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Notations

o x(-), xg(-) state trajectory

e xy(-) reduced state/parameter trajectory
e & state

e ¢} reduced state/parameter

e [ state final condition

e 77 state/parameter initial uncertainty
e u(-) control

e «(-) model noise

e p adjoint variable

e [(-,-) trajectory error

e D(-,-) innovation

e J(-,-,-) cost function

e V(-,-) value function

e V(-,-) Lyapunov function



0 Absztrakt

A dolgozat téméja nagyﬂ dimenzidju nemlinedris rendszerek optimalis identifikdcidja. A prob-
1éma altalanos; nem feladatspecifikusan vizsgaljuk a dolgozatban, azonban réviden sz6t ejtiink
arrdl is, hogy elérelathat6lag hogyan keriil majd alkalmazasra az itt ismertetett modszer.

A probléma egy mondatban Osszefoglalhaté a kovetkezoképpen: egy valds fizikai rend-
szert leir6 modell ismeretlen paramétereit szeretnénk optimalis médon meghatarozni. Pon-
tosabban a kovetkezd mondhat6: Adott egy parcidlis differencidlegyenletek altal leirt rendszer
(pl. egy flexibilis mechanikai rendszer, esetiinkben a sziv), melynek valamilyen ismeretlen al-
lapotait vagy paramétereit (0sszehtiizodasi képesség, idegen szdval kontraktilitds) szeretnénk
meghatdrozni. Ehhez rendelkezésre dllnak valamilyen jellegli mérési adatok (a sziv esetében
MR képek, vagy tjabban cimkézett-MR képek: Tagged-MRI). A (végtelen dimenzids) rend-
szert diszkretizdlva valamilyen valasztott numerikus eljarassal (pl. végeselemmoddszerrel) egy
véges, de rendkiviil nagy dimenzi6jua rendszert kapunk, melyet mar kozonséges differencial-
egyenletek frnak le; ezt a numerikusan mar kezelhetd6 modellt szeretnénk a valés mérési
adatokhoz illeszteni. Ehhez pedig éllapotbecslési/szﬁrésiﬂ eljarasokat alkalmazunk. Megje-
gyzendd, hogy mivel az itt szerepld sziirdk kozonséges differencidlegyenletek dltal meghatéro-
zott rendszerekre alkalmazhatok, ezért a ,,klasszikus” identifikacids feladatokra (robotika, re-
piiléstechnika, folyamatszabdlyozas. .. ) is alkalmasak.

A {6 cél az ilyen szlirési eljarasokkal beteg-specifikus modelleket késziteni a szivrol,
melyeket egyardnt diagnosztika, €s prognosztika (eldrejelzés) céljabol fejlesztenek. A sziv
ugyanis kiillonboz6 régidkra oszthatd, €s infarktus esetén a szivnek az elektromos impulzusra
val6 Osszehizodasi képessége (az emlitett kontraktilitdsi tényezd) megvaltozik. A célunk en-
nek a kontraktilitasi tényezének a meghatdrozasa a kiilonbozé régidkban. Infarktust kvetden
ugyanis a sziv struktdrélis atalakuldsokon is dtmegy, a sziv fala néhol elvékonyodik, ami a
sziv faldnak 4tszakaddsat is eredményezheti, ez haldlos. Ezért az ilyen dtalakuldsok pontos
elorejelzése életmentd lehet. Kisérleti eredmények is rendelkezésre dllnak; egy hazi sertésnél
infarktust idéztek el6, majd a modellt mérési adatokhoz illesztve, valéban a modell dltal el6re-
jelzett modon véltozott a sziv dllapota a tovdabbiakban. Azért esett a vélasztds hazi sertésre,
ugyanis fiziologiailag ennek az allatnak hasonlit a szive a legjobban az emberére. A tovabbi
részletekért 1d. [8]].
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Ilyen sztirési eljardsok (redukalt kiterjesztett Kalman-sziir§ — ROEKEF, redukalt *Unscented’
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Kalman-sztir6 — ROUKF) mar keriiltek megvaldsitasra [32], azonban nem elég j6 kezdeti

' A nagy tgy értendd, hogy a rendszer dimenzi6ja egy végtelen dimenzids rendszer véges kozelitésbol szér-
mazik. Természetesen a "nagy’ jelzd als6 korlatot nem jelent a rendszer dimenzidjara vonatkozdan.

ZAz allapotbecslés dltaldban nem tételez fel zajt a méréseken; amikor zaj van a mért adatokon, akkor inkdbb
szlirésrdl beszéliink. A szohaszndlat leginkdbb a szakteriilettdl fiigg, de b&vebb fejtegetés olvashatd errél a
dolgozat elso fejezetében. A dolgozatban leginkabb a sziir§ széhasznalatot részesitjitk elényben.



becslés (a priori) esetén nem konvergdltak a Valéﬁ érték felé [31], ezért tehat valos alka-
Imazasokban minél pontosabb sziirési eljarasokra van sziikség.

A dolgozatban egy optimadlis szlrési eljarast vizsgalunk meg, mely természeténél fogva
kevésbé konnyen megvaldsithatd és szamitdsigényesebb mint a legtobbet hasznélt szubopti-
malis tdrsai (kiterjesztett Kalman-szlir6 — EKF, *Unscented’ Kalman-sztir6 — UKF), azonban
ahogyan a szimuldciés eredmények is mutatjak, jelentGsen jobb eredményeket produkdl. A
mddszert Mortensen [36]] javasolta egy cikkében, azonban a dolgozat szerz6jének tudomdsa
szerint ennek megvaldsitdsa még varatott magéra. A jelen dolgozatban talalhaté megvaldsitas
C++-ban irédott, az INRIA-ban fejlesztett Verdandi [ 1] programcsomag keretében, mely egy
generikus adatasszimilécié{f] eljarasokat tartalmazé programcsomag. A dolgozat f6bb ered-

ményei a kovetkezok:

e Megvizsgaltam a probléma formulacidjat, valamint redukdlt alakra hoztam az egyen-
leteket, mely ilyen alakban méar sz6bajon (a fenti értelemben vett) nagy dimenziéjd
rendszerek bizonyos paramétereinek meghatirozasara is.

e A sz{ir6 megval6dsithatésdgahoz valamilyen megoldast kellett taldlni az Gn. dimenzidk
atkara (Curse of Dimensionality — COD). Ez alatt azt a jelenséget értik, amikor egy
rdcson val6 diszkretizdldskor a dimenzidk emelked6 szdmdval exponencidlisan novek-
szik a rdcspontszam. Ennek a hatdsnak a csillapitdsara a viszonylag ujkeletli *Sparse
Grid’ (ritka réacs) eljarast alkalmaztam. Ez egy diszkretiz4cids €s interpolacios eljarés,
éppen ennek a jelenségnek az enyhitésére. A dolgozatban megvaldsitottam egy ilyen
Sparse Grid konyvtarat, mely generikus és C++-ban irédott. Mivel jelenleg a szerzé tu-
domadsa szerint két ilyen konyvtar hozzaférhets, egyik MATLAB-ban (spinterp), mésik
Pythonban (SPARSE_GRID), ezért nem lenne érdektelen a jovében valamilyen pub-
likus licensz alatt hozzaférhetdvé tenni a konyvtérat.

o A sziir6t megvaldsitottam, és a hagyomanyos diszkretizacids eljardsokhoz képest jelen-
tésen sikeriilt novelni a dimenzidszamot.

e Szimuldcidkkal validdltam a sz{irdt, és mds, ismert sziirési eljardsokkal dsszevetettem.
A szimuldciohoz modellként egy merev rudat vdlasztottunk, ugyanis ugyanazon tipusu
parcidlis differencidlegyenletek irjdk le, mint a sziv mechanikai miikodését. A mo-
dell kifejlesztésében is kozremiikodtem, a modell a Verdandi programcsomagban hoz-
zaférhetd.

