
Modeling students’ academic
performance using Bayesian

Networks
Student Research Societies

Kristóf Gál

Supervisors:

Roland Molontay
Máté Baranyi

2019

Contents

1 Introduction 2

2 Review of related literature 3

3 Theoretical background 6

3.1 Probability and graph theory . 6

3.2 Bayesian networks . 8

3.3 Learning . 12

3.4 Inference . 16

4 Modeling academic performance 18

4.1 University admission system in Hungary 18

4.2 Data preparation . 19

4.3 Modeling and evaluation . 20

5 Summary 26

6 Acknowledgment 26

1

1 Introduction

Dropping out from higher education and delayed completion are associated with con-

siderable personal and social costs. The dropout rate from STEM programs in Hungary

is particularly high, one of the highest in the EU. Exploring the causes of early school

leaving, supporting student learning success and finding intervention points have be-

come well-studied research topics of great interest to both educational researchers and

educational decision-makers.

The rich data stored in educational databases together with the emergence of

efficient statistical and machine learning methods have enabled new approaches, which

created a new line of research. This paper joins this research steam and contributes

to the literature by exploring the relationship between pre-enrollment achievement

measures and indicators of first-year university performance using Bayesian networks.

Moreover, we answer the question of which relationships are the most significant and

we also make some suggestions on how the explored connections can be used to assist

higher education stakeholders.

In this paper, we review the related theory of Bayesian networks, how they are

able to reveal dependencies between variables, and we introduce the most important

construction algorithms. We demonstrate the applicability of Bayesian networks in

the educational domain both based on recent literature and based on the academic

data of students from Budapest University of Technology and Economics. We explore

the relationship between pre-enrollment achievement measures and university perfor-

mance outcomes in the first semester, furthermore, we point out the most significant

relationships and outline possible intervention points and solutions.

The main contribution of this work is that we use Bayesian networks to model

academic performance in the traditional educational setting. We give a detailed de-

scription of the applied algorithms and point out the limitations of this modeling

approach. Moreover, to the best of our knowledge, this is the first study that in-

vestigates academic performance modeling using Bayesian networks in the Central

European educational setting.

2

2 Review of related literature

The literature on educational data mining applications is continuously expanding.

The first articles of the field date back to the late 1990s, and the First International

Conference on Educational Data Mining [1] was held in 2008. There are several reviews

of educational data mining that collect methods and results to describe advancements

and present the current state of research [2, 3, 4].

One of the first applications of Bayesian networks in the educational domain was

presented in 2004 by Michalis Xenos [5] who suggested an approach to model the

progress of students of the Hellenic Open University that used distance education. He

investigated the Informatics course facing high dropout rates with the aim of finding

the causes of dropouts and to create a support system for educational administrators

and tutors. Most of the factors, including for example tutor efforts and usage of

textbooks, were broken down into three categories: poor, average and good; some

into binary, for example exam results (success and failure) and a category was also

introduced for unknown values. These category levels were used for the construction

of the network. Using the model it became possible to predict the chance of a student

dropping out based on historical performance on the course. Based on historical data,

using the proposed modeling framework, tutors can also simulate how a student would

react to a certain educational approach that can help the tutors to recommend the

method that fits the student’s learning style the most.

Another paper in web-based education using Bayesian networks is from Garćıa et al.

about precision evaluation in student learning style detection [6]. The goal here was to

identify the learning styles of students to give them the best available course material.

The authors adapted an earlier study of student behavior by discarding factors that are

not observable in an online environment and used the remaining variables to construct

a Bayesian network. It was found that the Bayesian networks perform with varying

precision depending on which variables were fixed as evidence for example perception,

processing, and understanding.

In [7] Pardos et al. used Bayesian networks to predict the results of the tests

produced by the Massachusetts Comprehensive Assessment System based on the test

skill requirements that were broke down into elemental parts like inequality solving

and they built up more complex skills like setting up and solving equations from those.

The model was created based on domain knowledge and evaluation was carried out

using Mean Absolute Difference (MD) of the predicted test results and the real test

results. This way they achieved an error rate of 15% which was impressive compared

to other results.

There are also works for student performance prediction in traditional education.

In their work, Slim et al. [8] use Bayesian networks for reasoning about student progress

3

and performance with the goal of predicting future student progression based on ear-

lier semesters. They used not only the students’ results from previously completed

courses but other factors as well, such as academic background and social factors.

Their evaluation method used the Mean Squared Error (MSE) and they found that

the proposed method can predict student grade point average with small error after

observing the performance for one semester.

We have seen so far that Bayesian network based methods were used previously in

educational data mining for the prediction of various attributes and that they achieve

promising results. There are other techniques in the field. We list a few without

attempting to be comprehensive.

In the article of Yukselturk et al. [9] the goal was to classify dropout students

using 10 variables such as age and educational level which were collected through

online questionnaires. They used four different approaches for classification: k nearest

neighbor, decision tree, naive Bayes and neural network based methods. The 3 nearest

neighbors algorithm achieved the highest, 87% detection sensitivity. The collected

factors were also assessed in terms of feature importance and the three found to be

the most important were online learning readiness, previous online experience, and

self-efficacy of the online technology.

In her work, Kabakchieva [10] focuses on the implementation of data mining tech-

niques to predict student performance based on pre-university and personal character-

istics including the selection of features that have the strongest predictive power. They

used decision trees, Bayes classifiers, k nearest neighbor methods, and rule learners.

There was a research [11] using data from the Budapest University of Technol-

ogy and Economics with the aim of predicting dropout based on secondary school

performance. In this work, both personal details (for example date of birth and ad-

dress) and previous school performance (mature exam results and admission points)

were used to identify students at risk of dropout. Many methods were set up and

tested on the data including decision tree based, naive Bayes, k-nearest neighbors

classifiers, linear models and deep learning. The model achieving the highest AUC

(Area-Under-Curve) score was the Deep Learning model and Gradient Boosted Trees

had the second-highest AUC. In a follow-up paper [12] the same authors have also

investigated the interpretability of machine learning models for dropout prediction.

