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Kivonat

Kezdetben ismeretlen terek felfedezése és feltérképezése már régóta ismert probléma
az autonóm, vezető nélküli járművek világában. Jelen dolgozat célja egy idő-optimális
módszer bemutatása, amely alkalmas LIDAR-ral felszerelt autószerű roboton való hasz-
nálatra.

A dolgozat elsőként egy klasszikus, frontier alapú módszert vizsgál az eredeti alakjá-
ban, ami egy holonóm roboton való használatra készült. Ezután különböző módosítások
kerülnek tárgyalásra, amelyek elősegítik, hogy az algoritmus használható legyen anholonóm
járművek esetén is. A változtatások lehetővé teszik, hogy a robot a kiválasztott frontiert
a legmegfelelőbb irányból közelíthesse meg.

A dolgozat második fele egy új, fa alapú célpontkiválasztási módszert jár körül, amely-
nek célja a felfedezéshez szükséges idő csökkentése. Ehhez egy mélységi kereséshez hason-
lító módszert alkalmaz a folyamatosan épülő fán. Előbb a fa építésének folyamata kerül
bemutatásra, majd a célkiválasztásról olvashatunk részletesen.

A tesztelés és kiértékelés szimulációs környezetben kerül bemutatásra. Előbb egy ki-
sebb, fa szerkezetű folyosó felfedezése lesz a cél, majd egy kiterjedtebb kastély, ami több
kört is tartalmaz annak érdekében, hogy a módszereket egy komplexebb környezetben is
tesztelni lehessen. A dolgozat a két módszer összehasonlításával zárul.
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Abstract

The exploration and mapping of previously unknown space is a long-known problem in
the field of autonomous unmanned vehicles. This paper focuses on finding a time-optimal
method of exploration to be used on a car-like robot equipped with a LIDAR for scanning
its environment.
First, a classical frontier-based exploration method will be reviewed in its original form,
which was created to be used on a holonomic robot. Then alterations will be discussed to
make it more suitable to use on non-holonomic vehicles, which allow the robot to approach
a selected frontier at the most suitable angle.
The second part of this paper proposes a new, tree-based method for goal selection, which
is used to reduce the time travelled by the exploring robot. It achieves this by performing
a depth-first search-like behaviour on the continuously growing tree. First, the building
of the tree will be described then the goal selection method will be shown in detail.
The methods are tested and evaluated in a simulated environment. First, a small corridor
will be explored with a tree-like structure, then a larger mansion, which contains several
loops to test the exploration methods in a more complex environment. The paper ends
with a comparison of the two given methods.
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Chapter 1

Introduction

In recent times a great proportion of the most exciting problems currently being researched
have to do with autonomous vehicles or robots. There are countless uses for unmanned
aerial, ground, surface or underwater vehicles.
One particular area of interest is autonomous exploration. There are numerous uses for
exploration not requiring human interaction on the place of exploration. We can think
about narrow tunnels where a human could not fit in, but a small robot can, or areas of
destruction following disasters or any other causes. In such places, there is often a further
danger of debris falling and narrow pathways are also a common occurrence. There can
also be scenarios, when the area would be free for human passage, but would be otherwise
dangerous - for example filled with smoke or other gas, or affected by nuclear radiation.
In any such case, it is useful to have an inanimate object, like an unmanned robot perform
the exploration of the area autonomously, so avoiding endangering human lives. When
human interaction is needed, for example when a survivor is found, a map will already be
made and their position located.
In light of the above, it comes as no surprise that this is a popular field of research. There
is a wide range of literature describing different approaches to exploration. The main three
directions include frontier-based methods, random tree-based methods and using neural
networks.
The focus of this paper is to review a classical frontier-based method and then propose a
new tree-based goal selection method in response to the issues of the first.
The paper is organized as follows. Chapter 2 describes the hardware running the ex-
ploration and the necessary program components. The related literature is reviewed in
Chapter 3, followed by the description of the original frontier-based exploration method
in Chapter 4. In Chapter 5 a new tree-based method is proposed for goal selection during
exploration. Chapter 6 conveys simulated experimental results and a comparison of the
two methods. The paper ends with a conclusion in Chapter 7.
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Chapter 2

Hardware and program
components

Though the focus of this paper is the examination of exploration methods, we need to be
clear on the responsibilities and function of the other program components that make the
exploration possible. But first, let us get familiar with the agent of the exploration, the
robot itself.

2.1 Exploring hardware: the robot

The exploration is accomplished using a car-like robot seen in Figure 2.1. It is a modified
RC car whit a scale of 1:5, which is used by the department for various related research
fields within the VR-car project [2],[1],[23].

Figure 2.1: The robot used for exploration
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The robot operates with the following components: an Intel Nuc for central processing,
an Nvidia Jetson for graphical calculations and three Raspberry Pi-s for processing sensor
data. The robot uses inertial measurement units and encoders to calculate its position and
two LIDARs at the bottom to collect information about its environment. All components
function using ROS (Robot Operating System) [25].
As the agent is a car-like robot there will be some restrictions on its movement in the
environment. A car is a non-holonomic vehicle, which appears as a constraint in path
planning. It means that the approaching of goal candidates may take a longer time or
even be impossible in some angles, as opposed to most of the robots used in the literature
reviewed in Chapter 3. The robot also has a minimal turning radius which will also need
to be taken into consideration when planning a path to its destination.

2.2 Program components

The robot uses ROS for the operation and connection of its components. This is a popular
operating system in the world of mobile robots and robotic arms. Its building blocks are
packages, which are usually responsible for providing a given functionality. The units
of execution are called nodes, which communicate with each other by publishing and
subscribing to topics.
The main components needed for exploring with a mobile robot can be seen in the follow-
ing.

2.2.1 The robot and its model

The most important part of any project using a robot is the robot itself. When working
in real life this means the sensors, data processing units and actuators of the robot. But
as we will see in Chapter 6, this is not always the case. We also need to be able to use
the robot for exploration in a simulated environment. This requires the above-mentioned
parts and physical features all to be modelled and functional to operate in a simulation.
The model must contain the constraints discussed above and be controllable by and also
publish the same topics the real robot would. This means that the input of the robot
model would be the signals for the actuators and the output would be the data retrieved
from the sensors.

2.2.2 Mapping and localization

After the sensors of the robot or its simulated model provide the necessary sensor data
the next step is the building of the map. This requires information about the robot’s
environment measured with the LIDARs at the position of the robot and this position
to be determined from the data retrieved from the inertial measurement units and the
encoders.
This problem is called Simultaneous Localization and Mapping or SLAM [5] for short. In
the project, we use a ROS package pre-made for this. The gmapping package [11] is widely
used for performing SLAM using sensor data, such as LIDAR points. The node provides
a map as a result, which is in our case a 2D cell grid, in which each cell can contain one
of three values: free, occupied or unknown. Part of a map can be seen in Figure 2.2. The
free cells are shown in white, the occupied in black and the unknown in grey. The gradient
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at the walls is the global costmap provided by move_base while the green dots are the
LIDAR measurements.

Figure 2.2: The map created by gmapping. The free cells are
shown in white, the unknown cells in grey. The
LIDAR measurements are represented by the green
dots. The gradient colouring by the wall is the global
costmap.

2.2.3 The exploration node

The goal of exploration is to explore the whole unknown environment surrounding the
robot. To achieve this the robot has to move to get new information about its surroundings.
The responsibility of the exploration node is the selection of a goal for the robot, which
has the highest potential of revealing unknown areas when approached. The construction
of this node is the focus of this paper and as such it will be discussed in detail later in the
following chapters.

2.2.4 Global and local path planning

When a goal is selected, the robot needs to move to reach its position. But as there are
limitless possibilities to get from one position to another it is important, that the robot
follows an optimal path. It is the role of the global path planner to choose a path that
satisfies the given pointers of optimality while simultaneously meeting the constraints laid
by the physical build of the robot.
The global planner used in this paper is the Hybrid A*. The planner is described in a
2018 Master’s Thesis [23] made at the department, which was based on [3]. This type of
planner is often used in cases when a non-holonomic robot needs to operate in an unknown
environment and replan its path while continuously building an obstacle map at the same
time.
The planning consists of two phases. The first phase is to construct a path that satisfies
all the kinematic constraints of the robot. The planning is guided by two heuristics. The
first plans a path to the origo from its discrete neighbourhood taking into consideration
the non-holonomic nature of the robot, but ignoring all obstacles.
The second finds the shortest path to the goal in the obstacle map but ignores the non-
holonomic constraints. The heuristics use discretized controls, which are expanded to
continuous controls using the Reed-Shepp model [17]. The result is a drivable path, which
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is often complex and suboptimal. The second phase of the algorithm uses local optimiza-
tion and smoothing to arrive at an optimal and drivable path.
The local planner provides the controls necessary to drive along the planned path. These
include the velocity of the robot and the steering angles.
The same planners are used with both methods of exploration discussed in Chapters 4
and 5.