Klinikai alkalmazhat6sdg szempontjdbol azonban a 6 célkitlizés megvaldsitdsa még ha-
travan, ugyanis a sz{ir6t tartalmazé Verdandi programcsomag C++-ban irddott, és jelenleg a
sziv végeselemmodellje MATLAB-ban 4ll csak rendelkezésre. Azonban a szimuldciok nagy

3A sziv modelljén tesztelve, annak par paraméterét ismeretlennek tételezve fel.
4Mas széval identifikcids, dllapotbecslési, szfirési. A terminolégidt illetSen 1d. a dolgozat elsé fejezetét.


http://verdandi.gforge.inria.fr/

szamitasigénye miatt a sziv végeselemmodellje C++-ban is megvaldsitasra fog keriilni ha-
tékonysdg céljabol, ezért a sziird ilyen jellegli valds alkalmazdson még nem lett tesztelve.
Ahogyan azt mdr hangsuilyoztuk, a szlird6 megvaldsitdsa modellfﬁggetlerﬂ ezért amint ren-
delkezésre all a sziv modellje, a sz{ir6t mar csak a hangolds vélasztja el valos alkalmazhatdsa-
gatol.

A dolgozat felépitése a kovetkezo:

A dolgozat elsd fejezetében ismertetem a vizsgalt probléma torténeti hétterét, a dolgo-
zatot megel6z0 vizsgalatok eredményét, a probémakor el6forduldsat kiilonbozd teriileteken,
valamint jelen dolgozat célkitlizéseit. A madsodik fejezetben ismertetem az allapotbecslési
feladatot, €s stabilitasi kérdésekrol is szot ejtek. A harmadik fejezet Uj eredményeket tartal-
maz; a Fleming 4ltal javasolt dllapotbecsld redukalt formuldcidjat mutatom be benne. A ne-
gyedik fejezetben az implementacios kérdéseket targyalom, valamint részletesen bemutatdsra
keriilnek a numerikus megvaldsitasban alkalmazott médszerek. Az 6todik fejezetben a nu-
merikus szimuldcidk eredményei keriilnek ismertetésre, végiil pedig konklizidval és kitekin-
téssel zarom a dolgozatot. A fiiggelékben sort keritek érdekes és a munkam szempontjabol
kevésbé centrdlis kérdésekre. Bemutatom a méra mar klasszikussa vélt optimalis irdnyitasi
eredményeket, hasznosnak és érdekesnek taldltam ugyanis a dudlis sziirési feladattal val6
Osszevetés céljabol. A késobbi alkalmazds céljabol fontos Luenberger sziir6ket is ismertetem
roviden, és egy redukdlt varidciés mddszer is ismertetésre keriil. Ez utébbi két eljaras is meg-
valdsitdsra keriilt, azonban részletes bemutatdsuk nem célja a dolgozatnak.

Jelen dolgozat nagyrészt 2011 madrcius és augusztus kozotti munkam eredményeit foglalja
Ossze, mely nagyrészt az INRIA—Rocquencouriﬁ francia kutatéintézet MACSE| csoportjidban
késziilt. A dolgozat nyelve a tovabbiakban angol.

SKozonséges differencidlegyenletek 4ltal leirt rendszerre alkalmas.

%Az INRIA az ,Institut Nationale de Recherche en Informatique et Automatique” roviditése. Az ERCIM
csoport tagja, melyhez a magyar SZTAKI is tartozik.
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1 Introduction

Context One of the research fields of the MACS team at INRIA-Rocquencourt is model-
ing and estimation problems in biomechanics. More specifically, the goal is to formulate a
complete continuum mechanics model of the beating heart and coupling it with actual clin-
ical measurements, such as tagged MRI images. The interest in such a model would lie in
developing new diagnostical and prognostical methods. See [34]], [31] and [7]] for details. The
team in collaboration with the CLIME team of INRIA-Rocquencourt is currently developing
a generic Data Assimilation Library called Verdandi [1]]. It is in this context that the following
work is presented.

Filtering and Inverse Problems Filtering (or estimation theory, or observer theory depend-
ing on the community) is interested in determining an internal state of a dynamical system
(with or without noise). The previous denominations are usually associated with real-time
engineering applications, such as electrical, aerospace, mechanical engineering and robotics;
even financial applications exist [43]]. Filtering implies rather stochastic filtering, from a prob-
abilistic viewpoint, whileas state observers are usually considered from the deterministic view-
point. The problem of system identification (or data assimilation, or inverse problems) poses
basically the same question, (namely determining internal parameters or states) but the data is
generally considered to be given "off-line", that is the determination of the internal state must
not necessarily be simultaneous with the evolution of the system. The term data assimilation
is mostly used in environmental sciences, that is meteorological, hydrological, geophysical,
oceanographical and biological systems; it should be associated to high dimensional problems,
such as discretization of PDEs. Engineering practice would mostly call this "oft-line" process
system identification; however system identification considers mostly smaller dimensional
systems. Inverse problems is the general framework for these types of parameter estimation
problems. Obviously these distinctions are not so sharp, and a lot of work is being done on
the boundary of these domains, nevertheless it provides a vague idea of the problematics.

Let us mention some good survey articles. On system identification [3]] even if a bit dated,
but still proves to be useful reading. On the stochastic approach to nonlinear filtering [[10] is
rather instructive and gathers some of the most important techniques to date. On the deter-
ministic approach Mitter [30] gives an excellent account, and a more recent survey by Flem-
ing [[13]] is even more relevant to this report. Robinson and Lermusiaux [38]] summarize data
assimilation methods with certain filtering aspects also mentioned. Navon gives an excellent
and compact review in [37]] about the early history of variational methods in meteorology.
Misawa and Hedrick [29] give a good overview of nonlinear state estimation methods; [9]
and [24] are more recent surveys on the same subject.



A historical overview To our knowledge, the following brief time-line could be given to
the history of filtering/state estimation: Wiener in 1942 [44]] derives a filter whose purpose is
to give the linear Minimum Mean Square Error (MMSE) estimation for a stationary signal
under Gaussian noise with known covariance functions. Independently Kolmogorov derives
in 1941 [23] the discrete time equivalent of Wiener’s filter, thus the theory is often called
Wiener-Kolmogorov filtering. Kalman publishes in 1960 his seminal paper [18]] which pro-
vides the same result for non-stationary signals. This becomes to be known as the Discrete
Kalman Filter. One year later Kalman and Bucy [19] publish the continuous counterpart of the
filter which is nowadays called the Kalman-Bucy filter. Then in 1964 Luenberger publishes
his paper [27] from which the now popular notion of Luenberger observers emerges. In this
article Luenberger considers the state observer as a dynamical system controlled by the obser-
vations, and places emphasis on the pole placement of the observer, with the realization that a
state observer adds poles to the ’closed-loop’ system; in the case of Kalman filtering the pole
placement is determined by the statistics of the noise; with no noise, the poles of the filter tend
to —oo. In this paper Luenberger also introduces the notion of reduced observers, where only
a subspace of the state vector is estimated by the observer. For nonlinear systems so-called
suboptimal filters appear. These filters take in some sort an approximation of the non-linear
system, and apply the Kalman filter on the resulting approximation. The first occurance of
the Extended Kalman Filter that we have found dates from 1967, due to Larsson, Dressler
and Ratner [25]] and it is used in a missile defense system. The emergence of the Unscented
Kalman Filters is surprisingly recent, Julier and Uhlmann [17] propose the method in 1997.
With the exception of the article of Luenberger, the above mentioned filtering methodologies
have been derived from the probabilistic/statistical viewpoint. The deterministic viewpoint in
filtering is attributed to Mortensen’s 1968 article [36]. Actually in modern observer design, a
lot of nonlinear and robust control methodologies (H*-control, backstepping design, passivity
methods, high gain observers, output injection. ..) have been adapted. We do not attempt to
cover these methods.

