
TDK-dolgozat

Marussy Kristóf
2012.

Budapesti Műszaki és Gazdaságtudományi Egyetem
Villamosmérnöki és Informatikai Kar

Számítástudományi és Információelméleti Tanszék

Egy új módszer az idősorok pontosabb
semi-supervised osztályzására

TDK-dolgozat

Készítette:
Marussy Kristóf

I. évfolyam

Konzulens:
Dr. Buza Krisztián,
egyetemi adjunktus

2012.

Budapest University of Technology and Economics
Faculty of Electrical Engineering and Informatics

Department of Computer Science and Information Theory

A new approach for more accurate
semi-supervised time-series classification

TDK-paper

Written by:
Kristóf Marussy

year I.

Advisor:
Dr. Krisztián Buza,

lecturer

2012.

Contents

Contents 1

Abstract 3

Notations 5

1 Introduction 7

2 Background 9
2.1 Semi-supervised learning methods . 9

2.1.1 Supervised and unsupervised tasks . 9
2.1.2 Semi-supervised classification . 9
2.1.3 Semi-supervised clustering . 14

2.2 Time-series data mining . 17
2.2.1 Distance functions for time series . 17
2.2.2 Hubness in time series databases . 20
2.2.3 Semi-supervised time-series classification 21

3 My approach: constrained SLINK with DTW 25
3.1 Description of the algorithm . 25
3.2 A graph theoretic view on time series nearest neighbour self-training 25

3.2.1 From self-training to cluster-and-label 26
3.3 Properties of constrained SLINK . 26

3.3.1 Similarity to the 1-nearest neighbour graph 26
3.3.2 Interaction with hubs . 27
3.3.3 Transitive hubs . 27

4 Experimental evaluation 29
4.1 Protocol of evaluation . 29
4.2 Time-series databases . 29
4.3 Results . 30

5 Conclusions 35
5.1 Further work and open questions . 35

References 37

1

Rövid összefoglaló Az idősorok időben egymás után mért skalárok vagy vektorok sorozatai. Számos
alkalmazási területen fordulnak elő olyan feladatok, melyek idősorokkal kapcsolatos problémákra
vezethetőek vissza. A toll végének helyzete a papíron, ha egymásutáni időpillanatokban rögzítjük,
jellemezhet egy leírt szót vagy aláírást. Megfelelő, kesztyűként viselhető szenzorok segítségével
hasonlóan kódolhatóak a jelnyelv jelei is. Az orvosi alkalmazásokban az idősorok az agyhullámok
(EEG) és EKG görbék természetes reprezentációi.

Az adatbányászatban supervised és unsupervised problémák fordulnak elő. A supervised fel-
adatokban a tanuló algoritmus bemenetéül szolgáló adatok osztálycímkékkel vannak ellátva. Ezt a
bemeneti halmazt használjuk fel egy modell tanítására, mellyel később előrejelzési és felismerési
feladatokat oldhatunk meg. Az unsupervised tanulás (klaszterezés) esetén az osztálycímkék hiá-
nyoznak, vagy a tanulás fázisában nem érhetőek el. A semi-supervised protokoll esetében a tanító
halmaznak csak egy – általában kicsiny – része címkézett. A címkézett adatok önmagukban nem
feltétlenül jellemzik jól a lehetséges bemeneteket, így a jelen levő címkézetlen adatokat is fel kell
használni a jó felismerő rendszer készítéséhez.

A dolgozatomban egy új semi-supervised tanulási módszert javasolok az idősorok osztályozására,
mely az instance-based tanuláson és hierarchikus klaszterezésen alapul. A választás az instance-
based paradigmára széleskörű alkalmazhatósága miatt esett: mindössze az idősorok páronkénti
távolságainak ismeretét igényli. A távolságfüggvénynek a dynamic time warping (DTW) algoritmust
választottam. Erről a távolságfüggvényről igazolt, hogy képes idősorok gyors és pontos supervised
osztályzására (Ding et al., 2008; Keogh és C. A. Ratanamahatana, 2005).

Hogy munkám reprodukálását megkönnyítsem, az algoritmust 45, publikusan elérhető adatbá-
zison (Keogh et al., 2006b) próbáltam ki. A kísérletekben módszeremet az egyik legelterjedtebb
idősor felismerő rendszerrel hasonlítottam össze. Az eredmények szerint módszerem szignifikánsan
pontosabban osztályozta az adatbázisok jelentős hányadát a state-of-the-art felismerő rendszerhez
képest. Az algoritmus Java kódját nyilvánosan elérhetővé fogom tenni.

Abstract Time series are temporal sequences of scalar- or vector-valued measurements. Tasks
which can be formalised as problems concerning time series appear in numerous domains. For
example, a handwritten word or signature may be considered as a sequence of two dimensional
vectors corresponding the positions of the pen tip on the paper in consecutive moments of time.
Using a sensor apparatus worn as a glove, sign language signs can be encoded similarly. In medicine,
time series are a natural representation of brainwaves (EEG) and electrocardiograph (ECG) curves.

There are supervised and unsupervised problems in machine learning. In supervised tasks,
the training set (input data of the learning algorithm) is augmented with class labels. Based on
this training set, a model is constructed that can be used for a prediction or recognition problem
afterwards. The process of constructing the model is called training. In unsupervised learning,
e.g. clustering, the class labels are absent (or unused in the training stage). In the semi-supervised
learning protocol, only a—usually small—fraction of the training set is labeled. The labeled instances
may not represent the problem domain well, thus the structure of the unlabeled training instances
must be also exploited.

In this work, I propose a new semi-supervised learning method for time-series. My approach
is based on the instance-based learning paradigm and hierarchical clustering. The instance-based
approach was selected because of its versatility: it only depends on a pairwise dissimilarity measure
between instances. As dissimilarity measure, I chose dynamic time warping (DTW), which was
shown to have high accuracy and performance in time-series classification (Ding et al., 2008; Keogh
and C. A. Ratanamahatana, 2005).

In order to assist reproduction of my work, I evaluated the algorithm on 45 publicly available
data sets (Keogh et al., 2006b) from various real-word domains. In the experiments, I compared my
approach against one of the most prominent state-of-the-art time-series classifiers. The results show
that my approach significantly outperformed the state-of-the-art time-series classifier in terms of
classification accuracy on a large fraction of the data sets To further support reproducibility, I will
publish the Java-code of my algorithm.

3

Notations

n number of instances
l number of labeled instances
xi an instance
yi class label of instance xi
ŷi predicted class label of instance xi
X = {xi}

n
i=1 set of all instances

L = {(xi,yi)}li=1 set of all labeled instances
U = {xi}

n
i=l+1 set of all unlabeled instances

|x| length of time series x
x[t] value of time series x at time moment t
x(i) ith channel of vector-valued time series x
EP[ξ] expected value of ξ with respect to distribution P
Sp skewness (standardised third moment) of p

JφK =

{
1 if φ is true,

0 if φ is false
truth value of φ

V(G) vertex set of graph G
E(G) edge set of graph G
(u→ v) directed edge between u and v
(u v) (directed) path between u and v
GT transitive closure of graph G
gkN(xi) k-occurrence score of k
gkG(xi) good k-occurrence score of k
gkTN(xi) transitive k-occurrence score of k
gkTG(xi) transitive good k-occurrence score of k
B̃Nk normalised total bad k-hubness
T̃BNk normalised total bad transitive k-hubness

5

1 Introduction

As sensor networks and other intelligent systems become more and more ubiquitous, the
amount of data available grows dramatically day by day.

Large volumes of raw data by themselves are nearly meaningless. Only with the aid of
data mining and machine learning can meaningful information be extracted from databases.
An important area of machine learning is classification, which aims to associate class labels
with instances from databases.

Classification is a supervised task. Classifiers need sizeable training sets, which contain
instances labeled with class labels. This labeling requires significant effort of human experts.

In domains with a long history of data collection and data mining applications, vast
labeled databases are readily accessible. However, there are also potential new domains in
which labeled datasets are scarce and expensive.

Semi-supervised learning tries to take advantage of both labeled and unlabeled datasets,
which could reduce amount of labeled data needed for an accurate recognition system. This
means semi-supervised machine learning techniques can be adapted to domains where large
labeled datasets are currently unavailable.

Many applications are interested in parameters that change with time. Time-series are a
natural representation of such data. Therefore, semi-supervised learning for time-series is of
great utility. It is quite surprising that the number of semi-supervised learning methods for
time series are relatively low compared to semi-supervised learning methods for other data
types.

7

2 Background

2.1 Semi-supervised learning methods

2.1.1 Supervised and unsupervised tasks

In machine learning, tasks are either supervised or unsupervised. Learning algorithms build
a system that classifies or clusters data or predicts unknown variables.

The problem is said to be unsupervised if the training set contains unlabeled data. On the
other hand, if the training set is enhanced with labels —desired predictions— the problem
is said to be a supervised one.

While unlabeled data is abundant in most domains, labeled data is scarce and expensive,
because labeling data requires considerable effort of a human expert. Therefore, it is of great
interest to reduce the amount of labeled data needed while maintaining accuracy.

Learning algorithms that take advantage of both labeled and unlabeled data are said to
be semi-supervised.

Comprehensive literature reviews on the topic include Seeger (2001) and X. Zhu (2006).

2.1.2 Semi-supervised classification

The training set for classification problems consists of pairs instances and class labels
X = {xi,yi}ni=1. Given an instance x we wish to accurately predict its class label ŷ.

