
Budapest University of Technology and Economics
Faculty of Electrical Engineering and Informatics

Department of Measurement and Information Systems

Application of Counterexample-Guided
Abstraction Refinement on Concurrent Programs

Scientific Students’ Association Report

Author:

Levente Bajczi

Advisor:

Dr.Vince Molnár

2021

Contents

Kivonat i

Abstract ii

1 Introduction 1

2 Background 3
2.1 Safety-Critical Systems . 3
2.2 Formal Software Verification . 4

2.2.1 Bounded Model Checking (BMC) . 7
2.2.2 Counterexample-Guided Abstraction Refinement (CEGAR) 8

2.2.2.1 A Generic CEGAR Loop 8
2.2.2.2 CEGAR Configuration Options 9
2.2.2.3 BMC Inside CEGAR . 13

2.3 Multi-Processor Architectures . 13
2.3.1 Memory Consistency Models . 13

2.4 Analysis of Multi-Threaded Programs . 15
2.4.1 Interleaving Semantics . 15
2.4.2 Declarative Semantics . 17
2.4.3 Multi-Threaded CFA . 17

3 Related Work 19
3.1 Sequentially Ordered Concurrency . 19
3.2 Weakly Ordered Concurrency . 19

3.2.1 Herd . 20
3.2.2 Rcmc . 21
3.2.3 Dartagnan . 22

4 CEGAR for Declarative Semantics 24
4.1 Outline of the Solution . 24

4.2 Motivating Example . 25
4.3 Limitations on Genericity . 28
4.4 Formalizing the Approach . 30

4.4.1 Abstract States for Declarative Analysis 30
4.4.2 Building the ARG . 31

5 Implementation 35
5.1 Exploring Interleavings . 35
5.2 Declarative Semantics . 36
5.3 Common Parts . 37

6 Evaluation 38
6.1 The Benchmark Set . 38
6.2 Benchmark Results . 39

6.2.1 Declarative Verification . 40
6.2.2 Verification of Sequential Programs 40

6.3 Result Evaluation . 40
6.4 Summary . 41
6.5 Future Work . 42

Bibliography 43

Kivonat

A formális szoftververifikáció aktívan kutatott alterülete a többszálú programok hatékony
kezelésének problémája. A többmagos processzorok biztonságkritikus rendszerekben való
megjelenésével egyre nagyobb szükség van olyan robusztus, a biztonságosság bizonyítására
alkalmas megoldásokra, amelyek képesek figyelembe venni a több mag jelentette megnöve-
kedett komplexitást. Ezen új kihívások legfőbb oka a megosztott adatokhoz történő párhu-
zamos hozzáférés, ami újfajta hibalehetőségek (pl. memória- vagy cache-inkonzisztencia)
révén előre nem látható, potenciálisan katasztrofális hibához vezető problémákat okozhat-
nak a szoftverben és a hardverben.

A szoftververifikáció terén eddig publikált kutatások többnyire a probléma egy rész-
halmazát célozták, leszűkítve arra az esetre, amikor minden adathozzáférés szigorúan szek-
venciális. Ezen megoldások nem alkalmasak a gyenge rendezésű hardver-szoftver rendsze-
rek analízisére, melyeket azonban széles körben alkalmaznak a hatékonyság növelése ér-
dekében. A tudományos világ csak az elmúlt néhány évben kezdett el új, általánosabban
alkalmazható, memóriamodell-alapú megoldások kifejlesztésével foglalkozni. A probléma
komplexitása miatt ezek a megoldások általában a korlátos modellellenőrzés kiterjesztései,
melyek csak a program első k lépéséről képesek érvelni, és így nem tekinthetőek általános
megoldásnak.

Jelen dolgozatban bemutatok egy új, memóriamodellt figyelembe vevő, ellenpélda-
alapú absztrakciófinomítás (CEGAR) technikát alkalmazó nem-korlátos modellellenőrző
algoritmust gyengén rendezett párhuzamos programok kezelésére. Az algoritmus hatékony-
ságát a terület meghatározó szekvenciális és gyenge rendezésű memóriát feltételező veri-
fikációs eszközeivel összevetve értékelem ki. Bemutatok továbbá egy összefoglaló képet a
szekvenciális memóriamodellű, párhuzamos programokat kezelő megoldásokról, melyek a
CEGAR technikát használják. Ezeket a megközelítéseket összehasonlítom a komplexitá-
suk, hatékonyságuk és használhatóságuk szerint is.

Az Innovációs és Technológiai Minisztérium ÚNKP-21-2 kódszámú Új Nemzeti Kiválóság Programjá-
nak a Nemzeti Kutatási, Fejlesztési és Innovációs Alapból finanszírozott szakmai támogatásával készült.

A 2019-1.3.1-KK-2019-00004 számú projekt a Nemzeti Kutatási, Fejlesztési és Innovációs Hivatal tá-
mogatásával készült, a 2019-1.3.1-KK költségvetési terv alapján finanszírozva.

i

Abstract

Effectively handling multithreaded programs is an active field of research in the context of
formal software verification. As the world moves to multi-core processors in safety-critical
settings, a robust solution is necessary to prove safety considering the increased complexity.
The main source of the new challenges is the concurrent manipulation of shared data, where
new kinds of problems (such as memory- and cache inconsistency) might cause unforeseen
faults in software and hardware, leading to potentially catastrophic failures.
Previously published research in software verification has mostly targeted a subset of the
problem, narrowing it down to the case when access to shared data is strictly sequential.
These approaches are not suitable for the analysis of weakly ordered hardware-software
systems, which are widely used and represent a generally more efficient solution to paral-
lelization. In recent years, there has been work on providing broader, memory model-aware
approaches. Due to the complexity of the problem, these have generally been extensions to
bounded analysis techniques, which can only reason about the first k steps of the program,
lacking generality.
In this report, I introduce a novel, memory model-aware Counterexample-Guided Ab-
straction Refinement (CEGAR) based algorithm for handling the unbounded analysis of
weakly-ordered concurrent programs. I evaluate the efficiency of this algorithm by com-
paring it to the state-of-the-art verification tools for sequentially- and weakly-ordered
programs. I also present an overview of existing approaches to handling sequentially-
ordered concurrent programs using the Counterexample-Guided Abstraction Refinement
(CEGAR) technique. I compare and contrast these approaches by their complexity, effi-
ciency and usability as general-purpose software verification tools.

Supported by the ÚNKP-21-2 New National Excellence Program of the Ministry for Innovation and
Technology from the Source of the National Research, Development and Innovation Fund.

Project no. 2019-1.3.1-KK-2019-00004 has been implemented with the support provided from the
National Research, Development and Innovation Fund of Hungary, financed under the 2019-1.3.1-KK
funding scheme.

ii

Chapter 1

Introduction

Embedded software has reached a point in many safety-critical domains, where the per-
formance of a single core is not enough. This is either due to the inherent limitations
of the silicon [39], or pricing considerations. For example, in one of the preferred (and
safety-certified) microprocessor families of the automotive domain1, if a clock frequency of
200MHz is not enough, there are only multi-core options available with a higher setting.
This has led many suppliers to use a multi-core microprocessor with only a single core
running, to take advantage of the performance gain. However, if the same software could
run on multiple cores, a less powerful (and therefore cheaper) multi-core solution could be
utilized, which could save enough money for the supplier to justify the heightened com-
plexity of the software. Furthermore, many suppliers see that this change is inevitable –
sooner or later, the number and quality of features expected from a single electronic con-
trol unit (ECU) will overwhelm any single-core processor, at which point either a second
unit has to be used, effectively doubling the costs; or an adaptive solution is necessary
that utilizes features of a multi-core microprocessor.
However, there are many pitfalls of porting legacy (single-core) code to multi-core archi-
tectures, one of which is the hindrance of testing. In a single-core safety-critical system,
testing (if done thoroughly) can be considered a somewhat definitive proof of safety – the
supplier of a part has to show that any reasonable scenario is taken care of, and no danger-
ous harm should (with great confidence) befall the future user of the product. However,
in the multi-core case, simple testing is inherently non-deterministic, as the overlapping
of execution in the software’s threads can cause different outcomes, solely based on the
timing of the processor cores.
A further source of complexity stems from the complicated memory models of multi-core
processors. Almost all multi-core processors handle memory accesses in a relaxed way, i.e.
the order of operations in the source code does not necessarily order the actual memory
accesses during execution. For example, the microprocessor family mentioned above uses
a Total-Store Ordering (TSO) memory model [1], which means that only stores and other
dependent memory accesses are ordered by their location in the program’s source, any
other type of access can freely overtake each other.
This phenomenon also means that a software developer has to be aware of these architec-
tural details, otherwise, even a sane implementation of a multi-threaded algorithm might
produce unwanted results. Consider the following two-threaded program (x and y are
global variables):

1https://www.infineon.com/cms/en/product/microcontroller/32-bit-tricore-microcontroller/32-bit-
tricore-aurix-tc3xx/

1

x = 0;
y = 0;
x = 1;
y = 1;

int i = y;
int j = x;
if (i > j)

ERROR: exit(-1);
Even though it seems evident that i will always be smaller than or equal to j because y is
always increased after x in the writer thread; the ERROR label is sometimes reachable
when we run the above program on a TSO architecture. This can be justified by the
memory model: even though the writes to global variables order themselves based on the
source code (i.e. the actual values in memory will always be dictated by the line-by-line
instructions in the writer thread), the read from y might block and give way to the second
read before it finishes. This can lead to the outcome designated as erroneous – and similar
(but harder to detect) problems can cause silent problems in the product, which are not
recognized during testing, but when millions of users execute the same piece of code, some
will experience a program failure that might lead to physical or monetary harm.
On the other hand, this heightened complexity also means that formal methods such as
model checking is even less effective at checking the safety of multi-threaded software.
However, as testing is not powerful enough to prove the safety of the product, we have to
use some form of formal software verification to make sure that the system we developed
is safe enough – and therefore, a practical and performant solution is required to evaluate
the multi-threaded algorithms in safety-critical systems.
To further justify the importance of this field, taking a look at the results of the 21st Soft-
ware Verification Competition (SV-COMP2) [11], even though many of the participating
tools support a form of concurrency, participants use a wide range of techniques to handle
these programs. Out of the tools that performed above the positive average of 600 points
in this category, all four use a different approach (such as a mix of partial order reduction,
sequentialization, predicate abstraction and bounded model checking) – which indicates
that there is no single best technique that is so overwhelmingly performant that others
cannot compete.
In this report, I present techniques utilizing the Counterexample-Guided Abstraction-
Refinement (CEGAR [21]) approach for handling the problem of concurrency in formal
program verification. As the main contribution, I have developed a technique that han-
dles the abstraction-refinement of weakly-ordered concurrent programs using declarative
semantics. Furthermore, I implement said algorithm along with existing methods of han-
dling sequential programs in a CEGAR loop inside the open-source Theta model checking
framework3 [40, 30] for a just evaluation of these techniques.
This report is structured as follows: in Chapter 2, I introduce the necessary concepts and
the definitions the rest of the work uses. In Chapter 3, I present the tools and algorithms
whose purpose overlaps with that of this report. In Chapter 4, I introduce the main
contribution of my work, the algorithm capable of verifying unbounded, weakly-ordered
concurrent programs. In Chapter 5, I elaborate on the implementation details of the
algorithms mentioned in the scope of this report. Finally, in Chapter 6, I present the
performance comparison of the algorithms above.

2https://sv-comp.sosy-lab.org/
3https://github.com/ftsrg/theta/

2

Chapter 2

Background

This report builds upon the theories and findings of many fields of computer science,
including embedded programming, formal software verification, memory modeling, and
concurrent software design. Some of these fields view the same topics slightly differently,
e.g. software verification presumes a formal, mathematical model for the input program,
while embedded programmers usually use the much lower abstraction level of source code
to reason about properties of the software. This necessitates establishing the basis of the
presented work to prevent misunderstanding among experts in these fields. This chapter
introduces such concepts and defines their interpretation as used in the context of this
work.

2.1 Safety-Critical Systems

If a hardware-software system was designed for a small selection of well-defined tasks, it
is generally referred to as an embedded system. Such systems are not adept for general-
purpose use, as their in- and outputs are often limited, and their software is seldom
modifiable with the rare exception of program upgradability. Embedded systems can fulfil
many kinds of tasks, ranging from operating the electrical windows on a car to performing
complicated protocols for mid-air collision avoidance in airplanes1, or providing a safety
shutoff system for a nuclear plant.
Failure of an embedded system might be a minor nuisance or a serious safety problem,
depending on the context of the application. If an electrical window fails on a car, the
worst that can happen is some discomfort until the faulty unit is repaired or replaced –
but failure of the TCAS might result in the collision of two airplanes where hundreds of
lives are at risk. Any system that is designed to perform tasks where malfunction could
lead to harm (physical or monetary) is classified as a safety-critical system.
Depending on the level of tolerable risk, a safety-critical system can be classified e.g.
according to Safety Integrity Levels (SIL) [32]. Several qualitative and quantitative mea-
sures are in place in such standards to mitigate dangerous failures, such as a controlled
development workflow, thorough quality assurance and safety evaluation. For software
components, the most widely used technique to assess safety is testing, i.e. running the
program with defined sets of inputs and analyzing the outputs. This is not a definitive
proof, as for untested inputs we cannot evaluate the behavior, but if the testing method-
ology is thorough enough, we can qualify the software as probably safe for the desired

1Such as the Traffic Alert and Collision Avoidance System (TCAS)

3

safety integrity level. To aid testing, formal methods such as model checking [22] (also see
Section 2.2) and formal test generation [18] can be used, which are often too complex to
be used on their own, but can support conventional testing methods.
With recent years’ advancements, even safety-critical systems arrived at the point where
scaling up in performance is next to impossible if only a single core is utilized [39]. The
next logical step is to introduce multi-processor chips that can use smarter workload
management to overcome the need for computing power. However, with multi-processor
architectures and multi-threaded programs, the complexity of embedded systems surpasses
the verification power of conventional testing, mainly due to the inherent nondeterminism
of multi-threaded programs. When a program is strictly run on a single-core processor, it
is relatively easy to guarantee that for a single set of inputs, the output of the program
will always be the same. Therefore, it is enough to test each input set once, and assess the
execution’s results. With multi-threaded programs, an otherwise deterministic program
can still produce different results based on timing differences among the processors, which
cause different sections of the program to overlap in execution. Hence, testing is even less
effective at proving safety, and a more formal method is often required.