2.2.5 The move_base

The move_base [19] is the node responsible for taking the assigned goal and presenting
the appropriate controls for moving the robot. It is a part of the navigation_stack and
works as an action server to fulfil its purpose.
The exploring node sends the assigned goal to the move_base server through the
move_base client, which then runs the global planner to receive a path to the goal. Then
the local planner is called which returns the values of the control needed to navigate the
robot along the specified path. If any of the planners are unable to come to a solution the
move_base server stops the robot.
It also manages the global and local costmaps for the corresponding planners. A costmap
is a 2D cell grid similar to the map generated by the gmapping node, but the values of
cells are proportionate to the probability of the cell being occupied by an obstacle.

2.2.6 Overview

The cycle of stages of the exploration process are shown in Figure 2.3.

Exploration
method

Move_base

Global
planner

Local
planner

Robot
model

Gmapping

goal

goal,
global costmap path

path,
local costmap

control

controlsensor data

map

global costmap

Figure 2.3: The cycle of the exploration process

The exploring node can use either the map generated by the gmapping node or the
costmaps managed by move_base to determine the next goal of the exploration. It is
then sent to the move_base server which forwards it to the global planner. The received
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path is sent to the local planner, which then calculates the necessary controls to follow it.
The move_base sends the given control to either the real robot or the simulated model.
As the robot moves in the world or in the simulation, the sensors send new data to the
gmapping node, which builds the map with a SLAM algorithm. This completes the cycle.
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Chapter 3

Related work

The problem of autonomous exploration is a popular topic of research papers. Looking
at literature related to this problem, we can see three main approaches: frontier-based
methods, using randomized trees and using neural networks. In this chapter, each of these
categories will be presented through the reviewing of corresponding literature.

3.1 Frontier-based methods

The classical frontier-based approach to exploration originates from the 1997 article of
Brian Yamauchi [28]. In contrast to the exploration methods of the time, where either the
robot had to follow the walls of the explored room or the obstacles had to be perpendicular,
he introduced the concept of frontiers. Defined as the boundaries between known and un-
known areas, they are ideal goals of the exploring robot for getting maximum information
about its unknown surroundings. When the robot gets to a frontier, new measurements
can be taken to expand the known area and push the boundary between the known and
unknown areas further into unknown territory.
Yamauchi divides the exploration problem into two parts: frontier detection and navigation
to the selected frontier. Imagining the map as an occupation grid of free, occupied and
unknown cells, a frontier region can be found as a connected row of unknown cells, all
of which have at least one free cell in their immediate neighbourhood. [28] finds the
boundaries on the map with a method analogous to edge detection used in computer
vision. A frontier can be seen in Figure 3.1, where the frontier points are indicated in
blue.

(a) Area for frontier detection (b) The points of the frontier

Figure 3.1: Frontier: the boundary between known and unknown
regions

After detecting the frontiers on the map at a given time, the ideal goal to pursue is chosen
using a greedy algorithm, where the nearest unvisited accessible frontier is considered the
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best goal. Then as the robot reaches its destination, new measurements can be taken to
expand the map and the next iteration of frontier detection can take place.
This method proved to be better than the other existing methods of the time, and frontier-
based exploration soon became a standard in autonomous exploration. Still, it has its
drawbacks. The first problem is that the detection of frontiers on a continuously growing
map leads to increasing computational costs. The second problem lies with greedy goal
selection, as it can lead to a backtracking phenomenon, applying a breadth-first search-like
behaviour to the exploration. This, as stated above, is the result of greedy goal selection.
To explain this let the robot stand at crossroads. First, the direction with the highest value
frontier will be selected and a path will be planned to it. When the robot gets closer to
its goal it gets new information about its environment so the pursued frontier gets pushed
back. Meanwhile, the frontiers in the other direction stay the same. The problem arises
when the pursued frontier is at this point further away than those in the other direction.
When this happens, the robot has to turn back and begins pursuing the selected frontier
in the opposite direction. When it gets closer, the same can happen again, resulting in an
oscillatory motion, often leaving half-explored rooms behind just to have to come back to
them later in a backtracking manner.
Replacing the simple distance-based greedy goal selection algorithm with a more sophis-
ticated selection method can greatly improve the efficiency of frontier-based exploration.
The determination of goal candidates and several goal selection methods are discussed in
[9]. It compares five goal assignment methods paired with three methods for determining
goal candidates. The paper discusses goal assignment methods rather than goal selection,
because it focuses on multi-robot exploration, although most of its findings are applicable
to single-robot exploration also.
The five assignment methods are the following. The greedy assignment (GA) calculates
a utility value for each frontier and chooses the frontier with the highest value as a goal.
The iterative assessment (IA) orders each of the ⟨robot, candidate⟩ distance pairs and
assigns the goals to the robots in that order. The Hungarian Assessment (HA) uses a
cost matrix to optimally assign goals to the robots using the aforementioned distances.
The Multiple Travelling Salesman Assignment (MA) first clusters the goal candidates and
assigns them to each of the robots then explores within the clusters. The Solanas and
Garcia Assignment (SGA) also cluster the frontiers and assigns them to the robots then
uses a cost computing method described in [9].
The other focus of the paper [9] is the determination of goal candidates. In the first case
(AF) all frontiers are selected as goal candidates, which leads to a high computational
demand and it is found in [9] that it cannot be used for navigation. The second case
uses representatives of free edges (RFE). This way only a few candidates are selected
corresponding to the free edges on the map. To achieve this they used a K-means clustering
algorithm with a K calculated from the sensor range. The third approach is called complete
coverage (CC). This selects the minimum number of points from where all the frontiers
can be seen within the sensor range.
After comparing all the candidate determination method and goal assignment pairings
the paper [9] concludes, that limiting the number of candidates using simpler assigner
methods proves more efficient than using a more complex assigner on a higher number of
goal candidates.
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3.2 Using trees for exploration

A line of exploration methods was developed as a solution to the first-mentioned problem
using random trees to avoid having to use edge detection to detect frontiers. The reviewed
literature falls into two categories: using RRT (Rapidly-exploring Random Tree) ([27],[21])
or SRT (Sensor-based Random Tree) for goal selection ([20],[16],[6],[26],[10]).

3.2.1 Rapidly-exploring Random Tree

Using RRT to detect frontiers is beneficial because of the tree’s tendency to expand towards
unexplored areas, as stated in [27] written by Hassan Umari and Shayok Mukhopadhyay.
It also leads to full map coverage, as it ensures completeness. Umari and Mukhopadhyay
use two random trees to detect frontiers. One starts from the robot’s initial position and
expands throughout the exploration, this is called the global detector. The second is reset
every time it reaches a frontier point to start expanding again from the current position
of the robot, called the local detector. This is meant to ensure the quick detection of
frontiers in the near vicinity of the robot, while the global detector finds frontiers further
away from the robot and finds its way into small corners, which could be overlooked by
an RRT not running for a long enough time. The two trees are shown in Figure 3.2.

Figure 3.2: Local (red) and global (blue) frontier detectors ([27])

In this paper [27] a randomly generated point becomes a frontier point if it represents an
unknown cell or the path from the point to the nearest existing node crosses unknown ter-
ritory. The exploration process is then divided into two more steps: filtering the detected
frontier points and goal allocation to one or more robots.
The filter module is needed because of the high number of frontier points provided by
the two frontier detectors, which could lead to visiting overlapping areas and reducing
the effectiveness of the exploration. The filter module therefore first clusters the points,
saving only the centre points of the clusters. Then it also eliminates any old or invalid
frontier points.
The filter’s output serves as an input to the task allocator module, which calculates a value
called revenue for each of the cluster centres. The supposed information to be gained from
visiting the frontier makes it a more desirable goal candidate, while the navigation cost
lowers its value. The point with the highest revenue will be the next goal for exploration.
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When combined with an estimated information gain RRT can be used to propagate the
tree biased towards high-value frontiers, as discussed in [21]. In this case, the RRT is
not used to determine frontiers, but to generate an obstacle-free path toward the goal
candidates, therefore a separate method of frontier detection is needed. [21] separates the
problem into two parts: predicting the information gain of each frontier and using RRT
to navigate biased to high information gain frontiers.
For predicting the information gain of a frontier, the paper [21] uses the following method.
When the robot travels in a corridor it is surrounded by walls on each side. In this case,
examining the area around the frontier separating the known part of the corridor from the
unknown can lead to two scenarios. If a wall meets free cells, it is predicted, that at that
point the wall changes direction towards the unknown territory (Figures 3.3c and 3.3d).
In [21] it is assumed that the walls are perpendicular. When there are no free cells in the
line of the wall it is predicted to continue straight (Figures 3.3a and 3.3b). The area of
these predictions is proportional to the size of the frontier.

