 2, ..., T do
3: St ← (random set of M clients)
4: for each client i ∈ St in parallel do do
5: xi

t+1 ← ClientUpdate(i, xt)
6: end for
7: xt+1 ←

∑M
k=1

1
M xk

t+1
8: end for

ClientUpdate(i, x):
for j = 1, ..., K do

2: x← x− η∇xf(x; z), where z ∼ Pi

end for
4: return x

This algorithm has proven to be quite useful for many cross-device problems [6], but
it cannot be used in certain cases where sharing local gradients is not possible due to
privacy reasons, or each client trains an individual model on non-IID datasets. A possible
solution to this kind of problem is provided by FedMD [12] method. After training each
client’s local model to convergence on their local and public datasets, this algorithm uses
knowledge distillation [8] by computing class scores on the public dataset and sending the
result to the coordinating server in each round of federated learning. The average of the
class scores (also called consensus) is used by each client for further fine tuning. Algorithm
2 summarizes the main steps of FedMD according to [12].
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Algorithm 2 FedMD
Input: Public dataset D0, private datasets Dk, independently designed models fk, k =
1, ..m
Output: Trained model fk

1: Transfer learning: Each client trains fk to convergence on the public D0 and then
on its private Dk datasets.

2: for t = 1, 2, ..., P do
3: Communicate: Each party computes the class scores fk(x0

i ), x0
i ∈ D0 on the

public dataset, and transmits the result to a central server
4: Aggregate: The server computes an updated consensus, which is an average:

f(x0
i ) = 1

m

∑
k fk(x0

i ).
5: Distribute: Each client downloads the updated consensus f(x0

i ).
6: Digest: Each client trains its model fk to approach the consensus f on the public

dataset D0.
7: Revisit: Each client trains its model fk on its own private data for a few epochs..
8: end for

One advantage of this method is that it provides a higher generalization capability for
local models than separated learning. On the other hand, it is not adequate in many
cases, when different clients learn different tasks. Our proposed method can handle these
cases by estimating utility scores between different clients learning different tasks.

2.5 Multitask learning methods

Regarding multitask learning, we mainly overview methods used in computer vision, since
in this thesis we present the practical application of the FedLinked method on image
processing problems. Multitask machine learning architectures mostly partition the ar-
chitecture of the models into two main components: task-specific and shared component.
This partitioning is done in a way that assures better generalization ability through shar-
ing, while minimizing negative transfer. A survey by [5] summarizes several approaches
based on this principle, the first being the shared trunk or hard parameter sharing method
(Figure 2.1).

Figure 2.1: Hard parameter sharing structure [25]

In shared trunk architectures a global feature extractor shared with all tasks is followed
by an individual output branch for each task. The use of this concept appears in several
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MTL related publications (e.g. [13]), but it is difficult to integrate into federated learning
environments, where the same feature extractor is not necessarily optimal for all clients
due to differences in tasks. Unlike Shared-trunk, the Cross-talk (soft parameter sharing)
approach has separate networks for each task, with information flow between parallel layers
in the task networks, referred to as cross-talk. An example of the Cross-talk architecture
can be seen on Figure 2.2.

Figure 2.2: Cross-talk (soft parameter sharing) structure [25]

[18] provides one possible implementation of Cross-talk approach. Like FedLinked, this
approach is able to take into account the similarities between tasks, thus increasing the
effectiveness of collaboration. The other MTL methods mentioned by [5], such as Predic-
tive Distillation or Task Routing, are not feasible in federated schemes since they produce
output for multiple tasks from the same given input. Further general MTL approaches
are described by [26]. Feature learning approaches are based on the following hypothe-
sis: if models share their internal representation among themselves and work together to
form a common representation that carries information about all of the tasks, then this
potentially can improve the generalization capability of each model on their local tasks
(by modelling the data manifold more accurately). In federated learning environment this
idea is realized by the previously mentioned FedMD algorithm. One disadvantage of Fea-
ture Learning is assuming that all tasks are similar to each other, which is often not the
case, especially in distributed systems. In contrast, Task Relation Learning approaches
(e.g. [3]) seek to identify similarities between tasks and use this information for collab-
oration. All the methods overviewed by [26] estimate the similarity of each task based
on the datasets associated with them. However, this is not always feasible due to privacy
reasons. Another possible federated multitask learning approach is MOCHA [22], which
also takes into account the similarity of the tasks during collaboration, but it has the fol-
lowing disadvantages: the method assumes that every client learns only one task, however
in our use case, every client may learn multiple tasks. Additionally this method violates
important privacy principles, because it estimates task similarities based on shared model
parameters.

Our proposed method seeks to overcome the aforementioned weaknesses of these ap-
proaches by realizing a privacy preserving federated multitask learning scheme.

2.6 Semi-supervised learning algorithms

Utilizing the non-labeled training data in image classification problems can also increase
the performance of the solution (also in federated environments). [2] describes a possible
application of semi-supervised learning in a federated learning environment. The authors
propose the use of pseudo-labeling technique to increase the size of local datasets on client
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side, thus creating a more robust global model. Another approach [14] locally optimizes
the joint loss function calculated from both labeled and unlabeled data using the well-
known Mean Teacher [23] SSL technique. Just like FedSem, this method aggregates the
learned parameters by clients to form the updated global model. The proposed FedLinked
differ from these approaches in the way of utilizing the unlabeled data. It uses a global,
unlabeled dataset directly to share knowledge between the clients, which is critical in order
to preserve the privacy of the local datasets. Finally, we highlight the Distillation-based
DS-FL method [9] which, similarly to FedMD, computes global logits by aggregating the
logits computed by clients on unlabeled data. The authors propose a new logit aggregation
method, called Entropy Reduction Aggregation (ERA). DS-FL approach assumes that
clients learn identical tasks on data sets not necessarily from an i.i.d. distribution. In
contrast, FedLinked estimates which tasks might be useful to others and does not even
require that these tasks produce same output on the same input.