More formally, a classifier function is sought which minimises

ctrue = E(x,y)∼P[c(x,y, f(x))], (2.1)

where the expectation is taken over all possible x from the joint distribution P of instances
and their true class labels, not only those in the training set. In most problems we do not
know the true distribution P and can only estimate it. The labeled data X, which is a set of
samples from P, can be seen as aid—supervision—from a teacher in the construction of f,

When the class labels are discrete, a commonly used cost function is the 0–1 loss

c(x,y, ŷ) = Jy 6= ŷK, (2.2)

i.e. the cost of misclassification is 1 and the cost of correct classification is 0.
In semi-supervised classification problems unlabeled training data U = {xi}

n
i=l+1 is

available as well as labeled training data L = {(xi,yi)}li=1. Usually, the number of labeled
instances l is much smaller than n because of the scarcity of labeled data.

If the labeled data L represented the distribution P well we could simply ignore the
unlabeled data U and perform supervised learning by choosing f from a family of classifiers
F such that the training set error

cL =
1
l

l∑
i=1

c(xi,yi, f(xi)) ≈ ctrue (2.3)

9

10 CHAPTER 2. BACKGROUND

is minimised. In such situations, applying semi-supervised learning instead of supervised
learning would yield no improvement.

However, in many practical problems the training set error cL—even if there is no
overfitting—could be drastically different from the true error ctrue. In this case, it may be
possible to better approximate P by exploiting the structure of both L and U.

Assumptions about unlabeled data

In order to learn from unlabeled data we must make some assumptions about it structure.
Unlabeled data is indeed beneficial if our model assumptions match the true structure of the
data

The fact that unlabeled data can reduce the accuracy of a learner has been observed
by many researchers (Cozman et al., 2003; Elworthy, 1994; Singh et al., 2008). Deciding
whether a given model is correct is generally very difficult because it would require a large
amount a labeled data.

Generative models

Semi-supervised generative models make the assumption that data is generated by some
parametric model with joint instance and class label probability

p(x,y) = p(y)p(x|y) (2.4)

where p(x|y) is an identifiable mixture distribution.
More specifically, the optimal parameters θ̂ are determined such that the likelihood—or

equivalently, the log-likelihood—of labeled data L and unlabeled data U is maximised, i.e.

θ̂ = argmax
θ

[
l∑
i=1

log pθ(xi,yi)+
n∑

i=l+1

log pθ(xi)

]
. (2.5)

The optimization can be performed by the expectation-maximization (EM) algorithm (De-
mpster et al., 1977). One must take care choosing the initial configuration because EM is
prone to stopping at local maxima.

If—given p(x)—the model components p(x|y) can be uniquely identified the model
assumption is correct and unlabeled data can improve accuracy (Castelli and Cover, 1996).
By contrast, Cozman et al. (2003) give a formal derivation why model quality deteriorates
when we add unlabeled data to a mixture model with incorrect assumptions.

Cluster-and-label

Some generative models, e.g. generative models with Gaussian components, can be regarded
as models that first perform probabilistic—fuzzy—clustering on all data {xi}

n
i=1. By prob-

abilistic clustering, we refer to a clustering in which for each instance a discrete probability
distribution pi(c) describes the probability of instance xi belonging to cluster c. As a second
step, the aforementioned semi-supervised generative models form a mapping between clusters
and classes with the aid of labeled data L, such that the probability of instance xi belonging
to class y is p(y|xi) = pi(c(y)), where c(y) is the cluster corresponding to class y. The
existence of such bijection is postulated by the model assumption.

This scheme can be extended to non-probabilistic clustering, too.

1. Unsupervised or semi-supervised (see subsection 2.1.3) clustering is performed on
{xi}

n
i=1.

2.1. SEMI-SUPERVISED LEARNING METHODS 11

Self-Training(L,U)

1 L0 = L
2 U0 = U
3 t = 0
4 repeat
5 M = Supervised-Learning(Lt)
6 xbest = argmax

x∈Ut

Certainty(M, x)

7 ŷ = Classify(M, xbest)
8 Lt+1 = Lt ∪ {(xbest, ŷ)}
9 Ut+1 = Ut \ {xbest}

10 t = t+ 1
11 until |Ut| == 0
12 return M

(a) Simple self-training algorithm.

Yarowsky(L,U, ζ)

1 L0 = L
2 t = 0
3 repeat
4 M = Supervised-Learning(Lt)
5 Lt+1 = L
6 for i = l+ 1 to n
7 if Certainty(M, xi) > ζ
8 ŷ = Classify(M, xi)
9 Lt+1 = Lt+1 ∪ {(xi, ŷ)}
10 t = t+ 1
11 until Lt−1 == Lt
12 return M

(b) Yarowsky’s algorithm.

Listing 2.1: Self-training algorithms.

2. Clusters are mapped to classes by some algorithm. A possible mapping can be
constructed by majority vote, i.e. each cluster gets mapped to class of which the most
labeled instances it contains.

For example, Dara et al. (2002)—with self-organizing maps (SOM)—and Demiriz et
al. (1999)—with another genetic algorithm—applied this principle for semi-supervised
classification.

Due to the algorithmic nature of cluster-and-label its anlysis may be difficult. However,
it can perform well if particular clustering algorithm captures the true structure of the data.

Self-training

Self-training is perhaps the most commonly used semi-supervised algorithm. It is especially
prevalent in the natural language processing community where it is mostly used in word
sense disambiguation tasks.

Self-training is ‘wrapper’ method around a supervised classifier, i.e. one may use self-
training to enhance nearly any existing recognition system. The only requirement is that the
base classifier is capable of reporting a certainty value for each classification it makes. Thus
the model assumption states that the certainty output of the supervised classifier is a good
approximation of the true uncertainty. For probabilistic classifiers, the expected probability
of correct classification p(ŷ|x) is a natural candidate for being such certainty measure.

In each iteration t of self-training, the base classifier is trained on the labeled set Lt
from the previous iteration, resulting in model M. The labeled set Lt+1 is grown with some
examples that are classified with high certainty. It is also possible that examples that some
examples that are not part of the original labeled training set L get removed from Lt+1.
Hypothesised class labels of instances which were initially unlabeled may also change. The
process is repeated until some stopping criterion is satisfied, e.g. the labeled set does not
change any more or no example is left unlabeled. ’/

The simplest self-training algorithm grows the labeled set with the most certain instances
until it runs out of unlabeled examples. This approach, which is occasionally called label
propagation, is illustrated by listing 2.1(a).

12 CHAPTER 2. BACKGROUND

Yarowsky’s algorithm (Yarowsky, 1992), which is widely used for word sense disambigu-
ation, is a more elaborate form of self-training. The number instances which are placed in
the training set Lt+1 is controlled by parameter ζ. An instance must have a certainty greater
that ζ —or be initially labeled—to be placed and retained in Lt+1. Moreover, hypothesised
class labels of initially unlabeled instances may change during training. Listing 2.1(b) shows
this process.

General analysis of a wrapper method like self-training is extremely difficult. However,
there are some result on analysis of convergence for some specific base learners (Abney, 2004;
Culp and Michailidis, 2007; Haffari and Sarkar, 2007).

Instance-based self-training Instance-based learning is a family of learning algorithms which
classify instances directly based on the training set L, not by statistical models derived from
it.

A dissimilarity function d(x1, x2) is defined on the data to describe the dissimilarity—
or distance—of instances. Classification output for a new instance x is constructed from
instances in the labeled set L and dissimilarity values (d(x, xi))li=1.

Instance-based learning methods may be sensitive to noise in the training set and the
choice of dissimilarity function. Moreover, storing a large number of instance L may also
be problematic. Despite these limitations, instance-based algorithms can be useful because
their relative simplicity and, consequently, their ease of analysis (Aha et al., 1991).

A simple instance-based learning method is the nearest neighbour classifier, which is
equivalent to the IB1 algorithm (Aha et al., 1991), The output of the classifier is the class
label of the least dissimilar training instance,

f(x) = yi, where i = argmin
16i6l

d(x, xi). (2.6)

Instance-based learners may be employed as base classifiers in self-training algorithms.
The certainty measure can be chosen to decrease as the distance between a instance and the
labeled set d(x,Lt) = minxi∈Lt

d(x, xi) increases. In other words, if d(x,Lt) is small, we can
classify x with high certainty. Therefore, in each iteration the instance that gets added to
Lt+1 that lies closest to Lt. Figure 2.1 shows an example, where the base learner is IB1, the
instances are points in the two-dimensional plane and d is the Euclidean distance.

Self-training with editing Instances and labels added to the training set Lt+1 in iteration t
of self-training are consistent with training set Lt, i.e. a classifier trained on Lt correctly
predicts the labels of Lt+1 \ Lt with high certainty. However, if there are multiple examples
in Lt+1 \Lt, they should also be consistent with each other. Adding multiple instances to the
training set can be beneficial in many situations. For example, when the class distribution
p(y) is known a priori and we wish to maintain a similar training set class distribution
p(ŷ|x ∈ Lt). Additionally, inserting more instances to the labeled set per iteration reduces
the number of iterations and training time.

One way of ensuring consistency of Lt+1 \ Lt is editing. In the first step, candidate
examples are chosen from the set of instances which are classified with high certainty such
that p(ŷ|x ∈ Lt+1) ∼ p(ŷ|x ∈ Lt). Next, the candidate set is edited by pruning inconsistent
instances.

Setred (Li and Zhou, 2005) is a semi-supervised learning algorithm that uses this
approach to improve training set quality. Nearest-neighbour classification is employed as a
base learner, while a graph-based inconsistency measure called cut edge weight statistic is
used for editing.

2.1. SEMI-SUPERVISED LEARNING METHODS 13

(a) The training set. (b) Decision boundary with super-
vised IB1 only.

(c) 1st iteration of self-training.

(d) 2nd iteration of self-training. (e) 3rd iteration of self-training. (f) Classification with self-training.

Figure 2.1: Semi-supervised IBl on the two-dimensional plane. There are two classes, circles
(in blue) and triangles (in green). Bold symbols correspond to labeled instances in L, while
elements of U are marked with crosses. Subfigures (c)–(e) show the first three iterations of
Self-Training (listing 2.1(a)). The ground truth is shown on subfigure (f), which is also
the output of the final classifier.