2.2 Formal Software Verification

Formal software verification is a way to mathematically prove or disprove certain properties
of an input program. Such properties might include memory safety (detecting use-after-
free and other memory allocation problems), reachability (detecting if an unsafe state is
reachable) or termination (detecting if the program will terminate in all its executions). In
the context of this work, safety properties are always assumed to be reachability related,
with a single unsafe state in the program.
Formal software verification often employs model checking [22], a technique that enumer-
ates states of the input program and reasons about the properties of the states. For
reachability-type queries, it is necessary to know whether the state marked as unsafe is
reachable from the initial state(s) within a finite number of steps – if such a path exists,
the program is deemed unsafe and safety cannot be guaranteed. In practice, generating
all states of an input model is often infeasible, as even a single 32-bit variable will create
232 different states according to its value. This phenomenon is called state space explosion
[23], and counteracting it is required for any practically useful model checking algorithm.
A theoretical problem that verification tools have to face is the inherent undecidability of
the model checking problem. Consider an arbitrary input program and an unsafe state
at its exit point. To prove the (un)reachability of said state, the program’s termination
property has to be decided – which is proven to be undecidable [42]. This means, that
any model checking algorithm will either be incomplete, i.e. some inputs will result in an
UNKNOWN classification, or will produce false results in the form of false alarms and
missed bugs.
A further problem of such algorithms is bridging the gap between the different abstraction
levels in the verification workflow. Embedded programs are usually written in C or a sim-
ilar high-level language, where concepts such as variable scopes, procedures and pointers
make the lives of programmers easier, abstracting away the single instructions that will be
generated by the compiler. However, the rich toolset of high-level languages greatly hinder
the reasoning power of any formal method, as a formal model of the language semantics
would be required. This is hard for some languages, and impossible to create for others:
e.g. in the case of C++, the grammar is undecidable, i.e. there cannot exist any program

4

1 int i , j , k;
2 k = ioread32();
3 i = 2;
4 j = k + 5;
5 while (i < 10) {
6 i = i + 1;
7 j = j + 3;
8 }
9 k = k / (i − j);

(a) C program with potential
division-by-zero

Li

L1

L2 L3

L4 L5

L6

Le Lf

havoc k

i := 2
j := k + 5

[i < 10]

i := i+ 1

j := j + 3

[i >= 10]

[i = j] [i 6= j]

(b) Control Flow Automaton
for Figure 2.1a

Li

L1

L2 L3 L3

L4 L5

L6

Le

i[1] := 2

j[1] := k[0] + 5

[i[1] < 10]

i[2] := i[1] + 1

j[2] := j[1] + 3

[i[2] >= 10]

[i[2] = j[2]]

(c) Single static assignment
form of a path in Fig-
ure 2.1b

i[1] = 2 ∧ j[1] = k[0] + 5 ∧ i[1] < 10 ∧ i[2] = i[1] + 1 ∧ j[2] = j[1] + 3 ∧ i[2] >= 10 ∧ i[2] = j[2]

(d) SMT-expression of the path in Figure 2.1c

Figure 2.1: Mapping a program to a CFA

that parses all C++-compliant code correctly2. To overcome these kinds of problems, the
input programs are first transformed into a formal model, which can be done separately,
as a pre-processing step, either by hand or in an automated way. However, it is important
to keep in mind that the verification result of the model checking algorithm will only be
valid for the formal model that served as its input, and not necessarily the source program
– for that, verifying the result against the program’s code might be necessary.
One such formalism is called a Control Flow Automaton (CFA) [14], which is mainly used
to model programs.

Definition 1 (Control Flow Automata). A control flow automaton is a tuple CFA =
(V, L, l0, E), where:

• V : A set of variables

• L: A set of locations, representing the program counter (PC) in the program

• l0 ∈ L: The initial location

• E ⊆ L×Ops× L: Directed edges in the CFA, describing the set of operations to be
executed when the program advances to a new location

– op ∈ Ops: An assumption of a predicate over V asserting its truth (i.e. an
execution is only legal if the predicate is fulfilled), or an assignment of a new
value to a v ∈ V . A special kind of assignment has the form havoc v, which
assigns a non-deterministic value to v. �

An execution of a CFA is a path over the directed edges E, starting from l0, where at least
one variable assignment exists that satisfies all assumptions of this path. Note that in the
CFA, we use non-constant variables, which means multiple values can be assigned to a
variable in a single execution. To keep track of variable values, indexed constants are used,
where the index is increased with each assignment to the same variable. Assumptions and
expressions always use the most recent indexed constant.
Consider the example in Figure 2.1. The program in Figure 2.1a reads a non-deterministic
number k, then does several calculations over the variables i, j, k that includes a potential

2https://blog.reverberate.org/2013/08/parsing-c-is-literally-undecidable.html

5

division-by-zero in line 9. This program is transformed into a CFA in Figure 2.1b, which
includes an error location Le that represents the division-by-zero case, and a final location
Lf which represents the successful termination of the program. An arbitrary path in this
CFA leading to Le is presented in Figure 2.1c, which also shows the use of indexed con-
stants. This format is called single static assignment, as every indexed constant is assigned
exactly once, meaning each value is invariant throughout the execution. Figure 2.1d shows
the path feasibility query as a satisfiability formula, which can be given to an SMT-solver
that can determine whether the path is a legal execution. In the presented case, there is
a clear contradiction in the expressions over i[2]: if i[1] is 2 then i[2] := i[1] + 1 means
i[2] must be 3 – which contradicts the i[2] >= 10 assertion. This means the path is not a
feasible execution, and we have not yet determined the safety of the program.
Note that while not explicitly shown, every havoc operation causes the index of the con-
stant to increase, but nothing gets assigned to this constant. This means that the solver is
free to choose any assignment, as long as it satisfies all other assertions that refer to this
constant. Also, note that the example CFA in Figure 2.1b is not a correct mapping of the
program in Figure 2.1a, as the values of the variables are entirely unbounded. This can be
problematic if a path is found where the SMT solver reports the query as satisfiable, while
in practice one of the variables would have wrapped around before reaching a value in
the counterexample, making the path infeasible. This is a well-known limitation of SMT-
based model checking, as fix-bit-width types cannot easily be mapped to mathematical
integers. In the context of this work, best-effort practices are performed to counteract this
phenomenon, namely, each havoc automatically implies an assumption over the variable’s
bounds (e.g. a C-like integer i will have an assumption that −(231) ≤ i ≤ 231 − 1); and
each unsigned integer type will wrap around when an out-of-bounds value is assigned to it,
using modular arithmetic (e.g. a simple addition of the unsigned variable u := u+1 will be
mapped to u := (u+1) mod 232). As signed overflow is undefined in the C standard (and
most other programming languages) [33], that case is unhandled and the values might fall
out-of-bounds. A correct solution to this problem is to use bitvector arithmetic instead
of integer arithmetic, but the implied performance overhead warrants the presented more
performant approximation.
As we saw in Figure 2.1, the arbitrarily chosen path was not a feasible execution. However,
that does not mean the program is safe – in fact, all paths would have to be checked first,
to see if any produce the undesired division-by-zero problem. It is easy to see that due
to the loop in the program, there are an infinite number of paths – to solve this model
checking problem in a finite amount of time, many different approaches exist, but most of
them fall into the following categories:

• Bounded Model Checking (BMC) – Starting from the initial state(s), check if an
unsafe state is reachable within an expanding number of steps [17]

• k-Induction – Starting from the unsafe state(s), check if a safe state can be an
expanding number of steps before any of the unsafe states [25]

• Explicit-State Model Checking – Mapping the states and transitions to an abstract
state space using explicit-valued abstraction [31]

• Counterexample-Guided Abstraction Refinement (CEGAR) – Mapping the states
and transitions to an abstract state, then refining the abstraction in subsequent
iterations until a feasible counterexample is found, or safety is proven [21]

These techniques are generally used for different applications, e.g. BMC will usually find
bugs the fastest but will not terminate if the state space is too big, while k-Induction is

6

Li L1 L2 L3

L6 Le

L4 L5 L3 L6 Le

L4 L5 L3 L4 L5 L3 L6 Le

…

(a) Some paths to the error state in Figure 2.1b

Li

L1

L2 L3

L4 L5

L6

Le Lf

havoc k

i := 2
j := k + 5

[i < 100]

i := i+ 1

j := j + 3

[i >= 100]

[i = j] [i 6= j]

(b) A hard task for (naive)
BMC

Figure 2.2: Bounded Model Checking example and limitations

often capable of proving safety while not finding actually reachable unsafe states. Ab-
straction based techniques can be more complex and therefore slower, but they can both
find bugs and prove safety relatively effectively. In the context of this work, I examined
algorithms based on the BMC-approach, while I implemented the introduced algorithms
as part of a CEGAR loop. Therefore, I shall introduce these two approaches in detail
below.

2.2.1 Bounded Model Checking (BMC)

As stated above, Bounded Model Checking (BMC) starts off with one or more initial
states as the root of a tree graph, then repeatedly adds new states to the existing ones
along transitions of the state space in a breadth-first-search (BFS) manner, i.e. all N -
far states are added to the graph before any of the (N + 1)-far states. After reaching
the upper bound of the analysis k, the graph is transformed into a satisfiability-modulo-
theory (SMT) expression using the following recursive rule: the expression at a node is
the conjunction of its state expression and the disjunction of expressions in subsequent
nodes. This means that any junction will create an Or expression, and any paths will
create an And expression. If this expression and the expression of the unsafe state are
satisfiable together, the program is faulty as the unsafe state is reachable within this
k-bound. Otherwise, the analysis continues building the graph with a new bound k′ > k.
Take the example in Figure 2.1. The BMC algorithm will try to enumerate increasing-
depth paths that end in the error location. The first few such paths can be seen in
Figure 2.2a, but looking at the program in Figure 2.1a, these paths will be infeasible, as
the value of i has not yet reached 10, i.e. the exit condition of the loop has not yet been
fulfilled. After 8 iterations, and at a depth of 30, a feasible path will be found – if we
assign −19 to k, the division will fail to due to the divisor being 0. Therefore, the program
can be reported as unsafe.
Now consider the program in Figure 2.2b. The only difference to Figure 2.1b is the exit
condition of the loop – instead of 8 iterations, the program must take 98 iterations before
exiting the loop. For a naive BMC implementation, this means that it has to evaluate
97 infeasible paths before the counterexample is found. While possible, it might take a
long time – and in the meantime, no proof of safety is possible as only specific traces are
evaluated, rather than the whole program.
This trait of BMC (i.e. evaluating concrete traces rather than an abstract model) is both
the source of its limitations, and its main advantage – if there is a bug, BMC is capable of
finding it quickly, given it is not buried too deep in the program. This makes it appealing

7

Initial precision

Abstractor RefinerARG

Safe Unsafe

Abstract counterexample

Refined precision

Expand Prune

Figure 2.3: The CEGAR loop Figure 2.4: An ARG

to use when a guarantee of safety is not required, but there is an incentive for finding
bugs.

2.2.2 Counterexample-Guided Abstraction Refinement (CEGAR)

As opposed to BMC, CEGAR is a tool both for proving safety and finding bugs. While
implementations of CEGAR are generally slower than BMC-based tools due to the algo-
rithmic overhead; CEGAR can handle a superset of the tasks that BMC could solve (see
Section 2.2.2.3). This means that the verification power of CEGAR is at least as big as
that of BMC.

2.2.2.1 A Generic CEGAR Loop

CEGAR is a highly configurable verification algorithm [21], where the main product
of the workflow is the Abstract Reachability Graph (ARG) [13]. The ARG is an over-
approximation of the reachable state space, meaning a reachability in the concrete model
implies reachability in the ARG, but not necessarily vice versa. This property can be seen
in Figure 2.4: even though the filled-in error state is seemingly reachable if only the ab-
stract states (denoted by rectangles) are taken into account, there is no actual path among
the concrete states that could lead to the error state. Therefore, this level of abstraction
is too high, and a more refined version is necessary.
A notable feature of ARGs is state coverability: if a state is found to be covered by
another state, i.e. there is another state whose truth value is implied by the truth value of
the current state (e.g. S1(a = 2, b = 3) implies S2(a = 2), therefore S2 covers S1). In this
case, there is no need to expand the current state any further, as any observed behavior
will also be observed by the covering state. This is a vital tool for combating state space
explosion, as this means that covered states are handled only once. For example, if a
program contains a loop that does not influence the reachability of the error state (e.g.
waiting for an input), the only state we are interested in is the exit point of the loop –
any in-between states are covered-by the loop header state, and therefore not expanded
further.
To achieve this continuous abstraction-then-refinement workflow, CEGAR works in a loop,
as seen in Figure 2.3. This loop consists of two main algorithms working together: the
abstractor and the refiner. The abstractor takes a precision describing the level of ab-
straction and the input model, and either creates a new ARG or expands the previously
created, and pruned back ARG. This method is useful if a path is only found to be in-
feasible after a few feasible steps, and therefore the beginning of the ARG needs not to

8

{CFA, Precision}

Abstraction, expanding

{Abstract counterexample(s)}

Refinement, pruning

Safe

Unsafe Spurious

No unsafe state Unsafe state(s)

Feasible Infeasible

Figure 2.5: The CEGAR workflow

be re-created. When an ARG is ready, the abstractor checks whether an unsafe state is
reachable, in which case the program is reported as safe. Note that safety is provable over
an abstract state space, as it is always an over-approximation of the concrete state space
and therefore the lack of an unsafe, abstract, reachable state implies the lack of an unsafe,
concrete, reachable state as well.
If the created ARG does contain an unsafe state, the abstractor creates one or more abstract
counterexamples, which are paths in the ARG leading to an unsafe state. These abstract
counterexamples are then passed onto the refiner, which has multiple tasks: firstly, trace
feasibility is evaluated (i.e. is at least one abstract counterexample concretizable, in which
case the program is reported as unsafe). Then, if the counterexamples are infeasible, a
new precision is created that is less abstract than the last one. Furthermore, the ARG
is pruned back to the point where it became infeasible, then control is given back to the
abstractor, where this abstraction-refinement cycle starts again.
The state of the algorithm after a single iteration of the CEGAR loop can have three
values: safe, unsafe and spurious, as seen in Figure 2.5. The algorithm also produces
proofs by default: for safety, a completely expanded ARG without an unsafe state suffices;
and a feasible (concretizable) trace serves as the counterexample that shows the path to
the bug in the program.

2.2.2.2 CEGAR Configuration Options

The CEGAR loop, as seen so far, is a declarative specification of the verification algorithm,
i.e. only outcomes are specified and not the actual way to achieve said outcomes. This
is due to the inherent configurability of CEGAR: as long as the parts are compatible
with each other, many aspects of the algorithm can freely be swapped to other techniques
fulfilling the same purpose.
As the possibilities are (almost) endless in terms of configurability, I only present the
options provided by Theta3, an open-source, generic and modular model checking frame-
work developed at the Critical Systems Research Group of Budapest University of Tech-
nology and Economics [40]. In the context of this report, I developed the proof-of-concept
implementations of the presented algorithms in Theta. This choice is in part justified
by the maturity of the framework (the implementation has been validated on thousands
of input models, e.g. in the SV-COMP 2021 software verification competition4), and also

3https://github.com/ftsrg/theta
4https://sv-comp.sosy-lab.org/2021/results/results-verified/gazer-theta.results.SV-

COMP21.All.table.html

9

based on my previous contributions to the framework, which are prerequisites for the work
presented in this report. All implementation-specific details are published in [30] – I will
only introduce those relevant to my work.
Theta implements the CEGAR loop with complete modularity in mind. It provides
several built-in options for each swappable component, as well as an easy way to define
custom ones. The two (arguably) most important ones are the abstract domain and the
refinement algorithm.