(a) The walls are not
met with free cells

(b) The wall propagates
straight

(c) The wall is met with
free cells

(d) The wall propagates
perpendicularly

Figure 3.3: The two ways of propagating frontiers as illustrated
by [21]

After predicting the outcome of reaching a frontier the information gain is calculated. For
this [21] uses the entropy of the map, which is defined by (3.1), where M is the given
costmap, z1:t consists of all observations and actions made by the robot until the given
t time and pi,j is the probability of the cell on the i,j coordinates being occupied. The
latter can take up three values: pi,j = 0, if the cell is free, pi,j = 1, if it is occupied and
pi,j = 0.5 if the state of the cell is unknown.

H(M |z1:t) = −
∑
i,j

pi,j log pi,j + (1− pi,j) log (1− pi,j) (3.1)

First, the current entropy is calculated from the map without the predictions made. Then
the predictions are made one at a time and the posterior entropy is calculated from the
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propagated map. The information gain of a frontier will be proportional to the reduction
of uncertainty predicted by this method.
The second part of the problem is the decision maker, the role of which is to generate
obstacle-free paths in the most relevant destinations. This goal is realized through a
biased RRT building. Rather than using random points to propagate the tree [21] uses
a method called the Roulette Wheel Selection [12]. Based on the estimated information
gain from the previous step the probabilities of selecting the frontier as a new point for
the tree are configured, like sections on a roulette wheel, so that larger information gains
correspond to larger sections. In all cases, there must be a probability for the method to
choose a random point to avoid obstacles in the way. This way the tree will propagate
most likely into the direction of frontiers with the highest information gain.

3.2.2 Sensor-Based Random Tree

Another type of randomized exploration method is the SRT. The pure SRT algorithm
can be found in [20]. It was developed to eliminate the oscillatory backtracking of goal
selection which is the result of the greedy selection algorithm. When the robot’s position is
added to the tree as a node, a local safe region (LSR) is registered around it, so that there
exists a safe path from the robot’s position to every point of the safe region. The union of
LSRs is the safe region (SR). There are two perspectives introduced in [20] regarding the
shape of the LSR. The first discussed perspective is called the Ball-SRT, where the radius
of the LSR equals the distance safely approaching the closest obstacle in all directions.
This can be seen in Figure 3.4a. Using this method forms a circle around the node and
is considered the safer way to generate LSRs. The bolder method is called the Star-SRT,
where the radius corresponds to the closest obstacle in its own direction, resulting in a
star-like shaped LSR as can be seen in Figure 3.4b.

(a) Ball-shaped LSR (b) Star-shaped LSR

Figure 3.4: The different perspectives of LSR as illustrated by [16]

After the LSR is generated a random direction is selected and a new goal candidate is
determined in a way described in [20] in that direction. If the candidate lies too close
to the current node or is in the LSR of a previous node, a new direction is randomized.
Otherwise, the candidate is selected as a new goal for exploration. When the robot reaches
its destination a perception is made using the onboard sensors of the robot and a new node
is created with the corresponding LSR.
If the number of attempts to find a valid direction exceeds a given limit, the node is
considered explored and the robot backtracks to the previous node and begins searching
for valid directions from there. In this way, the completeness of the exploration is ensured
and it also serves as an automatic homing method.
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This method serves as a built-in depth-first search for exploring an unknown territory,
which is preferable to the greedy goal selection algorithms for minimizing the distance
travelled by the robot and consequently the time used. On the other hand the backtracking
to previous nodes can cause a lot of unnecessary travelling when a simpler route could be
found between an explored node and an unexplored node several nodes back.
The articles [16] and [6] work on making the backtracking between nodes more efficient.
[16] introduces a method called FB-SRT (Frontier-Based-SRT), in which the robot back-
tracks directly to the last node with frontier edges in its LSR. A frontier edge of the LSR
is a boundary between known and unknown regions. This paper, though mentions the
Ball-SRT as an option, chooses to work with Star-SRT, as it is more efficient in exploration.

(a) Indirect backtracking (b) Direct backtracking

Figure 3.5: Backtracking method of [16]

The method described in this paper is illustrated in Figure 3.5. Figure 3.5a shows the route
taken by the robot and the nodes visited while travelling. During the original backtracking
method, the robot would travel through the same route in the opposite direction. The
direct backtracking method proposed by [16] is shown in Figure 3.5b. First, the first
node must be found going back in the tree, which has frontier edges around its LSR. An
imaginary line will be drawn between this point and the current position of the robot.
Then the distance of the skipped nodes will be measured from this line. These nodes are
the candidates for backtracking. The selected candidate will be one that is the closest to
the line while also being freely reachable from the current point. In the example given
this point will be qprev_2. These steps are repeated until the robot reaches the point with
frontier edges. Using this method can eliminate some of the unnecessary travelling during
backtracking to previous nodes.

(a) Indirect backtracking (b) Direct backtracking

Figure 3.6: Backtracking method of [6]

El-Husseiny et al., 2013 provide a different method for making the backtracking phase of
the SRT more efficient ([6]). In the approach discussed the robot backtracks the parent
nodes not physically, but through calculations. For each parent node, the information
gain is estimated. They propose a ray-casting method for determining which areas of the
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node’s LSR are valuable for exploration. If the estimated information gain exceeds a given
threshold the node becomes the goal of backtracking and the shortest path is planned from
the current position of the robot.
Both of these approaches ([16],[6]) were tested in simulated environments and proved to be
significantly more efficient than the pure SRT method by eliminating unnecessary travel
during backtracking.

Figure 3.7: Prediction of a room behind a door ([18])

3.3 Using neural networks

Another solution to the oscillatory backtracking problem is proposed in [18]. The focus of
the paper is to use computer vision and a lightweight neural network to note if a mapped
area is in a sense not complete. Their example for this is a door, behind which a room is
suspected. They use the neural network to identify doors in the environment, and when
it is found, the robot makes an estimate of the area behind the door in the shape of a
rectangular room as can be seen in Figure 3.7. This way it will explore inside the room
until it is completely explored, instead of leaving for another direction and having to come
back later, so decreasing the time and distance travelled during the exploration.

3.4 Summary

We have seen that numerous methods for the automated exploration problem exist in
the literature. The original frontier-based method [28], although often not leading to the
most optimal results, tends to be a good foundation to be improved upon. The majority
of the other methods fall into two categories: those, that offer a solution to the high
computation demands of frontier detection by edge detection, and those that seek to
eliminate the backtracking caused by the greedy goal selection method.
The first category, though it is important for real-time use to lower computational times,
does not necessarily mean an improvement on the time-efficiency of the exploration. In the
second category, however, we can see significant improvements in the time and distance
travelled by the robot, which implies, that the main problem for a time-efficient exploration
is the backtracking of the greedy algorithm.
We have also seen, that the reviewed literature only uses random trees either to discover
frontiers or even for the goal selection and partly path planning for the robot. None of
them uses the tree for navigating among frontiers already found.
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This paper proposes a method to use trees to deterministically travel through and explore
all frontiers. For this the frontiers found with the original edge detector will be organized
into a tree structure. The robot performs a depth-first search on the tree while the newly
found frontiers are continuously built into it. This method seeks to eliminate unnecessary
backtracking and to serve as a time-optimal method of exploration.
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Chapter 4

Classical frontier-based
exploration

The original work of Yamauchi [28] was used as a base for many of the papers concerned
with frontier-based exploration and many methods evolved from it. One of those methods
is contained in the ROS package explore_lite. The focus of this chapter will be the review
of this method and its completion for easier usage on non-holonomic robots.

4.1 The explore_lite package

The explore_lite package is a ROS (Robot Operating System [25]) package realizing a
frontier-based exploration method. Its documentation can be found on the official ROS
website [13]. The package was developed in 2016 by Jiří Hörner, a student of the Charles
University in Prague [15]. The C code of the package can be freely accessed in its GitHub
repository [14].
A frontier is defined as the boundary between known and unknown regions. Usually these
are optimal goals of exploration, as there is a high probability that they are reachable
and they serve as a good opportunity to explore unknown cells. For this reason, after Ya-
mauchi [28], frontier-based exploration became the most frequented method of autonomous
exploration.
The explore_lite package connects to the move_base server with the help of a
move_base_client. Through this connection, the exploring node can send the selected
goals to the server, which takes care of navigating to the assigned point in the given ori-
entation. Move_base is a part of the ROS package navigation_stack and its purpose is
to keep the goal selection, the global and local path planning and the execution of the
movements independent from each other. This way any of the listed elements can be re-
placed without affecting the functionality of the others. The program reads the map data
through a similar server-client connection. The client receives the data in the form of a
costmap, in which the value of a cell corresponds to the probability that the given cell is
occupied by an obstacle.
The program contains two main parts. The outer layer is the exploration itself, which
consists of the processing of the map, managing frontiers, goal selection and sending. This
makes use of the other part, the role of which is detecting and building the frontiers using
the costmap data. The algorithm is described in more detail in Section 4.2.
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4.2 The algorithm

4.2.1 Frontier detection

The base of this method is the detection, building and management of frontiers. The
frontier detection method of this package is based on the ROS package explore [4] with
very little modification.
In the code, the detection and building of frontiers are parted into four different problems,
which are the following:

• Identifying new frontier cells. A cell is a frontier cell if its value on the map is
unknown and at least one of its four neighbours is a free cell. For it to be recognized
as a new cell it must not have been previously marked as a frontier cell. To determine
this the found frontier cells are registered.