Co-training and multiview training Co-training (Blum and Mitchell, 1998) assumes that in-
stances can be described by vectors of features and these features can be partitioned into
two disjoint subsets, such that

– the two sets are conditionally independent given the class;

– each of the sets is sufficient for training a classifier.

Each of the subsets is used for training a different classifier.
In multiview training, there are more than two models, often constructed with different

learning algorithms. However, the subsets of attributes need not be disjoint.
In iteration t, a different model is trained on the labeled training set Lt using each subset

of attributes. High quality unlabeled training examples are determined by voting and are
added to the labeled set Lt+1.

Therefore, co-training and multiview training can be regarded as a case of self-training
where the base classifier is a specific kind of ensemble classifier.

Related concepts

On-line semi supervised learning In on-line semi-supervised learning, the unlabeled data is U
is revealed to the learner only sequentially. At time moment t only instances Ut = {xi}

l+t
i=l+1

are available as well as labeled data L. The classifier ft, which was constructed given Ut and

14 CHAPTER 2. BACKGROUND

L, then has to classify unlabeled instance xl+t, such that the on-line classification error∑
t

c(xl+t,yl+t, ft(xl+t)) (2.7)

is minimised.
As an illustrative example, consider an autonomous mobile robot working on a planet far,

far away (X. Zhu, 2009). The robot takes pictures of rocks and sends results back to Earth.
Because bandwidth is severely limited due to the great distance, only a fraction of images
can be sent back to the control center. Therefore, the robot is equipped with a classifier
system, which labels rocks as either interesting or not interesting. The classifier was taught
to recognise interesting samples from previous missions.

Because the robot visits areas not visited by any past mission, it may miss some interesting
rock samples if only supervised learning is used. On-line semi-supervised learning may be
used to decide whether a photo should be sent to Earth and to construct a better classifier
by retaining knowledge from previous results.

Active learning Another related concept to semi-supervised learning is active learning. Given
unlabeled data U, the learning algorithm may enquire about the labels of some instances.
Such queries are then answered by a human expert.

A combination of active and semi-supervised learning is possible, when given both U
and L the learning algorithm may also pose questions to the expert (McCallum and Nigam,
1998). It is also possible to perform active semi-supervised learning in an on-line fashion
(Goldberg et al., 2011).

For an excellent literature survey on active learning techniques please refer to Settles
(2012).

2.1.3 Semi-supervised clustering

When performing conventional clustering, we wish to partition a set on instances X = {xi}
n
i=1

into several groups. The number of groups k may be given in advance, or to be determined
by the clustering algorithm.

In case of conventional approaches, there are no class labels available to the clusterer.
However, when measuring the performance of a clustering algorithm, one can compare the
output groups with a grouping produced by placing the instances with equal class labels
in the same groups. Such disparity measures include purity, information gain, gain ratio
(Quinlan, 1986) and the χ2-measure. For an extensive study on disparity measures see White
and Liu (1994).

In case of semi-supervised or constrained clustering problems, some information other
that the unlabeled instances X is available and acts as supervision. This supervision may be
provided in many forms:

– Must-link (ML) constraints force two instances to be placed in the same cluster.

– Cannot-link (CL) constraints prohibit placing two instances in the same cluster.

– δ-constraints force clusters to be well-separated. Formally, given a distance function
d(x1, x2) defined on instances, if x1 and x2 belong to a different cluster, d(x1, x2) must
be at least δ. (Davidson and Ravi, 2005)

– ε-constraints force instances in a cluster to be close to each other. If an instance x1
belongs to the cluster S, there must be another instance x2 ∈ S such that d(x1, x2) < ε.
(Davidson and Ravi, 2005)

2.1. SEMI-SUPERVISED LEARNING METHODS 15

– ε-path-constraints are an extension of ε-constraints. For any pair of distinct points
x1, x1 in the same cluster S, there must be a sequence of instances belonging to S
(x1,a1,a2, . . . ,ar, x2) such that the distance of adjacent instances in the sequence is
smaller than ε. (Davidson and Ravi, 2007)

– A labeled set L may be provided either for the generation of aforementioned constraints
or to calculate and minimise disparity between classes and clusters.

Constraints can be either used to determine an objective function to be optimised (Basu
et al., 2004; Klein et al., 2002) or strictly enforced during clustering (Wagstaff and Cardie,
2000; Wagstaff et al., 2001). It is also possible to learn distance measures from constraints
(Reuter et al., 2011).

It is possible to provide constraints such that there is no clustering that satisfies them.
For example, a ML and CL constraint involving the same pair (x1, x2) of points leads to a
contradiction. Even if a correct clustering exists, some combination of constraints lead to
NP-complete problems and therefore are computationally infeasible (Davidson and Ravi,
2005, 2007).

Semi-supervised hierarchical clustering

Hierarchical clustering aims build a hierarchy of clusters. This hierarchy is usually illustrated
with a dendrogram. Figure 2.2(b) shows an example.

There are two basic types of hierarchical clustering methods.

– Agglomerative clustering starts with trivial clusters of single instances and constructs
the dendrogram by merging clusters.

– Divisive clustering, in contrast, follows a ‘top down’ approach and divides clusters
into smaller ones.

Cluster merging or division is done greedily. Agglomerative clustering selects the pair
of clusters to in order to minimise a measure of cluster dissimilarity, Similarly, divisive
clustering partitioned a cluster to maximise dissimilarity.

Given a distance function of instances d(x1, x2), several cluster distances d(C1,C2) are
possible, for example:

– In single-linkage clustering (SLINK), the cluster distance is the minimum of pairwise
instance distances,

dsingle(C1,C2) = min
x1∈C1
x2∈C2

d(x1, x2). (2.8)

– Complete-linkage (CLINK) and average-linkage can be defined analogously:

dcomplete(C1,C2) = max
x1∈C1
x2∈C2

d(x1, x2), (2.9)

daverage(C1,C2) =
1

|C1| · |C2|

∑
x1∈C1
x2∈C2

d(x1, x2). (2.10)

The inclusion of must-link (ML) and cannot-link (CL) constraints was shown to improve
clustering accuracy and robustness (Kestler et al., 2006; Miyamoto and Terami, 2010).

Listing 2.2 shows a simple agglomerative hierarchical clustering algorithm with ML and
CL constrains while Figure 2.2(d) illustrates the resulting dendrogram.

16 CHAPTER 2. BACKGROUND

Agglomerative-Clustering(X,ML,CL)

1 foreach x ∈ X
2 Make-Cluster(x)
3 foreach {x1, x2} ∈ML
4 C1 = Find-Cluster(x1)
5 C2 = Find-Cluster(x2)
6 Merge-Clusters(C1,C2)

7 while clusters can be merged
8 Find C1 and C2 such that d(C1,C2) is minimal

and Compatible(C1,C2,CL) returns true.
9 Merge-Clusters(C1,C2)

Compatible(C1,C2,CL)

1 foreach x1 ∈ C1

2 foreach x2 ∈ C2

3 if {x1, x2} ∈ CL return false
4 return true

Listing 2.2: Semi-supervised agglomerative clustering with instance-level constraints.

x1 x2 x3 x4 x5 x6

x1 0 1 2 3 4 5

x2 1 0 9 0.1 17 4

x3 2 9 0 8 0.5 2

x4 3 0.1 8 0 20 6

x5 4 17 0.5 20 0 3

x6 5 4 2 6 3 0

(a) Distance function d(·, ·).

X

{x1, x2, x4}

{x2, x4}

{x2} {x4}

{x1}

{x3, x5, x6}

{x3, x5}

{x3} {x5}

{x6}

(b) Resulting supervised dendrogram.

x1 x2 x3 x4 x5 x6

x1 · · · · · ·
x2 · · · CL · ·
x3 · · · · · ·
x4 · CL · · ML ·
x5 · · · ML · ·
x6 · · · · · ·

(c) Instance-level constraints.

X

{x3, x4, x5, x6}

{x3, x4, x5}

{x4, x5}

{x4} {x5}

{x3}

{x6}

{x1, x2}

{x1} {x2}

CL

ML

(d) Resulting semi-supervised dendrogram.

Figure 2.2: Hierarchical agglomerative clustering with single-linkage.

2.2. TIME-SERIES DATA MINING 17

2.2 Time-series data mining

Time series are temporal sequences of scalar- or vector-valued measurements.
We shall denote the length of the time series x by |x|. The time series which has length 0

is the empty time series ε.
For t = 1, 2, . . . , |x| and time series x, the value of the measurement taken in time moment

t is x[t].
If the time series is vector-valued—multivariate—, let us denote the scalar-valued time

series which is constructed by taking the ith components of the measurement vectors by x(i),
which will be called the ith channel of x. Thus the value of the d dimensional vector-valued
time series at time moment t is x[t] = (x(1)[t], x(2)[t], . . . , x(d)[t]).

2.2.1 Distance functions for time series

Euclidean distance

A straightforward distance measure between two scalar-valued time series, x1 and x2 of equal
length is their Euclidean distance

dEU(x1, x2) =
√∑

t

(
x1[t] − x2[t]

)2. (2.11)

Dynamic Time Warping

Euclidean distance is only defined for time series of equal length. Moreover, we may want to
allow slight temporal differences between two time series, because a real-world phenomenon
may not always start at the same time and happen with constant speed.