2.2.2.2.1 Abstract Domain

The abstract domain specifies the basis of the abstraction, and by default, there are two
pure domains implemented in Theta: the explicit value domain and the predicate domain.
The latter is further divided, based on the way multiple predicates are handled inside
a single state – there are cartesian predicate abstraction, boolean predicate abstraction
and split boolean predicate abstraction domains. As previous results showed that software
verification does not usually benefit from boolean predicate abstraction [30], I only focused
on the explicit (EXPL) and cartesian predicate (PRED_CART) abstraction domains.

Definition 2 (Abstract Domain). Formally, an abstract domain is a tuple D =
(S,>,⊥,v, expr) [30], where:

• S: Lattice of abstract states (possibly infinite)

• > ∈ S: Top element

• ⊥ ∈ S: Bottom element

• v ⊆ S × S: Partial order over the lattice S

• expr: A mapping from an abstract state to an actual data state (i.e. an expression)

To define an abstract domain, one has to give a mapping for each member of the tuple D.�

Explicit Domain The explicit abstraction domain defines the current abstraction preci-
sion as a set of tracked variables, i.e. variables whose values are of interest to us. Formally,
the explicit domain can be defined as follows:

• S: A variable assignment of each tracked variable to a value of its domain, extended
with top (arbitrary value) and bottom (no assignment possible) elements.

• > ∈ S: No specific value is assigned to any of the tracked variables.

• ⊥ ∈ S: No assignment is possible to the tracked variables.

• v ⊆ S × S: (s1 ∈ S) v (s2 ∈ S) ⇐⇒ (s1 = s2) ∨ (s1 = ⊥) ∨ (s2 = >)

• expr: The conjunction of the equality expressions for each tracked variable and their
value

Note that when applying CEGAR on a CFA, the locations of the CFA are always explicitly
tracked, as to always have a 1 : N relation between locations and states in the ARG.
The explicit abstraction domain also specifies a maxenum value, which is an upper bound
on the enumeration of values to a variable in a single step – which can be useful if the

10

1 int i = 0, j = 2, k;
2 while(k = ioread32()) {
3 i++;
4 j−−;
5 }
6 assert(j > i);

(a) Positive example for
EXPL

L1, i = 0 ∧ j = 2

L2, i = 0 ∧ j = 2

L3, i = 1 ∧ j = 2 L6, i = 0 ∧ j = 2

L4, i = 1 ∧ j = 1

L6, i = 1 ∧ j = 1

(b) ARG of Figure 2.6a, using line numbers
as CFA locations, tracking i, j and k

1 int i = ioread32();
2 if (i < 5) {
3 if (i > 6) {
4 assert(0);
5 }
6 }
7 return;

(c) Negative exam-
ple for EXPL

L1,>

L2,>

L3,> L7,>

L4,> L7,>

(d) ARG of Figure 2.6c, using line numbers
as CFA locations, tracking i

L1,>

L2,>

L3, i < 5 L7, not(i < 5)

L4,⊥ L7, i < 5

(e) ARG of Figure 2.6c, using line numbers
as CFA locations, tracking i < 5

Figure 2.6: Advantages and disadvantages of the EXPL domain w.r.t. PRED_CART

domain of a variable is infinite or very large. Consider the program in Figure 2.6a: tracking
the value of k is next to impossible, as it is always assigned a 32-bit non-deterministic
number. Enumerating all possible states leads to the state space explosion we are trying
to avoid. Therefore, the algorithm does not try to assign a value to k in any of the abstract
states in the ARG in Figure 2.6b, even though the precision would allow it – instead, k is
kept at its top element. However, even without the value of k, the algorithm is capable
of deciding the safety of the ARG: after just one iteration, the assertion fails. In this
example, this abstract counterexample also corresponds to a concrete trace, and therefore
the refiner will most likely report the program as unsafe.

Predicate Domain The cartesian predicate abstraction domain defines the current ab-
straction precision as a set of tracked (and ponated)5 predicates. Formally, the cartesian
predicate domain can be defined as follows:

• S: A conjunction of predicates

• > ∈ S: True

• ⊥ ∈ S: False

• v ⊆ S × S: (s1 ∈ S) v (s2 ∈ S) ⇐⇒ (s1 =⇒ s2)

• expr: The conjunction of the predicates applicable to the current state

Consider the program in Figure 2.6c. If we tried to solve this reachability problem with
the explicit domain, we would get the ARG in Figure 2.6d even at the maximal precision
of tracking all (one) variables. The unsafe state is reachable in the ARG, and therefore the

5A ponated predicate means the outermost expression cannot be a Not operator.

11

abstractor cannot classify the input as safe – even though it is evident from the program’s
source that the assertion would never be reached, due to the contradicting i < 5, i > 6
assumptions. However, we cannot assign concrete values to i throughout building the
ARG, as i can take up almost 231 different values that would fulfil either criteria, and we
can only evaluate one if statement at a time if the CFA contains different edges for them.
(As a sidenote, this problem could also be solved by using large-block encoding (LBE)
[15], but currently, Theta only supports a simple version of that).
In comparison, the cartesian predicate abstraction only needs the predicate i < 5 in the
precision to deduce the safety of the program, as seen in the ARG in Figure 2.6e. Note the
unsafe state in red: the ARG building algorithm correctly assigned the bottom element
⊥ to its abstract state, as there was a contradiction in the path – meaning the ARG is
complete and lacks unsafe states, and therefore the program is safe.
An aspect of the abstraction that was previously left out is the transfer function. The
transfer function T maps sets of abstract states to the tuples consisting of an abstract state,
a list of operations and a precision (T : S×Ops×Prec 7→ 2S). In practice, this determines
the successor states of an abstract state in the ARG – which is a clear contradiction to the
previous description of how an ARG is created (i.e. grouping concrete states together).
While that was also a correct way of creating an ARG, it is not practical to create all
concrete states just for being able to create abstract states out of it: instead, the transfer
function is used to explore the abstract state space, and expand previously discovered
abstract states. For example, given the EXPL domain, a precision tracking i, and an edge
in the CFA assuming i > 0 ∧ i < 4 between locations l1 and l2; the state s0(l1,>) would
have the following successor states: {s1(l2, i = 0), s1(l2, i = 1), s1(l2, i = 2)}.
Note that even though the transfer function assigns successor states to abstract states de-
terministically, the way these successor states are handled deeply influences the verification
workflow: it is possible to visit and expand the first successor state in every instance, and
therefore explore that state space in a depth-first manner (DFS), and it is also possible to
visit all successors first before successors to those are visited and expanded (BFS). Any
further combination of these techniques can also exist, such as an error-location-guided
search (ERR), which will favor DFS more if the state is closer to the error location, but
defaults to BFS otherwise [30].

2.2.2.2.2 Refinement Algorithm

As we have seen in Figure 2.6e, the predicate i < 5 in the precision was enough to guide
the abstraction algorithm towards discovering that the program is safe. However, the
discovery of this predicate is not trivial, and it can come from two sources: either from
the initial precision (e.g. all assumes in the model), or the refinement algorithm will have
to discover it while refuting the abstract counterexamples.
There are many different refinement algorithms implemented in Theta, but the relevant
distinction among them in the context of this report is the following:

• Single-counterexample refinement: a single counterexample is generated from the
unsafe ARG, and refuting it provides the new precision for the abstractor

• Multi-counterexample refinement: every counterexample is generated from the un-
safe ARG, and a combined refutation provides the new precision for the abstractor

In the context of this work, I used 3 different refinement algorithms:

12

• BW_BIN_ITP: Single-counterexample, backward binary interpolation [30], using
the longest feasible suffix of a trace.

• SEQ_ITP: Single-counterexample, sequence interpolation, using multiple expres-
sions of increasing order to refute a trace.

• MULTI_SEQ: Multi-counterexample, sequence interpolation.

2.2.2.3 BMC Inside CEGAR

As mentioned above, CEGAR is at least as powerful of a verification tool as BMC, due to
BMC being part of CEGAR. In order to justify this claim, consider the following:

• The CFA is extended with a counter c, which is increased after every statement in
the model, starting with 0

• domain: EXPL

• initial precision: {c}

• search algorithm: BFS

This configuration will mimic the BMC algorithm, as it enumerates all paths in the pro-
gram following the value of c. If BMC can find a counterexample, this method will be able
to find it as well – and if BMC runs out of enumerable paths and classifies the program
as safe, this technique will arrive at the same conclusion as well.

2.3 Multi-Processor Architectures

Modern hardware architectures almost universally offer concurrent memory access in a re-
laxed way. This means that read and write operations do not have to execute sequentially,
the memory controller is free to reorder them (respecting certain constraints) to increase
performance. The rules for such relaxed accesses is described by a memory consistency
model (MCM). The specification of MCMs evolved from textual documentation through
small “Litmus-tests” describing forbidden outcomes to well-defined axiomatic formal spec-
ifications of the execution semantics [10, 8, 38].

2.3.1 Memory Consistency Models

Generally, a memory model of an architecture can either be operational or axiomatic
[8]. The former uses elements of the hardware platform such as queues and buffers to
explain certain behaviors on the target architecture, which makes it easier to implement
the architecture directly in hardware, but hinders reasoning on the software side [38]. In
contrast, an axiomatic memory model uses a declarative approach to forbid certain sets
of relations over memory accesses [10]. This approach proved to be better for reasoning
about possible executions of concurrent programs, and therefore most software verification
tools employ an axiomatic model to provide information on the guarantees of the hardware
architecture [6, 4, 3, 27, 24] or the programming language [34, 36].
One axiomatic memory modeling language is CAT [9], which has been created to specify
memory models for Herd [8] but has since seen widespread adoption due to its succinctness

13

W(x,0)

R(x)

W(x,1)

R(x)

W(x,2)

po po

po po

(a) Control flow

W(x,0)

R(x)

W(x,1)

R(x)

W(x,2)

rf

rf

(b) Data flow

W(x,0)

R(x)

W(x,1)

R(x)

W(x,2)

(c) Memory model violation
W(x,0)

W(x, 1) W(x, 2) R(x)
co

co

(d) Last value is 2, Read receives 0

W(x,0)

W(x, 1) W(x, 2) R(x)
co

co

(e) Last value is 1, Read receives 0

Figure 2.7: Candidate executions

and expressivity. However, we further restrict the elements of the language to its core
subset as seen in Dartagnan [24], as constructs such as thread scoping for heterogeneous
architectures fall outside of the scope of this work. This leaves us with the primitive
relations {po, rf, co} for program order, read-from and coherence order respectively; event
sets {F, R, W} for fences, reads and writes; and relation sets {E, I, L} that can be used to
refer to inter-thread, intra-thread and same-location relations. Further expressions can be
derived through set- and relational operators on the above primitives and other derived
expressions. The relations then can be declared empty, irreflexive or acyclic to forbid
certain combinations of memory access interactions, effectively expressing the constraints
of the memory model.
The CAT language uses the notion of candidate executions to express a set of relations that
corresponds to a specific execution of memory accesses in a program. Firstly, a candidate
execution shows the control flow, i.e. the path of memory accesses in the program that
the candidate execution observes as seen in Figure 2.7a. This creates a directed, acyclic
graph, in which each time a node has more than one out-edge the program observes a fork,
i.e. the creation of one or more new threads. Note that decisions inside a thread do not
appear directly in the candidate execution, as each path represents a locally deterministic
execution of a thread. Secondly, a candidate execution also shows data flow, e.g. in the form
of read-from edges, showing which Write event creates the data element a Read receives,
as seen in Figure 2.7b.
Such candidate executions can be checked against the memory model specification to
decide if they are consistent or in violation with the candidate. For example, against
the specification that no Read on a given thread shall receive a value from a later Write
on the same thread (any path (po | rf)+ is acyclic), the example candidate execution in
Figure 2.7c is in violation of the memory model. However, if a candidate execution is
indeed consistent, it becomes an execution graph, describing an observable outcome on the
given architecture.
Note the lack of other primitives on the execution graph. By populating the po and
rf relations the necessary control and data flow is fully defined, and no further relation
is necessary – most notably, the coherence order co [8, 24] (or modification order [34]),
i.e. the total ordering of same-location Write events, is entirely superfluous. Consider the
two candidate executions in Figures 2.7d and 2.7e, where this relation is not omitted. In
both cases, the Read will read 0 from memory, but the order of the Write events differs.
The outcome and overall execution of the program is not influenced by these differences

14

other than the final observable value in memory. However, as the two executions are not
the same graph, both variants will be produced when enumerating the possible candidate
executions. Unless the state of the global memory is ever needed to be queried, it is enough
to determine for each Read event the set of Write events it might receive data from. This
does not mean that any derived relation that uses co as one of its operands will have to
be completely re-written, but rather that we can simply leave co as unspecified with a few
constraints: as long as there is a co-order that relates every same-location pair of writes in
either in exactly one way (i.e. if elements a and b are same-location writes, either co(a, b)
or co(b, a) is true, but not both), the execution is feasible.

2.4 Analysis of Multi-Threaded Programs

Concurrent software verification algorithms also fall into two categories, depending on the
execution semantics they employ. The interleaving semantics uses overlapping traces of
the threads in the concurrent program to explain how it executes. This approach, when
used naively, does not scale well due to the large number of possible unique executions.
This is partially solved by utilizing e.g. partial order reduction (POR) [28], which signifi-
cantly reduces the number of necessarily explored executions. In contrast, the declarative
semantics of concurrent program executions uses partial orders to explain a specific execu-
tion. The candidate executions introduced above are examples to such a semantics, as the
po and rf relations partially order the statements and yield a well-defined single execution
of the program [8]. This declarative semantics has been shown to perform better on weak
memory than the interleaving semantics over sequential memory, when implemented in
model checking algorithms [7].