We also reviewed the field of Bayesian networks including books and articles to get

a better view of the available methods [13, 14, 15].

In [16] the necessity of Bayesian networks for classification was tested through com-

parison to naive Bayes methods and other classifiers. The main characteristic of the

Naive Bayes model is that it makes the assumption that all features are conditionally

independent given the class labels while the Bayesian network represents a set of vari-

ables as nodes of a graph, modeling dependencies between the variables as edges. After

4

testing over twenty datasets it was found that there is no significant difference in per-

formance. The paper also points out that the optimality measures used for Bayesian

network construction are not the best for classifier applications and a suitable family

of functions is introduced instead. With all this in mind, for non-classification prob-

lems like prediction and imputation Bayesian networks perform well. Also, in the real

world, in real data, features are hardly ever independent and therefore the application

of Naive Bayes classifiers can be misleading because of their strong assumption. The

Bayesian networks can get a grasp on the dependencies in real data.

There are works regarding the theory of learning Bayesian networks from sam-

ples [17]. It was shown previously that for learning Bayesian networks from data there

is a greedy search that identifies a perfect map of the generative distribution if the map

is a Directed Acyclic Graph (DAG). This two-phased greedy search is implemented

and was shown to lead to good solutions when applied to finite sample sizes.

In their paper [18] Perković et al. investigate completed partially directed acyclic

graphs, develop terminology and methods and demonstrate the gain in identifiabil-

ity of causal effects as the available domain knowledge increases. Bayesian network

structure building methods were also developed for high dimensional DAGs [19], in

particular, the PC-algorithm. These algorithms that search through the space of DAGs

were developed over the years [20] and most statistical and machine learning reposito-

ries that support Bayesian networks have their own implementations of structure and

parameter learning algorithms.

5

3 Theoretical background

In this section we first overview some probability and graph theory fundamentals,

then define Bayesian networks, and present learning algorithms followed by the idea

of inference. This section heavily relies on books [21, 22, 23].

3.1 Probability and graph theory

Definition 1. Let (Ω,F ,P) be a probability space. A random variable is a measurable

function X : Ω→ R.

The realization of a random variable is an event, thus definitions of this section are

directly applicable to random variables.

Definition 2. Let A and B be two events from the σ-field of the probability space

(Ω,F ,P) with P(B) > 0. Then the conditional probability of A given B is

P(A|B) =
P(A ∩B)

P(B)
,

the probability of the intersection of the events divided by the probability of B.

Theorem 3 (Bayes’ theorem). Let (Ω,F ,P) be a probability space. Then ∀A,B ∈
F , P(B) > 0:

P(A|B) =
P(B|A)P(A)

P(B)
.

Definition 4. Let (Ω,F ,P) be a probability space and A,B ∈ F be two events with

positive probabilities: P(A) > 0 and P(B) > 0. Then A and B are independent

(denoted as A ⊥ B) if

P(A ∩B) = P(A) · P(B),

their joint probability is the product of their probabilities. Equivalent forms:

P(A ∩B) = P(A) · P(B)⇐⇒ P(A|B) =
P(A ∩B)

P(B)
= P(A),

P(A ∩B) = P(A) · P(B)⇐⇒ P(B|A) =
P(B ∩ A)

P(A)
= P(B),

meaning that the occurrence of B does not affect the occurrence of A and neither does

the occurrence of A affect the occurrence of B.

Although independence is a very useful and interesting notion, a property that we

may encounter more often regarding real-world scenarios is conditional independence.

6

Definition 5. Let (Ω,F ,P) be a probability space and A,B,C ∈ F three events

with positive probabilities: P(A) > 0, P(B) > 0 and P(C) > 0. Then A and B are

conditionally independent given evidence C (denoted by A ⊥ B|C) if and only if

P(A ∩B|C) = P(A|C) · P(B|C).

Corollary 5.1. If A and B are conditionally independent given evidence C then using

the definition of conditional probability we have

P(A|B ∩ C) =
P(A ∩ (B ∩ C))

P(B ∩ C)
=

P(A ∩B|C) · P(C)

P(B|C) · P(C)
=

P(A|C) · P(B|C)

P(B|C)
= P(A|C),

and similarly

P(B|A ∩ C) = P(B|C).

The events A and B are conditionally independent given evidence C if and only if

occurring A provides no additional information on the probability of the occurrence

of B, given the occurrence of evidence C, and similarly, the knowledge of whether B

occurs or not provides no additional information about the probability of the occur-

rence of A. After defining conditional independence the following statements can be

made:

Corollary 5.2. Let (Ω,F ,P) be a probability space and A,B,C,D ∈ F then:

1. (A ⊥ B) =⇒ (B ⊥ A) (symmetry property),

2. (A ⊥ B)|C ∧ (A ⊥ C) =⇒ (A ⊥ B,C) (contraction property),

3. (A ⊥ B,C) =⇒ (A ⊥ B)|C ∧ (A ⊥ C)|B (weak union property),

4. (A ⊥ B,C) =⇒ (A ⊥ B) ∧ (A ⊥ C) (decomposition property) and

5. if the joint density function of all variables is positive and continuous with respect

to the product measure then

(A ⊥ B)|C,D ∧ (A ⊥ D)|B,C =⇒ (A ⊥ B,D)|C (intersection property).

Definition 6. A graph is an ordered G = (V,E) pair, where V is a finite set (of

vertices or nodes) and E ⊆ V 2 (the set of edges), E ⊆
{
{x, y}|x ∈ V, y ∈ V

}
. The

graph G = (V,E) is simple if ∀{x, y} ∈ E : x 6= y, in other words it contains no loops,

edges that connect a vertex with itself.

Definition 7. Let G = (V,E) be a graph. A path from x ∈ V to y ∈ V is a sequence

of nodes {vi}i=0,...,n, such that ∀i = 0, . . . , n−1 : {vi, vi+1} ∈ E and v0 = x and vn = y.