Inverse problems first appeared in 1929 in an article of Ambarzumian [2]], who exam-
ined the relationship between the eigenvalues of a differential operator and the parameters
appearing in the operator. Basically he was examining an inverse Sturm-Liouville problem.
Not much attention was paid to the article, until 1946, when Swedish mathematician Goran
discovered [16] and recognized the importance of the article. Variational methods in Data As-
similation have been pioneered by Sasaki [40] in 1955, notably the method now known as the
3-dimensional variational method (3DVAR or 3DDA) is derived in Sasaki’s 1958 article [41]].
Optimal control methods appearing in data assimilation by the solution of the adjoint equa-
tion is due to Marchuk, 1974 [28] and has been further developed in Le-Dimet, Talagrand,
1985 [26]]. Nudging (or Newtonian relaxation) was first developed and tested by Kistler in
1974 in his Master’s thesis [20]. The Ensemble Kalman Filters emerge in 1994 with the paper
of Evensen [[11]].

Note that this chronology is far from being complete, but it should give an approximate
idea of the development of filtering/estimation/data assimilation in engineering practice. Also,
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only more relevant methods to this report have been mentioned. It is based on the survey
articles mentioned above and personal research.

Objectives The most succesful nonlinear filters application-wise are the so-called subopti-
mal filters that have been based on their optimal linear counterpart the Kalman Filter. The Ex-
tended Kalman Filter traces back the nonlinear problem to a linear one by linearizing around
the current position of the filter. The Unscented Kalman Filtering approximates the nonlin-
earity by averaging in a certain sense; equally distributed particles are generated around the
filter’s current position, and the nonlinear dynamics is applied to these particles, the average
of their image giving the gradient of the filter. Both approaches result in easily implementable
and rather robust filters. The primary goal of my internship was to formulate and implement
a reduced version of the filter proposed by Mortensen in [36] and later examined by Fleming
in [12]], as it has been done for the Extended Kalman Filter in [33]] and for the Unscented
Kalman Filter in [32].

Organization of the report In the first chapter we introduce the optimal control problem.
The problem is well-known; however we found it useful to see the duality of the approaches
of the optimal control problem and the optimal filtering problem. Then the optimal filtering
problem is presented in a deterministic framework. In the next section, the reduced filtering
problem is examined. Following this, a numerical strategy for the implementation of the
Reduced Mortensen Filter is presented, which relies on Sparse Grid methods. We also present
the numerical results that have been obtained. Finally, we conclude the report and present
future perspectives of research. In the appendix we shortly present aspects of Luenberger
state estimation applied for large dimensional systems. A reduced order variational method is
also presented. These also have been implemented and examined to some extent during the
internship.



2 The deterministic optimal filtering problem

The interest of constructing optimal filters to systems described by differential equations is
to propose an alternative to the more or less standard variational approach for determining
unknown parameters of such a system. In our applications, the ultimate goal is to determine
the contractility of the different heart regions. For small dimensional systems it might be
possible to implement the filters presented in this chapter, but for our purposes this formulation
is not adequate. It mainly serves as the basis for the reduced formulation, presented in the
following chapter.

2.1 Problem formulation
Consider a finite dimensional dynamical system in the general form:

X,(1) A(x (1), 1) + B(w:(0), 1), 2.1)
x0) = X0+, (2.2)

where x,(-) : [0, T] — X represents the model state, A(:,-) : X X [0,T] — X is the dynamical
operator, w,(-) : [0,T] — ¥ represents the model noise, xy, € X is an a priori estimate of the
initial state and 7, € X is the uncertainty on this initial state.

Remark For a given 1, a specific solution of (2.1)) with model noise w(-) and final condition

x(0) = ¢. (2.3)

is noted x; () . Arbitrary states are noted with &. Note also that the differential equation here is to be
solved backwards as opposed to the control problem.

An observation of the system is given, in the following form:

(1) = H(x,(1), 1), (2.4)
with H : X X [0,T] — Z the observation operator, and x,(-) solution of the reference system
.0, 2:2).

Introduce the innovation of the system D(-,-) : X X [0,T] —» Z:

D, 1) := z(t) — H(, 1),

that measures the difference between the underlying state of the real system at time #, and an
estimated state & through the observation operator H(-, -), but any other D(,-) can be consid-
ered.



Consider the following, general class of estimators:

x(1) A(X(2),t) + B(KD(X(2), 1), 1), (2.5)
£0) = xo, (2.6)

where K : F(X x [0,T],Z) — F(X x[0,T],X) is a feedback operator of the innovation
depending on the estimated state, and on the time. The goal is to find a feedback operator K
that is in some sense an optimal solution to this problem. To this end, consider the following
cost functional:

1 1 ("
T w(). 1) == ZlIxg i (0) = xoll, + Efo ID(xz w0 (5), )y + llw($)II ds. 2.7)

Our goal in this section (c.f. (A.7)) is to solve

?}}8 J(&, w(),T). (2.8)

In the same manner using the dynamic programming approach, this problem is embedded in
a larger class of problems, notably for V¢ € [0, T'] find (&, @,(")):

for the moment supposing existence and uniqueness. To facilitate notation introduce:
(1) = Xz.5,00()

defined on [0, t]. The optimal Mortensen filter (see [36] and [[12]]) is defined by taking at each
time t € [0, T]:
x(1) = x,(1),

that is at each instant ¢ the optimal estimation of ¢ and w(-) must be found that minimizes
J(Z, w(-), ) - by definition on the window [0, ¢].

As in the previous section, we use Bellman’s Principle of Optimality, which states that the
optimal trajectory X,(-) associated with the optimal (/;, @,(-)) satisfies

J(x (), ,(-), 5) = m(lgl J(x(s5), w(-), 5), Vs €[0,1]

or in other words an optimal trajectory on [0, ] must be optimal on every subinterval [0, s].

Remark This is a simple consequence of the additivity of the cost function J:

1 !
J(, (), 1) = J(xz00)(5), W(), 5) + Ef 1Dz (@) DI + @l dr Vs €[0,1]



2.2 Optimal filtering law

In this section fix arbitrarily ¢+ € [0, T]. In the following to simplify notation subscripts of
Xz.w()(+) are only used when necessary.

To derive the filter equations, introduce the adjoint variable p(-) : [0,t] — X associated
with a given trajectory x(-) defined on [0, #]:

T T
p(s) + g—? o p(s) = %—? o MD(x(s), s), s € [0,1] (2.10)
p(0) = U (x(0) - xo) (2.11)

Theorem 2.1 X,(-) is given by

%(s) = A(®(s), ) + BS'B'p(s), Vs e[0,1]

_ e (2.12)
X(0) = xo + U, p:«(0),

where p,(-) denotes the adjoint variable defined on (0, t] associated with the optimal trajectory

)_Ct(')~

Proof. The partial derivative of J with respect to { writes as:

oJ Ox oD 0x
— 8¢ = (x(0) — x)"U (5§+f D(x(s), s)' M — 6§ds
a{ Lw(-),t ° s ag 6§ x(s),s
ox f A|" " ox
0) - U, ) — old
= (x(0) = x0)" ° 32, §+f(p(S)+ 9 X(S)SP(S)) {ds
o0x 0x
- —|=| o] d
= (x(0) = x0)" Uy — 65 8¢ +|p(o)' ag 5] fp( ) dt(&{ 5) s
Ox
p(s)" 54’ ds
f 8§: x(8),s
= p('6¢
since the sensitivity of the state with respect to the initial condition satisfies the differential
equation:
dox) _oa) o
dr 8§ s - af x(s),s ag s
O0x
=1
A,