8



Chapter 3

Proposed method

In this section, we first give a formal definition of the federated multitasking problem set
that is the motivation of the proposed FedLinked method. After this, the proposed method
is described (with theoretical background aspects and the implementation considerations).

3.1 Problem definition

The proposed FedLinked algorithm realizes collaboration in a federated environment be-
tween separate local models which learn similar or eventually identical, overlapping tasks,
and estimates the similarities between them. In order to formally define this problem and
describe our proposed solution, we first introduce the following notations:

• K: Number of clients participating in collaboration

• X(i) = {(x(i)
j , d

(i)
j )} : Private, local dataset of the ith client. x

(i)
j denotes the jth

input data and d
(i)
j is the corresponding output label.

• X(0) = {x(0)
j } : the public, global, unlabeled dataset (available to all participants).

It is used during collaborative representation regularization.

• θi : Parameters of the ith client.

• f (r)(·, θ) : Representation of the input data as a function of θ parameters immediately
after applying the feature extractor layers. The size of this representation vector
must be the same for all clients1.

• Ak,j : Utility of the kth client with respect to the jth client. These client-pair specific
weights determine the regularization of representations in the collaborating phase.

• f∗
i (·) : Regularizer representation of the ith client calculated from the representations

and the utility of other clients with respect to the ith one.

The subtasks to be solved: determining initial θi parameter vectors in function of X(i)

datasets; based on f (r)(X(0), θi) representations, estimating matrix A and finally using all
these representations and utility values to find the optimal θi parameters of all the local
models.

1θi parameter codes the structure of the i-th client too, but these structures are fixed during training.
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3.2 Structure of FedLinked method

FedLinked realizes collaborative learning in multi-task environment through the regular-
isation of the representations of the participants (by utilizing the cross-utility between
them). During regularisation, clients who learn correlating tasks, have a greater influence
on each other’s representations. This collaboration is realised in a way that neither the
client’s private data, nor their parameter vectors, nor the list of the learnt tasks need to
be shared with the server or other clients.

Collaborative learning consists a series of learning rounds. One learning round has two
main phases: training local models on their private datasets and representation regu-
larization by the public dataset based on the cross-utility coefficients estimated by the
coordinating server. The steps performed during one learning round in FedLinked frame-
work can be seen on Figure 3.1: firstly, clients train local models separately and send
f (r)(X(0), θi) representation vectors to the server, which updates the cross-utility coeffi-
cients. Based on these coefficients and public representations, the server determines and
sends the proposed representations client-wise, which is then approximated locally during
regularization step.

Figure 3.1: FedLinked framework

In the remainder of this section, we describe in detail all the components of a learning
round.

3.3 Representation regularisation, cross-utility estimation

The central component of FedLinked is the task utility-based knowledge distillation real-
ized by representation regularization. This component assumes that collaborating models
with similar tasks should use similar representations in order to achieve better gener-
alisation capability (by better modelling common parts of the data manifolds) beside
minimising local train loss. The estimation of the cross-utility values, the representation
regularization and local training is done by minimizing the following objective function:

L(A, {θi}) =
∑
k ̸=j

∑
x∈X(0)

Ak,j · ∥f (r)(x, θk)− f (r)(x, θj)∥22 + β
∑

j

loss(f, θj , X(j))

+ γ
∑

j

∥θj∥22

subject to:
∑
k ̸=j

A2
k,j = η : ∀j

(3.1)
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Optimization of the objective function L is done in function of the primal variables : θj

and {Ak,j}k ̸=j for ∀j, k ∈ 1, K. The first term of the objective function is responsible for
cross-utility estimation and for representation regularization. Intuitively, when Ak,j takes
a high positive value, the distance of the representations supposed to be smaller, since the
two models are presumably learning tasks which requires similar representations.

The second term represents the local supervised learning, during which clients minimize
their own loss function on their private, labeled datasets. The experiments presented in
the next section were carried out on classification problems, thus using Categorical-Cross
Entropy loss function as the second term of the object function.

Finally an L2 regularisation term is included in order to control the complexity of the local
models. By setting the value of β and γ, the weight of local training and L2 regularization
can be controlled.

The constraint
∑

k ̸=j A2
k,j = η , ∀j is used to control the values of cross-utility coefficients.

Therefore the value of η specifies the strength of representation based regularization (thus
the collaboration).

As in many federated learning algorithms, FedLinked uses Alternating Optimization (AO)
in order to minimize the first term and last two terms of the objective function. This
approach has the advantage that clients do not have to share their private data with the
server, since the optimization can be done locally, while the determination of the cross-
utility coefficients is done by the server. The first phase of alternation (optimizing the
first term) is also done in two steps using block coordinate descent optimization: first
optimizing it in function of cross-utility matrix A, using θj parameters computed in the
previous iteration, then optimizing only over θj for ∀j ∈ {1, K} (considering Ak,j as
constants) .