• Building of a frontier. If at some point during the processing of map data a
new frontier cell is discovered the frontier-building method begins. The steps of
the process can be seen in Figure 4.1. The firstly discovered cell will be the first
frontier point. Then all of its eight neighbours will be tested to find any frontier
cells connected to the previously discovered. If a new frontier cell is detected it is
registered as one and its neighbours will also be examined. The frontier-building
process ends, when no frontier points remain such that would have another frontier
point as a neighbour.

(a) The boundary between free (white) and un-
known (grey) cells

(b) The cells of the frontier, shown in blue
spaceholder

(c) The closest point to the reference (middle),
shown in green

(d) The mean of the frontier points (centroid),
shown in red

Figure 4.1: The steps of building a frontier

A frontier contains two special points: the middle and the centroid. The middle is
the closest point of the frontier to the position of the robot, while the centroid stands
at the average of the frontier points. These can be seen in Figures 4.1c and 4.1d,
marked by a green and a red sphere.
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The function initializes the centroid x and y coordinates with zero. During the
search, when a new frontier cell is discovered the internal variables of the currently
built frontier are modified in correspondence with the newly added cell:

– The size of the frontier is increased by one
– The x and y coordinates of the centroid are increased by the corresponding

coordinates of the new cell
– The distance of the new cell from the reference is calculated. If the new cell is

closer to the position of the robot than the previous minimal distance it takes
on the role of the middle cell and the minimal distance is overwritten with the
new distance value.

When there are no new frontier cells in the 8-neighbourhood of already processed
cells, the building of the frontier comes to its end. Finally, the x and y coordinates
of the centroid are divided by the size of the frontier thus giving the mean of the
frontier points. The building of the frontier is then finished.

• Detection of frontiers. This part is responsible for processing map data to detect
frontiers. The search is started from the position of the robot or from a free cell
nearest to it. The process uses the costmap from the move_base server.
First, the nearest free cell to the position of the robot is identified as the initial cell.
Similarly to the building of a single frontier this cell is registered as visited and its
four neighbours will be examined. The free cells among them will be registered and
examined similarly. Unknown cells will be tested for being new frontier cells in the
way described above. If a point is found to be a new frontier cell, the building of a
new frontier will be started with that point as the initial point. When the building
of the frontier ends, the search for new frontiers continues until all free cells become
visited and all frontiers are detected.
If there are no unexamined free cells remaining the algorithm sets the cost of all
detected frontiers and so the detection of frontiers ends.

• Calculating the cost of a frontier. This function calculates the cost of a frontier
as the weighted sum of the size of the frontier and its distance from the position of
the robot.

4.2.2 The exploration

The exploration uses the frontiers found in the way described in the previous chapter.
The function containing the main code is called at given time intervals. First, it gets the
position of the robot from the costmap_client and it starts the frontier detection process
from this point and gets in return the array of the frontiers sorted by their cost. From
there the algorithm selects those, which are not on the continually expanding blacklist of
exploration.
The blacklist contains points which are unreachable goals of exploration. A point gets
blacklisted either if no valid path can be planned to it or the robot cannot get closer to it
in a given time frame. To determine this the distance of the robot from the current goal
is calculated and registered in each iteration. When the distance does not decrease for a
time the goal gets blacklisted.
Those frontiers, the centroids of which are on the blacklist, are filtered out from the list
of detected frontiers to avoid getting the robot stuck. Then the frontier with the lowest
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cost is selected as the next goal of exploration. Since the frontiers were previously sorted
by their cost this will always be the first element of the filtered list.
Then the centroid of the selected frontier is sent to the move_base server as a new goal.
Its position will equal the coordinates of the pursued point and its orientation is originally
a constant vector pointing in the positive x direction.

4.3 Additions for non-holonomic exploration

The original explore_lite package was created for and tested on omnidirectional, circle-
shaped robots with sensors that could take measurements in every direction with the same
accuracy. For these reasons, there was no need for them to pay attention to the direction
of the frontiers or the robot, hence the constant orientation of the goal in a given direction.
The robot used in this paper, however, is a car-like robot, which creates a non-holonomic
constraint for its movement. A constant direction for the pursued goal is not optimal in
our case especially in narrow hallways - which are frequent elements of indoor exploration.
Also one of the LIDAR configurations used does not make measurements in the whole 360°
around the robot leaving the area behind it unseen, which makes it necessary to approach
the frontiers from an ideal angle for maximized information gain.
This requires two parts of the problem to be solved: determining the orientation of a
frontier and devising the ideal angle in which to approach the selected frontier.

4.3.1 A change in the blacklisting method

The blacklisting method was changed to only blacklist frontiers if the global path planner
cannot make an acceptable path toward it, as waiting for the timeout often led to black-
listing reachable frontiers if in a section of the path the robot had to move away from the
goal. On the other hand, waiting for the timeout when the planner cannot make a path
is unnecessary and is not time-optimal.

4.3.2 The orientation of a frontier

Two methods were tried to determine the orientation of a frontier. The first idea was to fit
a linear line on the points of the frontiers with linear regression using LS (Least Square)
approximation [24]. This did not result in the desired effect as the estimated line was often
perpendicular to the direction of the frontier rather than parallel. This usually happened
when the points did not align in a linear line This is illustrated in Figure 4.2b.
The other approach was to simply use the vector pointing from the middle to the centroid
point as the direction of the frontier (see (4.1), where vfrontier is the orientation of the
frontier and xc and xm are the centroid and middle points). This conveyed our intentions
well enough and provided a way to maximize the exploration of the unknown area if the
LIDAR cannot measure behind the car.

vfrontier = xc − xm (4.1)

α = atan2 (vfrontier [y] , vfrontier [x]) (4.2)
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(a) The approximated direc-
tion is right when the
points align in a linear
line

(b) The approximated direction is wrong when
the points diverge from a linear line

Figure 4.2: The orientation of a frontier using LS estimation (yel-
low) and middle-to-centroid vector (red)

In the code, the orientation of a goal is described using quaternions so it is necessary to
transform the orientation which is calculated in degrees. In the case of an α angle rotation
around the z-axis, the quaternion can be calculated as shown in (4.3).


x
y
z
w

 =


0
0

sin α
2

cos α
2

 (4.3)

4.3.3 The ideal angle of approach

We have successfully determined the orientation of the frontier in Section 4.3.2. However,
this does not mean that approaching a frontier parallel to this direction will always be
optimal. To maximize the information gain of approaching a frontier some frontiers have
to be approached perpendicular to their original direction. This way we can differentiate
between two types of frontiers which can be seen in Figure 4.3.

Figure 4.3: The different types of frontiers regarding the ideal di-
rection of approach

The first type is the V-shaped frontier, which usually marks straight hallways with a free
line of sight, where the legs of the letter V correspond to the farthest point of the wall as
seen by the LIDAR. This shape is created by the gmapping node. When a LIDAR beam
does not reach an obstacle the area covered by it is not marked as free from the car to
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the end of the measurement range of the LIDAR but rather as unknown territory. This
type is optimally approached in the original direction of the frontier and will be called
henceforth frontier type A. The other type is the linear frontier. These represent borders
where the LIDAR could not see directly into the given area due to an obstacle being in the
way. These are usually found when exploring doors or the beginning of hallways. These
frontiers are best approached perpendicular to their orientation facing the unknown area
and they will be called frontier type B.

4.3.3.1 Differentiating between frontier types

To make a distinction between the two types of frontiers we will approximate the points of
the frontiers with a linear using LS estimation. For this, linear regression will be calculated
for the frontier points as measurement data following the method described in [24]. We
will use the measurement model seen in (4.4) and (4.5).

yn = a0 + a1un + wn (4.4)

z = Ua + w (4.5)

The equation (4.5) is filled with measurement data in (4.6), where yn will be the y and
un the x coordinate of a frontier point and a the parameters of the linear estimation. W
represents the error in our measurement.

z =


y0
y1
...

yN−1

 =


1 u0
1 u1
...

...
1 uN−1


[
a0
a1

]
+


w0

w1
...

wN−1

 (4.6)

U =


1 u0
1 u1
...

...
1 uN−1

 (4.7)

It is stated in [24] that the estimation of the parameters can be calculated as seen in (4.8).
After some transformation, we get the formula used to calculate the parameters of the
linear line (4.10).