2.4.1 Interleaving Semantics

The naive way of dealing with concurrency is to strictly follow the definition of asyn-
chronous systems, i.e. any of the threads may execute at any point in time, meaning every
possible total order of the instruction has to be explored. This technique employs naive
interleaving semantics.
Consider the example in Figure 2.8a (note that based on the C standard, a global variable
will be initialized to 0, if no explicit value is assigned [33]). The main thread starts a
worker thread, which writes two values to x, while the value of x is read twice. As the
value of x increases monotonically, we assert that the latter read’s value shall be at least
big as the former’s. We store this in a boolean k. If we tried to enumerate all executions
based on the naive interleaving semantics, we would get the state space in Figure 2.8b –
there are 10 different executions that can take place, as the 3 + 2 operations between the
start and end of the worker thread give rise to 10 total orders. However, if we examine
the outcomes of the different executions, the set of possible end values is way smaller: x
is always 2, j is always bigger than i and k is therefore always 1. Even though i and j can
take up any one of the values from the set {(0, 0), (0, 1), (0, 2), (1, 1), (1, 2), (2, 2)}, this is
still only 6 possible outcomes instead of the 10.
To explain this behavior, let us examine the three branches of the state space tree marked
with patterns. In these executions, the values to i and j were decided early on, as the main
thread progressed more than the worker thread. In theory, this would eliminate the need
for further analysis, as any further action on either thread is independent of the other –
x will be increased further, but no operation will use its value; and k is never used in any

15

1 int x;
2 void∗ thr(void∗ _) {
3 x = 1;
4 x = 2;
5 }
6 int main() {
7 pthread_t t;
8 pthread_create(&t, 0, thr, 0);
9 int i = x;

10 int j = x;
11 _Bool k = (j >= i);
12 pthread_join(handle, 0);
13 assert(k);
14 }

(a) Concurrent program test-
ing sequentiality

{6}
x = 0

{9, 3}
x = 0

{10, 3}
x = 0, i = 0

{9, 4}
x = 1

{11, 3}
x = 0, i = 0, j = 0

{10, 4}
x = 1, i = 0

{10, 4}
x = 1, i = 1

{9, 5}
x = 2

{12, 3}
x = 0, i = 0
j = 0, k = 1

{11, 4}
x = 1, i = 0

j = 0

{11, 4}
x = 1, i = 0

j = 1

{10, 5}
x = 2, i = 0

{11, 4}
x = 1, i = 1

j = 1

{10, 5}
x = 2, i = 1

{10}
x = 2, i = 2

{12, 4}
x = 1, i = 0
j = 0, k = 1

{12, 5}
x = 2, i = 0
j = 0, k = 1

{11}
x = 2, i = 2

j = 2

{12}
x = 2, i = 2
j = 2, k = 1

{11}
x = 2, i = 0

j = 2

{12}
x = 2, i = 0
j = 2, k = 1

{11}
x = 2, i = 1

j = 2

{12}
x = 2, i = 1
j = 2, k = 1

{12, 4}
x = 2, i = 0
j = 1, k = 1

{11, 5}
x = 1, i = 0
j = 1, k = 1

{12, 5}
x = 2, i = 0
j = 1, k = 1

{12}
x = 2, i = 0
j = 1, k = 1

2 2

(b) State space of Figure 2.8a, using tuples of line numbers as
locations (States with bold numbers are not fully expanded)

Figure 2.8: State space exploration based on naive interleaving semantics

of the global memory accesses. However, the naive interleaving approach had to explore
these subexecutions as well because it had no way of determining which operations would
influence the final outcome and which ones would not.
An intuitive step to take is to discover independent pairs of transitions in the model, and
forbid the exploration of both total orders. This technique is called partial order reduction
(POR) [28], and it is widely used in the verification of concurrent systems (Even though
there is a specialized version of POR called dynamic partial order reduction (DPOR) [26],
which is shown to be more optimal, introducing and implementing that algorithm falls
outside the scope of this work).
Consider the same input program in Figure 2.8a. If we apply POR based on a global-local
partitioning of the transitions, where every transition touching a global memory object is
considered dependent on each other, we get the state space in Figure 2.9. In this case, state
space exploration was optimal, as each explored total order yielded a different outcome,
and no possible outcome was left out.
Even though the presented example showed the POR algorithm to be optimal, this is not
the case in every input program. For example, there could be another, totally independent
y global variable, and two threads performing the same operations over y as over x – in
this case, all total orders would have to be explored among accesses to the global variables
as well, which would yield a suboptimal exploration. There are techniques mitigating this
behavior (e.g. in [2], the authors have shown that there is an optimal DPOR, and also
gave an example for such an algorithm), but the presented naive POR cannot deal with
this problem.

2.4.2 Declarative Semantics

To showcase the differences between the interleaving and declarative semantics, let us look
at the same problem in Figure 2.8a. To generate the declarative state space of the program,
an abstract execution graph is necessary – which is similar to a candidate execution, but
Reads are not limited to a single rf -edge, and only po- and rf -edges are present. The
semantics of such a construct is the following: all executions are observable which stem

16

{6}
x = 0

{9, 3}
x = 0

{10, 3}
x = 0, i = 0

{9, 4}
x = 1

{11, 3}
x = 0, i = 0, j = 0

{10, 4}
x = 1, i = 0

{10, 4}
x = 1, i = 1

{9, 5}
x = 2

{12, 3}
x = 0, i = 0
j = 0, k = 1

{11, 4}
x = 1, i = 0

j = 1

{10, 5}
x = 2, i = 0

{11, 4}
x = 1, i = 1

j = 1

{10, 5}
x = 2, i = 1

{10}
x = 2, i = 2

{12, 4}
x = 1, i = 0
j = 0, k = 1

{12, 5}
x = 2, i = 0
j = 0, k = 1

{11}
x = 2, i = 2

j = 2

{12}
x = 2, i = 2
j = 2, k = 1

{11}
x = 2, i = 0

j = 2

{12}
x = 2, i = 0
j = 2, k = 1

{11}
x = 2, i = 1

j = 2

{12}
x = 2, i = 1
j = 2, k = 1

{12, 4}
x = 2, i = 0
j = 1, k = 1

{12, 5}
x = 2, i = 0
j = 1, k = 1

{12, 4}
x = 1, i = 1
j = 1, k = 1

{12, 5}
x = 2, i = 1
j = 1, k = 1

Figure 2.9: POR-based state space of Figure 2.8a, using tuples of line numbers as loca-
tions (main thread executes first)

W(x,0)

i := R(x)

j := R(x)

W(x,1)

W(x,2)

(a) Abstract execution graph of Figure 2.8a

W(x,0)

i := R(x)

j := R(x)

W(x,1)

W(x,2)

(b) A concrete execution based on Fig-
ure 2.10a

Figure 2.10: Program verification based on declarative semantics

from a consistent candidate execution that is a subgraph of the abstract execution graph,
and for which a satisfying total co order exists over same-location writes. Such an abstract
execution graph can be seen in Figure 2.10a, and an example concrete execution is shown
in Figure 2.10b.
Note that in this case, state space exploration is optimal by default: after the abstract
execution graph is built (which is interleaving-free, and therefore can be built in a single-
pass over the operations in the program), only different, and consistent execution graphs
are enumerated.

2.4.3 Multi-Threaded CFA

In order to verify multi-threaded programs, a formalism supporting multi-threading is
also necessary. As with single-threaded programs, a formalism encoding control-flow in
the form of a program counter-like construct is advantageous – therefore, the basis of the
chosen formalism is still a control flow automaton (CFA) [14]. However, this formalism has
been extended in the following ways, giving rise to the eXtended Control Flow Automata
(XCFA):

17

Definition 3. eXtended Control Flow Automata (XCFA)
An XCFA is a tuple XCFA = (Vg, P), where:

• Vg: Global variables

• P : Processes, which are tuples P = (Vp, F, f0), where:

– Vp: Thread-local variables
– F : Procedures, which are tuples F = (Vl, CFA,Pin, Pout), where:

∗ Vl: Local variables
∗ CFA: A conventional CFA (which can use Vg ∪ Vp ∪ Vl as variables),

extended with the following operations:
· Function calls
· Start thread and join thread
· Atomic begin and atomic end
· Store, Load and Fence

∗ Pin ⊆ Vl: Input parameter variables, which are assigned when the function
is called

∗ Pout ⊆ Vl: Output parameter variables, which are returned when the func-
tion returns

– f0 ∈ F : The main function of the process (execution starts here)

Semantically, an XCFA can either be static or dynamic. In the former case, only the
starting set of processes can execute. In the latter case, the start thread and join thread
operations manipulate the set of enabled processes. In both cases, the processes fire asyn-
chronously. �
Note that variables can either be assigned via normal assignments (as in a conventional
CFA), or through store and load operations. In the context of this work, I assume total
sequentality for assignments, and only apply the memory model for the analysis of the
designated memory access instructions.

18

Chapter 3

Related Work

My contributions presented in this report cover a survey of the applicability of CEGAR
on concurrent programs, handling both the sequential and weakly ordered case. In this
chapter, I introduce the state-of-the-art tools for handling concurrency in these two cases.
For the sequential case, I concentrate on the algorithms employing a form of CEGAR,
as that falls the closest to the scope of my work; while for the weakly ordered case I
introduce the most advanced bounded algorithms, due to the lack of a general solution
covering infinite-state programs1.

3.1 Sequentially Ordered Concurrency

Most model checkers capable of verifying concurrent programs that employ a form of
abstraction-refinement techniques use a pre-processing step to determine atomically exe-
cutable (i.e. thread-local) transitions and global operations. Then, every interleaving is
explored among these transitions when calculating abstract successor states. Note that
these solutions employ a crude version of POR, with no dynamic element.
VVT [29] uses an LLVM-based front-end to verify C programs, which determines blocks
of instructions that can execute atomically without interfering with the allowed set of
outcomes. Then, these blocks serve as the individual transitions in a large-block encoded
CEGAR loop.
In comparison, CPAchecker [12] uses a pre-processing step on the edges of the CFAs to
determine thread-local and global operations, then uses a similar large-block encoded CE-
GAR loop. In addition, it uses several further optimization steps to be more performant;
such as waitlist ordering and partitioning of abstract states.

3.2 Weakly Ordered Concurrency

The algorithm presented in this report has been heavily influenced by three existing tools,
namely, Herd [8], Dartagnan [24] and rcmc [34]. In this section, I will present the
approaches employed by these tools.

1At the time of writing this report, I have no knowledge of any approach that utilizes any form of
abstract reasoning over declarative semantics.

19

ExampleArch same−loc
{ x=0; }
P0 | P1
MOV [x],$1 | MOV R0,[x]
MOV [x],$2 | MOV R1,[x]
exists (1:R0=2 /\ 1:R1=1)

(a) Litmus test same-loc

W(x,0)

W(x, 1)

W(x, 2)

R(x)

R(x)

W(x,0)

W(x, 1)

W(x, 2)

R(x)

R(x)

W(x,0)

W(x, 1)

W(x, 2)

R(x)

R(x)

W(x,0)

W(x, 1)

W(x, 2)

R(x)

R(x)

W(x,0)

W(x, 1)

W(x, 2)

R(x)

R(x)

W(x,0)

W(x, 1)

W(x, 2)

R(x)

R(x)

W(x,0)

W(x, 1)

W(x, 2)

R(x)

R(x)

W(x,0)

W(x, 1)

W(x, 2)

R(x)

R(x)

W(x,0)

W(x, 1)

W(x, 2)

R(x)

R(x)

(b) Candidate executions with fixed co- and po-orders

Figure 3.1: Herd’s input litmus test and the generated candidate executions

3.2.1 Herd

Herd is a memory model simulator [8]. It expects a memory model specification written in
the CAT language [9] and a litmus test. Litmus tests are small, assembly-level concurrent
programs that include accesses to global memory, as well as constraints on local variables.
Litmus tests are widely used to specify guarantees of memory models, e.g. Intel most
notably only uses such programs as the specification of the X86 memory model [20]. For
example, a memory model rule might forbid the reordering of same-location accesses. The
corresponding litmus test in Figure 3.1a has two threads: a producer with two consecutive
Write events, and a consumer with two consecutive Read events, all to the same location.
Any execution is forbidden where the consumer observes the two written values in reverse
order, i.e. the value of R1 is 1 from the earlier Write, while the value of R0 is 2 from the
second Write. This outcome is only possible when either the Reads or the Writes have
been reordered.
For a given memory model and litmus test, the question is whether the forbidden behavior
is observable on the target architecture. To answer this question, Herd will first generate
all candidate executions of the litmus test. This is done in an enumerative way: for each
primitive relation every semantically correct combination will be explored [8], as seen in
Figure 3.1b. After enumeration, the candidate executions are filtered based on whether
they are consistent with the specified memory model. If any consistent execution graph of
the litmus test produces the forbidden outcome, the specified behavior is observable and
the litmus test fails. For the example in Figure 3.1a, there is one such candidate execution
(given fixed co- and po-orders), highlighted in bold in Figure 3.1b.
The example in Figure 3.1 also shows that the number of candidate executions is generally
much higher than the number of consistent execution graphs. Given a memory model
rule that forbids the reordering of same-location accesses, only 6 candidate executions
are consistent out of the 9 in Figure 3.1b given the fixed co-order. However, the total
number of candidate executions are much higher. The Write events can be ordered by any
of their permutations, as the algorithm cannot assume that any of those partial orders is
inconsistent without taking the memory model into account. However, given the forbidden

20

int x = 0;
void thr1(void∗ _) {

x = 1;
x = 2;

}
void thr2(void∗ _) {

int r0 = x;
}

Figure 3.2: Example in-
put program

int x = 0;
int y = 0;
void thr1(void∗ _) {

y = 1;
x = 1;

}
void thr2(void∗ _) {

int r0 = x;
int r1 = y;
assert (!(r0 == 1 &&

r1 == 0));
}

Figure 3.3: Input causing
false positive
result over SC

W(x,0)

W(x,0)

W(x,1)

W(x,0)

W(x,1) R(x)

W(x,0)

W(x,1) R(x)

W(x,0)

W(x,1) R(x)

W(x,2)

W(x,0)

W(x,1) R(x)

W(x,2)

W(x,0)

W(x,1) R(x)

W(x,2)

Figure 3.4: Exploring the program in Figure 3.2

W(x,0),W(y,0)

W(y,1) R(x)

W(x,1) R(y)

(a) r0 = 0
r1 = 0

W(x,0),W(y,0)

W(y,1) R(x)

W(x,1) R(y)

(b) r0 = 0
r1 = 1

W(x,0),W(y,0)

W(y,1) R(x)

W(x,1) R(y)

(c) r0 = 1
r1 = 0

W(x,0),W(y,0)

W(y,1) R(x)

W(x,1) R(y)

(d) r0 = 1
r1 = 1

Figure 3.5: Execution graphs generated by rcmc

same-location reordering, only the one in Figure 3.1b is consistent with the memory model.
This puts the number of all candidate executions at 3! ∗ 9 = 54, and the percentage of
consistent execution graphs at 11.1%. For larger programs, this ratio is even smaller, as the
number of unnecessary partial orders becomes higher. This observation is also established
by the practical evaluation of the rcmc tool, which only generates consistent execution
graphs [34].
The goal of Herd is not general program verification, but rather architectural verifica-
tion. Litmus tests are by definition small programs, and therefore it is unnecessary to
optimize the algorithm in Herd for input size. For anything larger than an ordinary
litmus test, Herd will most likely time out while enumerating the candidate executions.
This prompted the development of smarter candidate execution generation, such as rcmc
[34].

