
Deleting Trees from
Isolation Forest

A new Isolation Forest variant for producing better
anomaly scores

Márk Dániel Szalai

Supervisor:
Gábor Horváth dr.

Budapest University of Technology and Economics
Department of Networked Systems and Services

Budapest, Hungary
October 2022

Supported by the ÚNKP-22-2-III-BME-240 New
National Excellence Program of the Ministry for

Culture and Innovation from the source of the National
Research, Development and Innovation Fund.

2

Contents

1 Introduction 4

2 Isolation Forest and its variant 5
2.1 Isolation Forest . 5
2.2 Extended Isolation Forest . 7
2.3 Scalability . 8
2.4 Online Isolation Forest . 8

3 The proposed new algorithm 9
3.1 Data-sets used in the experiments 9

3.1.1 Synthetic data-sets . 9
3.1.2 Real-world data-sets . 10

3.2 Inspiration . 10
3.3 Foundations of our algorithm . 13
3.4 Implementation . 13
3.5 Investigated metrics . 14
3.6 Deleting Isolation Forest . 15

4 Conclusion and Future Work 25

3

1 Introduction

The effective and reliable automatic detection of anomalies is an active field of
research and several companies are looking for solutions that can be used in in-
dustrial applications. Several deeplearning model has been proposed to handle
the problem. In general, the decisions of these models are difficult to explain
which makes it more difficult to use them in industrial applications. Therefore,
in practice algorithmical approaches are very common of which the ensemble
based models are especially promising. These models utilize several weaklearn-
ers to produce their predictions, letting them specialize and focus on certain
properties of the data set. Isolation Forest exploits this concept by building
several trees each of which tries to separate the samples of the data set with
hyperplanes perpendicular to the axes. A huge deficiency of the algorithm is
the lack of performance measuring and potential deletion of the underperform-
ing weaklearners. The same insight applies to the Extended Isolation Forest
algorithm which separates the data set with arbitrary hyperplanes. This de-
ficiency may produce anomaly scores with significant overlap between normal
and anomalous samples. Since anomaly detection is typically an unsupervised
learning problem we can only rely on the anomaly scores to determine how nor-
mal our samples are which makes it crucial to have well separating scores. The
goal of the new algorithm is to solve this issue, produce better separating scores,
introduce a new deletion process and enable industrial applications.

4

2 Isolation Forest and its variant

Isolation Forest with the recent introduction of its extended variant is becoming
rather popular when it comes to anomaly detection. One of its better qualities
is the fact that it allows for the joint handling of categorical and numerical
variables. There is only one restriction (to allow splitting data between child
nodes, see below): the categorical data must be ordinal, meaning there has
to be a clear ”smaller than”/ ”bigger than” relationship between the values of
the categorical variables. This can be easily done with an arbitrary encoding
scheme.

2.1 Isolation Forest

Isolation Forest (hereinafter IF), first introduced in [1], builds a set of binary
trees (hereinafter forest) on a subset of samples with the goal of separating
them with random cuts. The assigned anomaly score of a sample is based on
the average length to isolate it in the trees of the forest.

To build an isolation tree, IF first randomly select a subset of the input
data set X, denoted by X̃. Once X̃ is obtained, a cutting process enfolds.
This is done by randomly selecting an attribute q and a value p such that
x ∈ X̃|min(x[q]) ≤ p ≤ max(x[q]). Attribute q and value p divides the data
points into two subsets: the ones whose attribute q value is larger than p and
the rest. Once the two smaller data-sets are produced a left and right child node
is created which will repeat the cutting process and also creating child nodes
with the even smaller data-sets. This process is repeated in a recursive fashion
until a node receives a single sample or the same samples, which will make it
a leaf node. If X̃ is has n = |X̃| samples then the average path length of the
binary tree is [1]

c(n) = 2H(n− 1)− 2n− 2

n
, (1)

where H(n) = ln(n)−EC and EC = 0.5772156649 is the Euler’s constant. c(n)
is used to normalize the anomaly score.