The practical implementation of the main component of FedLinked is carried out by per-
forming the following steps:

0. Pre-training of all models on their private, labeled datasets. This is equivalent to
optimising the second term of the objective function for all clients.

1. Each client sends its representations computed on the public data points to the
server:

α(j, x) = f (r)(x, θj) : ∀x ∈ X(0),∀j (3.2)

2. Given the public representations, the server performs the first step of representation
based collaboration to estimate cross-utility coefficients:

{Ak,j}∗ = arg min
Ak,j

∑
k ̸=j

∑
x∈X(0)

Ak,j · ∥α(k, x)− α(j, x)∥22

subject to:
∑
k ̸=j

A2
k,j = η : ∀j

(3.3)

The minimization of the squared distance of the representations can be approximated
by maximizing their inner product (Equation 3.4) if the deviation of the norm of
the representation vectors is small. Therefore we introduced the L2 regularization
of the parameter vectors for this purpose.
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min .−
∑
k ̸=j

∑
x∈X(0)

Ak,j · ⟨α(k, x), α(j, x)⟩

subject to:
∑
k ̸=j

A2
k,j = η , ∀j

(3.4)

Based on this observation, the optimal value of cross-utility coefficients ({Ak,j}∗) can
be approximated in closed form using Lagrange duality. Considering the condition∑

k ̸=j A2
k,j = η : ∀j, the solution of the optimization problem is as follows:

{Aj,k}∗ =
∑

x∈X(0)⟨α(j, x), α(k, x)⟩√
(
∑

u̸=v(
∑

x∈X(0)⟨α(u, x), α(v, x)⟩)2)/η
(3.5)

3. Given the current representations and the utility coefficients, clients locally perform
the second step of the representation based collaboration. In order to avoid any kind
of privacy violation, for each client j, the server sends the client-wise regularizer
representation f∗

j (X(0)) =
∑

k ̸=j
(Ak,j ·α(k,X(0)))∑

k ̸=j
(Ak,j) in one step instead of sending cross-

utility matrix A and representation matrices (α(k, X(0)) : ∀k ̸= j) one by one.
Therefore the jth client optimizes the following function:

{θj}∗ = arg min
θj

∥f (r)(X(0), θj)− f∗
j (X(0))∥22 (3.6)

4. Finally, the second phase of alternating optimisation, the local supervised learning
takes place. Then the next learning round begins with step 1.

These steps are consistent with the process shown on Figure 3.1. Note that the sign of
the cross-utility coefficients can be negative, which can be exploited if the representation
vectors can contain negative activations. If representation vectors are non-negative, then
the optimal Aj,k coefficients are definitely non-negative.

3.4 Transforming representations

In practice, the tasks learned by clients are not necessarily disjoint, and their similarity
also varies from task pair to task pair. For this reason, a direct comparison of the repre-
sentations computed by different models may not be informative (e.g. it is possible that
the ith activation of one client’s representation matches with the jth activation of another
client’s representation, where i ̸= j). For this reason, we propose an algorithm to trans-
form between representations of client pairs before performing knowledge distillation. A
linear transformation can be applied on representation vectors, where multiplication by
the matrix Bk,j transforms representation of the kth client for the jth client. Using this
transforming component, the objective function in Equation 3.1 is modified as follows:
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L(A, {θi}) =
∑
k ̸=j

∑
x∈X(0)

Ak,j · ∥Bk,j · f (r)(x, θk)− f (r)(x, θj)∥22 + β
∑

j

loss(f, θj , X(j))

+ γ
∑

j

∥θj∥22

subject to:
∑
k ̸=j

A2
k,j = η : ∀j ; BT

k,j ·Bk,j = I : ∀k ̸= j

(3.7)

The constraint BT
k,j ·Bk,j = I ensures that the norm of the representation vectors are not

changed by the transformation. The optimal transformation matrices maximize Equa-
tion 3.8, since the maximum of the cross-similarity coefficients can only be obtained for
solutions which maximize Eq. 3.8.

{Bk,j}∗ = arg max
Bk,j

∑
k ̸=j

∑
x∈X(0)

⟨Bk,j · f (r)(x, θk), f (r)(x, θj)⟩ (3.8)

Using the definition of the trace of a matrix, the expression can be rewritten as:

∑
x∈X(0)

⟨Bk,j · f (r)(x, θk), f (r)(x, θj)⟩ =
∑

x∈X(0)

trace(Bk,j · f (r)(x, θk) · f (r)(x, θj)T )

= trace(Bk,j ·
∑

x∈X(0)

f (r)(x, θk) · f (r)(x, θj)T )
(3.9)

Let Rk,j =
∑

x∈X(0) f (r)(x, θk) · f (r)(x, θj)T , furthermore let (Γk,j · Λk,j · ΦT
k,j) and (Uk,j ·

Sk,j · V T
k,j) be the singular value decomposition of matrices Bk,j and Rk,j respectively.

Equation 3.9 can then be further modified as follows:

trace(Bk,j ·
∑

x∈X(0)

f (r)(x, θk) · f (r)(x, θj)T ) = trace(Bk,j ·Rk,j)

= trace((Γk,j · Λk,j · ΦT
k,j) · (Uk,j · Sk,j · V T

k,j))
(3.10)

Therefore, using the cyclic property of the trace operator and the orthonormality of the
matrices in SVD decomposition, the optimization problem is equivalent to the following:

arg max
Γk,j ,Λk,j ,Φk,j

trace(Sk,j · V T
k,j · Γk,j · Λk,j · ΦT

k,j · Uk,j)

subject to: ΓT
k,j · Γk,j = I, ΦT

k,j · Φk,j = I, Λk,j = I)
(3.11)

If S is diagonal and all of its elements are non-negative, then for a given matrix X, the
value of trace(S · X) =

∑
i S(i,i) · X(i,i) will be maximal if the elements on the principal

diagonal of X are maximized.