Dynamic Time Warping (DTW) allows for elongation of time series. More formally, the
DTW distance of time series is

dDTW(x1, x2) = c
(
|x1|, |x2|

)
(2.12)

where c is recursively defined as

c(0, 0) = 0, (2.13)

c(i, 0) = c(0, j) =∞, (2.14)

c(i, j) = dinner(x1[i], x2[j])+min

c(i− 1, j− 1),
c(i, j− 1)+ cel,
c(i− 1, j)+ cel

 (2.15)

and dinner(·, ·) is the inner distance function while cel is the cost associated with elongation.
The inner distance function expresses the cost of matching two measurements. In the

case of univariate time series, usually absolute difference is selected,

dinner(a,b) = |a− b|. (2.16)

For multivariate time series, the Euclidean distance

dinner(a,b) = ‖a− b‖EU =

√√√√ d∑
i=1

(
ai − bi

)2 (2.17)

can be used.

18 CHAPTER 2. BACKGROUND

Figure 2.3: Comparison of Euclidean distance and Dynamic Time Warping. Euclidean
distance (on the left) tries to match time series segments exactly. In contrast, Dynamic
Time Warping (on the right) can—correctly—determine that the peak between 20–80 on
top is an elongation of the peak between 40–80 on bottom. This illustration is adapted from
K. A. Buza (2011).

DTW(x1, x2)

1 c[0, 0] = 0 // Initialise the matrix c with (2.13).
2 for i = 1→ |x2|

3 c[0, i] =∞ // Initialise element in the first row by (2.14).
4 for i = 1→ |x1|

5 c[i, 0] =∞ // Initialise element in the first column by (2.14).
6 for j = 1→ |x2|

// The rest of the row is calculated by the recursive formula (2.15).
7 c[i, j] = dinner(x1[i], x2[j])+min {c[i− 1, j− 1],

c[i, j− 1]+ cel,
c[i− 1, j]+ cel}

8 return c
[
|x1|, |x2|

]
// The distance is the bottom-right element of c.

Listing 2.3: Dyamic Time Warping.

Calculating DTW The DTW distance of two time series can be computed by elementary
dynamic programming. This algorithm is displayed in Listing 2.3. Execution takesO

(
|x1|·|x2|

)
time, which is quadratic in the average length of time series.

The presented algorithm calculates a matrix of distance values c. The values which
contribute to the final distance form a warping path (Figure 2.4(a)). It is possible to reduce
runtime by constraining the warping path to a specific region of the matrix and avoiding
calculation of elements which lie outside that area. Such limits also improve classification
accuracy (C. (Ratanamahatana and Keogh, 2005).

One technique for reducing the resource demand of DTW is the use of a warping window,

2.2. TIME-SERIES DATA MINING 19

0 ∞ ∞ ∞ ∞ ∞∞ 1 2 6 9 11∞ 4 2 4 9 13∞ 8 4 3 9 14∞ 13 7 3 10 15∞ 13 9 8 5 6∞ 15 13 16 5 6

3 1 −2 5 4

2
0

−1
−2
3
5

(a) Warping path.

(b) Matching measurements.

Figure 2.4: Calculation of Dyamic Time Warping.

warping
window

(a) Sakoe–Chiba band. (b) Itakura parallelogram.

Figure 2.5: Restricted Dynamic Time Warping examples.

also known as the Sakoe–Chiba band (Figure 2.5(a)). The width of the window is usually
around 5 percent of the length of the time series and can be selected by cross-validation.

Another set of constraints form the Itakura parallelogram (Figure 2.5(b)), which allows
greater elongation in the middle of the time series than in the beginning and end.

Properties Dynamic Time Warping is symmetric—dDTW(x1, x2) = dDTW(x2, x1)—and non-
negative if the inner distance is symmetric and nonnegative.

DTW, in the general case, does not form a metric space with a set of time series. Neither
the identity of indiscernibles nor the triangle equality is satisfied, i.e. there may exist
distinct time series x1 6= x2 such that

dDTW(x1, x2) = 0 (2.18)

and there may exist time series x1, x2, x3 such that

dDTW(x1, x2) > dDTW(x1, x3)+ dDTW(x2, x3). (2.19)

Some learning and indexing techniques might require the distance function to satisfy
the metric axioms (Hjaltason and Samet, 2003). In this case, one of the metrics which are
conceptually similar to DTW can be used, such as edit distance with real penalty (Chen and
Ng, 2004) or move-split-merge (Stefan et al., 2012).

Indexing Dynamic Time Series is upper bounded by the computationally cheaper Euclidean
distance.

Efficient lower bounds also exist, such as those suggested by Keogh (2002); Keogh et al.
(2006a); Kim et al. (2001); Yi et al. (1998). These lower bounds, combined with appropriate
indexing can be used for fast nearest-neighbour searches.

20 CHAPTER 2. BACKGROUND

This property makes DTW a suitable choice for instance-based time-series classification.
It is also possible to employ the lower bounds in an anytime framework (Q. Zhu et al.,

2012). In the beginning a distance matrix is initialised with lower bounds. Values in the
distance matrix are incrementally refined by the calculation of true DTW distance. The
refining step can be halted at any time. The resulting distance matrix is expected to be a
good approximation of the true DTW distance matrix.

2.2.2 Hubness in time series databases

A univariate time series of length l can be represent as a vector of l real numbers. This
suggests that a database with time series of length l is an l-dimensional vector space. In
practical applications, consecutive measurements usually highly correlate—a change of a
quantity usually does not happen too fast—real world time series databases still have relatively
high ‘time’ or intrinsic dimensionality (Radovanovic et al., 2010b). The dimensionality is
even greater in multivariate time series databases. This fact gives rise to a collection of
phenomena known as the curse of dimensionality.

For a data set X = {xi}
n
i=1, let g

1
N(i) denote the number of instances in X for which xi is

nearest neighbour, i.e.

g1N(i) =
n∑
j=1
j6=i

r
argmin
16k6n
k6=j

d(xj, xk) = i
z
. (2.20)

The quantity gkN(i) can be similarly defined to be the number of instances in X that have xi
among their k nearest neighbours.

The skewness of gkN is its standardised third moment,

Sgk
N
=

Ei
[(
gkN(i) − µgk

N

)3]
σ3
gk
N

. (2.21)

In high dimensional databases, gkN is skewed to the right. This means there is a small set of
instances which are k-nearest neighbours to a large number of other instances. Members of
this set are called hubs (Radovanovic et al., 2010a).

Coverage graphs

The k-nearest neighbour coverage graph—a.k.a. k-nearest neighbour graph—is useful tool
for analysing hubness. Consider the dataset X = {xi}

n
1 and the directed graph GkN = (X,EkN)

which has an edge (xi → xj) between xi and xj if and only if xj has xi among its k nearest
neighbours.

The k-occurrence score of an instance is its out-degree in GkN. Thus we can give a new
definition of gkN:

gkN(xi) = out degGk
N
xi. (2.22)

Good hubness

Good hubs in a dataset are hubs which belong to the same class as their neighbours. More
formally, we can define the gkG(xi) good k-occurrence score of xi as the number of instances
{xj} in the database that have xi among their k nearest neighbours and satisfy yi = yj.
Good hubs have gkG/g

k
N ≈ 1.

2.2. TIME-SERIES DATA MINING 21

Good hubness can be exploited to increase classification efficiency (K. Buza et al., 2011a).
By discarding the labeled data set except good hubs, the performance of instance-based
learning may be dramatically improved. This is possible by constructing a cover of the
k-nearest neighbour graph. Every instance in X \ C should have at least one instance in C
among its k-nearest neighbours. In other words, vertices of GkN which are not in C should
be separated from C by only a single edge.

A good cover contains as many good hubs as possible. Constructing such cover, in the
general case, an NP-complete problem. However, cover construction for 1-nearest neighbour
graphs is tractable (K. Buza et al., 2011a).

Bad hubness

Just as godd hubs can correctly classify many instances, bad hubs, which have gkG/g
k
N � 1,

are responsible for a surprisingly large number of misclassifications.
The presence of bad hubs also results in cluster assumption violation (CAV). In other

words, some instances that are ‘close’ to each other do not belong to the same class. This,
among other unfavorable effects, limits the application of clustering based semi-supervised
learning methods.

To provide a numerical measure of bad hubness, we can introduce the normalised total
bad hubness B̃Nk, which is the sum of all bad k-occurrences gkN − gkG normalised with the
sum of all k-occurrences gkN. Formally,

B̃Nk = 1−
∑n
i=1 g

k
G(xi)∑n

i=1 g
k
N(xi)

(2.23)

Radovanovic et al. (2010b) divided time series databases into three zones based on the
skewness of 10-occurrence scores Sg10

N
and normalised total bad 10-hubness B̃N10:

– Datasets in Zone 3 have no or very little bad hubness. The cluster assumption is not
significantly violated.

– In Zone 2, B̃N10 is high. However, g10N is not skewed to the left—Sg10
N

is low or
negative. This means bad hubs are not strong enough to dramatically impact supervised
classification.

– In Zone 1, large bad hubness is combined with large Sg10
N
. Strong bad hubs violated

the cluster assumptions significantly and classification becomes a difficult task.

2.2.3 Semi-supervised time-series classification

Positive–unlabeled learning

In positive–unlabeled (PU) learning, the problem which the recognition system aims to solve
is a binary classification problem. Instances may belong to the positive or negative class.
Positive instances may be a lot rarer than negative ones. The learning algorithm is given a
training set of positive P = {xi}

l
i=1 and unlabeled U = {xi}

n
i=l+1 examples. The majority of

unlabeled examples probably belong to the negative class.
As an example, consider a database of patients’ medical history. Some patients are

in a risky health condition, they form the class of positive instances. The other, non-
risky patients belong to the negative class. Medical doctors—domain experts—cannot be
absolutely sure that a patient’s condition is non-risky. Hence only positive examples are
available. Naturally, we aim to recognise risky patients before their health significantly

22 CHAPTER 2. BACKGROUND

Positive-Unlabeled-1-NN(P,U)

1 P0 = P
2 U0 = U
3 t = 0
4 repeat

// The unlabeled example which is closest to the set of currently
// positive-labeled examples Pt will be considered positive.