Based on an isolation tree and a data sample x, the procedure evaluates the
length of the path, h(x), by performing a binary search in the tree, where the
cutting criteria (q ≤ p) determines which child node should be chosen in the
search. Reaching a leaf node on the path (easy to see that there can be one and
only one for each sample) will be considered a positive hit and the end of the
path.

Having T trees in the isolation forest, the mean of h(x) (i.e. the expected
value of h(x), i.e. the average path length of sample x in the forest) is

E(h(x)) =
1

T

T∑
t=1

ht(x),

where ht(x) is the length of the path of sample x in isolation tree t. The anomaly

5

score of data point x (determined by the isolation forest of trees with n leaves)
is

s(x, n) = 2−
E(h(x))

c(n) , (2)

where c(n) is the average path length of a binary tree (see Equation 1).
Since anomalies are usually easier to separate from the rest of the data, they

should on average be separated earlier with the cutting processes, resulting in
shorter path lengths and thus higher anomaly scores. This easier separability
phenomena is what being exploited by the algorithm.

The authors of the IF algorithm claim that IF:

• has a linear time complexity (in both the number of samples and the
number of trees) with a low memory usage,

• has the capability to scale up to handle extremely large and even high
dimensional data sets (the required number of cuts only depends on the
size of the initial subset of data),

• utilizes no distance or density measures to detect anomalies thus coping
more effectively with the curse of dimensionality.

The computational complexity of the algorithm can be reduced by termi-
nating the construction of isolation trees at certain depth, limiting the maximal
height of the trees. The limit has to be set to be large enough to isolate anoma-
lous points. We will denote this variable with hmax. This way the parameters
of the algorithm are

• the size of the forest, i.e., the number of isolation trees to build: T ,

• the sub-sampling size, i.e., the number of randomly selected data points
to build a tree: n = |X̃|,

• the maximal height of a tree: hmax. This is often set to hmax = log2 n,
since we are only interested in the anomalous samples (likely with shorter
than average path lengths) the logarithm of the sub-sampling is a reason-
able heuristic.

The complete algorithm can be described as a two-stage process.

1. The first (training) stage builds the isolation forest, i.e. constructs T

isolation trees, each from a X̃ subset of n randomly selected data samples
with a default maximal height of ⌈log2 n⌉.

2. The second (testing) stage computes the anomaly score for each data
point by traversing each tree for each sample until the sample reaches a
leaf node.

See Figure 1 for an example of Isolation Forest tree traversal and sample
isolation in case of an anomalous and a normal sample, the height limit stopped
the tree from needlessly achieving complete isolation of the normal sample.

6

(a) Anomalous sample (b) Normal sample

Figure 1: Isolation Forest tree traversal and sample isolation, the examined
sample is indicated with red color

2.2 Extended Isolation Forest

EIF, first described in [2], introduces a new separation method to the IF algo-
rithm. While IF selects a single random attribute and a splitting point between
the attribute’s minimum and maximum values, EIF creates a projection vector,
computes the dot product of the vector and the sample, selects a splitting point
between the minimum and maximum values of the projected values and splits
the samples accordingly. This means that EIF can split the samples along any
hyperplane, while with IF the separation is always performed along a hyper-
plane, parallel with the axes.

See Figure 2 for an example of Extended Isolation Forest tree traversal and
sample isolation in case of an anomalous and a normal sample, once again the
height limit stopped the tree from needlessly achieving complete isolation of the
normal sample. Comparing the results to 1 we can see that EIF required fewer
cuts to isolate the anomaly than IF and could significantly narrow down the
area of the normal sample.