3.2.2 Rcmc

The novelty of rcmc is its smart exploration algorithm. In each step of its algorithm, rcmc
will only generate consistent execution graphs, and no execution graph is ever explored
twice. The implemented stateless model checking algorithm receives a concurrent C/C++
program with optional assertions, and enumerates all consistent executions as its output.
If in any of the execution graphs the assertion is violated, or a non-atomic concurrent

21

access occurs, the tool reports the program as unsafe immediately. Note that the memory
model is not an input, as the C/C++ concurrency model (as formalized in the repaired
RC11 memory model [35]) is hard-coded into the algorithm. This significantly reduces
the applicability of the tool for custom architectures and potentially yields false positive
results.
Consider the input program in Figure 3.2. Two threads are executing concurrently, one
writing to memory and another reading from it. Note that atomic accesses have been
replaced with regular assignments for the sake of brevity. For the sake of this example,
relaxed accesses can be assumed.
The execution of the algorithm can be seen in Figure 3.4. rcmc will start by recording the
initial values in a node, then one-by-one adding the statements of the program. Any time
a Read event is added, each subexecution is explored where Read receives a value from
any existing Write event. In exactly one of the subexecutions, Read remains revisitable,
i.e. a later Write can provide it a value. Revisitable nodes are underlined in the example.
Each time a Write event is added, each subexecution is explored where the newly added
Write provides a value for any combination of currently revisitable Reads. Furthermore,
each consistent co-order is also explored, but in Figure 3.4, this is deterministic due to
po. In the example in Figure 3.4, the order of recorded nodes alternates between the two
threads, starting with a Write event to x.
The novelty behind the algorithm is to use revisitable nodes to mark a single subexecution
where a given Read event’s value is not final. If more than one such subexecution existed,
adding a subsequent Write event could generate redundant subexplorations [34].
Consider the input program in Figure 3.3 and the generated execution graphs in Figure 3.5.
Depending on the received values in the second thread, an assertion failure can occur. The
condition of the assertion means that the second Write event executed before the previous
one. This is observable in Figure 3.5c. Considering C/C++ can generally run on any
architecture, one cannot assume that the hardware is not e.g. sequentially consistent (SC).
SC guarantees that no statements will be reordered, and therefore the assertion is never
violated. rcmc, however, reports it as unsafe because C/C++ does not guarantee this
assumption, and therefore this can be categorized as a false positive result. This is not a
shortcoming of the algorithm itself, but rather of the approach: one cannot assume that
the memory model of a programming language is independent of the target architecture
[41]. Such a false result might shadow actual problems in the input program, and is
therefore inherently unsafe.
Another problem of rcmc is the suboptimal exploration of executions when multiple
threads write the same variable. As noted above, exploring artificially generated co-orders
is detrimental to the number of execution graphs. In the worst case, each new Write event
will effectively multiply the number of subexecutions by the factor of existing Write events
to the same variable, even if only one thread observes the value. In this case, enumerating
all execution graphs where this Read reads from a different Write would suffice, yet this is
multiplied by the factorial of the number of Write events, as seen in Figures 2.7d and 2.7e.

3.2.3 Dartagnan

Most of the concerns above are addressed by Dartagnan, a bounded model checker that
uses memory models as modules [24, 27]. Dartagnan expects a concurrent program
and a memory model as inputs, and using the conjunction of SMT-encoded expressions
determines whether an unsafe state is reachable within a given bound. To achieve this,

22

Software
verification

Parametric
memory model Scalable

Optimal
execution

enumeration

Handle
unbounded
state spaces

Herd 7 3 7 7 7

rcmc 3 7 3 3* 7

Dartagnan 3 3 3 N/A 7

Figure 3.6: Comparison of related verification tools

Dartagnan unrolls and encodes the concurrent program as an SMT-expression; encodes
the unsafe state as another SMT-expression; and encodes the input memory model as an
SMT-expression. If the conjunction of the expressions above is satisfiable, the unsafe state
is reachable and therefore the concurrent program is unsafe.
Dartagnan is a software verification tool, complete with an integration to Smack [37],
an LLVM-based program transformation tool that allows Dartagnan to work on formal
models rather than source-level programs. The gap between the higher-level LLVM-IR and
the ISA of the target architecture is bridged by using compiler mappings for translating e.g.
memory ordering primitives. This is a conventional procedure [41], but special attention
has to be paid to ensure the compiler mappings represent an actual compiler’s behavior
that might be used to compile the examined program later on.
In comparison with Herd and rcmc, Dartagnan (and its companion tool, Porthos
[24]) is not capable of enumerating consistent executions. Even though as a reachability
checker, Dartagnan is not expected to provide this feature, it could be useful to provide
a way to use the tools embedded into other verification algorithms for handling concurrent
parts of an otherwise independent set of threads. In this case, an unsafe state might not
only be dependent on the concurrent parts of the program, and therefore Dartagnan
could not handle it on its own.
Evaluating the five criteria in Figure 3.6 reveals that none of the tools fulfil every aspect.
Herd is not capable of software verification due to scaling issues caused by its suboptimal
execution enumeration approach. rcmc is not parametric and therefore only C/C++
guarantees are assumed, and it uses artificially generated co-orders which increase the
number of explored execution graphs. Dartagnan cannot enumerate consistent execution
graphs. Furthermore, neither solution can handle infinite-state programs.

23

Chapter 4

CEGAR for Declarative Semantics

The main contribution I present in this report is an algorithm that handles the abstraction-
refinement of weakly-ordered concurrent programs using declarative semantics. In this
chapter, I introduce the challenges that one has to overcome in order to get a sound and
performant algorithm.

4.1 Outline of the Solution

As input, the verification algorithm receives two inputs:

1. A multi-threaded program P in the form of an XCFA, and
2. An axiomatic memory model M conforming to the semantics of the CAT language

[9].

As an output, it produces one of the following:

• Proof of safety in the form of an ARG lacking unsafe nodes, or
• A counterexample showcasing the necessary control- and dataflow to reach the unsafe

state.

To provide a generic CEGAR-based solution, the components of the algorithm fit inside
components of the CEGAR loop in a well-defined way (see the patterned boxes in Fig-
ure 4.1):

• LTS: The labelled transition system supplying the possible (not necessarily enabled)
transitions from a given abstract state

• Init: The initialization function, providing at least one initial state based on the
given initial precision

• Trans: The transfer function, providing a mapping from each abstract state-
transition pair to a set of new abstract states

• Prec: The precision of the current iteration
• Ord: The partial ordering of the abstract states, given a partial ordering of the data

states
• State: The abstract state

24

Initial precision

Abstractor RefinerARG

Safe Unsafe

Prec OrdLTS Init

Trans State
PrecRefiner

Abstract counterexample

Refined precision

Expand Prune

Figure 4.1: The CEGAR loop, extended with the components of the novel algorithm

• PrecRefiner: The precision refining algorithm that creates the new precision based
on the last one and the refutation

Given the existing concepts of CEGAR such as the abstract domain, refinement algo-
rithms and the ARG builder; if the components above are defined in a standardized way
described by the CEGAR loop, they can re-use these concepts to decrease the complexity
of the algorithm. Therefore, I only describe the inputs, outputs and inner behavior of
these components, leaving the interaction among them deliberately undefined – these are
implementation-specific details, about which Chapter 5 and the tool paper of Theta [30]
provides greater insight.
The main idea behind the verification approach is the following: each node in the ARG will
correspond to an abstract execution graph. When a node forks into multiple successors,
it means that the successors differ in at least one choice: either a different assumption is
taken, or a different rf -edge is recorded. This is key for a sound approach: every possibility
is explored for a definitive proof of safety.

4.2 Motivating Example

Consider the following program:
unsigned a = ioread32();
unsigned b = ioread32();
atomic_begin
x = a;
y = a + b;
atomic_end

atomic_begin
int i = y;
int j = x;
atomic_end
if(i < j)

ERROR: exit(-1);
It has many aspects that make it challenging to verify: there are atomic blocks, writes
and stores, as well as non-deterministic inputs. However, as I will show, using the novel
algorithm it is straightforward to build a proof of safety, assuming sequential accesses and
ordinary C semantics [33] (See Figure 4.2). Note that I use sequential accesses to make
it easier to follow the example, but in this case, any ordering primitive could have been
used – due to the atomic blocks, threads are synchronized in any case.
To start off the verification, an initial state and a precision is necessary. The former
is chosen to be the following: the threads have started, all global variables (x, y) are
initialized to 0 (which also shows as a Write operation in the execution graph), and a
single node is added to the abstract execution graph for every thread, po-after the initial
writes. The precision shall be an empty predicate precision (i.e. no predicates are tracked).

25

1 SIMPLE_C
2
3 let com = (rf | fr | co)
4 let come = com & ext
5 let cometr = (come | come^−1)
6
7 let hb = po | com
8 acyclic hb as sc
9

10 empty amo & (cometr;hb∗;cometr)

Figure 4.2: Semantics of sequential accesses in C

From here on, always a single thread is chosen that can execute, but no interleavings are
explored beyond that – i.e. an arbitrary sequence of the threads’ operations dictate the
flow of the verification. Note that this sequence need not be an actually valid overlapping
of the operations.
Let us assume that this arbitrary sequence starts off with the reader (right) thread. The
first operation is the beginning of an atomic block (i.e. a sequence of instructions which,
once started, must fully execute), which will cause the successor state to include a flag for
the thread’s atomicity.
Next, the value of y is read, and loaded into the local variable i. As the current precision
does not include any predicates over y, execution continues and a single successor state
is created. This state includes a single read operation in its abstract execution graph,
which is po-after the initial node. Furthermore, an rf -edge is added between the initial
write (W (y, 0)) and the read. Thereafter, the value of x is loaded into j, causing a similar
result. The state now includes two reads, po-after each other and the initial node of the
thread, as well as atomically together – which is also shown in the abstract execution graph
as a (reflective) amo-relation for the reads. The graph also contains two rf -edges, between
the respective initial writes and reads of the global variables.
It is important to note that a non-tracked global variable will cause a similar action as
a havoc statement would – because we cannot be sure if all writes have been added to
the graph yet, we do not want to constrain an assumption over the loaded variable – this
could lead to potential missed bugs.
The next instruction ends the atomic block, which deletes the atomic flag for the thread
from the state. Then, the if -statement is to be evaluated. As we havoc-ed the variables
i and j, and there are no tracked predicates contradicting the assumption, we take both
paths: the one leading to the error state, and the one leading to the end of the thread. As
we have a path to the error location, we stop expanding the ARG, and pass the path to
the error location to the refiner.
Counter to the abstraction, the refinement cannot consider loads from non-tracked vari-
ables havocs, as that would lead to potential false alarms. For example, in this instance,
we know that the program is safe, but we have an abstract counterexample that shows
otherwise – if we accepted it, the program would be determined unsafe, when in fact it is
the opposite.
Instead, the refinement algorithm considers every possible and compatible rf -subset that
could stem from the abstract execution graph in the error state. This quickly shows that
there is a contradiction in the counterexample – those reads could only get their values
from the initial writes, which are 0, and therefore the assumption about i being smaller

26

than j cannot be true. However, if we passed the same counterexample to the refinement
algorithm with the havocs still in place, we would get an answer that the counterexample
is feasible – and therefore we know that the problem is in the global variables. (Note that
without this second check, it would also be possible that an ordinary over-abstraction took
place, which can be handled without touching the global variables at the moment.)
To prepare a refutation, one has to decide two things: where the counterexample became
infeasible (to show the boundary for ARG pruning), and how the counterexample became
infeasible – in ordinary single-threaded CEGAR, this would be an interpolant of some sort
that could be used as a predicate in itself, or the variables of which could become tracked
variables in the EXPL domain. In this case however, we know that the memory model was
the culprit. There are many options to choose from, but in this instance, let us assume
that every non-tracked global variable in the counterexample needs to become tracked. To
fit in the framework of CEGAR, this can be signalled as a self-evident predicate of the
form var = var – which will not influence the verification process in unrelated parts of the
algorithm (due to it always being true), but can be used to give information on trackable
globals for the precision refiner.
To finish up the refinement process, the ARG is pruned back to the first occurrence of a
non-tracked global, and a new precision is created with the predicates x = x and y = y.
Then, control is given back to the abstractor.
The abstractor receives control and a pruned-back ARG that only contains the first non-
initial state, i.e. the atomic flag has been raised but no reads have been added. When
handling the first read however, the situation is different from last time: the global variable
is present in the precision. This triggers a different reaction, in which the state forks into
two successors: one where the read received its value from the initial write (and therefore
the corresponding events are added to the abstract execution graph); and another where
the read simply blocks – i.e. the execution on the given thread shall not continue until a
suitable value is found. This is called a revisitable read (following the nomenclature of
rcmc [34]), as it can be revisited later to update its value.
The subsequent read is handled the same way: either reads 0, or blocks the thread. These
actions have lead to three active states in the ARG:

1. The first read has blocked
2. The first read has read 0, the second read has blocked
3. Both reads have read 0

As the 3rd state did not block, execution can continue on the same thread. However, the
if -assumption is clearly not true, as both i and j are 0. This means that the created leaf
in the ARG is safe.
Let us abandon the 2nd state in favor of the 1st. As the first read has blocked the thread,
we have to change threads to the other one. It starts off by assigning two non-deterministic
unsigned values to a and b (which has no effect in the state, as a and b have been non-
deterministic anyway), then similar to the first thread, starts an atomic block.
As a next step, the thread stores a into x. This results in the usual creation of a new node
(a Write in this instance), which is po-after the last node. However, this write has nowhere
to supply its value, as the read from x has not yet happened on the other thread. This
prompts execution to continue as if nothing had happened. However, the next operation
stores a value (namely, a+ b) into a variable (y) that does have revisitable reads waiting
to take a value: this will cause two subexecutions to be created (as two successor states

27

in the ARG), one where the revisitable read is not modified and that thread remains
blocked (indefinitely, therefore this branch of the ARG is abandoned in this example);
and another, where said read takes the value from the new write. This shows up in
the abstract execution graph as an rf -edge. Of course, the two store operations are also
atomically together.
Next, to finish execution on the writer (left) thread, the atomic block is closed and the
thread exits. This leaves us with no choice, but to go back to the initially explored (reader)
thread. This thread is now unblocked and can continue execution with the read from x. At
this point however, the read operation can take a value from two possible locations: either
from the initial write, or the write on the other thread. Furthermore, a successor state
must also block, as a subsequent store to x should also have a revisitable read waiting
for it (even though we know there is no such write in this program). Therefore, three
successor states are created once again:

1. The first read has read a+ b, the second read has read 0

2. The first read has read a+ b, the second read has read a

3. The first read has read a+ b, the second read has blocked (dead-end)

The 3rd state of this second line-up has thus been eliminated from further exploration.
The 2nd state has some potential to be unsafe: i is a+ b, and j is a – however, as both a
and b are non-negative, i cannot be smaller than j.
Furthermore, reaching the 1st state, the abstraction algorithm evaluates the feasibility
of the memory model (it did this in every step, but only now is it actually important).
It evaluates every monotonically increasing assertion in the memory model1 for possible
violations, and in this case, it finds that the current state violates atomicity – it should not
be possible to read one part of the atomic block in another atomic block, while the other
part is left as the initial value. Therefore, this state is designated as ⊥ and no further
expansion is possible.
Note that it is possible to define non-monotonically increasing assertions. In this case, the
algorithm will decide to track all global variables from the start – even though a more
elegant solution is definitely possible, due to the lack of an example for a sane memory
model that includes such a construct, I abandoned the further optimization of this case.
Going back to the 2nd state of the former line-up, the algorithm will deduce either safety
or infeasibility for every branch of the ARG – therefore proving the safety of the input
program. The entire ARG can be seen in Figure 4.3: two of the branches are consistent
but safe; two branches blocked indefinitely; and two branches became inconsistent with
the memory model.