Furthermore, due to the constraints of the optimization, V T
k,j · Γk,j and ΦT

k,j ·Uk,j are also
orthonormal matrices. We need to maximize the principal diagonal of their multiplications,
which implies the choice Λk,j = I, taking the BT

k,j ·Bk,j = I constraint into account.
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Then the matrix V T
k,j · Γk,j · Λk,j · ΦT

k,j · Uk,j is also orthonormal, with the elements on its
principal diagonal being maximal if V T

k,j · Γk,j · Λk,j · ΦT
k,j · Uk,j = I. This is satisfied if

Γk,j = Vk,j , Φk,j = Uk,j .

Thus the optimal transformation matrix can be expressed as follows:

Bk,j = Vk,j · I · UT
k,j = Vk,j · UT

k,j

where Vk,j and Uk,j matrices are calculated from the SVD decomposition of R matrix
(3.12)

This component can be easily incorporated into the algorithm presented at the end of
Section 3.3 by performing the following steps:

0. Pre-training of all models on their private, labeled datasets. This is equivalent to
optimising the second term of the objective function for all clients.

1. Each client sends its representations computed on the public data points to the
server (Eq. 3.2).

2. Given the public representations, the server computes the transformation matrix
and transformed representations:

Rk,j =
∑

x∈X(0)

α(k, x) · α(j, x)T = Uk,j · Sk,j · V T
k,j

Bk,j = Vk,j · UT
k,j

α(k, j, x)′ = Bk,j · α(k, x) , ∀x ∈ X(0),∀k, j , k ̸= j

(3.13)

3. The server estimates cross-utility coefficients based on the transformed representa-
tions:

{Aj,k}∗ =
∑

x∈X(0)⟨α(j, x), α(k, j, x)′⟩√
(
∑

u̸=v(
∑

x∈X(0)⟨α(u, x), α(v, u, x)′⟩)2)/η
(3.14)

4. Given the regularizer representations, clients locally perform the second step of the
representation based collaboration (similarly to Eq. 3.6 but f∗

i (X(0)) is determined
from the transformed representations).

5. Finally, the second phase of alternating optimisation, the local supervised learning
takes place. Then the next learning round begins with step 1.

Note that it can be also shown, that the optimization of B matrices can be done separately
from the optimization of A matrix.

3.5 Further modifications for enhance performance

Let the representation trunk of a model be the set of those layers that produce the rep-
resentations used in the collaboration, and similarly let task-specific layers be those that
produce output from representation. Right after representation regularization, the upper
layers still reflect the state after the last local learning, in contrast to the lower layers. In
order to resolve this kind of inconsistency, we propose fine-tuning of the upper layers after
representation regularization. During fine-tuning, the lower layers are frozen and only the
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upper layers are trained on private dataset, then the final step of learning round - the
local supervised learning - takes place on the unfrozen network.

Furthermore, to avoid overfitting, the use of early stopping during local supervised learn-
ing is recommended. Similarly, for all clients, we propose the use of a so-called rollback
component during collaborative learning. Applying this component means performing the
following steps: at the end of each learning round, the models are evaluated on their
validation dataset and after the last learning round, the best performing parameters are
back-loaded. The main purpose of rollback is that if a client stops benefiting from the
collaboration after a certain number of rounds, it can still preserve its best performing pa-
rameters achieved during the federated learning without actually leaving the collaboration
(which might have a negative impact on other participants).

Algorithm 3 summarizes the steps of the FedLinked procedure involving all components.

Algorithm 3 FedLinked
Input: Public dataset X(0), private datasets Xi, independently designed models ci ,
i = 1, ..K

Output: Trained models ci

1: best_round_accuracyi ← 0, ∀i = 1, 2, ..., K
2: Each client pre-trains ci to convergence on their private Xi datasets.
3: for r = 1, 2, ..., Rounds do
4: for j = 1, 2, ..., K do
5: α(j, X(0))← f (r)(X(0), θj)
6: end for
7: for j, k = 1, 2, ..., K, j ̸= k do ▷ first step of representation regularization
8: Rk,j ←

∑
x∈X(0) α(k, x) · α(j, x)T

9: Uk,j · Sk,j · V T
k,j ← Rk,j

10: Bk,j ← Vk,j · UT
k,j

11: α(k, j, X(0))′ ← Bk,j · α(k, X(0))

12: {Aj,k}∗ ←
∑

x∈X(0) ⟨α(j,x),α(k,j,x)′ ⟩√
(
∑

u̸=v
(
∑

x∈X(0) ⟨α(u,x),α(v,u,x)′ ⟩)2)/η

13: end for
14: for j = 1, 2, ..., K do ▷ second step of representation regularization

15: f∗
j (X(0))←

∑
k ̸=j

(Ak,j ·α(k,j,X(0))′ )∑
k ̸=j

(Ak,j)

16: {θj}∗ ← arg minθj
∥f (r)(X(0), θj)− f∗

j (X(0))∥22
17: end for
18: Fine-tuning of the task-specific layers for each ci on Xi

19: Each client locally trains its model (updates the whole θi parameter vectors)
on Xi for a few epochs (with early stopping). ▷ 2nd phase of AO

20: for j = 1, 2, ..., K do
21: round_accuracyi ← evaluate(ci)
22: if round_accuracyi ≥ best_round_accuracyi then:
23: save_model(ci)
24: endif
25: end for
26: end for
27: for i = 1, 2, ..., K do ▷ Rollback
28: ci ← load_saved_model(i)
29: end for
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Chapter 4

Datasets and learning environment

In this section, we briefly introduce the datasets and learning environment used to evaluate
FedLinked.