7

(a) Anomalous sample (b) Normal sample

Figure 2: Isolation Forest tree traversal and sample isolation, the examined
sample is indicated with red color

2.3 Scalability

The complexity of both Isolation Forest and its extended variant is O(T ∗ |X| ∗
hmax), where T is the number of trees, |X| is the number of samples (sub-
sampling size during the fit phase and the size of the whole data-set during the
predictions phase) and hmax is the maximum allowed depth of the trees. This
means that both algorithm scales incredibly well on high dimensional data as
the number of dimensions only affects the projection vectors and dot products
of EIF.

Their parallelization is also easy, almost trivial. During the training phase
the tree construction can be done parallel and during the prediction phase each
sample’s anomaly-score can be calculated parallel. This means that both algo-
rithm can be easily deployed in a distributed ecosystem (for example there is a
LinkedIn implementation in Apache Spark [3]).

2.4 Online Isolation Forest

It would be great if we could use Isolation Forest on data streams. This requires
the ability to adapt to the current behaviour of the data. A trivial way of
achieving adaptation is to implement a ring-buffer and for every n sample build
a new tree and insert into the buffer. This would mean that after we fill up
the buffer with trees, the oldest tree will always be overwritten, thus only the
most recent trees will affect our prediction. In the next section we would like to
propose an alternate deletion method that may also prove useful on data sets
with no concept drifts.

8

3 The proposed new algorithm

3.1 Data-sets used in the experiments

We have used several synthetic and publicly available, real-world data-sets to in-
vestigate the behaviour of our modified algorithm and compare it to the original
Isolation Forest.

3.1.1 Synthetic data-sets

We have generated three different data-sets that were mainly used these to
establish and test hypothesises, thus we will not discuss them in detail:

• Blobs: We have used four 2D normal distribution, two larger and two
smaller and placed them into the corners of a square. The anomalous
considered samples are the ones from the smaller distributions.

• Sine wave: the anomalous samples are the ones not on the sine wave.

• Ring: The normal samples form a ring around the anomalous samples.
This data set proved to be an unfortunate choice, as the Isolation Forest
algorithm tries to isolate the samples and the center is difficult to separate.

See Figure 3 for a visual representation of these data-sets.

(a) Blob data-set (b) Sine data-set

(c) Ring data-set

Figure 3: Synthetic data-sets

9

3.1.2 Real-world data-sets

These are the data-sets we used to actually evaluate the algorithm and the
proposed changes. We only had one criteria for these data-sets: they must
not have non-ordinal categorical values, more strictly: all attributes must have
numerical values (but they can be categorical). Obviously other data-sets could
be also used, but the categorical values would have to be encoded to numerical
values, which might distort the results of our algorithm. Most of them can be
found in the UCI Machine Learning Repository [4]. Another source of the data-
sets is the Outlier Detection DataSets Library (ODDS) [5]. Some of the data-sets
in the ODDS Library originates from the UCI Machine Learning Repository, but
they include changes that make them more suitable for anomaly detection, thus
we used ODDS for our source of data. There are two exceptions that can not
be found in ODDS, these are the CreditCard and the PumpSensor data-sets.
Both can be found on Kaggle at [6] and [7].

3.2 Inspiration

During our experiments we have noticed an interesting behaviour in the algo-
rithm. Suppose we count the external nodes (leaves) in a tree on each of its
level. This would leave us with a vector V , where V [i] is the number of external
nodes on the ith level of the tree. Now count the number of samples stopping
on each level of the tree. We shall denote it with C. Notice that both V and
C has the same length: the depth of the tree. Now if we perform element-wise
division on the two vector (numerator: C, denominator: V) we get vector R
(note that a sample can not stop on levels with not leaves which means that
if the denominator is 0 then so is the numerator, thus let us define 0/0 = 0
in order to avoid mathematical ambiguity). The idea was simple and it builds
on the ideas of the Isolation Forest algorithm: anomalies are easier to separate,
thus anomalies will require fewer cuts to be separated, thus they will be closer to
the root of the tree. Combining this idea with the fact that in general there are
fewer anomalous than normal samples then it can be assumed that the elements
of the resulting R vector should follow a uniform distribution. The original idea
was to delete those trees which has the R vector that diverges the most from a
uniform distribution. This can be measure with a simple KL-divergence, which
basically would result in the entropy of R.