4.3 Limitations on Genericity

The algorithm tries to make as few assumptions as possible about the memory model, to
truly stay generic. One assumption however has to be to forbid out-of-thin-air (OOTA)
executions [19]. Consider the following two-threaded program (x and y are global vari-
ables):

int r1 = x;
y = r1;

int r2 = y;
x = r2;

1Not containing set difference

28

Thread: right
Atomic: no
Blocked: {}

Thread: right
Atomic: yes
Blocked: {}

Thread: right
Atomic: yes
Blocked: {}

Thread: left
Atomic: no

Blocked: {right}

Thread: right
Atomic: yes
Blocked: {}

Thread: left
Atomic: no

Blocked: {right}
Thread: left
Atomic: yes

Blocked: {right}

Thread: right
Atomic: no
Blocked: {}

Thread: left
Atomic: yes

Blocked: {right}

Thread: left
Atomic: yes

Blocked: {right}

Thread: left
Atomic: yes
Blocked: {}

Thread: left
Atomic: yes

Blocked: {right}

Thread: left
Atomic: yes
Blocked: {}

Thread: left
Atomic: yes

Blocked: {right}

Thread: -
Atomic: -

Blocked: {right}

Thread: right
Atomic: yes
Blocked: {}

Thread: -
Atomic: -

Blocked: {right}

Thread: right
Atomic: yes
Blocked: {}

Thread: right
Atomic: yes
Blocked: {}

Thread: -
Atomic: -

Blocked: {right}

Thread: right
Atomic: no
Blocked: {}

atomic_begin

i = y (0)
i = y

j = x (0)
j = x a = ioread32()

b = ioread32()
atomic_begin

a = ioread32()
b = ioread32()

atomic_begin
atomic_end x = a

y = a + b y = a + bx = a x = a

y = a + b
atomic_end

atomic_endatomic_end

j = x (a+b) j = x j = x (0)

atomic_end

Figure 4.3: Final and safe ARG of the motivational example. Dashed leaves are safe,
bold leaves are inconsistent with the memory model.

29

In this example, the outcome r1 = r2 = 42 might be surprising, mainly because the value
42 did not exist anywhere in the program source. However, assuming relaxed accesses and
the C programming language semantics [33], this outcome (along with any other value)
is allowed by the memory model, as there is a cycle between the suppliers and consumers
of the memory accesses – which can lead to a self-inductive execution generation. As this
behavior is next to impossible to implement in hardware, and therefore this issue is purely
theoretical, forbidding it does not hurt the applicability of the algorithm.
Such interactions are forbidden in the algorithm, as therein a read will block the expansion
of its executing thread in at least one instance until all same-location stores are discovered.
This means that a po-later write will not be able to supply a value to the read; and
furthermore, if multiple threads are blocked simultaneously, writes po-after either of them
will be disregarded in the read’s expansion process. In the example above, this latter case
is demonstrated: as no previous values are known other than the initial implicit 0, there
will be only one full exploration (r1 = r2 = 0), and in any other instance, the threads will
not unblock, and therefore the writes are not even discovered.

4.4 Formalizing the Approach

To formalize the algorithm introduced above, I will define the 7 custom components in the
CEGAR loop (see Figure 4.1), starting with the components related to the ARG. In this
section, all descriptions are as technology-agnostic as possible, to provide an adaptable
solution rather than an implementation-specific one.

4.4.1 Abstract States for Declarative Analysis

The abstract state is responsible for holding information on the current state of the al-
gorithm, as well as the necessary data structures for the expr mapping of the underlying
domain. In the case of this algorithm the state vector is a tuple X = (P, pc, E, S), where:

• P : Set of existing processes (in the form of a tuple P =
(id, loc, lastNode, amo, blocked))

– id: ID of the process
– loc: CFA location inside the process
– lastNode: Last memory access on the given process
– amo: A node in E unique to the current atomic block when the process is

atomic, or missing otherwise
– blocked: True if the process is blocked due to an unsatisfied read-dependency,

false otherwise

• pc: The currently explored process
• E: The abstract execution graph of existing nodes
• S: The abstract mathematical state (dependent of the domain and the mathematical

precision)

The main tool of CEGAR to combat state space explosion is the use of partial orders,
which discover covering states in the ARG and stop the expansion of the covered state.
For this, a v function is available for the given domain, which has to be mapped to

30

the abstract states as well. For example, in the much simpler case of a single-threaded
CFA, the partial order would order states whose mathematical states are partially ordered,
and whose locations are the same. In the multi-threaded declarative case, this has to be
adapted to the following:

Definition 4. Two abstract states X1, X2 are partially ordered by v, if:

• S(X1) v S(X2), and
• ∀(p1 ∈ P (X1))∃(p2 ∈ P (X2)).(loc(p1), blocked(p1)) = (loc(p2), blocked(p2)), and
• ∀(p2 ∈ P (X2))∃(p1 ∈ P (X1)).(loc(p1), blocked(p1)) = (loc(p2), blocked(p2)), and
• (loc(pc(X1)), blocked(pc(X1))) = (loc(pc(X2)), blocked(pc(X2))), and
• E(X1) ∼= E(X2). �

Finally, a precision is necessary for the ARG building algorithms. In the case of this
algorithm, this can be defined as a tuple Prec = (V, P), where:

• V : Set of tracked global variables
• P : Mathematical precision stemming from the underlying domain

Even though the motivating example above suggested that only those global variables
are tracked which appear in the mathematical precision in the form of either a tracked
variable or part of a predicate; this is not necessarily the case – the algorithm is well-
equipped to deal with other forms of precision as well, e.g. tracking all global variables
from the beginning. The only constraint is that if a variable appears in the mathematical
precision, the algorithm must track it.

4.4.2 Building the ARG

To build an ARG from an input model, three components are necessary (as shown in
Figure 4.1): the initialization function, the transfer function and the transition supplier
(in the form of an LTS).
The initialization function takes a precision and an XCFA as its argument, and returns a
set of initial states. As in software verification the initial state is usually modelled to be
deterministic, we know that it must be a single-element set, whose sole element is defined
as the following state X0 = (P, pc, E, S):

• P : {pc}
• pc: (0, InitLoc(XCFA), Start0, ∅, false)
• E: All initial writes po-before the Start0 node
• S: >

Note that only a single element is added to the set. This is a deliberate choice to only
allow dynamic XCFAs, which makes it easier to define the algorithm. If support for static
XCFAs is also required, it can always be modelled as a dynamic XCFA that starts off by
forking into the separate processes.
After the initial state has been added as the root of the ARG, the ARG building algorithm
queries the possible transitions from the state using the provided LTS component. This
takes a state as argument, and provides a set of transitions, which are totally ordered
sequences of actions. Such actions might be:

31

• ContextChange(pid: int): change the current process to the one with pid

• Advance(loc: XCFA Location): change the location of the current process to loc

• AtomicBegin(): enter an atomic block (no-op when the context is already atomic)
• AtomicEnd(): exit an atomic block (no-op when the context is not atomic)
• ThreadStart(key: Var, f: XCFA Function): start a new process with entry

point f , and associate the new pid with key

• ThreadJoin(key: Var): await the exit of the process associated with key (no-op
when no such process exists)

• Store(w: Store, R: Set<Load>): start a store operation from write to ∀r ∈ R

• Load(r: Load, w: Opt<Store>): start a load operation from w to r when w exists,
or block the current process otherwise

• Fence(): add a fence node to the execution graph of the current process
• Statement(stmts: List<Stmt>): map the mathematical state to a new state ac-

cording to the statements in stmts and the current precision

For example, a transition might be a sequence of a ContextChange, Statement and
Advance actions to change the current process, and execute an edge of the XCFA.
For a given state, the LTS will return one of the following (preferential choice, i.e. a later
choice is only evaluated if no previous steps returned a valid answer):

1. A non-empty set of transitions originating from the current location of the current
process, or

2. A non-empty set of transitions originating from the current location of a non-blocked
process, or

3. An empty set

For the first two options, the algorithm is similar:

1. Collect the outgoing edges from the current location of the given process: Eout

2. For every e ∈ Eout:

(a) Collect the pure statements (CFA-operations) from e: St
(b) Create a list of actions, containing two elements: [Statement(St),

Advance(Target(e))]
(c) Add any AtomicBegin, AtomicEnd, ThreadStart, ThreadJoin and Fence op-

erations as actions to the list
(d) If a Read operation is found on the edge, create as many copies of the current

list of actions as many Write operations the previous state had (over the same
variable), and add a corresponding Load action to each list. One of the lists will
have a Load action with no supplying store. Propagate all lists to the following
step of the algorithm.

(e) If a Write operation is found on the edge, create as many copes of the current
list of actions as many subsets the corresponding blocking Read operations had
in the previous state. Add a corresponding Store action to each list, with the
subset receiving the value of the store. Propagate all lists to the following step
of the algorithm.

32

3. If the process is different from the current process of the previous state, add a
ContextChange action to the beginning of each list.

4. If at least one list exists, return all lists.

So far, an initial state was successfully created, and we know which transitions the program
might take from an abstract state. The only remaining part is the mapping of abstract
states to state-transition pairs, i.e. the transfer function.
The transfer function is modular, in the sense that each action from the list above cor-
responds to an independent transfer subfunction. These modify the abstract state the
following ways (note the mathTransFunc function, which is provided by the underlying
domain)2

• ContextChange(pid):
P ′ := P \ {P (pid(pc))} ∪ {pc},
p′c := P (pid)

• Advance(loc):
p′c := (id(pc), loc, lastNode(pc), amo(pc), blocked(pc))

• AtomicBegin():
amo′ := amo(pc)?amo(pc) : newAmo,
p′c := (id(pc), loc(pc), lastNode(pc), amo′, blocked(pc))

• AtomicEnd():
p′c := (id(pc), loc(pc), lastNode(pc), ∅, blocked(pc))

• ThreadStart(key, f):
P ′ := P ∪ {(|P |, InitLoc(f), Start|P |, ∅, false)},
E′ := E ∪ {po(lastNode(pc), Start|P |)}

• ThreadJoin(key: Var):
p′c := (id(pc), loc(pc), newLastNode, amo(pc), blocked(pc)),
E′ := E ∪ {po(lastNode(pc), lastNode(p′c)),po(End|P |, lastNode(p′c))}

• Store(w: Store, R: Set<Load>):
p′c := (id(pc), loc(pc), w, amo(pc), blocked(pc)),
E′ := E ∪ {po(lastNode(pc), w), ∀(r ∈ R).rf(w, r), [amo(pc)?amo(w, amo(pc))]}

• Load(r: Load, w: Store):
p′c := (id(pc), loc(pc), r, amo(pc), blocked(pc)),
E′ := E ∪ {po(lastNode(pc), r),rf(w, r), [amo(pc)?amo(r, amo(pc))]}

• Load(r: Load):
p′c := (id(pc), loc(pc), r, amo(pc), true),
E′ := E ∪ {po(lastNode(pc), r), [amo(pc)?amo(r, amo(pc))]}

• Fence():
p′c := (id(pc), loc(pc), F, amo(pc), blocked(pc)),
E′ := E ∪ {po(lastNode(pc), F), [amo(pc)?amo(F, amo(pc))]}

• Statement(stmts: List<Stmt>):
S′ :=mathTransFunc(S, expr(stmts))

2The <op1> ? <op2> : <op3> is the ternary if-then-else operator. The binary [<op1> ? <op2>] oper-
ator means the value is only present if <op1> is present, and in that case, it is equal to <op2>.

33

Furthermore, in the eager version of the algorithm any action that modifies the execution
graph triggers a consistency check. In the lazy version, this is delayed until an error
location is reached.
The final remaining component of the CEGAR loop is the precision refinement. This
is straightforward: starting from an existing precision (with a set of tracked variables
and a mathematical precision) and a new mathematical precision, the tracked variables
are updated with each variable in the new precision; and the mathematical precision is
entirely changed to new one.
With this, all seven components are well-defined to be used in a CEGAR loop. In Chapter 5
I elaborate on the implementation-specific details of the solution, and then in Chapter 6
I present the characteristics of the implementation.

34

Chapter 5

Implementation

To aid the evaluation of the algorithm introduced in previous chapters, I developed a proof-
of-concept implementation in the CEGAR-centric model checking framework Theta1 [40,
30]. Furthermore, I implemented the following algorithms as well:

• A naive, interleaving based algorithm
• An interleaving based algorithm utilizing partial-order reduction

These will serve as a baseline in the evaluation, so that the underlying technologies do not
interfere with the results (as every algorithm will use the same framework and algorithms).
Furthermore, these serve as a general overview on the state of concurrent program verifi-
cation using abstraction-refinement techniques – the presented algorithms roughly cover
the lineup of technologies on the software verification competition SV-COMP 21 [11].
The implementation of these algorithms can be found on the xcfa-pr branch of the base
Theta repository2. Note however, that the implementation is not stable (hence the feature
branch), and a complete rework is likely in the near future. Hence, the state of the branch
is not considered part of my submission to the Conference.

5.1 Exploring Interleavings

First, I present the implementation of the interleaving based algorithms. In this case
the complexity is not in the CEGAR-specific parts of the verification workflow, as the
following structures suffice:

• State: a set of enabled processes (each having an ID, a current location and a flag
for atomicity), the current PID, and a mathematical state

• Actions: an edge of the XCFA (having a target location and a list of statements),
or a thread change action

• Partial order: if all locations in the processes are the same, and the mathematical
states are partially ordered

• Precision: a pure mathematical precision
1https://github.com/ftsrg/theta/
2https://github.com/ftsrg/theta/tree/xcfa-pr

35

• LTS: each outgoing edge of each process’s location is offered (those on another process
are extended with a thread change action), unless one of the processes is atomic, in
which case only that process is offered

• Initialization function: The main process is added to the state with its initial loca-
tion, along with a mathematical state of >

• Transfer function: A thread change action changes the current PID, an XCFA-
edge action modifies the mathematical state according to the mathematical transfer
function; and the location of the current process is changed to the target location

For the naive algorithm, implementing this list of components is enough. However, it will
explore every interleaving of the operations, which (as seen in Section 2.4.1) will produce
superfluous nodes in the ARG.
For the partial order reduction algorithm, the implementation can go two ways:

• Make the LTS smarter in the sense that it shall only offer a single interleaving from
an equivalence class (in a DPOR-like fashion [26])

• Create a pre-processing pass that works on the XCFA before the verification, which
identifies atomically executable blocks of code, and places them on a single edge

I opted to implement the latter (based on the experiences of CPAChecker [12], this is
a good enough solution). Therefore, the algorithm had to differentiate between thread-
local and global operations – which in this case meant that any statement that includes a
global variable in the XCFA will become a global statement, and all other operations will
be classified thread-local. Then, any subsequent thread-local block will be given on a single
edge, but each global operation will have its own edge. This resembles a course-grained
large-block encoding [15]. Thus, the inner behavior of the algorithm need not be changed.