In the optimum (Z,, G),(-)), one must have

oJ

- =0,
e Zr,@()t

which leads to
P =0
where p,(-) is the adjoint variable associated with X,(-). Performing the same calculations for

w(-):

oJ 0x
o sw(-) = (x(0) = x0)" Uy o~
ow Lw()t ow

f D(x(s), s)' M —

560( )

oD
&

= (x(0) - x0)" Uy %'0 50()

d oA " ox
~f0‘ (p(S) ’ a_é: x(s)sp(S)) % s
ox
= (x(0) — x0) Uy — 5w()

o pd(dx
ws(sw()] fO‘P(S) d_t(a_a)s
f p(s)T ax Sw(-)ds + f w(s)7 S 6w(-)ds

aé: x(s)s s 0

= f (w(S)TS —p(S)T -
0

using the initial condition of the adjoint variable, and also that the sensitivity of the state with
respect to the model noise satisfies:

ax 5w() + w(s)' S Sw(-)ds

N

x(s),s

Sw(-) + w(s)T S sw(-)ds

+|p(s)’

6w(~)) ds

)&u(-) ds

w(s),s

d [{0x 3 0A ox N OB
dt\dw)|,  0¢ |y, dwls  0wlwe)s
ox 3
ow|;
In the optimum (Zt, c?),(-)), one must also have
oJ
97 = 0.
0w 7.0,

10



This leads to the optimum of w:

T

W(s)=8"" % Pi(s), m
w w(s),s

Let us now introduce the filter Hamiltonian
HE, ) XXX XPX[0,T] >R
1 1
¢ p.w,0) > HE p,w, 1) = EIID(& Dy, + Ellwllé - p" (A1) + B(w, 1))

For a given trajectory x(-) and the associated p(-) adjoint variable the following relationship

holds:
T

oH

3
For a given (£, w(-)) with the resulting trajectory x(-), and the associated p(-) adjoint variable
the following relationship holds:

oH
op

=p(s)  Vselo],

x(8),p(s),w,s

T
= —x(s) Vs €[0,1],

X(5),p(8),w(s),s

For the optimal (Z,, c_u,(-)) pair, and the associated optimal trajectories p,(-) and X,(-)

T T
0B
= Sas) - %% p(s)=0  Vse[0,1]

%(5),Pe(5).@1(5),5 Wlw(s),s

o
ow

holds. As in section [A] define the value function associated with the cost function:
V(Z, 1) := min J(Z, (), D). (2.13)

Theorem 2.2 Assume that the following minimization problem has a unique solution for ¥t €
[0,T] and for V¢ € X:

For a given (¢,1) pair, note this solution @g,. Suppose also that this solution varies continu-
ously with respect to (¢, 1).
Then V(-,-) is a solution of the following Hamilton-Jacobi-Bellman equation:

V(&) — HEVED ,dent) = 0 (2.14)
1
V(£,0) Ellf—xOII?JO (2.15)

For a fix t we have the optimal estimation of the model noise:

,(8) = Dy Vs €[0,1]. (2.16)

11



Proof. Fix t € [0,T]. By introducing X¢(-) := xza,(-) on [0, 7], one has by Bellman’s principle
of optimality:

t

1
V(£ 1) = V(Xe(t = 61),t = 1) + 3 f ID(xe(s5), )3, + lwe(Il5 ds, Y 6t € [0, 1]

t—ot

which by using continuity of D(:, -) and @,(-) leads to

0= lim (zi& (5tIID(5cg(t), D3, + otll@()ll5 + o &)) _ V(x(0), 1) = V(Fe(t = 60), 1 = 5t))

ot

1 1 dv
= —||D(x 2 —Me 2 _ 27
NP0 Dl + 50 = |
1 , 1 , 0V ov _
= IOl + 51005 = 5| - 5 (A0 + B@g®),1).

From this, it follows that w:(r) = @;,, otherwise the value of V(&, 1) could be decreased by
taking w:(-) = ¢, on a sufficiently short [¢ — ot, 7] interval. Expressing this equation by the
Hamiltonian function gives the desired result. For the boundary condition

V(£,0) = min J(£, ("), 0)

with x¢,,(0) = & holds. |
Remark @, can be expressed as

S—la—BT

D =
ot ow w(s),s

a;;V(f, 1)

The following theorem helps expressing the optimal filter by means of the value function.

Theorem 2.3 Forallt € [0, T], the following relationship holds between the optimal (X,(-), p,(-))
pair and the value function:

Pi(s) = eV (Xi(5), ), Vs €[0,1]. (2.17)
Proof. On a fix [0, #] interval, for any given x(-), p(-) pair, the initial condition writes as:

9:V(x(0),0) = (x(0) = x0)" Uy = p(0)".
From the HIB equation (2.14)) it follows that

d
& (0V(E, 9) = HE O V(Es), s, 9)

= 0:0,V(£,5) = OgH (£, 0:V(E,5) gy 8) = O, H (£.0:V(E, )T, er 5) FVIE, )
= 0:0,V(£,5) — D&, 5)" MO:D(&, 5) + 0.V (E, )0:AE, 5) + (A, 5) + Bive,) 0z V(£ 5) = 0,

12



which gives on the optimal trajectory X,(-):

d
= (0:V((s). 9)7) = 9 D((s). $)T MD(E,(5). 5) = DeA(5). 8) 9V (ils). )"
Thus 0,V (x,(s), s)T and p,(s) satisfy the same dynamics with the same initial condition. O
Now since the optimal filter defined on [0, T'] introduced by Mortensen satisfies x(¢) = X,(f),
and since the condition of optimality can be given on the adjoint variable as p,(f) = 0, the
previous theorem gives

pi(t) = 9:V(x%(1), )" = 9:V(x(0),n" =0, Yt e [0, T].

Suppose V is C? in a neighborhood of (%,(?), f), for V¢ € [0, T], and that a;wg, t) > 0. Differ-
entiating the previous equation with respect to 7, and differentiating the HIB equation (2.14)
with respect to &, it follows that

oVl . v
0=22 i+ L2
0¢* o).t acot 20).t
O*V ‘o) + H|" o2V OH|"
= — X — - -
08 |2 08 Ly ocviwan o 98 i OP LyacvGw T ot
PV s+ 2 mpGan- (A(A(z) 48 Bl r))
=28 i+ & 1), 1) — — 2(t), —| P,
352 2.t a‘f ()t 362 (0.t 0 w(s),s

using the identities obtained on the derivatives of /. Thus the equations of the optimal filter
are given by:

av|" oD’
AX(), 1) — — — MD(x(1),1t) (2.18)
662 ().t 8§ x(1),t

Xo- (2.19)

x(0)

x(0)

Remark Note that in the linear case the filter obtained coincides with the Kalman filter; for a proof,
see [31]]. In the nonlinear case, usually some sort of approximation of the Kalman filter is used; lin-
earization (EKF) or averaging (UKF). The cost to pay however for the optimal filter, is the necessity to
calculate the value function, which is a computationally very demanding task.