The expectation was that the trees with the largest KL-divergence would
perform worse, however the exact opposite could be seen during testing: the
”worse” trees generally assigned higher anomaly scores to the anomalous sam-
ples and lower anomaly-score to the normal samples resulting in fewer overlaps
between the anomaly-scores of normal and anomalous samples. This behaviour
can be consistently observed on several real-world and synthetic data sets as
seen on Figures 4 and 5, where the anomalous samples are colored orange and
the normal samples are blue:

10

(a) Blob data-set

(b) Sine data-set

Figure 4: Distribution of anomaly scores of the best and worst trees on
different data-sets

11

(a) Ring data-set

(b) Shuttle data-set

Figure 5: Distribution of anomaly scores of the best and worst trees on
different data-sets

In all of the above examples we can see that the ”worst” 20 trees achieved
a better separation of the anomalous samples in terms of their assigned scores.
One exception could be the Ring data-set, but in this case the ”worst” trees
still performed better because they assigned a higher score to the anomalous
samples. Please note that in unsupervised learning (to which the algorithm
belongs) we can only rely on the anomaly-score of the samples to determine
whether they are anomalous or not. Higher score should mean higher chance
of being an anomaly, in case of the Ring data-set we can see that the ”worst”
trees assign the better scores to the anomalous samples.

12

3.3 Foundations of our algorithm

The above described phenomenon led us believe that it is worth examining the
structure of the trees of the forest as it seems that there are good indicators of
the usefulness of a tree that could be exploited to develop a deleting mechanism
for the Isolation Forest algorithm that would ultimately result in better anomaly
scores. One important criteria we wanted to set is to not use the actual samples
in calculating the usefulness of the trees, thus our investigated metrics are solely
based on the tree structures.

3.4 Implementation

We have implemented the algorithm with out modifications in the C++ lan-
guage. To further increase the speed up the execution of the algorithm we have
added OpenMP [8] support to both the fit and predict phases of the algorithm,
which allows the parallel construction of trees and parallel scoring of samples.
This resulted in a significant speed boost which could be utilized during testing.
Our implementation has an extra parameter: metric. This parameter can be
used to specify witch metric we want to sort our trees and which part of the
sorted trees we want to keep (Top,Bot). In the future extra metrics can be
easily added to the code-base. The algorithm also accepts an extension level
parameter which when set larger than 0 would create trees using the splitting
criteria defined in Extended Isolation Forest [2]. We found that the structure of
trees built with this splitting method significantly differs from the structures of
Isolation Forest trees and thus would require a whole new set of metrics, thus
they are out of the scope of this paper.

Finally we implemented a Cython [9] wrapper around our C++ code-base,
which makes it possible to run the module directly from a Python environment
on both Windows and Linux operating systems.

As a way to help visualize the trees of the forest we also made it possible
to generate a Graphviz representation of a tree, which can then be supplied to
Graphviz for plotting. See Figure 6 for an example plot, generated by [10].

Figure 6: Example of tree visualization

For the Isolation Forest algorithm we use the sklearn [11] implementation.

13

3.5 Investigated metrics

We have investigated several metrics that are being used to describe binary tree
structures. One of them is the Colless’ imbalance described in [12], designed to
measure the imbalance of trees. It is defined as follows in Equation 3:

IC =

∑
(all interior node) |TL − TR|

(n−1)∗(n−2)
2

(3)

Where TL and TR are the leaves of the left and right sub-trees respectively.
The sum is normalized by the maximum value of the sum: n is the number of
leaves and n− 1 is the number of internal nodes. This metric is often criticized
for not weighing the nodes equally (the absolute difference between sub-trees of
near-root nodes can be significantly higher than the ones further from the root
and the normalization can easily diminish the contribution of the latter nodes).