7

Definition 8. A directed graph is an ordered G = (V,E) pair where V is the finite set

of nodes and E =
{

(x, y) ordered pairs | x, y ∈ V
}

, there is a directed edge (arc) from

x to y if (x, y) ∈ E. Directed edges are represented by arrows: we denote (x, y) ∈ E
by x→ y.

Definition 9. Let G = (V,E) be a directed graph and e = (x, y) ∈ E then x is a

parent of y and y is a child of x. The parents of node x in G is a set denoted by

ParG(x) and the children of node x in G is a set denoted by ChiG(x).

Definition 10. Let G = (V,E) be a directed graph. There is a directed path from

x ∈ V to y ∈ V if there are nodes {vi}i=0,...,n, ∀i = 0, . . . , n − 1 : (vi, vi+1) ∈ E and

v0 = x and vn = y.

Definition 11. Let G = (V,E) be a directed graph and x, y ∈ V . If there is a directed

path from x to y then x is an ancestor of y and y is a descendant of x. The parents of a

node are also ancestors and children of a node are also descendants. The descendants

of node x in G is a set denoted by DesG(x).

Definition 12. Let G = (V,E) be a directed graph and x ∈ V . If x has no parents

then x is called a root.

Definition 13. Let G = (V,E) be a directed graph and x ∈ V . A directed path that

goes from x to x is called a cycle.

Definition 14. A directed graph that contains no cycles is called a directed acyclic

graph (DAG).

Remark. We only mentioned undirected and directed graphs. It is possible to define

and use partially directed graphs but in this work we focus on directed ones.

3.2 Bayesian networks

A probabilistic graphical model is a probabilistic model for which a graph expresses

the conditional dependence structure between random variables, for example, Markov

random fields and Bayesian networks. Bayesian networks represent a set of random

variables and their conditional dependencies. Their structure is a DAG and each node

has its own probability table.

Definition 15. A Bayesian network (G,P) is a representation of a probability dis-

tribution over a vector of random variables X = {X1, . . . , Xn}, where G is a DAG,

the structure of the Bayesian network, and P is a set of conditional probability dis-

tributions. The nodes of G represent the random variables and the edges represent

8

conditional dependence statements. Each node has its own conditional probability

distributions for the possible value combination of its parents:

P(Xi|ParG(Xi)),

where ParG(X) is the set of the parents of the node corresponding to X in G.

Based on its conditional independence assumptions, the Bayesian network defines

the joint distribution as

P(X1, . . . , Xn) =
n∏

i=1

P(Xi|ParG(Xi)).

This is a well-defined distribution: P(X1, . . . , Xn) is a product of conditional proba-

bility distributions, thus non-negative and
∑
P = 1.

Figure 1: Example of a simple Bayesian network

In Figure 1, a simple discrete Bayesian network structure is shown. It is created

based on our own assumptions only, so its goodness is not tested. It models a situation

with four variables: mathematics matura (denoted by M) influences the result of two

first-semester courses, Mathematics A1 (A) and Basics of Mechanical Engineering (E),

and further, both influence the result of the second-semester course Basics of Machine

Building (B). The conditional probabilities in each node only depend on the given

node’s parents.

The distribution of this Bayesian network is a product of the factors conditional

9

distributions: ∑
M,A,E,B

P(M,A,E,B) =

=
∑

M,A,E,B

P(M) · P(A|M) · P(E|M) · P(B|A,E)

=
∑

M,A,E

P(M) · P(A|M) · P(E|M) ·
∑
B

P(B|A,E)

=
∑
M,A

P(M) · P(A|M) ·
∑
E

P(E|M)

=
∑
M

P(M) ·
∑
A

P(A|M)

= 1

Here we used multiple times that
∑
X

P(X|Par(X)) = 1.

3.2.1 ”Bayes-ball”

To gain a better understanding of the flow of probabilistic influence in Bayesian net-

works we present the rules of ”Bayes-ball” [24]. Let (G,P) be a Bayesian network,

G = (V,E) and X, Y ∈ V random variables from the Bayesian network.

Definition 16. Let (G,P) be a Bayesian network and X be an undirected path (trail)

between X1 and Xm, X = ({X1, X2}, {X2, X3}, . . . , {Xm−1, Xm}). This trail in G is

an active trail for evidence Z ⊆ {X1, . . . , Xm} if every consecutive (Xi−1, Xi, Xi+1)

triplet of variables on the trail is active. The active triplets are:

1. Xi−1 → Xi → Xi+1 and Xi−1 ← Xi ← Xi+1 if Xi /∈ Z (Xi is not observed)

2. Xi−1 ← Xi → Xi+1 if Xi /∈ Z (Xi is not observed)

3. Xi−1 → Xi ← Xi+1 if Xi ∈ Z or Des(Xi) ∩ Z 6= ∅ (Xi or any of it descendants

is observed)

In Figure 2, one can see the rules for active triplets but only the middle node of

each triplet is shown. The pair of triplets in each row corresponds to the row with the

same number in Definition 16. White nodes are unobserved, gray nodes are observed,

black arrows represent the edges of the triplet. The straight dark red arrows show

where the ”Bayes-ball” of probabilistic influence can roll through and the curved ones

show where it bounces back.

Remark. Let (G,P) be a Bayesian network, G = (V,E) and X, Y ∈ V random variables

from the network. If X → Y or X ← Y then X can influence Y , and vice versa.

10

Figure 2: The rules of ”Bayes-ball”

Definition 17. Let (G,P) be a Bayesian network, G = (V,E) and A,B,C ⊂ V three

subsets of nodes from G. A and B are directional-separated (d-separated) in G given

evidence C, if there are no active trails between A and B with evidence C. It is

denoted by DSG(A,B|C). A and B are conditionally independent given C if A and B

are d-separated given evidence C.

Returning to Figure 1, we can see that M and B are conditionally independent

if we know A and E. They are dependent if we do not A or E because in that case

M→A→B triplet or the M→E→B triplet becomes active and creates an active trail

between M and B.

Definition 18. Let I(G) =
{

(A ⊥ B|C) : DSG(A,B|C)
}

be the set of conditional

independencies corresponding to d-separation.