5 xbest = argminx∈Ut
d(Pt, x)

6 Lt+1 = Lt ∪ {xbest}

7 Ut+1 = Ut \ {xbest}
// Form a training set by labeling the yet unlabeled instances as negative.

8 Xt+1 = {(x, +) : x ∈ Pt} ∪ {(x,−) : x ∈ Ut}
// Train a nearest-neighbour classifier.

9 Mt+1 = Supervised-1NN-Classifier(Xt)
10 t = t+ 1
11 until ¬Should-Stop()
12 return Mt

Listing 2.4: Positive-unlabeled instance-based learning.

deteriorates. A positive–unlabeled learner may create a better recognition system than a
supervised only learner, given enough patients’ data whose condition is currently unknown.

The first studies on semi-supervised time series classification include Wei and Keogh
(2006), which was concerned with positive–unlabeled learning. The authors proposed and
algorithm which is a modification of instance-based self training (subsection 2.1.2) with early
stopping. Listing 2.4 shows the modifications.

Stopping heuristic A critical part of the Positive-Unlabeled-1-NN algorithm is the cri-
terion for stopping, Should-Stop. Clearly, the number of hypothesised positive instances
increases monotonically with the iterations number because |Pt+1| = |Pt|+ 1. If we continue
the learning process until we run out of unlabeled examples—|Ut| = 0—we will consider all
the initially unlabeled examples as positive. Thus the training set X for the nearest-neighbour
classifier (line 8 in Listing 2.4) will only contain positive-labeled examples. Such training set
is useless, because the resulting classifier will have a constant output of ‘+’.

Wei and Keogh (2006) have observed a correlation between abrupt decrease of the closest
pair ’s distance in Pt

dmin
P (t) = min

xi,xj∈Pt

xi 6=xj

d(xi, xj) (2.24)

and deterioration of classification accuracy ofMt. In other words, negative examples tend to
be more ‘dense’ than positive examples. Although a model’s true accuracy cannot be exactly
determined at the training phase—if that was possible we would not need semi-supervised
learning—this correlation can still be exploited in stopping heuristic construction.

A formal description of the aforementioned heuristic was developed by C. A. Ratanama-
hatana and Wanichsan (2008).

2.2. TIME-SERIES DATA MINING 23

Positive-unlabeled learning by clustering Another approach for positive-negative time-series
learning was studied by Nguyen et al. (2011).

Their method first clusters the training examples by k-means clustering. Then principal
component extraction is performed on the clusters. Principal components are used to define
a new dissimilarity function for cluster.

This new dissimilarity function helps the identification of reliable negative (RN), likely
positive (LP) and ambiguous (AMBI) clusters. A procedure similar to nearest neighbour
self-training is carried out on the clusters, with RN clusters are labeled negative, LP clusters
as labeled positive and AMBI clusters as unlabeled examples.

The idea of applying semi-supervised learning to clusters of instances as opposed to single
instances is somewhat similar to harmonic mixtures (X. Zhu and Lafferty, 2005). In that
variation of semi-supervised learning, fuzzy clustering is performed to reduce the resource
demand of a semi-supervised algorithm. Because there are less clusters than instances in a
non-trivial clustering, processing clusters is computationally cheaper than processing single
instances.

Multiclass self-training

C. A. Ratanamahatana and Wanichsan (2008) also studied the standard instance-based
self-training classifier for time series. I selected their approach as a baseline to which I
compared my algorithm in Chapter 4.

Because there are examples available from all classes, there is no need for a stopping
heuristic in multiclass self-training. The self-training process is iterated until there are no
more unlabeled examples.

Self-training with HMMs Another approach of time series self-training uses Hidden Markov
Models1 (Zhong, 2005).

Unfortunately, Hidden Markov Models (HMMs) cannot be directly trained in a semi-
supervised setting by maximisation of the labeled and unlabeled data likelihood. Unlabeled
data, in general, does not improve the performance of the Baum-Welch algorithm that is
employed to perform this maximisation (Elworthy, 1994).

However, self-training may be used to train Hidden Markov Models:

– For each class y, a HMM with parameter vector θy can be trained.

– The certainty measure for and unlabeled instance is set to the posterior probability, i.e.

Certainty(x) = p(x|θŷ), (2.25)

where ŷ is the hypothesised class label of x.

– Self-Training (Listing 2.1(a)) is performed on the dataset.

This approach has shown promising results on small databases. However, to our best
knowledge, no further results are available for larger databases.

1 Hidden Markov Models are probabilistic, generative models for sequences. They are utilised for time
series generation as well as supervised classification.

3 My approach: constrained SLINK with DTW

3.1 Description of the algorithm

Consider the semi-supervised classification problem, in which a set of labeled time-series
L = {(xi,yi)}li=1 and a set of unlabeled time-series U = {xi}

n
i=l+1 is available to a learner.

We wish to construct a classifier that can classify any time-series—not only elements of U—
with high accuracy, i.e. is capable of induction.

I propose a novel semi-supervised time series classification method, constrained SLINK
with DTW:

1. The labeled and unlabeled examples in the training set are clustered with constrained
single-linkage (SLINK) hiearchical agglomerative clustering. The following two ex-
tenstions are used, which, to our best knowledge, have never been used together for
semi-supervised time series classification:

– There is a CL constraint for each pair of labeled examples.
– The dissmilarity function for time series is Dynamic Time Warping (DTW).

2. The resulting top-level clusters are labeled by their corresponding ‘seeds’.

3. The final classifier is 1-nearest neighbour trained on the resulting labeling. This
classifier can be applied to unseen test data.

3.2 A graph theoretic view on time series nearest neighbour self-training

The properties of minimum spanning tree algorithms form a theoretical motivation of
constrained SLINK with DTW.

Consider the set of all—labeled or unlabeled—examples X = {xi}
n
i=1. Let G = (X,V) be

an undirected complete graph width edge weights wij = w({xi, xj}) = d(xi,dj).
Define a spanning forest as a set of acyclic undirected subgraphs—trees—T = {Ti}

j
i=1

that satisfy the following properties:

– The trees are disjoint, i.e. ∀i : xi ∈ V(Ta)∧ xi ∈ V(Tb) =⇒ a = b.

– The trees together span the whole set of examples, i.e.
⋃l
i=1 V(Ti) = X.

– The ith tree contains the i labeled example, i.e. ∀1 6 i 6 l : xi ∈ V(Ti).

A spanning forest is a minimum spanning forest if the sum of its edge weights W(T) =∑l
i=1
∑
e∈E(Ti)w(e) is minimal.

Let us define the graph G? = (X∪{?},E?), which is an extension of G with a super-vertex ?.
This super-vertex is connected to the labeled examples with 0-weight edges, i.e.

E? = E ∪ {{xi, ?} : 1 6 i 6 l}, (3.1)

xi? = w({xi, ?}) = 0. (3.2)

25

26 CHAPTER 3. MY APPROACH: CONSTRAINED SLINK WITH DTW

The tree which is formed by taking the union of the trees in a minimum spanning forest
T of G and the new edges from ? has no greater sum weight than a minimum spanning tree
of G?. Therefore, it is itself a minimum spanning tree T? of G?.

The instance-based self-training algorithm presented in subsection 2.1.3 (Figure 2.1) can
be viewed as a specific way of finding a minimum spanning tree of G?. This tree contains all
the outgoing edges from ?. Thus, it is a minimum spanning forest of G.

More concretely, if all the edge weights wij in G are strictly positive, instance based
self-training—which I selected as a baseline to compare my algorithm to—is equivalent to
running Prim’s algorithm with ? as the root node. In the first l iterations, the algorithm
adds the labeled instances {xi}li=1 to the tree. Every iteration onwards, the set nodes in the
growing tree equals the set of already labeled instance.

The role of ? in this process is entirely superficial: after the lth iteration it plays no
further role. In fact, we could simply start with the graph G and consider multiple root
nodes. This is exactly what instance-based self-training does. The minimum spanning forest
can be constructed by adding a new edge connecting the instance xbest to the closest labeled
instance is Pt.

3.2.1 From self-training to cluster-and-label

The other famous minimum spanning tree algorithm for graphs is Kruskal’s method. Note
that the forest which is gradually joined by Kruskal’s algorithm is a set of clusters in some
level of a single-linkage (SLINK) hierarchical agglomerative clustering dendrogram.

In contrast with nearest neighbour self-training, ? cannot be simply ignored. In the first
l iterations, the algorithm will join all the labeled instances into one cluster.

No two clusters which contains a labeled instance may be merged, because, in the presence
of ?, they would be the same cluster.

When removing ? from the graph, we must take care not to create clusters with more
than one labeled instance in them. This is equivalent to a cannot-link (CL) constraint
between each labeled instance.

If there were l labeled instances among the training examples, hierarchical clustering
with the above CL constraints will terminate with l clusters. Unlabeled instances should be
labeled with the same class label as the ‘seed’—labeled instance—in their cluster.

3.3 Properties of constrained SLINK

3.3.1 Similarity to the 1-nearest neighbour graph

Single-linkage clustering or, equivalently, Kurskal’s algorithm for databases with prevalent
hubness has some interesting properties.

The first edge encountered in Kruskal’s algorithm which contains some instance xi is the
edge between xi and its nearest neighbour xj. When this edge {xi, xj} is processed, xi is a
single-instance cluster. If xi is unlabeled, it will be added to xj’s cluster. If xi is labeled, it
will still be added to xj’s cluster. Thus, the only case when the edge {xi, xj} is not added to
the minimum spanning forest is when xi is labeled and xj’s cluster already contains another
labeled instance.

Therefore, the resulting forest will contain ‘almost all’ edges of the—undirected—1-nearest
neighbour graph.