A more robust alternative of the Colless’ imbalance is the I2 imbalance
introduced in [13]. This metric also uses the absolute difference in the number
of nodes but it handles normalization differently. Rather than normalizing the
resulting sum, it normalizes each member of the sum with the number of leaves
in the sub-tree of the focal node (i.e.: TL + TR). The metric is defined as in
Equation 4.

I2 =

∑
(all interior node)

|TL−TR|
TL+TR−2

n− 1
(4)

A third metric was devised by obtaining anomaly-scores from the individual
trees and then calculating the ROC-AUC scores of the predictions and then
looking for similarities between high AUC yielding trees. We found on several
data-sets that there is a positive correlation between the AUC score of the trees
and the ”deepness” of leaves. We found that the greater the average distance
between leaves and the root, the better AUC score a tree produces, see Figure
7: in both data-set the lowest scoring trees produce the worst AUC yielding
anomaly-scores.

(a) HTTP data-set (b) Pumpsensor data-set

Figure 7: AUC of each trees prediction in function of the weighted sum of the
number of leaves on each level

14

In the following section we investigate different deletion criteria based on
these metrics.

3.6 Deleting Isolation Forest

The algorithm works similarly to the basic Isolation Forest algorithm. The
difference is an additional deletion step which makes the algorithm capable of
online learning, while potentially increasing the quality of anomaly-scores pro-
duced with the more refined deletion criteria that originates from the structure
of trees. To simulate an online learning environment we created ten times the
trees we called the algorithm with (T) and we investigated how the scores de-
scribed in 3.5 could be used to enhance the performance of the forest, thus we
ordered the trees according to these metrics and evaluated the performance of
the forest with both the highest and lowest scoring T trees. Since randomness
plays a huge part in the algorithm we run each experiment 20 times and cal-
culated the mean and standard deviation of the resulting AUC scores. Both
Isolation Forest and our algorithm (denoted with the used metric and whether
the highest (Top) or lowest (Bot) scoring trees are kept for the evaluation).
We wanted to see how the maximum allowed affected the usability of the met-
rics (we have seen significant difference in performance in some cases), thus we
performed the experiments with a sub-sampling size of 128 and with the follow-
ing depth limits: 128 (practically unlimited for 128 samples), 20 (a reasonable
middle-ground) and with 7 (⌈log(128)⌉, which is the same that Isolation Forest
uses). Note that Isolation Forest has only been run with its paper-defined depth
limit, it is only included in all of the tables as a reference. The results can be
seen in the following Tables 1, 2, 3.

Data set
Criteria [AUC] - mean ± std

IF I2 Top I2 Bot IC Top IC Bot WAVG Top WAVG Bot
CreditCard 0.949±0.002 0.949±0.002 0.948±0.002 0.949±0.002 0.947±0.002 0.949±0.002 0.946±0.002
ForestCover 0.853±0.022 0.852±0.021 0.846±0.023 0.886±0.018 0.808±0.023 0.893±0.013 0.791±0.024

HTTP 0.997±0.002 0.054±0.000 0.989±0.004 0.054±0.002 0.990±0.005 0.054±0.000 0.991±0.003
Mammography 0.864±0.005 0.875±0.005 0.870±0.005 0.874±0.005 0.872±0.004 0.878±0.003 0.865±0.006

Musk 0.315±0.033 0.406±0.024 0.394±0.029 0.339±0.017 0.512±0.024 0.385±0.019 0.473±0.026
PumpSensor 0.956±0.011 0.956±0.013 0.959±0.009 0.961±0.007 0.952±0.011 0.956±0.010 0.955±0.011

Shuttle 0.997±0.000 0.997±0.000 0.997±0.000 0.998±0.000 0.995±0.001 0.998±0.000 0.995±0.001
SMTP 0.863±0.009 0.854±0.006 0.874±0.007 0.861±0.006 0.859±0.008 0.850±0.007 0.874±0.005

Table 1: Average AUC scores of 20 runs, each tree built with a 128 depth limit.