Definition 19. Let G be a directed graph with nodes X = (X1, . . . , Xn) and P a

set of conditional probability distributions of X. P factorizes over G if the chain rule

holds for P :

P(X1, . . . , Xn) =
n∏

i=1

P(Xi|ParG(Xi)),

where ParG(X) is the set of parents of X in G.

Definition 20. Let G be a directed graph with a set of independencies I(G), A,B,C ⊂
V and P be a distribution over A. Let I(P) be the set of independencies that hold in

P in the form (A ⊥ B|C). G is an independency map for I(P) if I(G) ⊂ I(P).

Theorem 21. If P factorizes over G then G is an independency map for P.

Theorem 22. Let G be a Bayesian network structure for a X set of random variables

and P be a joint distribution of X. If G is an independency map for P then P factorizes

over G.

11

Corollary 22.1. The previous two theorems together state that P factorizes over G if

and only if I(G) ⊂ I(P).

This theorem explains why the distribution of Bayesian networks factorize like

stated before. Returning to the example of Figure 1:

P(M,A,E,B) = P(M) · P(A|M) · P(E|M) · P(B|A,E)

P(M) =
∑
A,E,B

P(M) · P(A|M) · P(E|M) · P(B|A,E)

= P(M) ·
∑
A

P(A|M) ·
∑
E

P(E|M) ·
∑
B

P(B|A,E)

= P(M)

3.3 Learning

The learning of Bayesian networks consists of two steps: structure learning and pa-

rameter learning. In the simplest case, the Bayesian network is specified by an expert

and no learning is necessary. In most of the cases, the conditional distributions and/or

the structure of the Bayesian network are not given therefore have to be estimated

from data.

Structure learning, the construction of the underlying graph from data, is hard:

inferring causality is difficult and exponential time is required to search through all

possible DAGs to find the optimal one, see Section 3.3.1.

To completely represent the probability space in possession of the graphical struc-

ture, it is necessary to specify the conditional probability distribution for each node

conditioned on its parents. This is called parameter learning, or in other words, fit-

ting. Parameter learning can be done by summing up counts through the data, see

Section 3.3.4.

3.3.1 Structure learning in general

Structure learning methods can be categorized for example in the following way:

Search and score algorithms: these algorithms have two parts, a search strategy

to choose DAGs for consideration and an objective function that evaluates (scores)

the DAGs in some way. For example, a typical objective function attempts to balance

the probability of the data given the model, and the complexity of the model. The

naive version of this algorithm is super-exponential with the number of variables.

The repeated calculations can be bypassed with dynamic programming, and special

algorithms can be used for smarter searching over the space of DAGs, in order to

reduce the computational burden.

12

Constraint learning: these methods usually calculate some measure of (partial)

correlation to identify an undirected underlying graph structure and then direct these

edges until a DAG is reached. The undirected structure is commonly built by iterating

over possible triplets to identify conditional independencies. These methods are faster

than search and score algorithms but do not have simple probabilistic interpretations.

Approximate algorithms: these attempt to balance the interpretability of search

and score and the short execution time of constraint methods. Several heuristics were

developed to build good structures in an acceptable amount of time, for example the

Chow–Liu tree building algorithm.

3.3.2 Bayesian network based on the Chow–Liu tree

The Chow–Liu algorithm provides a simple and efficient way to find the best undirected

tree structure approximation that maximizes the likelihood of the data [15]. In this

case we want to find the tree structure that maximizes the likelihood over all fully

observed tree structures.

The algorithm goes as follow:

1. compute the mutual information for every possible edge based on the sample;

2. order the values in decreasing order;

3. start with an empty graph and following the ordered values, add the correspond-

ing edge to the graph unless the addition creates a cycle

4. stop if no more edges can be added (in other words if n − 1 edges were added,

where n is the number of nodes)

The mutual information between two variables X and Y over the space X × Y is:

I(X, Y) =
∑
x∈X

∑
y∈Y

pX,Y (x, y) log

(
pX,Y (x, y)

pX(x)pY (y)

)
,

where pX,Y is the joint probability function, pX and pY are the probability functions

of X and Y . The probability function values can be estimated from the data.

In the case when there are no equal mutual information values this returns a unique

best solution. If there are equal values then there are multiple best solutions, each

giving the same likelihood function value.

Again, the resulting graph will be undirected. To direct the edges a root node is

selected and edges are directed away from the root. Iteratively, for nodes that are

reachable on directed edges from the root, one directs all undirected edges away from

the reached nodes. This trivially results in a DAG.

13

3.3.3 Structure learning as a shortest path problem

The Bayesian network structure learning problem can be transformed into a shortest

path problem by utilizing another special graph structure, called lattice or order graph

over the variables. It is defined in the following way, in context of the Bayesian network

structure learning problem on variables {X1, . . . , Xn}:

1. let the root, the starting node for the shortest path algorithm, be the empty set

(layer 0);

2. let the leaf, the ending node for the shortest path algorithm, be the set of all

variables in the network {X1, . . . , Xn} (nth layer);

3. add each possible variable subset to the graph as a node ordered into layers,

such that all subsets of a layer has the same number of elements (the ith layer

contains all i-element subsets of {X1, . . . , Xn}, and no other subsets);

4. connect the layers in a way that from each node S1 of the ith layer directed edges

go to each node S2 of the (i+ 1)th, with S1 ⊂ S2 (|S1|+ 1 = |S2|);

5. the weights of the edges are given by a function (some goodness of fit measure

of the structure).

In the graph defined above a path from the root to the leaf represents a topological

sort of the variables. The path with the lowest total weight corresponds to the optimal

topological sort and Bayesian network. The topological order of the variables describes

the network in the way that each variable may have the nodes preceding it in the

ordering as its parents.

One of the ”goodness” measures for learning Bayesian networks is Minimal Descrip-

tion Length (MDL). The MDL is a two-component score that estimates the number of

bits required to represent a model and the data given that model. In case of Bayesian

networks, this is the number of bits required for the model representation (graph

and conditional probability tables) while the bits required for data approximation is

inversely proportional to the probability of the data given the model.