â =
[
UTU

]−1 UT z (4.8)

[
UTU

]
=

[
N

∑N−1
n=0 un∑N−1

n=0 un
∑N−1

n=0 u2n

]
, UT z =

[ ∑N−1
n=0 yn∑N−1

n=0 unyn

]
(4.9)
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(4.10)

The value used to differentiate between the frontier types will be the least square error
(LSE) itself, as it describes the points’ divergence from the linear line well. The LS error
value can be calculated with the formula (4.11), where xn and yn are the coordinates of
the nth frontier point.

LSE =
1

N

N−1∑
n=0

(yn − (a0 + a1 · xn))2 (4.11)

Though the direction of the linear line resulting from this method is not always useful we
can make use of the LS error of the estimation to note a difference between the two types
of frontiers. Since points of the type B frontier generally fall in one linear line the LS error
for these frontiers will be low. In this case, the estimated line falls in the same line as the
points of the frontier (Figure 4.2a). On the other hand, type A frontiers tend to diverge
from one line and therefore the LS error in their case will be much higher. In this case,
the estimated linear does not fall in the direction of the frontier.

4.3.3.2 Classification of frontiers

Type B frontiers are in need of further diversification regarding the ideal angle of approach.
For this we have to look at two points, one on each side of the linear, the value of which
identifies four subtypes:

I. Known cell over it, unknown cell under it

II. Known cell under it, unknown cell over it

III. Known cells both over and under it

IV. Unknown cells both over and under it

To select the points to examine we have to determine the normal vector of the linear. This
can easily be done by looking at the LS estimated linear, for the second parameter (a1)
gives the slope of the line. Using this the direction vector can be calculated as seen in
(4.12).

v =

[
x
y

]
=

[
1
a1

]
(4.12)

Rotating the direction vector by 90° we get the normal vector of the line (4.13).

n =

[
x
y

]
=

[
−a1
1

]
(4.13)
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Using this we can define the two points on the two sides of the line. They are calculated
as the centroid point offset with the positive and the negative normal vector. For this, we
are stretching both vectors by ten times the resolution of the costmap so that the points
will be far enough from the points of the frontier. Equations (4.14) and (4.15) show the
calculation of the two points, where xc is the position of the centroid.

p = xc + 10 · res · n (4.14)
q = xc − 10 · res · n (4.15)

Computed like this p will always be in the positive, while q will be in the negative y
direction.
The orientation of the frontier (vfrontier, (4.1)) needs to be rotated to get the best direction
of approach only if the cell on one side is unknown and the one on the other side is known.
To decide the direction of the rotation with respect to the direction of the frontier we have
to take into account the four cases depicted in Figure 4.4.

Figure 4.4: The four cases of rotating the direction of the ap-
proach. The black arrow shows the orientation of the
frontier (pointing from the middle to the centroid) and
the red arrow shows the best direction of approach.

In light of this, we have to rotate the orientation vector of the frontier in the positive
direction, meaning we have to add π/2 radians in the following cases:

• the point over the line (p) is known, the point under the line (q) is unknown and
the x coordinate of the centroid is smaller than the x coordinate of the middle

• the point over the line (p) is unknown, the point under the line (q) is known and
the x coordinate of the centroid is bigger than the x coordinate of the middle

On the other hand, the vector needs to be rotated in the negative direction, meaning we
have to subtract π/2 radians in the following cases:
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• the point over the line (p) is known, the point under the line (q) is unknown and
the x coordinate of the centroid is bigger than the x coordinate of the middle

• the point over the line (p) is unknown, the point under the line (q) is known and
the x coordinate of the centroid is smaller than the x coordinate of the middle

In favour of clarity let us see these conditions in a tabular form in Table 4.1.

Type B frontier p known, q unknown p known, q unknown
centroid.x < middle.x +π

2 −π
2

centroid.x > middle.x −π
2 +π

2

Type A frontier no need for rotation

Table 4.1: Rules for rotating the direction of frontiers

In the case of type A frontiers, the direction of approach is the orientation of the frontier,
there is no need for any rotation.

4.3.3.3 Visualization of frontier classes

The four categories mentioned above are identified when computing the orientation of the
frontier. Then, when the frontiers are visualized the original blue colour of frontier points
changes according to the type of the frontier as seen in Table 4.2.

p q type Colour of frontier points
- - A green

known unknown B/I. yellow
unknown known B/II. purple
known known B/III. turquoise

unknown unknown B/IV. blue

Table 4.2: Visualization of frontiers

Figure 4.5 shows the colouring in the simulated environment.

Figure 4.5: Frontier classes visualized with different colours:
green - type A (V-shaped) frontier, yellow - type B/I.,
purple - type B/II., blue - type B/IV. frontiers. There
are no instances of turquoise - type B/III. frontiers,
as they generally do not appear.
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Chapter 5

The tree-based method of
exploration

After seeing the pitfalls of the greedy goal selection of explore_lite, this chapter’s goal
is to introduce a new method for goal selection. This includes organizing the detected
frontiers into a tree structure and proposing a selection algorithm using the tree as a base.
But first, let us understand the reason behind the need to change the greedy strategy for
goal selection.

5.1 Motivation

The original frontier-based method of exploration, though cherished for its simplicity, does
not always lead to an optimal trajectory, as we have already seen in Chapter 3. One of
the problems mentioned was the result of greedy goal selection.
The cost of a frontier consists of its distance from the robot and the expected information
gained from exploring it. Often the latter can be a very similar value among frontiers,
especially in symmetrical arrangements. This causes the distance of the frontier to occupy
a greater role in the goal-selection process.
When the greedy goal selection considers mostly the distance of the frontier as its cost the
following scenario can take place: the robot starts pursuing the closest frontier. As it gets
nearer, the sensors on board of the robot gain new information about the environment
around the approached frontier, which leads to the pushing back of the frontier line. This
way the distance between the robot and the pursued frontier increases, while the other
frontiers stay in the same place or get pushed back a smaller distance. When this happens,
the greedy selection algorithm often assigns another frontier to pursue, which previously
had a greater distance from the robot.
For some time the same can happen repeatedly as the robot approaches the newly assigned
frontiers, which leads to an oscillation in the trajectory. The phenomenon is illustrated in
Figure 5.1. This not only takes a lot of unnecessary time but by visiting the same places
over and over again we get very little new information about the robot’s environment.
The literature reviewed in Chapter 3 offers various solutions to this problem, most of
which use tree structures to get rid of greedy goal selection. The used trees, however,
being RRT (Rapidly-exploring Random Tree) or SRT (Sensor-based Random Tree), both
contain a random factor in the exploration.
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Figure 5.1: The robot is exploring in both directions due to the
oscillation of the goal selection, while it returns to the
the middle with every change of direction

In this chapter, we will propose a deterministic tree-building and goal selection method
for exploration to avoid both the oscillatory problem of the greedy goal selection and the
probabilistic nature of the reviewed tree-based exploration methods.

5.2 Overview of the algorithm

The backbone of the proposed algorithm is the tree. But unlike the methods reviewed
in Chapter 3, the leaves of the tree are not determined randomly. In each iteration, the
representatives of the newly detected frontiers will be built into the tree. This prevents the
tree from growing in dead-end directions and creates a tree that better reflects the topology
of the environment. The representatives are selected similarly to what [9] describes as RFE
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(representatives of free edges). But instead of a K-means clustering, our algorithm uses a
different clustering method which will be discussed later in this chapter.
The tree structure provides a base for the goal selection method. An algorithm resembling
a depth-first search is used on the continually expanding tree with the meaning of following
the same branch as long as it still has any unexplored leaves. When that is not the case
and the branch is explored the closest branch will be selected and followed until explored.
The detailed explanation of this method can be found in Section 5.4.
The steps of the algorithm are the following:

0. Initialization of the tree

1. Frontier detection

2. Clustering of frontier points

3. Filtering blacklisted frontiers

4. Branching from the tree

5. Goal selection in the tree

5.3 Building the tree

5.3.1 Frontier detection

The algorithm is based on the frontier detection method reviewed in Section 4.2.1. Unlike
the original, in this case, the points of the frontiers are not managed separately for each of
the frontiers, rather they form a collective set, which can be clustered later. Coincidentally
the calculation of the frontier’s parameters - its centroid, middle, size and orientation - is
not taking place during frontier detection but after the clusterization process instead.