2.3 Stability

Let us start by fixing a virtual reference system, with respect to which we wish to show stabil-
ity:

(1) A(%,(2),1)
56,»(0) = Xo+ 1

13



such that D(X(7), t) = 0. Now the system error X can be written as
X() = () = X() + (X() = £())
Suppose that w,(-) € L*(R*). Since
d,V(X(1), 1) = 0:V(X(1), 1)0, (1) + 8, V(X(1), 1) = 0,V(%(¢), 1)
and V(X(0),0) = V(xg,0) = 0; V(x(¢), ) can be expressed as

1 !
V.0 =5 fo IDG(s), 9)lly ds

Since X(¢) is a minimizer of V(.,7) at all time instants ¢, and by the assumption on w,(-),
V(x(r), 1) is bounded:

V(&(@), ) < V(x(0),1) = %er(()) — xollf, + % fo [ llwA (I3 ds,
Moreover V(%(-), -) is monotonically increasing, by using the definition of X(-) and V(-, -):
V(&(n), h) < V(X,(11), 1) < J(X, (1), @y, (), 11) < V(i(82), 12) fort; < 1.
It follows that dc e R :
lim V(&(),7) = lim % fo DG, iy ds = ¢
Now take as a Lyapunov function candidate:
V(& 1) := V(E+ 2(1), 1) — V(R(@), D).

This is a valid Lyapunov function candidate, since at a given time instant ¢, X(¢) is a minimizer
of V(-,¢) thus V(&,1) > 0, moreover V(0,¢) = 0. The total time derivative of this Lyapunov
function candidate along the error trajectory X(-) := x,(-) — X(-) writes as

d - d

EV(W)’ 1= T (V(x,(0), 1) = V(x(2), 1)) =
= 0:V(x:(), DX(1) + 0,V (x.(0), 1) — 0:V(X(2), Hx(t) — 0, V(x(2), 1)
= 0V (x,(0), )(%,(1) — A(x,(2), 1) — By, 1)(1))

1 1 1. 1
+ EllD(xr(t)’ Dl + Ell&)x,m(t)llﬁ - EIID(X(I), Oy, — Ellwm)(t)llg

1 1 1
= 0V (x,(1), DB(w, (1) — Wy, (1)) + EIL\/II?W + EIIG)X,@)(I)II? - EIID()AC(I), Dz

by the HJB equation. Suppose for the moment that there is no model noise w,(-) = 0, no
measurement noise y = 0 and that B is linear. In this case, the error dynamics is stable, since
the total derivative of V(X(-), ) is:

d. 1 1.
EV(W)’ 1) = _Ellafv(xr(t)’t)”BTS‘lB - EIID(x(l), Dy <0,

by abuse of notation, since B’ S 7! B is not necessarily a norm.
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Control Filtering
[r, T] time window time window [0, 7]
s time time t—s
x(t)=¢ initial condition final condition x(¢) = ¢
u(-) control model noise w(+)
L") trajectory error innovation D(, ")
x(+) reference trajectory | real system x(*)

Table 1: Duality of control and estimation
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3 The optimal reduced filtering problem

The approach of reduced filtering is to reduce the uncertainty to the so-called reduced state (in
our case consisting of parameterﬂ, and consider that the rest of the uncertainty (state) is taken
care of. E.g. in our case, joint state-parameter filtering is applied that is a Luenberger type filter
is applied to the state of the system, and the optimal reduced filter is applied to determine the
unknown parameters of the system. In this way, one is able to implement computationally
demanding filters for parameters that require more accurate estimates by applying the filter
only to a small part of the state, and applying another type of filter (Luenberger) to the large
remaining state. In the simulations conducted for this work, the parameters to be determined
are the stiffness and mass parameters of the different regions of a bar clamped at one end, and
the rest of the state is constituted by the displacements and the velocities of the bar’s particles.

3.1 Reduced filtering

The reduced estimation case is formally presented in this short introduction, then exact def-
initions follow. The idea of reduced estimation is as follows: the full state is decomposed
into two parts, the state, and the reduced state. The reduced term refers to the fact that the
uncertainty is only present in xy, a part of the full state. E.g. one could consider a system,
with a set of unknown parameters ¢ that are to be estimated. The state space, extended by
these parameters also defines a dynamic system, with the extended dynamics (0 dynamics on
parameters in most of the cases). For the sake of generality, we do not pose restrictions on this
so-called reduced state and its dynamics.

Methods for conducting reduced filtering have already been investigated in the MACS
team, see [32], [33]. These methods rely on the Extended and Unscented Kalman Filtering
(EKF, UKF). These reduced filtering methods, as their full counterparts, often possess good
stability properties, this however depends on the nonlinearity of the system. However, from
the nature of the problem it is unevitable, to apply a joint state estimation method to obtain
convergence, since even with ’good’ parameter estimates, if the state doesn’t converge, it is
hopeless to expect convergence of the parameter. However the stability of such a joint state-
parameter filter must be examined, for details, see [33]].

The goal of this section, is to present the reduced formulation of the filter proposed by
Mortensen [36], presented in the previous section.

8The distinction of state/parameter is purely conceptual; as we shall see in this chapter, the parameters can
be added to the state space, thus they can also be considered as part of the state. However we emphasize the
fundamental difference with the reduced state, which is characterized by containing the uncertainty. Also note
that in most applications the reduced state coincides with the parameters, but the purpose of this footnote is to
state that this is not imperative.
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3.2 Problem formulation

In this section the previously introduced optimal filtering approach is adapted for the reduced
state estimation case. x,(-) is referred to as state trajectory, and xy(-) is referred to as reduced
state trajectory.

Thus the system to be considered is:

Xe() = AS(xg0), xg(0), 1) (3.1)
Xo() = A’(xe(0), x5(0), 1) (3.2)
x0) = & (3.3)
x9(0) = Fo+my (3.4)

with the notations of the previous section, with additionally xy : [0,7] — © a parameter
vector with an unkown reference parameter xj, : [0, 7] — O to be estimated.

Remark In real applications, the assumption of a known initial condition is justified, since state esti-
mation (see section [B) can be jointly conducted with the parameter estimation to find &. Of course,
the stability of the joint filter must be examined. With some prior knowledge on the system, a ¥ a
priori estimate of the unknown parameter is given, and the uncertainty on this parameter is noted 7y

(x5(0) = Fo + 1g).

Remark In the case of the the bar clamped at one end, x, represents the displacements and velocities
of the vibrating bar, and xy represents the unknown stiffness parameters in the different regions of the
bar. In the case of the heart, the different parameters are the contractility parameters of the different
regions, see Figure[T]

1. basal anterior 7. mid anterior 1.3 apical anterior 18. basal anterior 24. mid inferolateral
2. basal anteroseptal 8. mid anteroseptal ~ 14. apical septal 19. basal anterolateral ~ 25. mid inferior

3. basal inferoseptal 9. mid inferoseptal 15. apical inferior 20. basal inferolateral ~ 26. basal anterior

4. basal inferior 10. mid inferior 16. apical lateral 21. basal inferior 27. basal inferior

5. basal inferolateral ~ 11. mid inferolateral ~ 17. apex 22. mid anterior 28. apex

6. basal anterolateral ~ 12. mid anterolateral 23. mid anterolateral

Figure 1: Official (AHA - American Heart Association) ventricular regions
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By extending the state space with the parameter, the system can be reformulated as follows:

x(t) = Ax(r),1) (3.5)
x(0) = x¢+n, (3.6)

with x() = (xg(), x9()", Xo = (&, 90)", 17 := (0,19)" and

_ Ag(xf’xﬁ,t)
Aten = (Al’<x§,xﬁ, n)

thus transforming the parameter uncertainty to an initial condition uncertainty that has been
studied in the previous chapter. However the fact that there is no uncertainty on x(0) requires
certain modifications, and thus the reduced filter is obtained. The extended reference variable
is noted by x,(-). In the following discussion, since there is no uncertainty on the state, we
drop the subscript of 7.

Similarly to the previous problem, an observation H : Xx0x[0, 7] — Z and an innovation
D:Xx0®x[0,T] — Z are given:

D(-xf’ X5 t) = Z(t) - H(x§’ X5 t)

The parameter estimation problem writes as:

iy, + 3 5 IDGe(s) xo(s) ), s €= 4o
J , T,t = 2 Uy 2 Jo M
(€n'’.1) {Oo .

with xg(+), x4(-) satisfying (3.1)), (3.2) with initial conditions x(0) = & and x4(0) = ¥y + 7.