For a Bayesian network B and learning data D, the MDL score is

MDL(B,D) = γMDL(B) +MDL(D|B),

where MDL(B) is the bits required to represent the network, MDL(D|B) is bits re-

quired to represent the data given the model and γ is a weighting parameter. The

value of γ can be used to control the complexity of the result, the lower the value the

more complex the network will be.

14

After the transformation of the problem, a shortest path algorithm can be used to

find the optimal network. To solve this shortest past problem for the MDL score, edge

weights of the lattice graph should be defined as

w(S1, S2) = BestMDL(X,S1)

= argmin
Par(X)⊆S1

MDL(BX∪Par(X), D),

which is the weight between S1 and S2, X ∈ S2 \ S1 and BestMDL(X,S1) is the

best score over all possible parents for X in S1 when we attach X to the best possible

Bayesian network over S1.

The naive way to find the best network is to evaluate all possible topological

orderings. For example, the A* algorithm can be used to only partially evaluate the

graph and still get an optimal network in the end. The description of the application

of A* search for Bayesian network structure learning can be found in [25].

A greedy search based on the same lattice graph is also possible, but it will not

result in an optimal graph in every case. It is greedy in the sense that it will not

use the heuristics, as A* search does, to determine the weights that will be discovered

later, it only selects the next edge to be the one with the lowest weight.

3.3.4 Parameter learning

Parameter learning from data given the structure is fairly simple: for each node we

consider the data regarding the node and its parents only. In the discrete case, the

maximum likelihood estimate is the number of occurrences of each set of possible value

combinations divided by the number of samples in the data: let D be the data, X be

a node of the network, Par(X) be the set of parents of X and z be a realization of

Par(X), then the estimation of the conditional probability from the data is

P (X = x|Par(X) = z) ≈ |{X = x, Par(X) = z|D}|
|{Par(X) = z|D}|

.

For example, considering a dataset with two binary variables X and Y , and n number

of records, we can find P(X = 0), P(X = 1), P(Y = 0) and P(Y = 1). Let X

be a parent of Y : the necessary estimations of the probabilities P(Y = 0|X = 0),

P(Y = 0|X = 1), P(Y = 1|X = 0), and P(Y = 1|X = 1) can be done from the data:

P(Y = 0|X = 0) =
P(Y = 0, X = 0)

P(X = 0)
≈ |{Y = 0, X = 0}|

|{X = 0}|
.

15

3.4 Inference

One of the most powerful abilities of Bayesian networks is that they can perform

inference efficiently: given any set of observed variables Z from the network (including

the absence of evidence) a Bayesian network can make predictions for all variables X

from the network quicker than the plain calculation of P(X|Z), by using the graph of

the network G and calculating P(X|Z ∩ G). In the rest of this section the loopy belief

propagation algorithm is described.

3.4.1 Loopy belief propagation algorithm

Belief propagation is a dynamic programming approach to do conditional probability

queries in a graphical model. The task is to infer P(X|Z∩G), the conditional probabil-

ity of each variable X on the graph G given an observed subset Z of nodes as evidence.

The belief propagation algorithm has polynomial complexity in the number of nodes,

while exact probabilistic inference, in general, has been proven to be NP-hard [26].

The idea of the belief propagation algorithm is to have each node determine a

distribution by listening to its neighbors. Evidence enters the network at the observed

nodes and propagates through it: adjacent nodes exchange messages in every iteration

telling each other how to update beliefs based on prior beliefs, conditional distributions,

and evidence.

The belief BX(x) can be used to estimate the probability of X = x given evidence

Z = z for all variable X:

BX(x) ≈ P(X = x|Z = z)

Detailed descriptions of the algorithm can be found in [21, 27, 28]. Here we give a

brief summary.

Let X be a node with children {Y1, . . . , Yn} and parents {U1, . . . , Um}. Let λYj
(x)

be the messages coming from the children of X to X, and πX(uk) the messages coming

from the parents of X to X. It is possible for X to send a message to itself, denoted

by λX(x). The belief can be calculated in the following way:

BX(x) = αλ(x)π(x),

where α is the normalizing constant,

λ(t)(x) = λX(x)
∏
j

λ
(t)
Yj

(x),

π(t)(x) =
∑
u

P(X = x|U = u)
∏
k

π
(t)
X (uk).

16

The message sent by X to its parent Ui at the (t+ 1)th iteration is

λ
(t+1)
X (ui) = α

∑
x

λ(t)(x)
∑

uk:k 6=i

P(x|u)
∏
k 6=i

π
(t)
X (uk),

and the message sent by X to its child Yj at the (t+ 1)th iteration is

π
(t+1)
Yj

(x) = απ(t)(x)λX(x)
∏
k 6=j

λ
(t)
Yj

(x).

The initialization of messages can be done randomly with the following boundary

conditions:

1. for all evidence nodes zi ∈ Z, λ(xi) = 1 if xi = zi, otherwise 0 and π(xi) = 1 if

xi = zi, otherwise 0;

2. for nodes without parents, π(xi) = P(xi), the prior probabilities;

3. for nodes without children, λ(xi) = 1.

The messages are sent in the network simultaneously until a stable belief state is

reached, if ever.

17

4 Modeling academic performance

Based on pre-enrollment achievement measures and demographic factors, we aim to

predict how students perform in their early university studies. We build Bayesian net-

works for data that is available at the time of enrollment and on results of mandatory

courses from the first two semesters of the mechanical engineering bachelor’s program

at the Budapest University of Technology and Economics. In this section, first we pro-

vide some background on the Hungarian education and university admission system,

then we describe our data preparation steps and the modeling framework.

4.1 University admission system in Hungary

In Hungary, the 4 years of secondary education are followed by higher education.

Schools use a Likert scale where 1 (unsatisfactory) represents fail and 5 (excellent)

represents the best performance. At the end of their high school studies, students take

an exit exam (matura), called ’érettségi vizsga’ in Hungarian. This exam includes at

least five subjects: Mathematics, History, Hungarian Language and Literature, one

Foreign Language and one additional subject of the students’ choice that they studied

for at least two years. Students may decide to take exams in additional subjects and

to take exams at advanced level.