5.2 Declarative Semantics

As the complexity of the declarative algorithm (as seen in Chapter 4) is more complicated
than the interleaving-based techniques, the implementation grew more complex as well.
Most notably, the evaluation of the abstract execution graph is a part of the algorithm in
almost every step of expanding the ARG, and therefore its performance is one of the most
important parts of the implementation. The main source of its complexity comes from its
speculative nature: it is not enough to keep track of ground- and derived relations; the
co- and rf -relations have to conform to well-formedness criteria. For example, there must
exist a total order over same-location writes in co in the execution graphs – even though
we add no such relation, and therefore a simple check is not enough. I used four different
techniques to handle this problem:

1. A pure Datalog [5] implementation (using the built-in Datalog engine in Theta that
I previously developed), iteratively trying to find satisfying rf - and co-relations

2. An SMT-solver based solution, using functions as relations

3. A SAT-solver based solution (still using an SMT-solver, but only with the theory of
boolean logic)

36

4. A SAT-solver based solution (still using an SMT-solver, but only with the theory
of boolean logic), using Datalog as a pre-processing step for monotone increasing
relations

Further details of the implementation closely follow the steps of the algorithm described
in Chapter 4.

5.3 Common Parts

To verify C programs, Theta uses an ANTLR-based front-end, which maps (possibly
multi-threaded) programs to the XCFA formalism. This has the advantage (in comparison
with e.g. LLVM-based front-ends) that the number of variables does not grow significantly
higher than the number of variables in the source program3. However, many aspects of the
C programming language are not yet mapped to the elements of XCFAs, such as pointer
support other than simple alias-analyses. Even though there is not a definitive list of
features this front-end supports, we took the SV-COMP benchmarks4 as the baseline to
aim for – and in its current state, the front-end is capable of parsing more than half of the
ReachSafety and ConcurrencySafety categories.
Furthermore, the solvers are also shared among the algorithms. Theta recently received
support for SMT-LIB, a cross-tool communication language of SMT-solvers, which enables
a wide range of solvers to be used. However, during the early stages of development, I
implemented the algorithm to mainly rely on the legacy Z3 solver (as it has native bindings
in Theta, and therefore no inter-process communication is necessary).

3This is a problem of the SSA-format LLVM uses to store the intermediate representation, which
inherently erases information on the variables due to a register-like view of the program.

4https://github.com/sosy-lab/sv-benchmarks/tree/master/c

37

Chapter 6

Evaluation

This chapter compares and contrasts the performance implemented proof-of-concept al-
gorithms introduced in Chapters 4 and 5. Furthermore, it elaborates on the possible
configuration options’ implications on performance in the declarative algorithm.

6.1 The Benchmark Set

I used a subset of the ConcurrencySafety benchmarks of the SV-COMP benchmark reposi-
tory1. These include atomic blocks, dynamic thread creation, mutual exclusion algorithms,
tasks concentrating on data races, and so on. To save on evaluation time (due to the high
number of configurations I planned to test), I picked 50 tasks from the set of programs the
front-end could parse. I tried to make it as diverse as possible (from the sub-categories
of the category), also taking safety into account: overall 25 true and 25 false tasks got
chosen.
Even though this benchmark set might seem too small, it is good enough to demonstrate
high-level properties of the algorithms. It was more important to be able to test a high
number of configurations, as the main reason of this evaluation is the characterization of
the algorithms – a deeper-dive into performance evaluation is a plan for the future.
Furthermore, it might seem unfair to the declarative algorithm that it is pitted against
purpose-built sequential algorithms, when it is a more general solution. While this is true,
and it will show a bias in the evaluation of the performance metrics, it was important to
see if there are tasks where the declarative approach is better than the interleaving-based
one. However, due to this bias, the declarative approach is also compared with itself over
different memory models: namely, a “noassert” memory model featuring no assertions
on the possible execution graphs; a “coherence” memory model only guaranteeing total
coherence (i.e. lack of loops among rf - and po-edges); and the sequential C memory model
(both with and without atomicity). This will hopefully provide a more clear view on the
characteristics of the algorithm, even though in these cases the results cannot be evaluated
(the SV-Benchmarks repository contains results for the tasks, but only using sequential C
semantics) and therefore there might even be false results – even though a manual check
was performed on most tasks, it is not a definitive proof the implementation is sound.

1https://github.com/sosy-lab/sv-benchmarks/tree/master/c

38

(a) Four different abstract execution graph solvers in 6 CEGAR configurations. Higher score is
better.

(b) Four different memory models in 6 CEGAR configurations. Higher score is better.

For the execution of the benchmarks, I used the benchexec2 [16] framework. I ran the
tests using the BME-NIIF cloud3, on virtual machines equipped with 8 CPU cores and
16GB of RAM. I allocated 300 seconds (5 minutes) for each test execution.
As the execution timing results are not important on a per-second level, I used the number
of successfully verified tasks as the basis of the comparison among the execution runs.
In the benchmark configurations, I typically only use the domain and refinement options.
The rest of the configuration are at sane default values, as follows (see Theta [30] for
more information on these options):

• Search: DFS
• PredSplit: Whole
• MaxEnum: 1
• InitPrec: Empty
• PruneStrategy: Lazy
• AbstractionSolver: Z3
• RefinementSolver: Z3

Throughout the benchmark sets, I used every combination of the EXPL and PRED_CART
domains and the MULTI_SEQ, SEQ_ITP and BW_BIN_ITP refinement algorithms.

6.2 Benchmark Results

In this section, I introduce the benchmark sets and their raw results, leaving their inter-
pretation to later sections.

2https://github.com/sosy-lab/benchexec
3https://niif.cloud.bme.hu/

39

Figure 6.2: Four different algorithms in 6 CEGAR configurations. Higher score is better.

6.2.1 Declarative Verification

To assess the strengths and weaknesses of the different configuration options, I ran two
sets of benchmarks:

1. Four different execution graph evaluation solvers (see Section 5.2), using sequential
C semantics with atomicity, and lazy evaluation

2. Four different memory models, using pure Datalog as a solver, and lazy evaluation

The results of these benchmark sets can be seen in Figures 6.1a and 6.1b as heatmaps of
the number of successfully verified tasks within the timeframe.

6.2.2 Verification of Sequential Programs

To compare the different algorithms, I ran the two interleaving-based algorithms side-by-
side a lazy and an eager declarative algorithm. The results can be seen in Figure 6.2.

6.3 Result Evaluation

The following conclusions can be drawn from the results above:

Interleaving-based techniques perform better on sequential C programs. As
it can be seen from Figure 6.2, the interleaving-based POR algorithm solved more tasks
in almost every configuration than any of the declarative approaches – and even the
naive interleaving-based algorithm solved almost the same number of tasks as the better
declarative configuration. However, this result is not surprising – as previously mentioned,
comparing the two types of algorithm is inherently unfair, as the declarative algorithm
can solve more types of problems, and comparing it to a purpose-built algorithm will not
highlight its advantages.

Interleaving-based techniques perform akin to single-threaded verification in
terms of CEGAR configurations. As shown in [30], single-threaded verification tasks
usually prefer EXPL with SEQ_ITP, or PRED_CART with BW_BIN_ITP – the same
can be said about the interleaving-based algorithms in this test. Neither of the cross-
configurations (EXPL with BW_BIN_ITP or PRED_CART with SEQ_ITP) performed
well, and MULTI_SEQ was not a performant choice either.

40

Declarative techniques prefer MULTI_SEQ rather than single-trace refine-
ment. Contrary to the interleaving-based algorithms, the declarative configurations pre-
ferred MULT_SEQ over single-trace refinement. My theory is that the abstraction is much
more expensive to start again from the beginning (due to the solver), so a one-time full
exploration is more advantageous.

Lazy evaluation performs better than its eager counterpart. Figure 6.2 also
shows a clear winner among the declarative algorithms: the lazy configuration solved
more than 40% more than the eager algorithm. This clearly contradicts the findings
of Dartagnan [24], which uses a check at every step of the algorithm. Hence, further
examination is necessary to determine the source of this contradiction.

More relaxed memory models tend to perform better. This is not a surprising
conclusion, as a more relaxed memory model has fewer assertions and therefore the solver
generally returns a result quicker.

Declarative algorithm performs better on relaxed memory models than in-
terleaving-based techniques on sequential programs. Contrary to the previous
conclusion, this is surprising: given the same set of programs, a declarative approach
could verify more in a given amount of time than a purpose-built algorithm with a more
strict memory model, even though the number of traces grows with the relaxation of the
memory model (i.e. more outcomes are explored with a less strict memory model). How-
ever, there has been similar published results before: it has been shown, that even in a
general case, this finding holds [7].

SMT-function based solver is overwhelmingly slow. Even though at first glance
it could be evident that it is better to leave the SAT-projection of the problem to the
SMT-solver, these experiments showed that it is much more beneficial to create the SAT-
problem by hand. This is however well justified by the fact that SMT functions assume a
possibly infinite domain, while the problems in this algorithm are always finite – therefore
we do not need the rich expressivity of SMT-functions for our purposes.

Pure Datalog and SAT+Datalog options dominate the other solvers. As dis-
cussed under the previous conclusion, it is beneficial to prepare the SAT-problem equiv-
alent to the execution graph by hand. Furthermore, it is even more beneficial to help
out the SAT-solver by supplying easily calculable values (e.g. using a bottom-up Datalog
engine) instead of raw facts and relations.

6.4 Summary

To summarize the report, in Chapter 2, I introduced some concepts the rest of the report
relied upon. In Chapter 3, I presented the related tools and algorithms. In Chapter 4, I in-
troduced the main contribution of my work, the algorithm capable of verifying unbounded,
weakly-ordered concurrent programs. In Chapter 5, I presented the proof-of-concept im-
plementation of the algorithm. Finally, in Chapter 6, I presented the performance compar-
ison of the algorithms above as well as the performance implications of the configuration
options.

41

Even though the performance metrics showed that the declarative approach is inferior to
the interleaving-based techniques when it comes to sequential C programs, I still consider
the presented work a success. It was never a realistic goal to provide a solution that is
more generic and also performs better under the same conditions. However, having showed
that the presented approach works and can verify actual programs under the semantics
of almost any memory model is a success in itself – and the fact that it outperformed the
best tested sequential algorithm with a relaxed memory model shows that it has potential
to be used in places where sequentality is not provided.

6.5 Future Work

Even though the presented theory works as a proof-of-concept implementation, there is
still many aspects of the solution I would like to dedicate more time to. These are, among
others and in no particular order, the following:

• A formal proof that the algorithm is sound and optimal, i.e. no particular execution
graph is explored twice

• A deeper evaluation of the declarative algorithm in terms of program characteristics
– which features are advantageous for the algorithm and which hinder verification

• A more robust implementation of the algorithms that could be used to verify actual
embedded software – currently, the main bottleneck is the front-end, but other parts
of the algorithms would have to be modified as well

• A front-end for the CAT language, as currently, the memory models can only be
specified in Java

• A test suite of litmus tests that would help verify the implemented algorithms

• A test suite of memory models

The motivation for this work is the rapid progression of safety-critical systems towards the
use of multi-core hardware. I strongly believe that a technique similar to mine could be
used to bridge the gap between the field of safety-critical development and formal software
verification, and in the future, I hope to continue working on this approach to guide it
towards this goal.

42

Bibliography

[1] TriCore TC1.6.2 core architecture manual - Instruction set (Volume 2 of 2).
URL https://www.infineon.com/dgdl/Infineon-AURIX_TC3xx_Architecture_
vol1-UserManual-v01_00-EN.pdf?fileId=5546d46276fb756a01771bc4c2e33bdd.

[2] Parosh Abdulla, Stavros Aronis, Bengt Jonsson, and Konstantinos Sagonas. Opti-
mal dynamic partial order reduction. SIGPLAN Not., 49(1):373–384, January 2014.
ISSN 0362-1340. DOI: 10.1145/2578855.2535845. URL https://doi.org/10.
1145/2578855.2535845.

[3] Parosh Aziz Abdulla, Stavros Aronis, Mohamed Faouzi Atig, Bengt Jonsson, Carl
Leonardsson, and Konstantinos Sagonas. Stateless model checking for TSO and
PSO. In Christel Baier and Cesare Tinelli, editors, Tools and Algorithms for the
Construction and Analysis of Systems - 21st International Conference, TACAS
2015, Held as Part of the European Joint Conferences on Theory and Prac-
tice of Software, ETAPS 2015, London, UK, April 11-18, 2015. Proceedings,
volume 9035 of Lecture Notes in Computer Science, pages 353–367. Springer,
2015. DOI: 10.1007/978-3-662-46681-0_28. URL https://doi.org/10.1007/
978-3-662-46681-0_28.

[4] Parosh Aziz Abdulla, Mohamed Faouzi Atig, Bengt Jonsson, and Carl Leonards-
son. Stateless model checking for POWER. In Swarat Chaudhuri and Azadeh
Farzan, editors, Computer Aided Verification - 28th International Conference,
CAV 2016, Toronto, ON, Canada, July 17-23, 2016, Proceedings, Part II,
volume 9780 of Lecture Notes in Computer Science, pages 134–156. Springer,
2016. DOI: 10.1007/978-3-319-41540-6_8. URL https://doi.org/10.1007/
978-3-319-41540-6_8.

[5] Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of Databases. Addison-
Wesley, 1995. ISBN 0-201-53771-0. URL http://webdam.inria.fr/Alice/.

[6] Jade Alglave, Daniel Kroening, and Michael Tautschnig. Partial orders for ef-
ficient bounded model checking of concurrent software. In Natasha Sharygina
and Helmut Veith, editors, Computer Aided Verification - 25th International Con-
ference, CAV 2013, Saint Petersburg, Russia, July 13-19, 2013. Proceedings,
volume 8044 of Lecture Notes in Computer Science, pages 141–157. Springer,
2013. DOI: 10.1007/978-3-642-39799-8_9. URL https://doi.org/10.1007/
978-3-642-39799-8_9.

[7] Jade Alglave, Daniel Kroening, and Michael Tautschnig. Partial orders for efficient
bounded model checking of concurrent software. In Natasha Sharygina and Helmut
Veith, editors, Computer Aided Verification, pages 141–157, Berlin, Heidelberg, 2013.
Springer Berlin Heidelberg. ISBN 978-3-642-39799-8.

43

https://www.infineon.com/dgdl/Infineon-AURIX_TC3xx_Architecture_vol1-UserManual-v01_00-EN.pdf?fileId=5546d46276fb756a01771bc4c2e33bdd
https://www.infineon.com/dgdl/Infineon-AURIX_TC3xx_Architecture_vol1-UserManual-v01_00-EN.pdf?fileId=5546d46276fb756a01771bc4c2e33bdd
http://dx.doi.org/10.1145/2578855.2535845
https://doi.org/10.1145/2578855.2535845
https://doi.org/10.1145/2578855.2535845
http://dx.doi.org/10.1007/978-3-662-46681-0_28
https://doi.org/10.1007/978-3-662-46681-0_28
https://doi.org/10.1007/978-3-662-46681-0_28
http://dx.doi.org/10.1007/978-3-319-41540-6_8
https://doi.org/10.1007/978-3-319-41540-6_8
https://doi.org/10.1007/978-3-319-41540-6_8
http://webdam.inria.fr/Alice/
http://dx.doi.org/10.1007/978-3-642-39799-8_9
https://doi.org/10.1007/978-3-642-39799-8_9
https://doi.org/10.1007/978-3-642-39799-8_9

[8] Jade Alglave, Luc Maranget, and Michael Tautschnig. Herding cats: Modelling,
simulation, testing, and data mining for weak memory. ACM Trans. Program. Lang.
Syst., 36(2):7:1–7:74, 2014. DOI: 10.1145/2627752. URL https://doi.org/10.
1145/2627752.