Remark Since we have an absolute knowledge of the initial value of the state, the norm || - ||y, con-
sidered in the previous section degenerates to the case |[|(€, 1) ||y, = oo iff € # &; thus it is no longer a
norm.

Remark The cost function in shows how "good’ an actual estimate is, through the system dynamics
and the observations on the system; in other words how ’far’ we are actually from the real model.

Since the values of interest of the cost function do not depend on &, it can be reduced to 7
by adding the constraint xs(0) = &. By adding this constraint, the reduced cost function is
obtained:

1 1
Jo(n, 1) := Eunnéo *+3 f ID(xs(s), x5(5), )II3; ds,
0

with the state and parameter trajectories satisfying the initial/final conditions x:(0) = &,
x9(0) =Ty + 1
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3.3 Optimal parameter filtering law

Xg(')

Fix (n,t) € ® X [0, T]. To a given trajectory x(-) = (x 0
(-

) on [0, ¢], defined by the fixed 7,

introduce the adjoint variable

() = (pf(')) :[0,1] > XX O

po(-)
by
d AT r
$P(S) = "% s p(s) + I s MD(x(s), s) (3.7)
pe(1) 0
(m(r)) (0) (38)

Remark The adjoint variable appears when differentiating the cost functional J that has to be mini-
mized, and facilitates calculation of the optimal filtering law, see the following theorem for details. It
is quite commonly used in variational methods.

Theorem 3.1 On a fix window [0, t], for the optimal parameter trajectory Xs(-) (satisfying
X9(0) = ¥y + 177 := Py + 1,) the resulting adjoint variable py(-) satisfies:

Po(0) = Uoh.

Proof. Using (3.7) and (3.8)), the partial derivative of J with respect to n writes as:

9 oD| 9
W 50 = 0" U0 + f D(x(s), s)"M &2 | s9ds
67] i Ox x(8),s 677
’ oA "o
= 1" U609 + f (p(s) + &2 p(s)) M s9ds
0X I x(s).s onl,
=" Uyd9 + | p(s)” 619}
anl, "),
! d (ox ! 0A Ox
- T—| =| 69| ds+ f o9 d
L P(s) dr (577 s ) ’ P 9x o) Ol ’

=n"Uy — ps(0)' 69

by partial integration, and since the sensitivity of the state with respect to the initial condition
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of the parameter 7 satisfies:

d A
_(@) _ oA Ox (3.9)
dr\dn)|, 0x |x(5),s 0N,
0
el 2~ o (3.10)
on |,
0
i B (3.11)
on ly
For the optimal 7
oJ
= =0
on it
must hold, which gives:
Ps(0) = Uo. O

Remark Note that by fixing x¢(0) = x¢ the sense of both the corresponding sensitivity equation and
thus the corresponding adjoint equation has changed.

Introduce the reduced filter Hamiltonian:

H: (XxO)Xx(XxO)x[0,T] > R
1 . (3.12)
(x,p, ) > H(x, p,1) := EIID(x, Dllyy — P Alx, 1)

For a given trajectory x(-) and the associated p(-) adjoint variable the following relation-
ships hold:

OH|"

e =p(s)  Vse[0,1],
X 1x(5),p(s).s

IH|"

—_— = —x(s) Vs € [0,1].

(9]7 x(8),p(s),s

Since we consider the parameter dynamics without model noise, the dynamic programming
problem degenerates to an optimization problem, with the reduced value function coinciding
with the reduced cost function:

Ve, 1) = Jy(n,1).

The analogue version of Theorem [2.2]results in the previous identity:
Theorem 3.2 Vy(., ) satisfies the reduced HIB equation:

o)

0 3.13
ot |y, ( )

1
_ 5||D(x§(t), x5(2), I3

Vﬂ(n’ 0)

1
Ennn%jo (3.14)

with x£(0) = & and xy(0) = 9y + n.
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Proof. Fix t € [0,T]. Bellman’s principle of optimality reduces to a simple additivity of the
integral:

1

1
V(1) = Vo(n,1 = 61) + Ef ID(xe(s), x9(s), )ll3; ds, V6t €[0,1]

-0t

where x; satisfies x4(0) = ¥ +n and x£(0) = & . Using the continuity of D(-, -) and xy(-) leads
to

Vﬂ(n’ t) - Vﬂ(n’ r— 5t)

1
0= lim (— (811D Cxe(), x(0). Dy + 0(61)) =

26t ot
1 0Vy
= —|ID(xs(t), x5(0), D3y — ——
SDCxe(2), xp(8): Dy = —- .
1 aVy
= —|ID(xg(0), x5(), D2, — —=
1D (xe@), xo (D). Dllyy = —- .
The initial condition is satisfied by definition. O
The analogue version of Theorem [2.3]is stated as:
Theorem 3.3 ForVt e [0,T]:
T r Ox
9, Vo(n, s)" = p(s) anl.’ Vs €10,1] (3.15)

with p(-) the adjoint variable associated with x(-) (both determined by a choice of n).
Proof. Fix arbitrarily ¢ € [0, T'] and the (x(-), p(-)) pair. The boundary conditions write as

0 0
=2 =pO) 5
n

9, V(x5(0),0)" = 15" Uy 3
0 n

0

By differentiating the right hand side of the equation, after simplifications, one has:

d%(p(S)T 3—; ) = D(x(s), x9(5), )M, D(x:(55), x5(5), 5)

N

using the equations of the state sensitivity with respect to the parameter (3.9)) and the adjoint
equations (3.7). Differentiating the reduced HJB equation by n, it follows that the two sides
satisfy the same differential equation with the same initial conditions. O

The Mortensen conditions for the optimal filter are x(¢) satisfying the initial condition Xy(0) =
Py +17)(1). Using the previous result the following condition can be given on the value function:

67]‘/17(7/7(1‘), t) = Oa Vl € [07 T]
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Remark The following intuitive remark can be made: the Mortensen filter minimizes at each time
instant ¢ the value function Vy(7, f), and the preceding condition is exactly the necessary condition for
X9(¢) to be a minimizer of Vy(-,¢). However by the previous proofs, further insight is gained on the
relationships that hold between the value function, sensitivity and adjoint variables.

Taking the total derivative of the previous identity by ¢ and differentiating the reduced HJB
equation by 7 it follows that:

OV . OV
0=—= A0+ —
M iy MO |50y
%V, . oz|" aD|*
=220 b+ 2| S| MDGa)D
0 |4 nl, 0x sy

the last term being zero by the condition on the value function, which gives the equation for
the optimal filter for the reduced uncertainty 7:

TaDT

0x

d ., . -1 0%
10 = - (Vaw.0) =

n MD(%(2), 1)

X(0),t

t

To obtain the optimal state estimation associated with the optimal parameter estimation

%ﬂg:&ﬂﬂ+%ﬂ&ﬂ)

Thus the equations of the optimal joint state-parameter filter are obtained:

. Ox -1 9x|t oD|T
() = AQG@),1) - — RV@H®D), 1) = — MD((1), 1)
d ﬁ(t),t( ! ) on A(e).t 0 |30
. -1 o0x|t oD’
o = —(2V@H®,1) =| ——| MDG®),1)
( ! ) 577 A(1),t 0x ().t
o [0
£0) = ( ﬁo)
f0) = 0

In these equations one recognizes the sensitivity of the state w.r.t. the uncertainty on the ini-
tial condition and also, the Hessian of the value function V(-,-). The first equation can be
decomposed into two parts, the dynamics A(:, -), responsible for our system to behave as the
target system in case there is no measured difference, and the correction term. This prediction-
correction type decomposition is significant in the discrete case. The equation on 17 shows that
by gathering information, our optimal guess for the initial condition X4(0) (determined by the
uncertainty ) changes in time, described by the obtained differential equation.
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4 Numerical strategy

To implement the above described filtering methods, the calculation of the value function is
necessary. This however requires the solution of either a HIB equation, or in the case with no
model noise, a time integration of the innovation; even the latter requires the simulation of the
dynamical system on the given time window [0, T']; such a simulation for high dimensional
systems is very demanding in calculation time. In this realization we considered the case
without w model noise, that is we do not solve a HIB equation. In this section we present the
numerical methods used for the realization of the reduced Mortensen filter.