Majority of higher education admission relies on secondary school performance and

maturity exam results. The predictive power of these was investigated in [11], along

with a description of the admission system. Students applying to universities can

gather their admission score (AS) from several sources that can be summarized into

three factors:

1. study points (SP) include secondary school grades and maturity exam results,

at most two hundred points

(a) the sum of grades of the core subjects and one subject of the students’ choice

(five total) from the last two academic years of study for each subject, at

most a hundred points

(b) the average result of the five mandatory maturity exams in percentage, also

a hundred points at most

2. maturity exam points (MP)

(a) sum of the results of the two maturity exams defined by the selected uni-

versity program, in percentage, at most two hundred points

3. additional points (AP) include points for additional achievements and equal

opportunity points, at most a hundred points (eighty before 2012)

18

(a) fifty points for each advanced level maturity exam that is used in calculating

the maturity exam points (forty points before 2012)

(b) twenty-eight points for a B2 level and forty points for a C1 level foreign

language certificates

(c) points for academic, art or sport competition placements

(d) forty points for equal opportunities

(e) points for higher-level vocational training based on results

The admission score is calculated as AS = max{SP + MP, 2 ·MP} + AP , thus the

maximum is 500.

Universities define their own minimal admission score for each of their programs

and enroll students achieving a greater score than the program’s limit.

Demographic factors and the factors contributing to the admission score may help

to predict how students perform in their early academic studies thus we use these

values in our work. We build Bayesian networks for data that is available at enrollment

and subsets of the subjects from the early semesters of the Mechanical Engineering

bachelors program at the Budapest University of Technology and Economics.

4.2 Data preparation

The data provided by the Central Academic Office of the Budapest University of Tech-

nology and Economics was extracted from the Neptun educational administration sys-

tem. We received anonymized data of pre-enrollment achievement measures together

with course-level university performance indicators for over 30000 students admitted

between 2010 and 2017 at Budapest University of Technology and Economics. We had

to deal with a large amount of missing data since not every attribute was available for

all students.

For the data preparation process we used the Python Programming Language

(version 3.7.4) and mostly the Pandas package [29] (version 0.24.2).

First, we had to clean, transform and filter the data to fit our needs. The data

contained multiple records for many students because of re-enrolled students. Re-

enrollment means that a student dropped out but was accepted again for the same

program. We considered the first available record when it was necessary because our

goal is to predict the first grade the student will be available to achieve in the subjects

based on data available before enrollment.After the data preparation steps, finally we

ended up with 4616 records and 24 variables. The variables together with their possible

values and description are detailed in Table 1. Out of the 4616 records, there are only

573 with no missing values. However, for various network architectures – where not

all the variables are used – we can build the network on much more complete records

19

since the values that are not used for a given network can be ignored when dropping

records that contain missing values. It is also possible to use incomplete records after

imputing the missing values with a Bayesian network that was set up from the subset

of the records that are complete.

To achieve better performance and increase the interpretability of the results we

decided to categorize the variables. We used the quantile values for each variable

creating two, three, four or five categories. In Figure 3 one can see the distribution

of the Mathematics matura exam results and the quantile values. The green lines

correspond to the terciles, the red lines correspond to the quartiles and the blue lines

correspond to the quintile values.

60 70 80 90 100 110 120 130 140 150
Percentage of points earned (1.5x for advanced level)

0

20

40

60

80

100

120

Nu
m

be
r o

f s
tu

de
nt

s

Distribution and quantiles of Mathematics matura results

Figure 3: Distribution and quantiles of the Mathematics matura exam results

4.3 Modeling and evaluation

For the modeling part of our work we used the Pomegranate package [30], (version

0.11.1 under Python 3.7.4) that implements multiple algorithms for Bayesian network

learning and evaluation.

We used the from samples function to create the networks from the data. For

structure learning an exact structure searching method, a related greedy algorithm,

and the Chow–Liu tree building algorithm is supported in this tool. The first two are

accelerated by dynamic programming and A* search, as described in Sec. 3.3.3.

Due to the high number of variables we were not able to run the exact algorithm for

the full set of variables. Instead, we built networks on pre-enrollment variables and/or

on reasonable subsets of the university courses, for more details see the captions of

Figure 4.

For evaluation we used two types of measures. First, we wanted to test how well the

networks predict the grades of the students based on pre-enrollment or first-semester

evidence. For this we calculated the average mean squared error over all predicted

subjects for the network:

MSE(y, ŷ) =
1

n · l

l∑
j=1

n∑
i=1

(yi,j − ŷi,j)2,

20

where n is the number of data points, l is the number of predicted nodes in the network,

yi,j is the true grade of the ith student in the jth subject and ŷi,j is the prediction for

that grade.

Secondly, the grades were divided into two classes: success and failure, where

success means that the student obtained a passing grade. Based on this, we divided

students into two groups for each semester. The students in group one are those

who completed all the courses of the semester successfully, while the students in the

other group failed at least one of the courses. If we consider all courses from the

first semester with this transformation, we can predict if the student is able to keep

up with the sample curriculum or if the student is exposed to early dropout. This

transformation turns the problem into a binary classification problem and makes it

easy to calculate Accuracy, Precision, Recall, F-measure and Specificity:

In binary classification it is possible to evaluate the performance of a model based

on four values (see Table 2), in the columns there are the true labels of the data

points, in the rows the predicted labels, and the table shows the occurrences of the

four different possible modeling results.

For a better understanding the following measures can be calculated:

1. Accuracy: the percentage of labels the model predicted correctly

accuracy =
TP + TN

TP + FP + FN + TN

2. Precision: the percentage of true positive labels in the predicted positive labels

precision =
TP

TP + FP

3. Recall: the percentage of true positive lables the model predicted positive

recall =
TP

TP + FN

4. F-measure: the F-β score is a combination of precision and recall

F-β score = (1 + β2)
precision · recall

β2 · precision + recall

5. Specificity: the percentage of true negative labels the model predicted negative

specificity =
TN

TN + FP

We decided to calculate Accuracy and Specificity. Accuracy has a very intuitive

21

interpretation, and it is a broadly accepted and used measure for the performance of

binary classification models.