[9] Jade Alglave, Patrick Cousot, and Luc Maranget. Syntax and semantics of the weak
consistency model specification language cat. CoRR, abs/1608.07531, 2016. URL
http://arxiv.org/abs/1608.07531.

[10] Mark Batty, Scott Owens, Susmit Sarkar, Peter Sewell, and Tjark Weber. Mathema-
tizing C++ concurrency. In Thomas Ball and Mooly Sagiv, editors, Proceedings of the
38th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL 2011, Austin, TX, USA, January 26-28, 2011, pages 55–66. ACM, 2011. DOI:
10.1145/1926385.1926394. URL https://doi.org/10.1145/1926385.1926394.

[11] Dirk Beyer. Software Verification: 10th Comparative Evaluation (SV-COMP 2021).
In Jan Friso Groote and Kim Guldstrand Larsen, editors, Tools and Algorithms for
the Construction and Analysis of Systems, pages 401–422, Cham, 2021. Springer
International Publishing. ISBN 978-3-030-72013-1.

[12] Dirk Beyer and Karlheinz Friedberger. A light-weight approach for verifying multi-
threaded programs with CPAchecker. Electronic Proceedings in Theoretical Computer
Science, 233:61–71, 2016. DOI: 10.4204/eptcs.233.6.

[13] Dirk Beyer, Thomas A. Henzinger, Ranjit Jhala, and Rupak Majumdar. The software
model checker Blast. International Journal on Software Tools for Technology Transfer,
9(5-6):505–525, September 2007. DOI: 10.1007/s10009-007-0044-z. URL https:
//doi.org/10.1007/s10009-007-0044-z.

[14] Dirk Beyer, Thomas A. Henzinger, and Grégory Théoduloz. Configurable soft-
ware verification: Concretizing the convergence of model checking and pro-
gram analysis. Computer Aided Verification, page 504–518, 2007. DOI:
10.1007/978-3-540-73368-3_51.

[15] Dirk Beyer, Alessandro Cimatti, Alberto Griggio, M. Erkan Keremoglu, Si-
mon Fraser Univers, and Roberto Sebastiani. Software model checking via large-
block encoding. 2009 Formal Methods in Computer-Aided Design, 2009. DOI:
10.1109/fmcad.2009.5351147.

[16] Dirk Beyer, Stefan Löwe, and Philipp Wendler. Reliable benchmarking: require-
ments and solutions. Springer Science and Business Media LLC, 21(1):1–29, Novem-
ber 2017. DOI: 10.1007/s10009-017-0469-y. URL https://doi.org/10.1007/
s10009-017-0469-y.

[17] Armin Biere, Alessandro Cimatti, Edmund M. Clarke, Ofer Strichman, and Yunshan
Zhu. Bounded model checking. Advances in Computers, page 117–148, 2003. DOI:
10.1016/s0065-2458(03)58003-2.

[18] Paul E. Black, Paul Ammann, and Wei Ding. Model checkers in software testing. U.S.
Dept. of Commerce, Technology Administration, National Institute of Standards and
Technology, 2002.

[19] Hans-J. Boehm and Brian Demsky. Outlawing ghosts: avoiding out-of-thin-air results.
Proceedings of the workshop on Memory Systems Performance and Correctness, 2014.
DOI: 10.1145/2618128.2618134.

44

http://dx.doi.org/10.1145/2627752
https://doi.org/10.1145/2627752
https://doi.org/10.1145/2627752
http://arxiv.org/abs/1608.07531
http://dx.doi.org/10.1145/1926385.1926394
https://doi.org/10.1145/1926385.1926394
http://dx.doi.org/10.4204/eptcs.233.6
http://dx.doi.org/10.1007/s10009-007-0044-z
https://doi.org/10.1007/s10009-007-0044-z
https://doi.org/10.1007/s10009-007-0044-z
http://dx.doi.org/10.1007/978-3-540-73368-3_51
http://dx.doi.org/10.1109/fmcad.2009.5351147
http://dx.doi.org/10.1007/s10009-017-0469-y
https://doi.org/10.1007/s10009-017-0469-y
https://doi.org/10.1007/s10009-017-0469-y
http://dx.doi.org/10.1016/s0065-2458(03)58003-2
http://dx.doi.org/10.1145/2618128.2618134

[20] James Bornholt and Emina Torlak. Synthesizing memory models from framework
sketches and litmus tests. In Albert Cohen and Martin T. Vechev, editors, Proceed-
ings of the 38th ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI 2017, Barcelona, Spain, June 18-23, 2017, pages 467–481.
ACM, 2017. DOI: 10.1145/3062341.3062353. URL https://doi.org/10.1145/
3062341.3062353.

[21] Edmund Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith.
Counterexample-guided abstraction refinement for symbolic model checking. Journal
of the ACM, 50(5):752–794, September 2003. DOI: 10.1145/876638.876643. URL
https://doi.org/10.1145/876638.876643.

[22] Edmund M. Clarke, Orna Grumberg, and Doron Peled. Model checking. MIT Press,
1999.

[23] Edmund M. Clarke, William Klieber, Miloš Nováček, and Paolo Zuliani. Model check-
ing and the state explosion problem. Lecture Notes in Computer Science, page 1–30,
2012. DOI: 10.1007/978-3-642-35746-6_1.

[24] Hernán Ponce de León, Florian Furbach, Keijo Heljanko, and Roland Meyer. BMC
with memory models as modules. In Nikolaj Bjørner and Arie Gurfinkel, edi-
tors, 2018 Formal Methods in Computer Aided Design, FMCAD 2018, Austin,
TX, USA, October 30 - November 2, 2018, pages 1–9. IEEE, 2018. DOI:
10.23919/FMCAD.2018.8603021. URL https://doi.org/10.23919/FMCAD.2018.
8603021.

[25] Alastair F. Donaldson, Leopold Haller, Daniel Kroening, and Philipp Rümmer. Soft-
ware verification using k-induction. Static Analysis, page 351–368, 2011. DOI:
10.1007/978-3-642-23702-7_26.

[26] Cormac Flanagan and Patrice Godefroid. Dynamic partial-order reduction for model
checking software. In Proceedings of the 32nd ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages, POPL ’05, page 110–121, New York,
NY, USA, 2005. Association for Computing Machinery. ISBN 158113830X. DOI:
10.1145/1040305.1040315. URL https://doi.org/10.1145/1040305.1040315.

[27] Natalia Gavrilenko, Hernán Ponce de León, Florian Furbach, Keijo Heljanko, and
Roland Meyer. BMC for weak memory models: Relation analysis for compact SMT
encodings. In Isil Dillig and Serdar Tasiran, editors, Computer Aided Verification -
31st International Conference, CAV 2019, New York City, NY, USA, July 15-18,
2019, Proceedings, Part I, volume 11561 of Lecture Notes in Computer Science, pages
355–365. Springer, 2019. DOI: 10.1007/978-3-030-25540-4_19. URL https://
doi.org/10.1007/978-3-030-25540-4_19.

[28] Patrice Godefroid, Jan van Leeuwen, Juris Hartmanis, Gerhard Goos, and Pierre
Wolper. Partial-order methods for the verification of concurrent systems: an approach
to the state-explosion problem, volume 1032. Citeseer, 1996.

[29] Henning Günther, Alfons Laarman, and Georg Weissenbacher. Vienna verification
tool: IC3 for parallel software. Tools and Algorithms for the Construction and Analysis
of Systems, page 954–957, 2016. DOI: 10.1007/978-3-662-49674-9_69.

[30] Ákos Hajdu and Zoltán Micskei. Efficient strategies for CEGAR-based model
checking. Journal of Automated Reasoning, 64(6):1051–1091, 2020. DOI:
10.1007/s10817-019-09535-x.

45

http://dx.doi.org/10.1145/3062341.3062353
https://doi.org/10.1145/3062341.3062353
https://doi.org/10.1145/3062341.3062353
http://dx.doi.org/10.1145/876638.876643
https://doi.org/10.1145/876638.876643
http://dx.doi.org/10.1007/978-3-642-35746-6_1
http://dx.doi.org/10.23919/FMCAD.2018.8603021
https://doi.org/10.23919/FMCAD.2018.8603021
https://doi.org/10.23919/FMCAD.2018.8603021
http://dx.doi.org/10.1007/978-3-642-23702-7_26
http://dx.doi.org/10.1145/1040305.1040315
https://doi.org/10.1145/1040305.1040315
http://dx.doi.org/10.1007/978-3-030-25540-4_19
https://doi.org/10.1007/978-3-030-25540-4_19
https://doi.org/10.1007/978-3-030-25540-4_19
http://dx.doi.org/10.1007/978-3-662-49674-9_69
http://dx.doi.org/10.1007/s10817-019-09535-x

[31] Gerard J. Holzmann. Explicit-state model checking. Handbook of Model Checking,
page 153–171, 2018. DOI: 10.1007/978-3-319-10575-8_5.

[32] IEC 61508:2010. Functional safety of electrical/electronic/programmable electronic
safety-related systems. International standard, International Electrotechnical Com-
mission, April 2010.

[33] ISO/IEC 9899:201x. Programming languages — C. International standard, Interna-
tional Organization for Standardization, International Electrotechnical Commission,
December 2010.

[34] Michalis Kokologiannakis, Ori Lahav, Konstantinos Sagonas, and Viktor Vafeiadis.
Effective stateless model checking for C/C++ concurrency. Proc. ACM Program.
Lang., 2(POPL):17:1–17:32, 2018. DOI: 10.1145/3158105. URL https://doi.org/
10.1145/3158105.

[35] Ori Lahav, Viktor Vafeiadis, Jeehoon Kang, Chung-Kil Hur, and Derek Dreyer. Re-
pairing sequential consistency in c/c++11. In Proceedings of the 38th ACM SIG-
PLAN Conference on Programming Language Design and Implementation, PLDI
2017, page 618–632, New York, NY, USA, 2017. Association for Computing Ma-
chinery. ISBN 9781450349888. DOI: 10.1145/3062341.3062352. URL https:
//doi.org/10.1145/3062341.3062352.

[36] Brian Norris and Brian Demsky. A Practical Approach for Model Checking C/C++11
Code. ACM Trans. Program. Lang. Syst., 38(3), May 2016. ISSN 0164-0925. DOI:
10.1145/2806886. URL https://doi.org/10.1145/2806886.

[37] Zvonimir Rakamaric and Michael Emmi. SMACK: decoupling source language de-
tails from verifier implementations. In Armin Biere and Roderick Bloem, editors,
Computer Aided Verification - 26th International Conference, CAV 2014, Held
as Part of the Vienna Summer of Logic, VSL 2014, Vienna, Austria, July 18-
22, 2014. Proceedings, volume 8559 of Lecture Notes in Computer Science, pages
106–113. Springer, 2014. DOI: 10.1007/978-3-319-08867-9_7. URL https:
//doi.org/10.1007/978-3-319-08867-9_7.

[38] Susmit Sarkar, Peter Sewell, Jade Alglave, Luc Maranget, and Derek Williams. Un-
derstanding POWER multiprocessors. In Mary W. Hall and David A. Padua, ed-
itors, Proceedings of the 32nd ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation, PLDI 2011, San Jose, CA, USA, June 4-
8, 2011, pages 175–186. ACM, 2011. DOI: 10.1145/1993498.1993520. URL
https://doi.org/10.1145/1993498.1993520.

[39] Thomas N. Theis and H.-S. Philip Wong. The End of Moore’s Law: A New Beginning
for Information Technology. Computing in Science; Engineering, 19(2):41–50, 2017.
DOI: 10.1109/mcse.2017.29.

[40] Tamás Tóth, Ákos Hajdu, András Vörös, Zoltán Micskei, and István Majzik. Theta:
a framework for abstraction refinement-based model checking. In Daryl Stewart and
Georg Weissenbacher, editors, Proceedings of the 17th Conference on Formal Methods
in Computer-Aided Design, pages 176–179, 2017. ISBN 978-0-9835678-7-5. DOI:
10.23919/FMCAD.2017.8102257.

[41] Caroline Trippel, Yatin A. Manerkar, Daniel Lustig, Michael Pellauer, and Margaret
Martonosi. Tricheck: Memory model verification at the trisection of software, hard-
ware, and ISA. In Yunji Chen, Olivier Temam, and John Carter, editors, Proceedings

46

http://dx.doi.org/10.1007/978-3-319-10575-8_5
http://dx.doi.org/10.1145/3158105
https://doi.org/10.1145/3158105
https://doi.org/10.1145/3158105
http://dx.doi.org/10.1145/3062341.3062352
https://doi.org/10.1145/3062341.3062352
https://doi.org/10.1145/3062341.3062352
http://dx.doi.org/10.1145/2806886
https://doi.org/10.1145/2806886
http://dx.doi.org/10.1007/978-3-319-08867-9_7
https://doi.org/10.1007/978-3-319-08867-9_7
https://doi.org/10.1007/978-3-319-08867-9_7
http://dx.doi.org/10.1145/1993498.1993520
https://doi.org/10.1145/1993498.1993520
http://dx.doi.org/10.1109/mcse.2017.29
http://dx.doi.org/10.23919/FMCAD.2017.8102257

of the Twenty-Second International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, ASPLOS 2017, Xi’an, China, April
8-12, 2017, pages 119–133. ACM, 2017. DOI: 10.1145/3037697.3037719. URL
https://doi.org/10.1145/3037697.3037719.

[42] Alan Mathison Turing. On computable numbers, with an application to the Entschei-
dungsproblem. Journal of Math, 58:345–363, 1936.

47

http://dx.doi.org/10.1145/3037697.3037719
https://doi.org/10.1145/3037697.3037719

	Kivonat
	Abstract
	Introduction
	Background
	Safety-Critical Systems
	Formal Software Verification
	Bounded Model Checking (BMC)
	Counterexample-Guided Abstraction Refinement (CEGAR)
	A Generic CEGAR Loop
	CEGAR Configuration Options
	BMC Inside CEGAR

	Multi-Processor Architectures
	Memory Consistency Models

	Analysis of Multi-Threaded Programs
	Interleaving Semantics
	Declarative Semantics
	Multi-Threaded CFA

	Related Work
	Sequentially Ordered Concurrency
	Weakly Ordered Concurrency
	Herd
	Rcmc
	Dartagnan

	CEGAR for Declarative Semantics
	Outline of the Solution
	Motivating Example
	Limitations on Genericity
	Formalizing the Approach
	Abstract States for Declarative Analysis
	Building the ARG

	Implementation
	Exploring Interleavings
	Declarative Semantics
	Common Parts

	Evaluation
	The Benchmark Set
	Benchmark Results
	Declarative Verification
	Verification of Sequential Programs

	Result Evaluation
	Summary
	Future Work

	Bibliography