4.1 Datasets

Each experiment is evaluated on both the CIFAR10 [10] image and the Street View House
Numbers (SVHN) image classification datasets [19]. Both are divided in the following
way: 25% of the samples are selected into the public dataset, while the remainders are
partitioned between the three clients in a balanced, but not i.i.d. way. Each client has a
train, two validation (for local early stopping and rollback) and test datasets (which are
disjoint).

Table 4.1 shows numerical statistics on the partitioning of both datasets among clients.
Columns Val_ES and Val_RB contain statistics about the validation sets used for local
early stopping and rollback respectively. The datasets are distributed so that each data
point is assigned to at most one client. Therefore the size of training datasets is reduced
but due to this partitioning, the effect of knowledge transfer is not biased by same data
points during the collaboration.

Table 4.1: Number of samples after splitting the datasets

Train Val_ES Val_RB Test Public
CIF10 SVHN CIF10 SVHN CIF10 SVHN CIF10 SVHN CIF10 SVHN

M0 4374 5450 600 748 486 606 540 673
5500 9474M1 3280 5918 450 812 365 658 405 731

M2 4374 9346 600 1283 486 1039 540 1154

4.2 Task partitioning among clients

During each experiment, three clients are trained. Both examined datasets consist of data
points from 10 different classes. These are:

• CIFAR10: airplane, automobile, bird, cat, deer, dog, frog, horse, ship, truck

• SVHN: All the 10 digits
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Our goal is to divide these tasks in a few-partner federated learning setting so that each
of the groups listed below includes at least one client-pair:

• client-pairs learning tasks whose representations might be useful to each other (in
our case M0-M1 client-pair meets these conditions)

• client-pairs learning tasks for which the distance between their representation vectors
is relatively large (in our case M0-M2 and M1-M2 client-pairs meet these conditions)

This kind of task partitioning allows us to examine the extent to which the FedLinked pro-
cedure can improve the performance of local models under varying degrees of correlation
between tasks learned by client-pairs. Furthermore, it might help to answer the question
of how the cross-utility of the tasks’ representations are related to the similarities between
the tasks estimated by human intuition.

In order to obtain an appropriate task partitioning that meets the above criteria, the
following steps are carried out:

1. We train models on the full CIFAR10 and SVHN datasets for all tasks. The archi-
tecture of these models is the same as described in Section 4.3 for both datasets.

2. The high dimensional representation vectors obtained on the last hidden layers of
the trained models are projected into a two dimensional subspace using the dis-
tance preserving UMAP [16] algorithm. The resulting projections can be seen on
Figure 4.1.

3. Based on the two-dimensional projections, we identify the task-groups to which the
models have assigned similar (spatially close to each other) representations and use
these groups to construct the desired partitioning. Table 4.2 shows the resulting
partitioning.

On Figure 4.1/a, it can be observed that the representations of the vehicle-related tasks are
close to each other (especially car - truck and airplane - ship pairs). The similarity between
the representations of horse and deer and between dog and cat is also spectacular. Also
for the SVHN dataset, it can be seen on Figure 4.1/b that the representations of the 7-1,
3-5, 6-8 task-pairs are quite close. These results, besides helping to determine the desired
task partitioning, suggest that in case of the examined datasets, the spatial distance of
the representation vectors is correlated to the cross-similarities between tasks determined
by human intuition.
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(a) CIFAR10 (b) SVHN

Figure 4.1: Distance preserving 2D projections of representations of the whole dataset
learned by one model

Based on the analysis above, for both datasets we can partition the tasks so that M0
and M1 clients learn more similar tasks based on both human interpretation and inner
representation similarities, while the M2 client learns more distinct tasks (Table 4.2).

Table 4.2: Task partitioning

M0 M1 M2
CIFAR10 cat, deer, dog, horse cat, deer, frog airplane, automobile, ship, truck

SVHN 0, 5, 6, 9 0, 3, 6, 8 1, 2, 4, 7

4.3 Model architecture and hyperparameter optimization

The local clients are simple CNNs. A convolution block is the sequence of the following
layers: convolutional layer, ReLU, convolutional layer, ReLU, Maxpooling, Dropout. The
representation trunk of a client consists of b convolution blocks and one linear layer with r
neurons, while the task-specific layers are composed of another linear layer and a softmax
non-linearity. Another dropout layer is applied right before the output layer, with a
different dropout rate (pl) from the one utilized in the convolution blocks (p). In a given
block, both convolution layers contain the same number of 3x3 size filters, while the number
of filters in the i-th block is c·2i−1. For both datasets, the values of b, r, c, dropout rates p, pl

and other hyperparameters (η, number of epochs, batch size, learning rates) of FedLinked
procedure were determined using the Optuna automatic hyperparameter optimiser [1].

The following are required for automatic hyperparameter optimisation with Optuna:

• A scalar metric to evaluate the training for given hyperparameter values. In our
case, this metric is the average of the validation accuracy scores achieved by each
client.