Specificity (or true negative rate) is meaningful in our case because it measures

what proportion of students, who actually fall behind, is correctly detected as at-risk

students. These are the students who are in the possible need of remediation, and

their identification based on pre-enrollment variables is crucial.

In Figure 4, we can see examples of the built networks in different scenarios. The

applied structure learning algorithm, the calculated metrics, and other attributes are

detailed in Table 3. The predictions are based on the loopy belief propagation with the

default parameter setting of the implementation. The Bayesian networks of Figure 4a

and Figure 4b are built on all available variables, therefore these two are directly com-

parable. Their structures are similar, and the performance of the Chow–Liu version is

comparable to the greedy version, which is rather surprising. However, the Chow–Liu

version is the only network where the degree of language exam is not independent of

everything else.

Networks are presented in a way that green edges go between evidence variables,

blue edges go between predicted variables and red edges indicate time difference be-

tween variables. These do not always follow the natural causality of the variables, but

such a constraint may reduce the predictive power of the networks.

The MSEs of models (a) and (b) show that prediction is better in the short run

when we predict first-semester results based on the pre-enrollment variables, than in

case of predicting second-semester results. We can observe a similar phenomenon in

case of models (d) and (e), where we predict the second-semester results based on

pre-enrollment variables, and first-semester results, respectively.

An easy to see pattern is that the Scholarship Index (24) is connected to all first

semester subjects in the networks containing this variable. This is expected, due to

the fact that it is calculated from the results of these subjects.

22

Node Variable Values (categories) Description

1 Age integers from 17 to
35 (cut at age 20)

the age in the year of enroll-
ment

2 Place of prelimi-
nary studies

string (Budapest,
major city, other)

indicates where the student
studied before enrollment

7 Level of prelimi-
nary studies

secondary school or
higher education

the level of study before enroll-
ment

3 Mathematics grade float (cut at 4.5) the average of the student’s
grades in mathematics that
were used in SP calculation

5 Humanities grade float (4 categories
using quantiles)

the average of the student’s
grades in literature, history
and foreign language that were
used in SP calculation

6 Other grade float (5 and not 5) the average of the student’s
grades in the fifth subject that
was used in SP calculation

4 Degree of language
exam

intermediate or ad-
vanced

the degree of the highest lan-
guage exam of the student

8 Mathematics
matura

float between 0 and
150 (5 categories
using quantiles)

the percentage of points scored
on the Mathematics matura,
multiplied by 1.5 for advanced
level exams

9 Other matura float between 0 and
150 (5 categories
using quantiles)

the percentage of points scored
on the other matura used for
MP calculation multiplied by
1.5 for advanced level exams

10–
22

13 subject variables 1,2,3,4,5 the grade of the first enroll-
ment of the student in the sub-
ject (fundamental mechanical
engineering subjects)

24 Scholarship index float (3 categories
using quantiles)

∑
i
gradei· crediti

30
, where sum is

taken over completed courses
23 Unsuccessful cred-

its
positive integer (0,
more than 5, other)

the amount of university cred-
its that the student took but
did not complete

Table 1: The selected variables from the dataset

True label
Prediction

True False

True True positive (TP) False positive (FP)
False False negative (FN) True negative (TN)

Table 2: Binary classification evaluation values

23

Attribute a b c d e

Number of variables 24 24 17 16 15
Number of complete records 580 580 661 589 2338
Algorithm greedy Chow–Liu exact exact exact
MSE (1) 1.743 1.803 1.909 - -
MSE (2) 2.121 2.231 - 2.34 1.517
Accuracy (1) 0.688 0.681 0.716 - -
Specificity (1) 0.75 0.841 0.828 - -
Accuracy (2) 0.6 0.57 - 0.55 0.644
Specificity (2) 0.725 0.95 - 1.0 0.378

Table 3: Attributes of the built networks, (1) and (2) correspond to the predicted
semester

24

1

2

3

6

5

4

7
8

9

10

11

12

1314
15

16

17

18

19

20
21 22

23

24

1

2

3

6

5

4

7
8

9

10

11

12

1314
15

16

17

18

19

20
21 22

23

24

(a) Network for all variables (greedy version)

1

2

3

6

5

4

7
8

9

10

11

12

1314
15

16

17

18

19

20
21 22

23

24

1

2

3

6

5

4

7
8

9

10

11

12

1314
15

16

17

18

19

20
21 22

23

24

(b) Network for all variables (Chow–Liu version)

1

2

3

6

5

4

7
8

9

10

11

12

13

14

15

23

24

1

2

3

6

5

4

7
8

9

10

11

12

13

14

15

23

24

(c) Network for pre-enrollment data and first-semester
subject results

1

2

3

6

5

4

7
8

9

16

17

18

19

20

21

22

1

2

3

6

5

4

7
8

9

16

17

18

19

20

21

22

(d) Network for pre-enrollment data and second-semester
subject results

10

11

12

13

14

15

23

24

16

17

18

19

20

21

22

10

11

12

13

14

15

23

24

16

17

18

19

20

21

22

(e) Network for first- and second-semester subject results

Figure 4: Examples of the learned Bayesian networks

25

5 Summary

In this work, we reviewed part of the related literature on the topic of academic per-

formance prediction. We presented the theoretical background of Bayesian networks,

their learning and how inference can be done using learned networks.

We created Bayesian networks for the presented variables and evaluated them using

mean squared error, accuracy and specificity.

The calculated measures suggest that the used pre-enrollment variables have lim-

ited prediction power. However, it is worth mentioning that the small sample size and

the unpredictable nature of the loopy belief propagation may have altered the results.

On the other hand, the relatively high specificity scores indicate that the built

models are suitable to identify students at risk at the time of their enrollment. The

prediction power of our networks is comparable to similar studies working with other

Bayesian tools, e.g. [10].