15

Data set
Criteria [AUC] - mean ± std

IF I2 Top I2 Bot IC Top IC Bot WAVG Top WAVG Bot
CreditCard 0.949±0.002 0.948±0.002 0.948±0.002 0.950±0.002 0.946±0.003 0.949±0.002 0.947±0.003
ForestCover 0.853±0.022 0.849±0.023 0.853±0.020 0.891±0.018 0.794±0.024 0.900±0.013 0.790±0.032

HTTP 0.997±0.002 0.957±0.009 0.989±0.003 0.988±0.002 0.969±0.006 0.961±0.010 0.988±0.002
Mammography 0.864±0.005 0.875±0.003 0.874±0.005 0.881±0.003 0.866±0.006 0.874±0.005 0.874±0.004

Musk 0.315±0.033 0.456±0.020 0.356±0.028 0.285±0.020 0.520±0.018 0.366±0.027 0.463±0.023
PumpSensor 0.956±0.011 0.963±0.007 0.956±0.009 0.956±0.007 0.954±0.011 0.972±0.008 0.945±0.012

Shuttle 0.997±0.000 0.997±0.000 0.997±0.000 0.998±0.000 0.996±0.000 0.998±0.000 0.996±0.000
SMTP 0.863±0.009 0.841±0.008 0.876±0.007 0.867±0.005 0.855±0.006 0.860±0.005 0.850±0.005

Table 2: Average AUC scores of 20 runs, each tree built with a 20 depth limit.

Data set
Criteria [AUC] - mean ± std

IF I2 Top I2 Bot IC Top IC Bot WAVG Top WAVG Bot
CreditCard 0.949±0.002 0.949±0.002 0.947±0.003 0.946±0.003 0.949±0.002 0.947±0.003 0.949±0.002
ForestCover 0.853±0.022 0.913±0.011 0.784±0.028 0.788±0.030 0.926±0.013 0.866±0.020 0.873±0.016

HTTP 0.997±0.002 0.993±0.001 0.989±0.004 0.986±0.005 0.994±0.001 0.992±0.005 0.993±0.001
Mammography 0.864±0.005 0.878±0.003 0.865±0.007 0.866±0.006 0.879±0.004 0.878±0.005 0.870±0.006

Musk 0.315±0.033 0.251±0.025 0.463±0.027 0.441±0.031 0.270±0.027 0.339±0.030 0.278±0.023
PumpSensor 0.956±0.011 0.972±0.008 0.932±0.014 0.933±0.015 0.978±0.007 0.969±0.010 0.950±0.008

Shuttle 0.997±0.000 0.999±0.000 0.995±0.001 0.995±0.000 0.999±0.000 0.997±0.000 0.998±0.000
SMTP 0.863±0.009 0.870±0.006 0.845±0.010 0.847±0.010 0.866±0.007 0.851±0.007 0.872±0.007

Table 3: Average AUC scores of 20 runs, each tree built with a 7 depth limit.

Upon further investigation of the relations of the metrics described in 3.5
it has become clear that it is possible to significantly enhance the performance
of the Isolation Forest algorithm by examining the structures of the Isolation
Trees. This property seems to be data-set dependent as well as which metric
would yield the optimal results. A huge advantage of the described metric is
that they do not rely on the actual samples of the data-set, they only use the
shape of the trees to predict how well could they contribute to an accurate
anomaly-score. Please refer to Figures 8 - 15 to see how the AUC-score of each
tree’s anomaly-score relates to their metric-scores. Once again, we include the
results of the same experiment with different depth limits (128, 20 and 7).

16

(a) 128 depth, WS (b) 128 depth, IC (c) 128 depth, I2

(d) 20 depth, WS (e) 20 depth, IC (f) 20 depth, I2

(g) 7 depth, WS (h) 7 depth, IC (i) 7 depth, I2

Figure 8: CreditCard data-set: AUC of each trees prediction in function of each metric

As we can see on Figure 8, the highest AUC achieving trees tend to have
lower Colless’ imbalance score. Unfortunately all the metircs and IF achieved a
similar and quite high AUC with all depth limit settings and the different scores
are within each others confidence interval, which means that we can not show
the effects of our modification on the CreditCard data-set.