5.3.2 The clustering of frontiers

The frontiers, when detected separately, consist of points that are connected to each other,
meaning that each point is in the 8-neighbourhood of another frontier point. On the other
hand, those frontier points that are not directly connected through their neighbourhood
must form a separate frontier, however close they may be to each other. This leads to a
high number of frontiers but with minor differences in the area they provide for exploration.
Using all frontiers as leaves would clutter the tree without providing a greater information
gain. To decrease the frontiers’ number to a reasonable amount with the highest possible
information gain on disjunct areas the frontier points need to be clustered. The difference
can be seen in Figure 5.2.
The clustering method found in the literature [9] is the K-means algorithm, for which the
K is determined using the range of the robot’s sensor. This holds two disadvantages. The
first is that the number of clusters needs to be specified ahead of time. The other problem
is that the shape of the clusters is not very flexible and the connectedness of a set of points
does not guarantee that they will belong to the same cluster.
For these reasons the method used to cluster the frontier points in our implementation is
the DBSCAN (Density-Based Spatial Clustering of Applications With Noise) algorithm
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(a) The area without clustering: many frontiers are registered

(b) The area after clustering: only one cluster is registered

Figure 5.2: The same area with and without clustering the fron-
tier points. The clustering leads to fewer goal candi-
dates which correspond better with the possible direc-
tions of the exploration.

[8]. This method does not take any input arguments other than the points to be clustered
and sorts them into clusters based on their connectedness.
The algorithm uses two parameters: ϵ, which is the distance within a point can be consid-
ered connected to another, and minPts, which defines a minimum number of points which
have to be in the ϵ neighbourhood of a point for it to be considered a core point. A point
is directly reachable, if it is within ϵ distance of a core point, and a q point is reachable
from a core point if a chain of core points can be formed, in which the neighbouring core
points are directly reachable from each other and the q point is directly reachable from the
last core point. Any point that is not reachable from any of the core points is considered
an outlier.
The core points and all points that are reachable from them form a cluster.
The implementation of the DBSCAN algorithm that is used in this paper can be found
on GitHub [7]. From this point, the clusters take on the previous role of the frontiers.
After clustering the frontier points, the frontier parameters are calculated using the points
clustered together. The result of the clusterization is illustrated in Figure 5.3 where the
different clusters are indicated with different colours.
Since the points of the clusters are coloured according to their corresponding cluster the
frontier types based on the ideal angle of approach are from now on visualized as the colour
of the sphere representing the centroid point of a cluster, as can be seen in Figure 5.4.
The colour of the sphere is determined as seen before (Table 4.2).

27



Figure 5.3: The result of the DBSCAN clusterization. Every clus-
ter is shown in a different colour.

Figure 5.4: The visualization of the clusters alongside the frontier
classes. The colour of the spheres corresponds to the
represented frontier class: green - type A (V-shaped)
frontier, yellow - type B/I., purple - type B/II., blue
- type B/IV. frontiers.

5.3.3 Branching from the tree

When the frontier points are clustered and the frontier parameters are set the created
clusters are filtered through the blacklist the same way the frontiers were. The non-
blacklisted clusters are used for the building of the cluster tree.
The root of the tree is initialized with a cluster which consists of one point, which is the
initial position of the robot. From then the new clusters are used to branch out in different
directions of exploration.
First, the tree-building method has to identify those clusters which did not move since
the last iteration of tree-building. Comparing the leaves of the tree from the last iteration
with the newly found clusters three cases can occur:

• A new cluster is present as a leaf in the existing tree. In this case, there is nothing
to be done and the leaf is kept as alive.

• A leaf is not present among the new clusters. This indicates that the cluster of the
leaf is either explored or moved. The leaf is marked as not alive.
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• No leaf corresponds to the new cluster. These are the clusters that appeared since
the last iteration of the tree-building. The new clusters will be marked as alive.

In this case, alive means that a cluster is presently associated with the given leaf. If a leaf
is not alive, it means that it no longer represents a frontier.
Following the matching of the leaves and clusters, the appeared clusters need to be con-
nected to the tree. The candidates to be the parents of such a node are the leaves of the
previous iteration (old leaves), and their parents. For each of the new clusters, the parent
is determined through the following steps.
The valid candidates are selected from the candidates. A candidate is valid if its centroid
is on the same side of the robot as the centroid of the appeared cluster so that the
appeared cluster could be in the line of sight of the LIDAR of the robot when approaching
the parent candidate. This can be checked by considering the angle between the vectors
pointing from the position of the robot to the two points in question. If the angle is
smaller than 90 degrees, the candidate is valid. According to Pythagoras’ Theorem, the
candidate has to satisfy the condition shown in (5.1), where dac,r and dpc,r are the distances
of the appeared cluster and the parent candidate from the robot, and dac,pc is the distance
between the appeared cluster and the parent candidate. The possible arrangements of
points are illustrated in Figure 5.5.
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Figure 5.5: The candidates with an α < 90° count as valid can-
didates. A valid candidate can be seen in green, an
invalid in red.

d2ac,pc < d2ac,r + d2pc,r (5.1)

The valid candidates are placed in a list sorted by their distance from the appeared cluster.
The candidates are tested in the order of their distance if the appeared cluster is really
visible from them. This is necessary to avoid connecting a node to the tree through an
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already explored wall. The appeared cluster is visible from the candidate, if following the
vector pointing from the centroid of the candidate to the centroid of the cluster the value
of the costmap cells does not exceed the threshold associated with an obstacle. The first
candidate from which the appeared cluster is visible will be denoted as the best candidate
and will be the parent of the new node.
If the cluster is not visible from any candidates it is registered as a fallen leaf. The list of
fallen leaves serves as another blacklist.
When all appeared clusters are connected to a parent or registered as fallen leaves the old
leaves of the previous iteration have to be managed. The cases are illustrated in Figure 5.6.
The old leaves are marked with a blue square. If an old leaf is alive or it is not, but it has
several new children there is nothing to be done. In the first case the old leaf (Figure 5.6b),
in the second case its children (Figure 5.6a) are pushed to the list of new leaves. On the
other hand, if an old leaf has no children and is not alive it means that the leaf is explored
(Figure 5.6c). It is then marked as explored and those of its direct ancestors, which have
no unexplored branches after the exploration of the leaf are also marked as explored. The
leaf and its ancestors can be set not explored when in a later iteration the leaf is selected as
the parent of an appeared cluster. For this to be possible the explored leaf is also pushed
to the list of new leaves.
If an old leaf has only one child it means that the addition of the new cluster did not
create a new branch (Figure 5.6d). In this case, there is no need to set up a new node,
it is sufficient to replace the cluster of the old leaf with the newly appeared cluster. This
way there could be a case when eventually the branch would cross a wall. Though this
would not mean an error, for the sake of clear visibility and a better representation of
the topology of the environment the clusters are replaced only if the new cluster is visible
from the parent of the parent candidate. In any case, the node containing the new cluster
will be pushed to the list of new leaves.
If the cluster is not connected to an old leaf but to its parent, then the parent is not
changed other than receiving a new child and the appeared cluster is pushed to the list of
new leaves.
Finally, the new leaves are saved to serve as the old leaves of the next iteration and the
building of the tree is finished. The cluster tree after a successful exploration can be seen
in Figure 5.7.

5.4 Goal selection

5.4.1 Indices and costs of nodes

The goal selection implements a depth-first search on the tree built in the way described
in the previous section. It is necessary for this search to be able to quickly identify if a
node is a descendant of another given node. For this, the indices of the nodes will be
introduced. It works as a prefix code following the layout of the tree.
The index of the root is an empty vector. Its children will have an index of one character,
each their own index in the children vector of the root. Every child in the tree has the
index of its parent completed with its own index in the parent’s children vector. In this
way, it can easily be determined if a node is a descendant of a parent node if the index
of the descendant starts with the index of the parent. The indices of a tree can be seen
in Figure 5.8, where the indices of each node are written in the circles representing the
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(a) The old node has several children: nothing
to be done

(b) The old node has no children, but is alive:
remains an unexplored leaf

(c) The old node has no children and is not
alive: it becomes explored

(d) The old node has one child: it gets replaced
with it

Figure 5.6: The four scenarios of pruning. The old leaves are
shown in blue squares, leaves are shown in green if
they are alive and in grey if they are explored. Other
unexplored nodes are shown in brown.

Figure 5.7: The cluster tree at the end of an exploration

nodes, while the nodes’ indices in the children vector of their parents are indicated by the
red numbers on the edges of the graph.
To be able to determine the closest unexplored branch when the pursued branch is ex-
plored the nodes need to have an associated cost with them. With the cost, the distances
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Figure 5.8: The indices of a tree structure

between nodes can be calculated not in euclidean space but travelling on the tree. This
is important because the short euclidean distance between two nodes does not necessarily
indicate proximity in the topology, for example when they are separated by a wall. We
can introduce a cost on the tree with which we can easily calculate the travelling distance
between nodes knowing the common ancestor.
Let the cost of the root be zero. We can also calculate the length of every segment of the
tree using the coordinates of the centroid of the parent and the child. With these, a cost
system can be built with the following method. The cost of every child will be the cost of
its parent added to the length of the segment connecting them. The cost of a tree can be
seen in Figure 5.9. In this case, the circles representing the nodes contain the cost of the
given node, while the red numbers on the edges represent the euclidean distances between
the parent and child node of the given edge.
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Figure 5.9: The cost of nodes in the tree structure

With this cost system, the distance travelling from any node (N1) to another (N2) can
easily be calculated. First, we have to find their common ancestor (A) using the indices:
the matching characters at the front of the index of each node will be the index of the
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common ancestor. The travelling cost between the two nodes can be calculated as seen in
(5.2), where C (X) is the cost of X node and D is the distance travelled on the tree.