As a possible future research, we aim to identify other suitable pre-enrollment

attributes, and investigate the applicability of other models that respect the time

order of the educational domain.

6 Acknowledgment

I would like to express my gratitude to my supervisors, Roland Molontay and Máté

Baranyi, who supported me through the creation of this work. Without their tireless

help and comprehensive advice it could not have reached its current form.

26

References

[1] International Educational Data Mining Society. Journal of Educational Data

Mining. url: http://educationaldatamining.org/.

[2] Zacharoula Papamitsiou and Anastasios A Economides. “Learning analytics and

educational data mining in practice: A systematic literature review of empirical

evidence”. In: Journal of Educational Technology & Society 17.4 (2014), pp. 49–

64.

[3] Cristóbal Romero and Sebastián Ventura. “Educational data mining: a review of

the state of the art”. In: IEEE Transactions on Systems, Man, and Cybernetics,

Part C (Applications and Reviews) 40.6 (2010), pp. 601–618.

[4] Alejandro Peña-Ayala. “Educational data mining: A survey and a data mining-

based analysis of recent works”. In: Expert systems with applications 41.4 (2014),

pp. 1432–1462.

[5] Michalis Xenos. “Prediction and assessment of student behaviour in open and

distance education in computers using Bayesian networks”. In: Computers &

Education 43.4 (2004), pp. 345–359.

[6] Patricio Garćıa et al. “Evaluating Bayesian networks’ precision for detecting

students’ learning styles”. In: Computers & Education 49.3 (2007), pp. 794–808.

[7] Zachary A Pardos et al. “Using fine-grained skill models to fit student perfor-

mance with Bayesian networks”. In: Handbook of educational data mining 417

(2010).

[8] Ahmad Slim et al. “Predicting student success based on prior performance”. In:

2014 IEEE Symposium on Computational Intelligence and Data Mining (CIDM).

IEEE. 2014, pp. 410–415.

[9] Erman Yukselturk, Serhat Ozekes, and Yalın Kılıç Türel. “Predicting dropout

student: an application of data mining methods in an online education program”.

In: European Journal of Open, Distance and e-learning 17.1 (2014), pp. 118–133.

[10] Dorina Kabakchieva. “Predicting student performance by using data mining

methods for classification”. In: Cybernetics and Information Technologies 13.1

(2013), pp. 61–72.

[11] Marcell Nagy and Roland Molontay. “Predicting Dropout in Higher Education

Based on Secondary School Performance”. In: 2018 IEEE 22nd International

Conference on Intelligent Engineering Systems (INES). IEEE. 2018, pp. 000389–

000394.

27

[12] Marcell Nagy, Roland Molontay, and Mihály Szabó. “A Web Application for Pre-

dicting Academic Performance Identifying the Contributing Factors”. In: 2019

47th SEFI Annual Conference. SEFI. 2019.

[13] Steffen L Lauritzen. Graphical models. Vol. 17. Clarendon Press, 1996.

[14] Peter Spirtes et al. Causation, prediction, and search. MIT press, 2000.

[15] Marloes Maathuis et al. Handbook of Graphical Models. CRC Press, 2018.

[16] Nir Friedman and Moises Goldszmidt. “Building classifiers using Bayesian net-

works”. In: Proceedings of the national conference on artificial intelligence. 1996,

pp. 1277–1284.

[17] David Maxwell Chickering. “Optimal structure identification with greedy search”.

In: Journal of machine learning research 3.Nov (2002), pp. 507–554.

[18] Emilija Perković, Markus Kalisch, and Maloes H Maathuis. “Interpreting and us-

ing CPDAGs with background knowledge”. In: arXiv preprint arXiv:1707.02171

(2017).

[19] Markus Kalisch and Peter Bühlmann. “Estimating high-dimensional directed

acyclic graphs with the PC-algorithm”. In: Journal of Machine Learning Re-

search 8.Mar (2007), pp. 613–636.

[20] Bojan Mihaljević, Concha Bielza, and Pedro Larrañaga. “Learning Bayesian net-

work classifiers with completed partially directed acyclic graphs”. In: Interna-

tional Conference on Probabilistic Graphical Models. 2018, pp. 272–283.

[21] Richard E Neapolitan et al. Learning Bayesian networks. Vol. 38. Pearson Pren-

tice Hall Upper Saddle River, NJ, 2004.

[22] Thomas Dyhre Nielsen and Finn Verner Jensen. Bayesian networks and decision

graphs. Springer Science & Business Media, 2009.

[23] Judea Pearl. Probabilistic reasoning in intelligent systems: networks of plausible

inference. Elsevier, 2014.

[24] Ross D Shachter. “Bayes-ball: The rational pastime (for determining irrelevance

and requisite information in belief networks and influence diagrams)”. In: arXiv

preprint arXiv:1301.7412 (2013).

[25] Changhe Yuan, Brandon Malone, and Xiaojian Wu. “Learning optimal Bayesian

networks using A* search”. In: Twenty-Second International Joint Conference

on Artificial Intelligence. 2011.

[26] Gregory F Cooper. “The computational complexity of probabilistic inference

using Bayesian belief networks”. In: Artificial intelligence 42.2-3 (1990), pp. 393–

405.

28

[27] Kevin P Murphy, Yair Weiss, and Michael I Jordan. “Loopy belief propagation

for approximate inference: An empirical study”. In: Proceedings of the Fifteenth

conference on Uncertainty in artificial intelligence. Morgan Kaufmann Publish-

ers Inc. 1999, pp. 467–475.

[28] Amen Ajroud et al. “Loopy belief propagation in Bayesian networks: origin and

possibilistic perspectives”. In: arXiv preprint arXiv:1206.0976 (2012).

[29] Wes McKinney. “Data Structures for Statistical Computing in Python”. In: Pro-

ceedings of the 9th Python in Science Conference. Ed. by Stéfan van der Walt

and Jarrod Millman. 2010, pp. 51–56.

[30] Jacob Schreiber. “Pomegranate: fast and flexible probabilistic modeling in python”.

In: Journal of Machine Learning Research 18.164 (2018), pp. 1–6.

29