17

(a) 128 depth, WS (b) 128 depth, IC (c) 128 depth, I2

(d) 20 depth, WS (e) 20 depth, IC (f) 20 depth, I2

(g) 7 depth, WS (h) 7 depth, IC (i) 7 depth, I2

Figure 9: ForestCover data-set: AUC of each trees prediction in function of each metric

On 9 we can see that at 7 depth limit the lower Colless’ imbalnce scoring
trees tend to have a higher AUC score. If we check the corresponding, 7-depth
Table 3 we can see that there is a significant improvement compared to IF, and
there confidence interval do not overlap.

18

(a) 128 depth, WS (b) 128 depth, IC (c) 128 depth, I2

(d) 20 depth, WS (e) 20 depth, IC (f) 20 depth, I2

(g) 7 depth, WS (h) 7 depth, IC (i) 7 depth, I2

Figure 10: HTTP data-set: AUC of each trees prediction in function of each metric

On Figure 10 we can see an interesting behaviour: the plot seems to have the
data organised in columns. This is due to the implementation of the algorithm:
if a node receives a set of same samples during the fit phase, it will not be able
to split them, but it will try. As a result two new nodes are constructed, one of
them receives no data, the other one receives the whole set of samples and the
cycle continues until the depth limit is reached. This is however no concern due
to the way the anomaly-score is formulated and the rest of the forest is capable
of compensating the possible miss-classifications of anomalous samples (benefit
of ensemble learning).

19

(a) 128 depth, WS (b) 128 depth, IC (c) 128 depth, I2

(d) 20 depth, WS (e) 20 depth, IC (f) 20 depth, I2

(g) 7 depth, WS (h) 7 depth, IC (i) 7 depth, I2

Figure 11: Mammography data-set: AUC of each trees prediction in function of each metric

On Figure 11 we can see another example of a data-set where there is not
really an evident connection between the AUC- and metric-scores of the trees.
This resulted in similar performance between the metrics and IF.

20

(a) 128 depth, WS (b) 128 depth, IC (c) 128 depth, I2

(d) 20 depth, WS (e) 20 depth, IC (f) 20 depth, I2

(g) 7 depth, WS (h) 7 depth, IC (i) 7 depth, I2

Figure 12: Musk data-set: AUC of each trees prediction in function of each metric

On Figure 12 it is difficult to see the correlation between the AUC-scores
and the metric-scores, but as evident from the above tables the right metric
selected trees kept significantly outperforming the IF algorithm.

21

(a) 128 depth, WS (b) 128 depth, IC (c) 128 depth, I2

(d) 20 depth, WS (e) 20 depth, IC (f) 20 depth, I2

(g) 7 depth, WS (h) 7 depth, IC (i) 7 depth, I2

Figure 13: PumpSensor data-set: AUC of each trees prediction in function of each metric

On Figure 13 we can discover a negative correlation between AUCs and ICs
of trees. The negative correlation is most clear on the 7 depth limit experiment,
which is confirmed by the above tables, as this combination consistently reaches
an almost perfect prediction (1.0 AUC).

22

(a) 128 depth, WS (b) 128 depth, IC (c) 128 depth, I2

(d) 20 depth, WS (e) 20 depth, IC (f) 20 depth, I2

(g) 7 depth, WS (h) 7 depth, IC (i) 7 depth, I2

Figure 14: Shuttle data-set: AUC of each trees prediction in function of each metric

On Figure 14 we can discover a similar negative correlation between the
AUCs and ICs of the trees and although the corresponding entry in Table 3 does
show that it performed consistently well (1.0 AUC) so did the other variants
(they did fell behind a bit).