D = C (N1) + C (N2)− 2C (A) (5.2)

5.4.2 The goal selection method

To select a new goal first we have to be familiar with the last goal of the exploration.
Initially, this is the root of the tree.
First, we have to consider if the last goal is explored or not. If it is not, and it is a leaf of
the tree it remains the goal of the exploration in the new iteration. If it is not explored,
but it is not a leaf anymore, because the tree branched out from it we have to find a new
goal. Since the branch is not entirely explored the goal has to be a descendant of the last
goal to avoid abandoning unexplored areas midway and having to come back to them later
as we have seen in the original frontier-based exploration. Therefore the new goal will be
the closest unexplored leaf among the descendants of the last goal.
If the last goal is explored the first unexplored ancestor of the node has to be found. This
can be done by stepping back through the parents until finding an unexplored node. The
new goal can then be found as the closest unexplored leaf among the descendants of the
ancestor.
Finding the closest descendant of a node is a problem that arises in two scenarios of
goal selection. First, the descendants of the node have to be found. This is achieved by
comparing the indices of the leaves of the tree with the index of the ancestor and selecting
those from them which contain it at their beginning. After this, the cost of travelling from
the last goal to the selected leaves is calculated with (5.2) and the one with the lowest
cost will be selected as the next goal of exploration. The goal selection and tree-building
process are demonstrated in Figure 5.10.
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(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 5.10: Steps of a cluster_tree exploration
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Chapter 6

Experimental results

To validate the claims of the previous chapter it is necessary to confirm the improvements
in the exploration method using various test environments. In our case, the tests were run
in a simulated environment. It will be described in more detail in the following section.

6.1 Test environment

The robot is simulated using Gazebo along with all its sensors. The physical characteristics
and parameters simulated are consistent with the real-life robot. All program components
not responsible for the simulation itself operate the same way as they would when using
the real-life hardware and are in no way notified of the nature of the environment.
There are several worlds modelled in Gazebo but the one used for the comparison of the
discussed methods is modelled after two neighbouring rooms and the connecting section
of a corridor, which is part of the ground floor of a building of the university. The Gazebo
world is shown in Figure 6.1.

Figure 6.1: The test world shown in Gazebo

The measured values to be compared are the following. The time elapsed during the
exploration, the progress of completeness and the distance travelled. The first indicator
is simply calculated as the difference between the finishing and starting point in time.
The progress of the exploration is the percentage of the map that is already explored at
any given moment. It is registered as a function of time. To calculate the momentary
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value of progress, a finished map is captured and stored by the map_saver service of the
map_server ROS module. The current map is evaluated with respect to the finished map
in every iteration. The value of progress at a moment equals the quotient of the number
of cells which have the same value in both maps and the number of all cells in the finished
map.
Thirdly the distance travelled is calculated by integrating the position of the robot in
every iteration.
Both methods of exploration were tested in simulation for a total of ten times in this
world.
Another test environment is modelled after the Nádasdy Mansion located in Nádasdladány.
The ground plan can be found in [22] and is shown in Figure 6.2a. The plan was reduced
to the area currently open to the public and further simplified for modelling. The resulting
Gazebo world can be seen in Figure 6.2b. This is a significantly bigger and more complex
world for the algorithms to be tested on. There were five test cases documented for each
of the methods exploring this environment.

(a) The ground plan of the Nádasdy Man-
sion [22]

(b) The simplified Nádasdy Mansion modelled
in Gazebo

Figure 6.2: The layout of the Nádasdy Mansion in the real life
and in the Gazebo world

6.2 Simulation results

6.2.1 Classical frontier-based exploration

First, let us look at the simulation results of the original frontier-based method improved
with the ideal angle of approach. The progress of the exploration can be seen in Figure 6.3.
Every fine line represents a test while the thick red line shows the average progress at any
given moment. The measured values can be found in Table 6.1. The average time to get
to 90% progress of exploration was 259.5 seconds, while the average time for finishing the
simulation (when no reachable frontiers are left) was 528 seconds. The average distance
travelled accounted to 138.74 m.
There are cases when the global planner takes an unreasonably long time to turn around
the robot in the narrow corridor instead of in a doorway. This results in plateaus in the
progress curve, which are more noticeable in Figure 6.6 of the cluster tree exploration.
In other cases, the issue does not occur. To make the results more independent of the
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planners the worst three test cases were not taken into account in the comparison of the
results. The upgraded average curve can be seen in Figure 6.3 with a blue dashed line.

Progress
time [s]

90% 221 246 301 256 216 average
finish 446 446 316 626 711 000.0

Distance [m] 135.08 142.81 97.43 180.49 130.96 000.00
average

Progress
time [s]

90% 231 246 271 286 321 259.5
finish 466 531 416 461 861 528.0

Distance [m] 146.88 115.85 128.15 146.68 163.08 138.74

Table 6.1: Experimental results of the explore_lite method exploring the corridor

Figure 6.3: The progress over time using the improved ex-
plore_lite to explore the corridor. The average of the
progress is shown in red, the updated average is rep-
resented by the blue dashed line.

The first thing to be mentioned is the importance of taking into consideration the con-
straints forced by the physical construction of the robot. Since the original explore_lite
package was made for a holonomic robot the angle of approach was a constant vector in
the direction of the x-axis. During tests run with the original package, the car-like robot
would have to approach every goal on the corridor perpendicular to the walls, which led
to it being stuck the majority of the time, never finishing the exploration.
On the other hand, the improved method was able to finish the exploration most of the
time and provided more natural trajectories for the non-holonomic robot.
Though relevantly better than the original, even the improved method could not eliminate
the problems caused by greedy goal selection. The biggest pitfall of it is leaving rooms
partly unexplored (visible in Figure 6.4), and after visiting every room, which could have
meant the end of exploration, it has to go back to finish exploring each room wasting a
lot of time in the process.
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Figure 6.4: The robot leaves the room before finishing its explo-
ration

A smaller scale oscillation can also be observed when the greedy goal selection is torn
between two goal candidates and the manoeuvring of the robot is enough to change the
direction of the next goal, leaving the robot going back and forth in one place.
The results of exploring the Nádasdy Mansion with the explore_lite method can be seen
in Table 6.2. The times and distances are higher than in the case of the corridor, simply
because this world is much bigger and more complex. Observing the values we can see
that increasing the complexity of the exploration made the problem of visiting the same
places more times less relevant than in the corridor. This happened because the looped
structure of the map already made it necessary to go through the same areas more than
once. So while in the case of the corridor the time spent after reaching 90% progress was
more than half of the total time of the exploration, in this case, that value is only 36%.
The progress over time can be seen in Figure 6.5. In this case, the erasure of some of the
results was not necessary, because the corridors were wide enough for the robot to turn
back on and there were more doorways, so the turning did not take an unreasonably long
time like in the case of the corridor.

average
Progress
time [s]

90% 1066 796 1026 676 741 861.00
finish 1838 1076 1361 1011 1491 1355.40

Distance [m] 503.44 361.58 451.40 332.13 499.03 429.51

Table 6.2: Experimental results of the explore_lite method exploring the Nádasdy Man-
sion

6.2.2 Tree-based method for exploration

The tree-based method provided a reliable way of exploration producing an average of
303 s travelling time among the ten simulations, and a slightly lower value of 280 s to
get to 90% progress. The progress during the explorations is shown in Figure 6.6. The
colouring is the same as we have seen in the case of explore_lite. The effectiveness of the
method can be observed in the distance travelled, which averaged a value of 93.12 m.
This can be traced back to the lack of unintentional backtracking during the exploration.
Following the tree structure, the robot is not allowed to leave a room until it is completely
explored so when the robot does leave the room there is no need to come back to it later.
The process of exploration following the tree can be seen in the set of Figures 5.10.
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Figure 6.5: The progress over time using the improved ex-
plore_lite to explore the Nádasdy Mansion. The av-
erage of the progress is shown in red.