3.3. PROPERTIES OF CONSTRAINED SLINK 27

3.3.2 Interaction with hubs

Because of the similarity of the minimum spanning forest and the 1-nearest neighbour graph,
constrained SLINK with DTW for time series benefits from good hubs greatly.

‘Almost all’ instances will have the same label as their nearest neighbour. Consequently,
‘almost all’ hubs in the labeled or unlabeled training set will be good hubs in the final
labeling.

With this knowledge, we can state what is assumed by constrained SLINK with DTW
about the time-series database: ‘almost all’ hubs are good hubs.

3.3.3 Transitive hubs

In constrained SLINK with DTW, instances will generally have the same class label as their
nearest neighbours. This means that hubs will also have the same label as their nearest
neighbour, and those hubs which have hubs as their nearest neighbours will also have the
same label as thier nearest neighbour, etc.

The effect of hubs is transitive : a hubs class label will determine the class label of ‘almost
all’ nodes to which it is connected by a chain of nearest neighbours.

Let us introduce the transitive closure GT1-NN of the 1-nearest neighbour graph G1-NN

in which there is a—directed—edge between vertices xi and xj if and only if xj is accessible
from xj in G1-NN. Formally,

(xi → xj) ∈ GT1-NN ⇐⇒ (xi xj) ∈ G1-NN. (3.3)

We can introduce transitive 1-occurrence analogously to 1-occurrence values:

g1TN(xi) = out degGT
1-NN

xi, (3.4)

g1TG(xi) =
∑

(xi→xj)∈GT
1-NN

Jyi = yjK. (3.5)

Generalisation to transitive k-occurrence scores is straightforward.
Because the minimum spanning forest generated by constrained SLINK with DTW and

the 1-nearest neighbour graph is similar, g1TN and g1TG should give insight how accurate this
semi-supervised classification technique will be. In my empirical evaluation in Chapter 4, I
confirm this hypothesis.

The assumption about data taken by constrained SLINK with DTW can by phrased
more accurately: ‘almost all’ hubs are transitively good hubs.

4 Experimental evaluation

4.1 Protocol of evaluation

I compared the performance of my algorithm with a state-of-the-art supervised time-series
classifier CITE and a state-of-the-art semi-supervised time-series classifier. Both classifiers
are based instance-based learning—nearest-neighbour classification—and Dynamic Time
Warping.

The test runs were repeated 30 times so that a paired two-tailed t-test could be performed.
Results were deemed statistically significant when p < 0.05 was satisfied.

In the experiments, I wanted to simulate a scenario in which large database is available
with relative few labeled instances. Not only good accuracy of labeling the unlabeled
instances, but also good capability of induction—i.e. accuracy on instances unknown in the
training stage—was demanded.

In a single trial, the classifiers had access to a randomly selected 90 percent of the database.
However, class labels of only a randomly selected 10 and 20 percent of the database were
available, respectively. The rest of the training instances had their class labels discarded.

The 10 percent of the database which was unavailable to the learner simulated the new,
unknown instances. The test set was formed by these new instances along the instances
which had their labels before training stage.

The reported measure of accuracy is the misclassification rate, which is the number of
misclassified instances divided by the size of the raining set,

rmisclass. =
∑
iJŷi 6= yiK
|Ttest|

. (4.1)

I also report the performance of the state-of-the-art supervised classifier on the data with
no class labels discarded from the training set. This is an upper bound on the accuracy of a
semi-supervised learner and corresponds to the situation when an oracle has labeled all the
unlabeled data correctly.

4.2 Time-series databases

To aid reproducibility, I performed the trials with 45 publicly accessible real-world datasets1

from the UCR time series repository (Keogh et al., 2006b). The time series databased involved
in the experiments are shown in Table 4.2.

1 Recently, two more datasets—Non-Invasive Fetal ECG Thorax1 and 2—has been added to the
repository. However, I did not perform the trials on them because DTW distance matrices were not
readily available and require extremely resource-intensive preprocessing to calculate.

29

30 CHAPTER 4. EXPERIMENTAL EVALUATION

4.3 Results

As a baseline, I selected the state-of-the-art Dynamic Time Warping based supervised time
series classifier. I compared the performance of the multiclass algorithm introduced by
C. A. Ratanamahatana and Wanichsan (2008) and my approach to this baseline.

Semi-supervised learning only improves classification accuracy if the assumptions taken
by the model match the data closely. As expected from its interaction with hubness and
transitive hubness, my method outperformed the baseline—and in a number of cases, the
other algorithm—when a dataset had low bad hubness and transitive bad hubness. If bad
hubs were prominent in the data, my algorithm could still outperform the baseline in a few
datasets where the overall number of hubs was low.

These observations are illustrated in Figure 4.1. Low values of B̃N correspond to low bad
hubness, while low valued of SgN

correspond to low hubness overall. Both the 10-hubness
and the transitive 1-hubness statistics show a correlation between low bad hubness and
improved accuracy.

The total number of wins and losses against the baseline are summarised in Table 4.1. The
self-training based algorithm introduced by C. A. Ratanamahatana and Wanichsan (2008)
is shown in the SS-1-N column, while my algorithm—constrained SLINK with DTW—is
shown in the SS-Slink column.

10% labeled 20% labeled

SS-1-N SS-Slink SS-1-N SS-Slink

improvements 10 20 11 19
losses 30 19 28 19
inconclusive 5 6 6 7

Table 4.1: Summary of wins and losses against the baseline.

4.3. RESULTS 31

0 0.5 1 1.5

0

0.2

0.4

0.6

Sg10
N

B̃
N

10

improvement
loss

inconclusive

0 1 2 3 4 5

0

0.2

0.4

Sg1
TN

T̃
B
N

1

improvement
loss

inconclusive

Figure 4.1: Effects of hubness on my algorithm’s accuracy.

32 CHAPTER 4. EXPERIMENTAL EVALUATION

Sg10N
B̃N10 Sg1TN

T̃BN1 •/◦

50words 0.659 0.362 2.535 0.197 •
Adiac 0.357 0.518 1.946 0.377
Beef −0.248 0.620 −0.125 0.350 ◦
Car 1.567 0.392 1.768 0.243 ◦
CBF 1.435 0.001 4.235 0.000 •
ChlorineConcentration 0.503 0.316 2.954 0.004 •
CinC_ECG_torso 0.079 0.011 1.232 0.000 •
Coffee −0.271 0.361 1.004 0.051 •
Cricket_X 0.380 0.331 1.800 0.192 •
Cricket_Y 0.457 0.349 1.600 0.189 •
Cricket_Z 0.374 0.332 1.529 0.184 •
DiatomSizeReduction 0.357 0.014 1.101 0.006 •
ECG200 0.241 0.197 1.949 0.118 ◦
ECGFiveDays −0.005 0.036 0.730 0.009 •
FaceFour 0.402 0.141 1.719 0.048 •
FacesUCR 0.751 0.053 2.081 0.018 •
fish 0.831 0.328 2.684 0.189 ◦
Gun_Point 0.307 0.052 0.820 0.024 •
Haptics 0.851 0.609 3.654 0.523 ◦
InlineSkate 0.420 0.593 1.979 0.380 ◦
ItalyPowerDemand 0.831 0.051 2.163 0.040
Lighting2 0.355 0.288 1.877 0.173 ◦
Lighting7 0.392 0.391 1.558 0.182 ◦
MALLAT 1.479 0.027 2.805 0.017 ◦
MedicalImages 0.352 0.316 1.219 0.184 ◦
Motes 0.732 0.093 1.714 0.063 ◦
MoteStrain 0.732 0.093 1.714 0.063 ◦
OliveOil 0.382 0.280 2.037 0.156 •
OSULeaf 0.626 0.448 1.545 0.246
plane −0.049 0.009 1.489 0.000 •
SonyAIBORobotSurfaceII 0.815 0.065 2.050 0.022
SonyAIBORobotSurface 0.799 0.044 2.093 0.026 ◦
StarLightCurves 1.050 0.090 4.353 0.126 ◦
SwedishLeaf 0.969 0.235 3.451 0.220 ◦
Symbols 0.832 0.030 1.852 0.017 •
synthetic_control 1.400 0.020 3.940 0.010 •
Trace 0.035 0.025 1.556 0.000 •
TwoLeadECG 0.399 0.003 1.846 0.001 •
Two_Patterns 1.007 0.001 4.901 0.000 •
uWaveGestureLibrary_X 0.773 0.234 2.501 0.222 ◦
uWaveGestureLibrary_Y 0.627 0.314 2.068 0.258 ◦
uWaveGestureLibrary_Z 0.660 0.317 2.100 0.279 ◦
wafer 0.307 0.005 1.154 0.004 ◦
WordsSynonyms 0.659 0.346 2.536 0.182 •
yoga 0.595 0.119 1.752 0.058 ◦

Table 4.2: Summary of datasets. Hubness measurements and the performance of my
approach compared to the baseline are also shown.

4.3. RESULTS 33

2Baseline supervised
1-NN classifier trained
on the initially labeled
instances.

3Instance-based self-
training classifier
introduced by C. A.
Ratanamahatana and
Wanichsan (2008).

4The proposed
approach: semi-
supervised cluster-
ing, then class label
assignment.

5Upper bound on
self training, where
an oracle labels the
unlabeled training
instances.