• A bounded interval for all hyperparameters. During the optimization, Optuna tries
to find the best values for each parameter from these intervals. Table 4.3 shows the
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upper and lower bounds of the intervals we used to optimize the hyperparameters
mentioned above.

Table 4.3: Upper and lower bounds of intervals examined during hyperparameter opti-
mization

CIFAR10 SVHN
Min Max Min Max

Nr. blocks (b) 1 4 1 4
Repr. size (r) 64 512 32 256

First channel (c) 8 128 8 64
Dropout (p) 0.0 0.8 0.0 0.8

Last dropout(pl) 0.0 0.8 0.0 0.8
Etha (η) 0.8 3.0 0.8 3.0

Batch ratio 0.008 0.12 0.008 0.12
Local epochs 1 20 1 20
Init. epochs 1 40 1 40
Dist. epochs 1 60 1 60

Finetune epochs 1 20 1 20
Rounds 3 12 3 12

Learning rate 0.0001 0.01 0.0001 0.01

For the robustness of the optimization, 3 different training were performed for each set of
hyperparameter values chosen by Optuna. Of these three training, the one achieving the
lowest average accuracy score is used to evaluate the given hyperparameter setting.

In the following experiments, we compare the performance of FedLinked with two other
learning schemes: a FedAvg-based method (see Section 5.3) and a fully separated learning
(see Section 5.2). Table 4.4 contains the hyperparameter values obtained as a result of the
described Optuna optimization algorithm for all three methods and for both datasets.

Note that, in order to reduce runtime, the optimization is performed in two steps: first,
for both datasets, we optimize the parameters that define the model architectures (b, r, c,
p, pl), and then for each dataset - method pair, we optimize the training hyperparameters
(number of rounds and epochs, learning rate, batch ratio).
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Table 4.4: Optimal values of the hyperparameters

CIFAR10 SVHN
FedLinked FedAvg Sep. FedLinked FedAvg Sep.

Nr. blocks (b) 3 3 3 3 3 3
Repr. size (r) 256 256 256 128 128 128

First channel (c) 64 64 64 16 16 16
Dropout (p) 0.36 0.36 0.36 0.24 0.24 0.24

Last dropout(pl) 0.79 0.79 0.79 0.35 0.35 0.35
Etha (η) 2.97 - - 2.22 - -

Batch ratio 0.02 0.03 0.03 0.11 0.01 0.01
Local epochs 17 13 20 18 20 14
Init. epochs 19 16 24 30 16 15
Dist. epochs 18 - - 48 - -

Finetune epochs 13 8 - 15 20 -
Rounds 7 9 10 11 10 10

Learning rate 2e-4 4e-4 2e-4 3e-3 4e-4 4e-4

Parallel plots on Figures 4.2 and 4.3 show the performance of the different hyperparam-
eter settings tested during the optimization of the training hyperparameters. The higher
the average accuracy of a parameter setting, the darker the corresponding line on the
parallel plot. For both datasets, the hyperparameter setting with the highest accuracy is
highlighted in red. However, it can also be observed in both plots that several different
hyperparameter settings can result in high accuracy values. It should be also noted that
the parameters of the best setting are never in the upper or the lower limit, therefore this
validates the chose of the examined possible intervals of the value of these parameters.
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Figure 4.2: Performances with different hyper-parameter settings on CIFAR10 dataset:
from left to right the columns show the accuracy on the validation dataset,

the batch ratio, the number of the distillation epochs in ratio of local
epochs, the value of etha, the number of fine tuning epochs in the ratio of

the local epochs, the number of initialization epochs in the ratio of the
local epochs, the number of local epochs, the learning rate, and the number

of rounds. The red curve corresponds to the optimal values.

Figure 4.3: Performances with different hyper-parameter settings on SVHN dataset
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Chapter 5

Experiments and analysis

In this chapter we present the experiments used to evaluate and examine the proposed
FedLinked procedure and we also provide a detailed analysis of the results.

5.1 Utility coefficients

In this experiment, the FedLinked method is used to collaboratively train three participat-
ing clients, and at the end of the collaboration (after 7 and 11 learning rounds respectively
for CIFAR10 and SVHN), the resulting utility coefficients are examined for each client pair.

The results of this experiment are shown in Tables 5.1 and 5.2 for both CIFAR10 and
SVHN datasets. In case of both datasets, it can be observed that M2 proved to be less
useful for the other models, while M0 and M1 assigned mutually high utility values to each
other. Furthermore, for M2, M1 proved to be slightly more useful than M0. As mentioned
in the previous section, the tasks were split among clients in a way that the tasks learned by
M0 and M1 were similar, including even common tasks. In this experiment, this similarity
is also reflected in the value of the utility coefficients, especially in case of SVHN dataset.
Nevertheless, it is important to note that the human intuition based ranks of the task
similarities can highly differ from the utility coefficients based ranks depending on the
given dataset and models.