4.1 On-line and off-line approach

The off-line approach here refers to the fact, that we consider the measurements on [0, 7] to
be available at r = 0, while the on-/ine approach implies that the measurements are considered
to be arriving continuously in "real—time‘ﬂ For the implementation of the reduced filter, both
the value function and the sensitivity must be calculated.

There are (at least) two approaches for the approximation of the sensitivity dgxz,(7):

1. Simulate the sensitivity for ¢, giving d,x;,(f) = 8,xs,(?) (giving quite a rough approx-
imation)

2. Take at each time instant 7 a local approximation of the sensitivity, by taking a discretiza-
tion Q, of a pre-defined domain Q C ® and approximating by some sort of interpolation;
Xﬁi(t) - 5&19,'_1(1‘)

In the Verdandi implementation the first approach is used in the off-line method, and the
second is used in the on-line realisation. The reason is that the second method requires the
state trajectories to be calculated for a set of i particles. However, for large systems, off-line
precalculation and more importantly the storage of the trajectories would be impossible. This
however can be avoided in the on-line version by storing at each time ¢ only Xy,(?), Xg,(z — 1)
for a set of the i particles.

Remark One might wonder, if the value function has been calculated off-line on the domain € (which
supposedly contains the optimum), one has an approximation of all V(-, T') values; why not simply take
the minimum of V(¢, T) with ¥ € Q? The answer is, that for an application-oriented version of the
filter, this idea should not be automatically rejected; see Appendix [C|on the reduced order variational

9Real-time here shouldn’t be confused with real-time engineering applications; since our goal is diagnostics,
the measurement data (MRI images) can be processed off-line, separately from the real-time system (heart). In
this context, real-time means simply that the measurements are processed consecutively.
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method. However, the interest of a realization of such an optimal filter lies in its possibility to be
compared to other, more easily implementable nonlinear filters. As a comparison take e.g.

[IXRoUkF — XroOHIBIIX

with X = LP(0,T), WP(0,T), ... (Of course instead of ROUKF any other filter can be taken.)

4.2 Discretization

Depending on the approach, both the value function and the trajectories (on-line approach), or
only the value function (off-line approach) have to be calculated on Q. Thus both a discretiza-
tion and an interpolation strategy must be chosen.

First of all a domain to be discretized Q ¢ ® := RY must be determined; this can be done
around ), depending on the initial error variance U,. The domains considered are of the
"box" type: Q:=1, ® [, ® ... ® Iy with I; denoting an interval of the i-th dimension.

Two discretization approaches have been implemented. The first version takes a dense
discretization of the domain, see section {.2.11 However, such a discretization suffers from
the curse of dimensionality, and with increasing dimensions of the parameter vector, quickly
becomes intractable. In the solution of partial differential equations and quadrature methods,
this problem is treated to some extent by using the so-called sparse grid methods, which for
the same order of precision require significantly less number of points. Thus the second ap-
proach was to apply the sparse grid method to approximate the Hessian of the value function.

For the interpolation strategy the dense grid uses a piecewise linear interpolation method,
while the sparse grid uses either a polynomial, or piecewise linear interpolation method. For
approximation of the derivatives finite differences are available in both cases, and for sparse
grids analytic differentiation of the polynomial interpolant is also available. In the following
these two approaches are presented.

4.2.1 Dense grid

A dense discretization of this domain gives
Qo =lele.. oI

with /¢ a certain discretization of /;; i = 1...N. In our case only equidistant discretization is
examined; this can be determined by a & = (hy, h,, ... hy) € RY discretization vector and the
lower and upper bounds of /;,i = 1,2...N.
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Since the evaluation of the value function for a given #; € ®, can be done recursively, for a
computationally demanding problem it is worthwhile doing an off-line precalculation of these
values using parallel computation techniques. In this implementation MPI has been used.

Once the value function calculated on the domain, 3-point and a 5-point stencil finite
difference methods are used for the approximation of the Hessian.

4.2.2 Sparse grid

Sparse Grids are generally attributed to Smolyak [42]]. For the reference on polynomial sparse
grid interpolation see [4]. A good introduction to the sparse grid techniques is [[14]. On imple-
mentation aspects [22]] and especially Klimke’s [21] is instructive. We base this compactified
introduction on these articles.

The sparse grid techniques have evolved primarily from quadrature techniques, see [42]]
and [[15]]. The main advantage of the method is that supposing certain regularity conditions on
the given function, good approximation properties can be obtained using a significantly less
number of points, thus to some extent reducing the effect of the ’curse of dimensionality’ (a
term coined by Richard Bellman). To give an idea of the number of points used for a certain
discretization level of sparse grids compared with that of the dense discretization see Figure 2]
This comparison is made in 2 dimensions, and for a relatively low level, for higher dimensions
and higher levels the contrast is even more sharp.

Figure 2: Sparse vs. Dense discretization (29 vs. 81 points)

The basic idea of the sparse grid methods, is to take a hierarchical discretization of the
I; intervals in each dimension i, giving [;;-s, [ = 0...L with L the hierarchical level and [;;
the (finite) set of points, whose union gives the discretized /;; l_}) LI,-,, = I;’ . Then the tensor

products of these /;;-s are taken in such a way, that only those with a limited number of points
are added on each level [ = 1... L. The gain in the number of points originates from the fact
that not all tensor products are taken into account. The idea of the hierarchical discretization
is best illustrated on figure 3| (taken from Garcke’s Sparse Grid Tutorial [[14]).
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Figure 3: Hierarchical Sparse Grid interpolation of a 1-D function by piecewise linear basis
functions (taken from Garcke’s Sparse Grid tutorial [14])

There are several parameters to the creation of a sparse grid:
1. Where to place the nodes of the /¢? (Equidistant, Chebyshey, ...)

2. How, in what order to divide the Il.d—s to /;; hierarchical levels? (Clenshaw-Curtis (CC),
maximum-norm (MN) based, maximum-norm based with no boundary points (MNNB),

.2)

3. What kind of approximation to use? (Linear, Polynomial, ...)

The methods in parentheses and their combinations have been implemented in the library. In
the following a more formal exposition is presented of the previous notions.

The Sparse Grid method This paragraph is based on Barthelmann et al. [4]. Without loss
of generality, take I; =, = ... = Iy = [-1, 1].

Take a smooth f : [-1, 1]Y — R function, that is to be approximated. For the moment in
one dimension (g : [-1, 1] = R) choose an interpolation method:

M) = ) s(xe,

J=1

where i € N is the order of the interpolation, goj. € C([-1,1]) are basis functions and x§ €
[-1, 1] are the interpolating nodes. Now using these 1-D interpolation formulas, define the
tensor product:

m,-l m,-N
(Mro-caMM) (=D ) FOl, ) () @ @)
Ji=1 Jn=1
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Take |s| := 51 + 52 + ... + sy fori € RY. Now by defining the difference formulas as:
As — Ms _ Ms—l’
the Smolyak algorithm writes as

S() = Z AV ®... @AY

Is|<!