10% initially labeled 20% initially labeled 90%

rmisclass. 1-NN2 SS-1-NN3 SS-Slink4 1-NN SS-1-NN SS-Slink 1-NN5

50words 0.422 ◦ 0.429 • 0.398 0.332 ◦ 0.336 • 0.309 0.202
Adiac 0.589 ◦ 0.621 0.590 0.493 ◦ 0.518 0.493 0.346
Beef 0.632 ◦ 0.657 ◦ 0.671 0.590 ◦ 0.616 ◦ 0.623 0.483
Car 0.449 ◦ 0.471 ◦ 0.458 0.366 ◦ 0.401 0.366 0.229
CBF 0.003 0.003 • 0.000 0.001 • 0.000 • 0.000 0.000
Chlor . . .on 0.369 ◦ 0.372 • 0.070 0.242 ◦ 0.245 • 0.035 0.003
CinC_ . . .so 0.027 • 0.021 • 0.002 0.010 • 0.005 • 0.000 0.000
Coffee 0.389 ◦ 0.431 • 0.375 0.286 0.285 0.277 0.030
Cricket_X 0.442 ◦ 0.467 • 0.430 0.318 ◦ 0.326 • 0.298 0.166
Cricket_Y 0.428 ◦ 0.455 • 0.408 0.314 ◦ 0.331 • 0.290 0.185
Cricket_Z 0.429 ◦ 0.451 • 0.407 0.318 ◦ 0.325 • 0.294 0.165
Diato . . .on 0.020 • 0.017 • 0.017 0.012 0.012 ◦ 0.013 0.006
ECG200 0.211 ◦ 0.229 ◦ 0.218 0.174 ◦ 0.195 ◦ 0.195 0.153
ECGFiveDays 0.062 • 0.045 • 0.021 0.031 • 0.023 • 0.016 0.011
FaceFour 0.215 0.210 • 0.185 0.144 ◦ 0.164 • 0.121 0.059
FacesUCR 0.076 • 0.071 • 0.056 0.048 • 0.045 • 0.038 0.014
fish 0.370 ◦ 0.410 ◦ 0.424 0.299 ◦ 0.324 ◦ 0.323 0.203
Gun_Point 0.099 0.094 • 0.045 0.064 • 0.047 • 0.047 0.023
Haptics 0.627 ◦ 0.676 ◦ 0.701 0.594 ◦ 0.636 ◦ 0.662 0.521
InlineSkate 0.646 ◦ 0.686 ◦ 0.678 0.571 ◦ 0.598 ◦ 0.607 0.449
Italy . . .nd 0.061 0.063 0.064 0.053 ◦ 0.057 0.053 0.047
Lighting2 0.319 ◦ 0.329 0.313 0.263 0.265 ◦ 0.278 0.121
Lighting7 0.456 ◦ 0.497 ◦ 0.507 0.361 ◦ 0.390 ◦ 0.405 0.232
MALLAT 0.031 ◦ 0.037 ◦ 0.041 0.024 ◦ 0.026 ◦ 0.030 0.009
Medic . . .es 0.364 ◦ 0.375 ◦ 0.376 0.304 ◦ 0.315 0.304 0.205
Motes 0.104 ◦ 0.122 ◦ 0.128 0.084 ◦ 0.098 ◦ 0.105 0.047
MoteStrain 0.104 ◦ 0.122 ◦ 0.128 0.084 ◦ 0.098 ◦ 0.105 0.047
OliveOil 0.303 ◦ 0.319 0.294 0.247 • 0.230 • 0.218 0.083
OSULeaf 0.499 ◦ 0.528 0.502 0.409 ◦ 0.424 0.407 0.239
plane 0.048 • 0.040 • 0.039 0.008 • 0.001 • 0.000 0.000
SonyA . . .II 0.091 0.091 0.094 0.057 0.059 0.057 0.012
SonyA . . .ce 0.057 • 0.052 ◦ 0.106 0.043 0.046 ◦ 0.064 0.023
StarL . . .es 0.097 ◦ 0.120 ◦ 0.203 0.086 ◦ 0.102 ◦ 0.160 0.071
SwedishLeaf 0.293 ◦ 0.324 ◦ 0.367 0.226 ◦ 0.249 ◦ 0.267 0.157
Symbols 0.038 • 0.031 • 0.022 0.028 • 0.026 • 0.021 0.019
synth . . .ol 0.037 ◦ 0.050 • 0.025 0.019 0.017 • 0.015 0.008
Trace 0.148 • 0.039 • 0.000 0.027 • 0.000 • 0.000 0.000
TwoLeadECG 0.008 • 0.003 • 0.001 0.003 • 0.001 • 0.001 0.001
Two_Patterns 0.010 • 0.000 • 0.000 0.001 • 0.000 • 0.000 0.000
uWave . . ._X 0.253 ◦ 0.278 ◦ 0.282 0.226 ◦ 0.244 ◦ 0.253 0.198
uWave . . ._Y 0.333 ◦ 0.355 ◦ 0.368 0.304 ◦ 0.319 ◦ 0.321 0.258
uWave . . ._Z 0.332 ◦ 0.360 ◦ 0.379 0.307 ◦ 0.329 ◦ 0.346 0.259
wafer 0.008 ◦ 0.010 ◦ 0.009 0.005 ◦ 0.006 ◦ 0.006 0.003
Words . . .ms 0.398 ◦ 0.406 • 0.371 0.317 ◦ 0.327 • 0.294 0.187
yoga 0.138 ◦ 0.146 ◦ 0.151 0.105 ◦ 0.113 ◦ 0.112 0.053

Table 4.3: Summary of experiments. Statistically significant (p < 0.5) differences from
supervised 1-NN are indicated by • and ◦ symbols. Smaller rmisclass. misclassification rate is
better.

5 Conclusions

In this work, I focused on the semi-supervised time-series classification problem. This problem
is especially important in domains where the usage of data mining and recognition systems
is only emerging, because in those areas, labeled data is scarce. Semi-supervised methods
can serve to greatly reduce required human expert effort in new time-series classification
applications.

In Chapter 2, I reviewed some of the literature concerning semi-supervised learning a
time-series data mining. These topics are usually absent from most Hungarian university
curricula.

In Chapter 3, I proposed a novel instance-based semi-supervised classification method
for time series, constrained SLINK with DTW. This approach is based on constrained
clustering and Dynamic Time Warping and interacts well with the properties of time series
databases, such as hubness. I also proposed transitive hubness as method to approximate
the expected performance of my algorithm on a given time series database.

In Chapter 4, I showed that my approach significantly outperforms a state-of-the-art
instance-based supervised and semi-supervised time-series classifier. I also observed a
correlation between transitive hubness in a database and the performance of my algorithm.

5.1 Further work and open questions

Semi-supervised classification of time series is a difficult task: compared to vectors, time
series have unusual structure, such as high correlation between consecutive measurements.
Their high intrinsic dimensionality gives rise to good and bad hubness, which can ‘confuse’
algorithms as well as help them.

In supervised learning, it is possible to localise regions in the database where the bad
hubs are (K. Buza et al., 2011b). By selectively ignoring bad hubs, classification accuracy can
be improved. Is there a way to recognise potential bad hubs in unlabeled data? Perhaps
this could improve accuracy of semi-supervised learning in datasets where there are many
strong bad hubs.

In this works, I considered instance-based learning for time series with Dynamic Time
Warping, which is a state-of-the-art supervised classifier for time series (Ding et al., 2008).
Are there other, better representations and distance functions for semi-supervised
classification of time series?

35

References

Abney, Steven P. (2004). ‘Understanding the Yarowsky Algorithm’. In: Computational Linguistics
30.3, pp. 365–395 (cit. on p. 12).

Aha, David W., Dennis F. Kibler and Marc K. Albert (1991). ‘Instance-Based Learning Algorithms’.
In: Machine Learning 6, pp. 37–66 (cit. on p. 12).

Basu, Sugato, Mikhail Bilenko and Raymond J. Mooney (2004). ‘A probabilistic framework for
semi-supervised clustering’. In: KDD, pp. 59–68 (cit. on p. 15).

Blum, Avrim and Tom M. Mitchell (1998). ‘Combining Labeled and Unlabeled Data with Co-
Training’. In: COLT, pp. 92–100 (cit. on p. 13).

Buza, Krisztian Antal (2011). ‘Fusion Methods for Time-Series Classification’. PhD thesis, pp. 1–144
(cit. on p. 18).

Buza, Krisztian, Alexandros Nanopoulos and Lars Schmidt-Thieme (2011a). ‘INSIGHT: Efficient
and Effective Instance Selection for Time-Series Classification’. In: PAKDD (2). Vol. 6635,
pp. 149–160 (cit. on p. 21).

— (2011b). ‘IQ estimation for accurate time-series classification’. In: CIDM, pp. 216–223 (cit. on
p. 35).

Castelli, Vittorio and Thomas M. Cover (1996). ‘The relative value of labeled and unlabeled
samples in pattern recognition with an unknown mixing parameter’. In: IEEE Transactions on
Information Theory 42.6, pp. 2102–2117 (cit. on p. 10).

Chen, Lei and Raymond T. Ng (2004). ‘On The Marriage of Lp-norms and Edit Distance’. In:
VLDB, pp. 792–803 (cit. on p. 19).

Cozman, Fabio Gagliardi, Ira Cohen and Marcelo Cesar Cirelo (2003). ‘Semi-Supervised Learning of
Mixture Models’. In: ICML, pp. 99–106 (cit. on p. 10).

Culp, Mark and George Michailidis (2007). ‘An iterative algorithm for extending learners to a
semisupervised setting’. In: The 2007 Joint Statistical Meetings (JSM) (cit. on p. 12).

Dara, R., S.C. Kremer and D.A. Stacey (2002). ‘Clustering unlabeled data with SOMs improves
classification of labeled real-world data’. In: Neural Networks, 2002. IJCNN ’02. Proceedings
of the 2002 International Joint Conference on. Vol. 3, pp. 2237 –2242 (cit. on p. 11).

Davidson, Ian and S. S. Ravi (2005). ‘Clustering with Constraints: Feasibility Issues and the k-Means
Algorithm’. In: SDM (cit. on pp. 14, 15).

— (2007). ‘The complexity of non-hierarchical clustering with instance and cluster level constraints’.
In: Data Min. Knowl. Discov. 14.1, pp. 25–61 (cit. on p. 15).