Table 5.1: Utility coefficients - CIFAR10

M0 M1 M2
M0 - 2.4278 1.7167
M1 2.3064 - 1.8767
M2 1.9505 2.2444 -

Table 5.2: Utility coefficients - SVHN

M0 M1 M2
M0 - 1.8632 1.2092
M1 1.8075 - 1.2910
M2 1.4937 1.6439 -

5.2 Federated versus separated learning

The goal of this experiment is to compare the performance of FedLinked with fully sep-
arated learning, where clients do not use the unlabeled, public X(0) dataset and do not
collaborate at all. Since the optimal number of learning rounds is different for federated
and separated learning, we consider the local test accuracy of each client after the first,
middle (chronologically) and last learning rounds in both cases.
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The results of this experiment are shown in Table 5.3. Each field contains the mean and
standard deviation of client-wise test accuracy values calculated from multiple runs. It
can be seen that, at all stages of training, models trained with FedLinked outperform the
ones trained separately. The performance of models learning similar tasks (M0 and M1)
clearly increases due to collaboration, but even M2 - learning highly different tasks from
those of other models - benefits from FedLinked method on the CIFAR10 dataset.

Table 5.3: Federated learning compared to separated learning

First round Middle round Last round
Federated Separated Federated Separated Federated Separated

CIFAR10
M0 0.74± 0.017 0.71± 0.012 0.76± 0.011 0.71± 0.015 0.76± 0.013 0.73± 0.013
M1 0.83± 0.015 0.82± 0.021 0.85± 0.021 0.83± 0.019 0.86± 0.017 0.839± 0.021
M2 0.88± 0.013 0.86± 0.011 0.89± 0.007 0.86± 0.024 0.89± 0.005 0.87± 0.013

SVHN
M0 0.94± 0.006 0.94± 0.003 0.95± 0.003 0.94± 0.003 0.95± 0.002 0.94± 0.004
M1 0.93± 0.010 0.92± 0.012 0.94± 0.008 0.93± 0.009 0.95± 0.009 0.93± 0.007
M2 0.95± 0.004 0.95± 0.005 0.96± 0.008 0.96± 0.003 0.96± 0.007 0.96± 0.003

5.3 FedLinked versus FedAvg

This experiment investigates how efficient the federating scheme introduced in the
FedLinked algorithm is compared to the simple FedAvg-based collaboration. In order
to implement the latter procedure in a multitasking environment (in which the structures
of the task-specific layers may vary), we apply FedAvg algorithm only on the parameters of
the representation trunk. So the steps of one learning round in the FedAvg-based method
are: local supervised learning, federated averaging on representation trunks, fine-tuning
of the task-specific layers. It is worth noting that, unlike FedLinked, this method as-
sumes that the representation trunk of all clients are structurally identical, which can be
an undesirable restriction in federated multi-task environments. During this experiment,
10 consecutive training are performed using FedLinked, gradually increasing the size of
available public dataset in each iteration, while keeping the clients’ private datasets fixed.
In this way, we analyze that, depending on the size of the available public dataset, how
FedLinked performs compared to the FedAvg-based method in a multitasking environment
in the following two scenarios:

• FedAvg - without public data: The private datasets of clients are the same for
both FedLinked and FedAvg.

• FedAvg - with all public data: In case of FedAvg training, the private dataset
of each client is expanded by the whole labeled public dataset.

Figures 5.1 and 5.2 show the results of the comparison between FedLinked and FedAvg
based methods on both datasets. Note that the test accuracy values shown on Figures
are all averages of all clients’ individual test accuracy values from three trainings. For
the CIFAR10 dataset, it can be seen that starting from 20% availability of the entire
public dataset, FedLinked outperforms FedAvg procedure, even when FedAvg clients’ local
datasets are expanded by the entire labeled public dataset. This result clearly shows the
effectiveness of the introduced federalization scheme (representation regularisation and
transformation) compared to FedAvg based representation averaging in multi-task learning
scenarios.
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Figure 5.1: Accuracy of FedLinked compared to FedAvg-based method in the function
of the number of the public, unlabeled training samples - CIFAR10 dataset

In case of SVHN dataset (Figure 5.2), the performance gap between the two methods is not
so striking due to the already high test accuracy values produced during local training, but
it can be observed that for the same available local dataset, FedLinked clearly outperforms
the FedAvg-based method.

Figure 5.2: Accuracy of FedLinked compared to FedAvg-based method in the function
of the number of the public, unlabeled training samples- SVHN dataset

24



5.4 Visualizing representations

In this experiment, we analyze the representations formed by each client’s representation
stub, more specifically, the impact of the collaborative regularization on the distribution of
the representations. To this end, the representations1 created by each client on the public
dataset are projected and displayed in 2D after both federated and separated learning,
using the UMAP ([16]) algorithm.

Figures 5.3 and 5.4 show the projected representations of all three clients on the public
dataset at the end of separated (left subfigure) and FedLinked training (right subfigure),
colored by task labels.

Figure 5.3: Distance preserving projected representations of public data points of SVHN
dataset

For the SVHN dataset (Figure 5.3), the effect of collaboration on the formation of the
representations is quite impressive: it can be observed that by utilizing FedLinked, the
representations of data points belonging to each task are much more separated into ho-
mogeneous groups than in case of regular, separated training. Furthermore, at the end of
collaboration, each client was able to well cluster data points of tasks that they had not
seen with labels in their private, labelled datasets.

1Representations are vectors of size 256 (CIFAR10) and 128 (SVHN)
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Figure 5.4: Distance preserving projected representations of public data points belonging
to tasks originally learned by the given clients on CIFAR10 dataset

Figure 5.5: Projected representations of public data points belonging to tasks originally
not learned by the given clients on CIFAR10 dataset.

As shown in the previous results, classification on the CIFAR10 dataset is a more difficult
problem to learn than classification on the SVHN dataset. Therefore it is more difficult for
models to separate representations belonging to different tasks into distinct, homogeneous
groups. For this reason and for the sake of clarity, the projected public representations of
CIFAR10 dataset are presented on two figures:
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• On Figure 5.4 the representations of those public data points are shown, which
belong to tasks learned originally by the given client from its local dataset.