23

(a) 128 depth, WS (b) 128 depth, IC (c) 128 depth, I2

(d) 20 depth, WS (e) 20 depth, IC (f) 20 depth, I2

(g) 7 depth, WS (h) 7 depth, IC (i) 7 depth, I2

Figure 15: SMTP data-set: AUC of each trees prediction in function of each metric

On 15 we can once again discover the same phenomena as with the HTTP
10 data-set: column organised data at the largest depth limit, the reason is once
again the several equal samples. We can also see a weak negative correlation
between the AUCs and ICs of the trees on the larger depth limits.

24

4 Conclusion and Future Work

We have investigated 3 metrics describing the structures of trees and their cor-
relation with the quality of anomaly-score they produced via their ROC-AUC-
scores. We have shown that it is worth investigating the structure of trees
as their right metric based selection can lead to consistently and significantly
higher overall AUC scores, enhancing the predictive power of the Isolation For-
est algorithm. Unfortunately none of the investigated metrics could consistently
outperform the others, meaning that the best score yielding metric has to be
found individually for each data-set and depth limit setting.

In the future we are planning on investigating other metrics with the goal
of finding a universally applicable metric that can be applied with success on
any Isolation Forest and data-set and can consistently increase the quality of
anomaly-scores produced.

25

References

[1] F. T. Liu, K. M. Ting, and Z. Zhou. Isolation forest. In 2008 Eighth IEEE
International Conference on Data Mining, pages 413–422, 2008.

[2] S. Hariri, M. Carrasco Kind, and R. J. Brunner. Extended isolation forest.
IEEE Transactions on Knowledge and Data Engineering, pages 1–1, 2019.

[3] Linkedin isolation forest. https://github.com/linkedin/isolation-forest. Ac-
cessed: 2022-09-11.

[4] Dheeru Dua and Casey Graff. UCI machine learning repository, 2017.

[5] Shebuti Rayana. Odds library, 2016.

[6] Credit card fraud detection. https://www.kaggle.com/datasets/mlg-ulb/
creditcardfraud. Accessed: 2022-10-10.

[7] Pump sensor data. https://www.kaggle.com/datasets/nphantawee/
pump-sensor-data. Accessed: 2022-10-10.

[8] OpenMP Architecture Review Board. OpenMP application program inter-
face version 3.0, May 2008.

[9] Stefan Behnel, Robert Bradshaw, Craig Citro, Lisandro Dalcin, Dag Sverre
Seljebotn, and Kurt Smith. Cython: The best of both worlds. Computing
in Science & Engineering, 13(2):31–39, 2011.

[10] Online graphviz. https://dreampuf.github.io/GraphvizOnline/. Accessed:
2022-10-27.

[11] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Pas-
sos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-
learn: Machine learning in Python. Journal of Machine Learning Research,
12:2825–2830, 2011.

[12] Colless D.H. Review of] phylogenetics: the theory and practice of phylo-
genetic systematics. Syst. Zool, 31:100–104, 1982.

[13] Mooers AO and Heard SB. Inferring evolutionary process from phylogenetic
tree shape. Quarterly Review of Biology, 72:31–54, 1997.

26

https://github.com/linkedin/isolation-forest
https://www.kaggle.com/datasets/mlg-ulb/creditcardfraud
https://www.kaggle.com/datasets/mlg-ulb/creditcardfraud
https://www.kaggle.com/datasets/nphantawee/pump-sensor-data
https://www.kaggle.com/datasets/nphantawee/pump-sensor-data
https://dreampuf.github.io/GraphvizOnline/

	Introduction
	Isolation Forest and its variant
	Isolation Forest
	Extended Isolation Forest
	Scalability
	Online Isolation Forest

	The proposed new algorithm
	Data-sets used in the experiments
	Synthetic data-sets
	Real-world data-sets

	Inspiration
	Foundations of our algorithm
	Implementation
	Investigated metrics
	Deleting Isolation Forest

	Conclusion and Future Work