Demiriz, Ayhan, Kristin Bennett and Mark J. Embrechts (1999). ‘Semi-Supervised Clustering
Using Genetic Algorithms’. In: In Artificial Neural Networks in Engineering (ANNIE-99),
pp. 809–814 (cit. on p. 11).

Dempster, A. P., N. M. Laird and D. B. Rubin (1977). ‘Maximum likelihood from incomplete data
via the EM algorithm’. In: JOURNAL OF THE ROYAL STATISTICAL SOCIETY, SERIES
B 39.1, pp. 1–38 (cit. on p. 10).

Ding, Hui, Goce Trajcevski, Peter Scheuermann, Xiaoyue Wang and Eamonn J. Keogh (2008).
‘Querying and mining of time series data: experimental comparison of representations and
distance measures’. In: PVLDB 1.2, pp. 1542–1552 (cit. on pp. 3, 35).

Elworthy, David (1994). ‘Does Baum-Welch Re-estimation Help Taggers?’ In: ANLP, pp. 53–58
(cit. on pp. 10, 23).

Goldberg, Andrew B., Xiaojin Zhu, Alex Furger and Jun-Ming Xu (2011). ‘OASIS: Online Active
Semi-Supervised Learning’. In: AAAI (cit. on p. 14).

37

38 REFERENCES

Haffari, Gholamreza and Anoop Sarkar (2007). ‘Analysis of semi-supervised learning with the
Yarowsky algorithm’. In: 23rd Conference on Uncertainty in Artificial Intelligence (UAI)
(cit. on p. 12).

Hjaltason, Gísli R. and Hanan Samet (2003). ‘Index-driven similarity search in metric spaces’. In:
ACM Trans. Database Syst. 28.4, pp. 517–580 (cit. on p. 19).

Keogh, Eamonn J. (2002). ‘Exact Indexing of Dynamic Time Warping’. In: VLDB, pp. 406–417
(cit. on p. 19).

Keogh, Eamonn J. and Chotirat Ann Ratanamahatana (2005). ‘Exact indexing of dynamic time
warping’. In: Knowl. Inf. Syst. 7.3, pp. 358–386 (cit. on p. 3).

Keogh, Eamonn J., Li Wei, Xiaopeng Xi, Sang-Hee Lee and Michail Vlachos (2006a). ‘LB_Keogh
Supports Exact Indexing of Shapes under Rotation Invariance with Arbitrary Representations
and Distance Measures’. In: VLDB, pp. 882–893 (cit. on p. 19).

Keogh, Eamonn J., Xiaopeng Xi, Li Wei and Chotirat Ann Ratanamahatana (2006b). The UCR Time
Series Classification/Clustering Homepage. url: http://www.cs.ucr.edu/~eamonn/time_
series_data/ (cit. on pp. 3, 29).

Kestler, Hans A., Johann M. Kraus, Günther Palm and Friedhelm Schwenker (2006). ‘On the Effects
of Constraints in Semi-supervised Hierarchical Clustering’. In: ANNPR. Vol. 4087, pp. 57–66
(cit. on p. 15).

Kim, Sang-Wook, Sanghyun Park and Wesley W. Chu (2001). ‘An Index-Based Approach for
Similarity Search Supporting Time Warping in Large Sequence Databases’. In: ICDE, pp. 607–
614 (cit. on p. 19).

Klein, Dan, Sepandar D. Kamvar and Christopher D. Manning (2002). ‘From Instance-level Con-
straints to Space-Level Constraints: Making the Most of Prior Knowledge in Data Clustering’.
In: ICML, pp. 307–314 (cit. on p. 15).

Li, Ming and Zhi-Hua Zhou (2005). ‘SETRED: Self-training with Editing’. In: PAKDD. Vol. 3518,
pp. 611–621 (cit. on p. 12).

McCallum, Andrew and Kamal Nigam (1998). ‘Employing EM and Pool-Based Active Learning for
Text Classification’. In: ICML, pp. 350–358 (cit. on p. 14).

Miyamoto, Sadaaki and Akihisa Terami (2010). ‘Semi-supervised agglomerative hierarchical clustering
algorithms with pairwise constraints’. In: FUZZ-IEEE, pp. 1–6 (cit. on p. 15).

Nguyen, Minh Nhut, Xiaoli Li and See-Kiong Ng (2011). ‘Positive Unlabeled Leaning for Time
Series Classification’. In: IJCAI, pp. 1421–1426 (cit. on p. 23).

Quinlan, J. Ross (1986). ‘Induction of Decision Trees’. In: Machine Learning 1.1, pp. 81–106 (cit. on
p. 14).

Radovanovic, Milos, Alexandros Nanopoulos and Mirjana Ivanovic (2010a). ‘Hubs in Space: Popular
Nearest Neighbors in High-Dimensional Data’. In: Journal of Machine Learning Research 11,
pp. 2487–2531 (cit. on p. 20).

— (2010b). ‘Time-Series Classification in Many Intrinsic Dimensions’. In: SDM, pp. 677–688 (cit. on
pp. 20, 21).

Ratanamahatana, Chotirat (Ann) and Eamonn J. Keogh (2005). ‘Three Myths about Dynamic
Time Warping Data Mining’. In: SDM (cit. on p. 18).

Ratanamahatana, Chotirat Ann and Dachawut Wanichsan (2008). ‘Stopping Criterion Selection
for Efficient Semi-supervised Time Series Classification’. In: Software Engineering, Artificial
Intelligence, Networking and Parallel/Distributed Computing. Vol. 149, pp. 1–14 (cit. on
pp. 22, 23, 30, 33).

Reuter, Timo, Philipp Cimiano, Lucas Drumond, Krisztian Buza and Lars Schmidt-Thieme (2011).
‘Scalable Event-Based Clustering of Social Media Via Record Linkage Techniques’. In: ICWSM
(cit. on p. 15).

Seeger, Matthias (2001). Learning with Labeled and Unlabeled Data. Tech. rep. University of
Edinburgh (cit. on p. 9).

Settles, Burr (2012). Active Learning. Morgan & Claypool Publishers (cit. on p. 14).
Singh, Aarti, Robert D. Nowak and Xiaojin Zhu (2008). ‘Unlabeled data: Now it helps, now it

doesn’t’. In: NIPS, pp. 1513–1520 (cit. on p. 10).
Stefan, Alexandra, Vassilis Athitsos and Gautam Das (2012). ‘The Move-Split-Merge Metric for

Time Series’. In: IEEE Transactions on Knowledge and Data Engineering 99.PrePrints (cit. on
p. 19).

http://www.cs.ucr.edu/~eamonn/time_series_data/
http://www.cs.ucr.edu/~eamonn/time_series_data/

REFERENCES 39

Wagstaff, Kiri and Claire Cardie (2000). ‘Clustering with Instance-level Constraints’. In: ICML,
pp. 1103–1110 (cit. on p. 15).

Wagstaff, Kiri, Claire Cardie, Seth Rogers and Stefan Schrödl (2001). ‘Constrained K-means
Clustering with Background Knowledge’. In: ICML, pp. 577–584 (cit. on p. 15).

Wei, Li and Eamonn J. Keogh (2006). ‘Semi-supervised time series classification’. In: KDD, pp. 748–
753 (cit. on p. 22).

White, Allan P. and Wei Zhong Liu (1994). ‘Bias in Information-Based Measures in Decision Tree
Induction’. In: Machine Learning 15.3, pp. 321–329 (cit. on p. 14).

Yarowsky, David (1992). ‘Word-Sense Disambiguation Using Statistical Models of Roget’s Categories
Trained on Large Corpora’. In: COLING, pp. 454–460 (cit. on p. 12).

Yi, Byoung-Kee, H. V. Jagadish and Christos Faloutsos (1998). ‘Efficient Retrieval of Similar Time
Sequences Under Time Warping’. In: ICDE, pp. 201–208 (cit. on p. 19).

Zhong, Shi (2005). ‘Semi-Supervised Sequence Classification With Hmms’. In: IJPRAI 19.2, pp. 165–
182 (cit. on p. 23).

Zhu, Qiang, Gustavo E. A. P. A. Batista, Thanawin Rakthanmanon and Eamonn J. Keogh (2012).
‘A Novel Approximation to Dynamic Time Warping allows Anytime Clustering of Massive Time
Series Datasets’. In: SDM, pp. 999–1010 (cit. on p. 20).

Zhu, Xiaojin (2006). Semi-Supervised Learning Literature Survey (cit. on p. 9).
— (2009). Semi-Supervised Learning. Tutorial at PASCAL Machine Learning Summer School

(MLSS). Video recording available at http://videolectures.net/mlss09us_zhu_ssl/ (cit. on
p. 14).

Zhu, Xiaojin and John D. Lafferty (2005). ‘Harmonic mixtures: combining mixture models and
graph-based methods for inductive and scalable semi-supervised learning’. In: ICML. Vol. 119,
pp. 1052–1059 (cit. on p. 23).

http://videolectures.net/mlss09us_zhu_ssl/

	Contents
	Abstract
	Notations
	Introduction
	Background
	Semi-supervised learning methods
	Supervised and unsupervised tasks
	Semi-supervised classification
	Semi-supervised clustering

	Time-series data mining
	Distance functions for time series
	Hubness in time series databases
	Semi-supervised time-series classification

	My approach: constrained SLINK with DTW
	Description of the algorithm
	A graph theoretic view on time series nearest neighbour self-training
	From self-training to cluster-and-label

	Properties of constrained SLINK
	Similarity to the 1-nearest neighbour graph
	Interaction with hubs
	Transitive hubs

	Experimental evaluation
	Protocol of evaluation
	Time-series databases
	Results

	Conclusions
	Further work and open questions

	References