• On Figure 5.5 the representations of those public data points are shown, which do
not belong to tasks originally learned by the given client from its local dataset.

On Figure 5.4 it can be seen that, thanks to the use of FedLinked, the models projected
the data points belonging to same tasks into well-separated, homogeneous domains, while
in case of separated training, greater overlapping between representations belonging to
different tasks can be observed.

Figure 5.5 shows that, in contrast to the separated learning, models trained with FedLinked
have managed to group even representations belonging to tasks originally not learned from
their local dataset in a well separable way.

These results show that the FedLinked-based collaboration can also help to increase the
generalisation capability of the participating models.

5.5 Visualization of representation transformation

Finally, we investigate the efficiency of representation transformation, in a similar way to
the previous experiment: Let α(i, X(0)) and α(j, X(0)) be the representation of the public
dataset determined by the ith and jth client respectively. In this experiment we visualize
the 2D projected form of α(i, X(0)), α(j, X(0)) and Bi,j · α(i, X(0)) computed in a given
learning round.

The visualized representations before (left side of the figure) and after (right side of the
figure) the clientpair-wise transformations between model M0 and M1 on the CIFAR10
dataset are shown in Figure 5.6. As expected, the representation vectors belonging to
model M0 are clearly transformed into the domain where the representation vectors of
model M1 are located. Furthermore, it can be observed that even after the transformation,
the representation vectors belonging to same tasks remain in the same subspace, as shown
by the colored homogeneous clusters becoming dense.
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Figure 5.6: Public data representations computed by M0 and M1 before and after trans-
forming representations of M0 on CIFAR10 dataset

Similarly to CIFAR10 dataset, Figure 5.7 shows the visualized representations before and
after the clientpair-wise representation transformation on the SVHN dataset. Here again,
it can be observed that the representation vectors belonging to the same tasks were cor-
reclty mapped into the same subspace, increasing the number of elements in the corre-
sponding homogeneous clusters.

Figure 5.7: Public data representations computed by M0 and M1 before and after trans-
forming representations of M0 on SVHN dataset
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Chapter 6

Ablation study

As presented in Section 3.4, a representation transforming component is added to the main
representation regularization component of the FedLinked procedure. In this section, we
discuss the extent to which the addition of the representation transforming component
helps to improve the performance of the participating clients. Other components could
not be treated as optional for our task, therefore they can not be discussed during the
ablation study.

Table 6.1 shows the achieved accuracy scores (per model and averaged scores) for both
datasets, with and without applying the transforming component. Note that before gen-
erating the results, the hyperparameters of the procedure not containing the transforming
component were also optimized as described in Section 4.3.

Table 6.1: Achieved accuracy scores with and without applying representation transfor-
mation

With transformation Without transformation
CIFAR10 SVHN CIFAR10 SVHN

M0 0.76± 0.013 0.95± 0.002 0.73± 0.004 0.95± 0.004
M1 0.86± 0.017 0.95± 0.009 0.82± 0.008 0.95± 0.005
M2 0.89± 0.005 0.96± 0.007 0.86± 0.006 0.96± 0.005

AVG 0.84± 0.012 0.954± 0.006 0.80± 0.006 0.954± 0.005

The results show that for the SVHN dataset, the application of representation transfor-
mation does not improve significantly the performance of the models, which - according to
our hypothesis - is due to the fact that SVHN itself is a quite easy dataset to learn in a fed-
erated environment, so the addition of a new component does not change the performance
of the models in a spectacular way. In contrast, for the more difficult-to-learn CIFAR10
dataset, we observe a significant improvement, with an average accuracy increase of 3-4%
per model, confirming the effectiveness of the transforming component and the need for
it within the FedLinked solution-block.
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Chapter 7

Conclusion

In this thesis, we proposed a new collaborative learning method called FedLinked, which
utilizes unsupervised samples in order to achieve representation regularization-based col-
laboration of clients, which learn different tasks. The proposed solution includes several
parts, which is introduced in this thesis: transformation between representations in order
to enable the clients to adapt their representations to their tasks, while the server can
provide it to other clients in a maximally useful way; estimation of the utility coefficients
between representations of clients, which enables the solution to handle the fact that the
clients learn more similar tasks can benefit from each other; and a representation regu-
larization method, which enables the collaboration between the clients, while the privacy
of their private data, architecture and model parameters are preserved. These compo-
nents can also be used separately in solving other federated multitask problems too. The
evaluation of our proposed solution on CIFAR10 and SVHN datasets showed that collab-
orative learning performed by FedLinked significantly improves the performance of the
participating clients compared to separated learning. Furthermore, in multitask scenarios,
FedLinked outperformed even the FedAvg-based collaborative learning method on both
datasets. Finally, the projected representation vectors showed that the models trained
with FedLinked are able to organize the representations of data points belonging to the
same tasks into well-distinguishable, homogeneous groups, thus achieving better perfor-
mance of the collaborating models. We also noticed from these representation studies that
clients, which do not see any labeled sample from a task, learn representations in which
these samples also form distinct groups from the others (consistently to their task). Based
on our opinion, these results show that the FedLinked method can be an effective solu-
tion to the problem of federated multitask learning with the utilization of only unlabeled
data for the collaboration, while the privacy of the trained models of the clients and their
private data are preserved maximally.
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