Progress
time [s]

90% 246 216 276 316 211 average
finish 256 226 301 321 231 000.0

Distance [m] 85.79 77.54 101.84 88.17 79.44 000.00
average

Progress
time [s]

90% 261 276 286 336 401 282.5
finish 276 276 316 346 481 303.0

Distance [m] 91.35 93.10 99.86 116.51 97.56 93.12

Table 6.3: Experimental results of the cluster_tree method exploring the corridor

We can see on the diagram, that the curves of different tests proceed together for a long
time. Then individual strands get left behind. Watching the simulation in real-time
explains to this phenomenon. The car takes a long time to proceed with the exploration
when the global planner tries to turn it around in the narrow corridor. In the quickest
explorations, the car made a Y-turn in a doorway instead. To make this issue less relevant
in the result the worst three test cases were deleted from the comparison, similarly to
the case of explore_lite. The updated average curve is shown in a dashed blue line in
Figure 6.6.
The results of exploring the Nádasdy Mansion with the cluster_tree method can be seen
in Table 6.4. As the method relies on building a tree for goal selection it did not perform as
well in the looped environment of the mansion as in the already tree-structured corridor.
Often the closest unexplored branch in the tree was not the closest in the environment
causing the robot to travel further away than it would have needed to. It is also due
to the looped structure that sometimes rooms on a loop remain unexplored if the robot
follows the loop first, similarly to how the greedy algorithm leaves rooms half-explored
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Figure 6.6: The progress over time using the cluster_tree method
to explore the corridor. The average of the progress is
shown in red, the updated average is represented by
the blue dashed line.

and in both cases, the robot has to come back to the room later. This is the cause for the
plateaus at the end of the curves of each test case in Figure 6.7.
The steps of the exploration are shown in the set of Figures 6.8. Though the exploration
was successful, the bigger map and its consequences also took their toll on the speed of the
exploration. Due to the high number of leaf nodes to be examined, the building of the tree
proved to be highly compute-intensive. As a result the building of the tree often halted for
several seconds after discovering new clusters. This, however, did not introduce any errors
in the exploration, as the robot pursued the last goal nonetheless, and when it reached its
destination, waited until a new goal could be assigned to it. So while it can be said, that
the high computational times did not interfere with the success of the exploration, they
did cause a delay in progress. The exploration lasted an average of 1122 seconds. This
means a total of 18 minutes and 42 seconds.

average
Progress
time [s]

90% 1026 1016 1041 851 936 974.00
finish 1076 1066 1286 1146 1036 1122.00

Distance [m] 360.68 371.46 444.68 381.69 315.64 374.83

Table 6.4: Experimental results of the cluster_tree method exploring the Nádasdy Man-
sion

6.2.3 Comparison of the test results

To compare the improved explore_lite and the tree-based method we can look at their
progress over time side by side in Figure 6.9. The shown curves are the updated average
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Figure 6.7: The progress over time using the cluster_tree method
to explore the Nádasdy Mansion. The average of the
progress is shown in red.

curves of the two exploration methods, where the worst three test cases were deleted due
to issues with the global planner. The average progress of explore_lite is marked in red
and the average progress of the cluster tree method is shown in blue.
One thing we can notice is that the two methods do not seem to be much different in the
first part of the exploration, though the green curve comes before the red one from 40%
to 75%, but they reach 90% almost at the same time. The explore_lite achieves this in an
average of 245 seconds, while the cluster_tree in 257.43 seconds. If we look at differences
in the time elapsed in individual test cases we can say that this is not a very significant
difference.
The real difference between the two methods though is how that 90% of progress is dis-
tributed. Using the cluster_tree method the map consists of unknown and completely
known areas. On the other hand, the explore_lite first takes a general look at every place,
thus gathering 90% of the information slightly more rapidly, but with unknown areas all
over the map. This has to be corrected later, which leads to the slow and movement-
intensive collection of the remaining 10% of the information. This can be seen in the
logarithmic-like nature of the curves in Figure 6.3 and the average curve in Figure 6.9,
continuing long after achieving a high percentage relatively quickly. This makes the av-
erage time from the 90% mark to the finishing of the exploration 260.71 seconds, which
takes a longer time than reaching 90% of progress from the beginning.
On the other hand, the exploration with the cluster_tree method ends shortly after getting
to the 90% mark. Since the known part of the map consists of already completely explored
areas, thanks to the systematic nature of the exploration, there is no need to return to
previously visited territories. Thanks to this it takes only an average of 12.14 seconds to
finish the exploration after reaching the 90% mark.
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(c) (d)

(e) (f)

(g) (h)

(i) (j)

(k) (l)

Figure 6.8: Steps of the exploration of the Nádasdy Mansion
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This results in the average total travel time being reduced to its 53% (from 506.0 s to
269.57 s) using the cluster_tree method. The difference is also evident if we look at the
differences in the distance travelled. Using the tree-based method the average distance
toured by the robot was reduced from 134.64 m to 88.18 m, its 65.5%, which means that
about the third of the distance travelled by the robot using the explore_lite method was
unnecessary and due to the greedy goal selection algorithm.

Figure 6.9: Comparison of progress using the two methods to ex-
plore the corridor. The updated average of the ex-
plore_lite is shown in red while the updated average
of the cluster_tree is shown in blue.

Another aspect of the performance of exploration is the quality of the built map. The maps
generated by the two methods are generally very similar, though maps generated exploring
with explore_lite tend to be slightly more detailed. This can be seen in Figure 6.10,
especially in the bigger room. This can be the result of two factors.
As we have already seen, the explore_lite takes more time exploring, often visiting the
same areas multiple times, allowing it to take repeated measurements in the same place,
often from different angles.
The other contributing factor could be the number of frontiers. In the tree-based method,
the frontier points are clustered, leading to a smaller number, but bigger frontiers. On the
other hand, explore_lite uses its frontiers without any after-processing which leads to a
higher number of smaller frontiers. Then, as all frontiers can be goals of the exploration
regardless of their size, a more detailed map is formed, but the exploration takes a longer
time.
In the case of the Nádasdy Mansion, the looped structure of the map made the problems of
explore_lite’s greedy goal selection less relevant and the tree structure of the cluster_tree
method less effective, which resulted in the decreasing of the difference between the results
of the two explorations. There were test cases when explore_lite performed better, though
looking at the average performance of the two methods the cluster_tree method still shows
better results. While in the corridor following the tree the robot travelled only 53% of the
total time of using greedy goal selection, in the case of the Mansion this value rose to 83%.
Similarly, the proportion of distance travelled using the two methods rose from 65% to
87%. The comparison of the methods’ progress over time is shown in Figure 6.11. We can
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(a) explore_lite

(b) cluster_tree

Figure 6.10: Final maps build by the two methods of exploration

see that the curves rise almost in the same way and plateau at the same point. Despite
this, the exploration using the cluster_tree method finishes an average of 233.4 seconds
sooner than in the case of explore_lite.

6.3 Summary of the results

In this chapter, we have seen both exploration methods in action. The two Gazebo worlds
used for testing showed different aspects of the methods. The tree-like structure of the
corridor allowed the cluster_tree method to work to its full capacity, reducing the travelling
time to 53% and the distance travelled to 65% in comparison with explore_lite.
On the other hand, the Nádasdy Mansion had a looped structure, which made the ex-
ploration following a tree structure less effective and visiting some places more than once
unavoidable. The latter made the greedy goal selection of the explore_lite a less wasteful
strategy while simultaneously making the following of a tree structure more expensive.
This is reflected in the decrease in the difference between the two methods. In this case,
the travelling time was only reduced to 83% and the distance travelled to 87%.
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Figure 6.11: Comparison of progress using the two methods to
explore the Nádasdy Mansion. The average of the
explore_lite is shown in red while the average of the
cluster_tree is shown in blue.
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Chapter 7

Conclusion

In this paper we have reviewed a frontier-based method of autonomous exploration and
modified it to be usable on a robot limited by non-holonomic constraints, then proposed
a new, tree-based approach to goal selection to eliminate the problems seen with the
greedy algorithm. The simulation results showed a significant improvement in the time
and distance travelled of the exploration when the map also followed a tree-like structure
and a slight improvement in the case of a looped map.
The latter is caused by the tree structure not being able to register different branches
connecting with each other. In this way, the tree gives a false representation of the
structure of the environment and it is thus an erroneous way to think that the closest
unexplored branch could be determined using nothing else, but the tree itself.
The solution to this could be to register the proximity of neighbouring branches using
shortcuts where the tree would close to a loop and determine the best goal from all the
closing branches and ultimately choose the closest of these nodes. The distance of the
nodes can in this case defined as their distance following the tree, as they are calculated
from their corresponding branches. This can be a promising direction for further improving
the algorithm.
The other problem of exploration with the tree structure in a large environment was the
high computation times of finding the best node to connect the newly found frontiers to.
This could be reduced by only considering candidates in the given proximity of the new
cluster and using a different method to sort the remaining parent candidates. With this,
a faster exploration would be possible even when the tree has a high number of nodes.
In conclusion, the proposed algorithm proved to be a great improvement on the original
method in environments following a tree structure, like most offices, and performed better
even in an environment not favourable for tree-like exploration, still bringing forward
promising ways for further development of the algorithm.
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