In other words, we take the tensor products on the N-dimensional diagonal of the IV sized
"interpolation box" (see figure for illustration of N = 2 with Chebyshev points, Clenshaw-
Curtis ordering and piecewise linear basis functions).

AN =< ANA VWM

NN > 7\

:

Figure 4: Hierarchical subgrid spaces with Chebyshev discretization points and basis functions
in 2 dimensions (adapted from Garcke’s Sparse Grid tutorial [[14]))

In [15] the following are chosen as the parameters of the sparse grid:

1. Chebyshev
2. Clenshaw-Curtis
3. Polynomial

For these parameters the authors obtain the following error bounds:
”Id - ﬂ(l)” < CNEk* n_k(log n)(k+2)(N—1)+1

with ¢y constants depending on the order of continuity f € C* and the dimension of the
problem N; n denotes the number of nodes used by A(l).
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4.3 Interpolation

For interpolation with basis functions that have disjoint support, it suffices to identify and
evaluate only the contributing basis function, which leads to fast interpolation. For an effi-
cient evaluation of multivariate Lagrange type interpolation, a barycentric interpolation type
scheme is used.

A very clear and concise introduction to barycentric interpolation and its history can be
found in [|6]; the univariate case is based on this article. Klimke in his thesis [21] presents
an approach to apply barycentric interpolation for sparse grids. In the following first the
barycentric interpolation for the univariate case, and then an implementation of barycentric
interpolation for Sparse Grids is presented.

4.3.1 Barycentric Interpolation

Univariate case The Lagrange polynomial interpolation problem is the following: Find the
polynomial p € II, that interpolates a given f : R — R at given points {x;}=_,:

p(x;) = fj, j=0,...,n,

by noting f; := f(x;). The classical solution of this problem due to Lagrange can be written

as "
Hk:(),k;tj(x — Xi)

P =) fiei (0, @0 =—

00 k=0, (Xj = Xi)

Note that the ¢; Lagrange basis polynomials can be characterized by
@i (X) = O
with ¢ ;; denoting the Kronecker symbol.

Remark A simple calculation gives, that the evaluation of p(x) in this form requires 0(n?) multiplica-
tions. (n basis functions each requiring n multiplications.)

Introduce ¢(x) := [[)_o(x — x;). Now to proceed, define the barycentric weights w; by

1 .
P — m s ]:(),...,n
! [ Trzo (X = x0)
By using these weights, the basis functions simplify:
Wi
@j(x) = @(x) :
X —X;j
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and the Lagrange interpolation formula writes as:

W;j

pe) =90 Y ——f,
j=0

X—Xj

In this form, the w; are quantities that can be evaluated independently of x, and the evaluation
of ¢(x) requires O(n) multiplications. This has been called the first form of the barycentric
interpolation formula. This can be further simplified by the following observation:

1= D060 = ¢ ), ——.
j=0 j=0 /

and dividing the first form by 1, the second, or true form of the barycentric interpolation
formula is obtained:

n

Wi
§ fi
X—Xj

py=2

This formula is a numerically stable one, for further details, see [6]; however special care must
be taken, when interpolating at a point x;, since certain numerators turn 0. However, knowing
that p satisfies p(x;) = fj, by storing the function values f; alongside the w; coeflicients, the
problem is easily circumvented.

Barycentric interpolation for Sparse Grids Now for sparse grids, when using multivariate

polynomial interpolation at a given (xy,..., xy) = X €  point, polynomials of the type:
PIPIRAACS
|s|<L beBg

have to be evaluated, where L is the level of refinement of the sparse grid, s € NV is the
subgrid index, b € B; ¢ N is an indexation of the ¢ [0, 11V — R basis functions, c
denotes the coefficient (also called surplus) of a ¢} (x) := ngl go,‘,j (x,) basis function, and a
certain QDZi : [0, 1] — R writes as

s 1
e == ] G-,

ba 0<i<sq,0<m<my
I=sg=>m+#by

where m; denotes the number of nodes on subgrid level /, ozZ‘:l being the normalizing factor:

Sd . S, l
@, = n Xy = X),

0<I<s4,0<m<my
I=sg=>m#by
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such that 902‘2 (xZ‘; ) = 1; thus the ¢}, coefficients can be chosen to be f(x) — S*!(f)(x}). In a
complete form:

N
Sihm = > (rey-s='me) [T 1 ;Cd;_xf"
d=1 0

')
X
|s|<L beBg <I<sg,0<m<m; ~ ba m

[=sq=>m#by
Thus to have a sparse grid representation of a function, one first has to evaluate the function

values on the sparse grid nodes {xf)| Is| < L,b e Bs}, then to interpolate on intermediate values

x, one has to calculate products of differences of the type x; — x. .

Now note, that compared to the barycentric interpolation problem, the hierarchical repre-
sentation of the sparse grid interpolation doesn’t enable evaluating the interpolant in the same
way; the roots of the hierarchical basis functions do not coincide with the Lagrangian basis
functions. However, they do coincide up to the level of the basis function; thus for evalua-
tion of each basis function barycentric interpolation can be used independently. This requires
calculation of intermediate ¢(-) functions, and barycentric weights.

1 0 Y'(x)
0 0
X=X, X — X,
1| x- xcl) (x— xg)
X - X (x — xp)(x — x7)
2| x— xg
X — x% (x - x8)
2 1 1
X— X5 (x = x)(x — x;)
2 2 2 2 2
X —x5 | (x—xp)(x — x)(x — x)(x — x3)
L
L | x—x;
L !
X — Xy l_[ (x—x,)
0<I<L
0<m<my

Table 2: Barycentric Interpolation scheme for polynomial sparse grid evaluation

Such a scheme (denoted by M) can be calculated efficiently by the recursive formula:

v =v"w [ | @-2,

0<m<my
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and the evaluation of a 902‘2 basis function can be done by taking

Sd( y
w—(z/{, X ?& de
X — xbd d
Sd —

0=l [ e-x, x=x

b=1,..., ms,

b#by
The Chebyshev nodes in the Clenshaw-Curtis ordering are xJ = 0, x; = —1, x} = 1 and:
2m; —b) -1
xf):cos#n, b=1,...,m

2m1

for [ > 1 with my = 2/ for [ = 0,1 and m; = 2!~!. (Equidistant points on the perimeter of a
semicircle projected onto the diameter.)

Remark The parallelization has been done by distributing the nodes of a subgrid; since in our case
it is the evaluation of the function f (which for the filter is the value function) that is computationally
demanding. (The evaluation requires simulating a PDE on the time window [0, T'].) Such a paralleliza-
tion can be improved, by distributing the subgrids also, since subgrids on a same level do not have
conflicting coefficients; however parallelization between levels is impossible, since the coeflicients of
the sparse grid depend on the sparse grid coefficients of the previous level, even though the function
evaluations could be done.

4.4 Differentiation

Two types of differentiations must be implemented; a calculation of the Vyxy sensitivity, and
the Hessian V3V(,1).
The following gradient methods are available in the sparse grid library:

1. Forward, Central and Backward finite differences
2. Analytic differentiation of the polynomial interpolant for the sparse grid method

For the calculation of the Hessian, a 5-point stencil and a 3-point stencil finite difference
scheme has been implemented. The obvious advantage of the analytic differentiation is its
precision. However the implementation is circumstantial; care must be taken to efficiently dif-
ferentiate the root form of a multi-dimensional polynomial. In the following this is presented.

4.4.1 Analytic differentiation

In our implementation the divided difference type scheme presented in the previous section
has been used. Two cases must be distinguished:

e i(x)=0
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e gi(x) £ 0

When ¢} (x) # 0, the product rule must be applied to each dimension

)
gw= [ ey ==
xd by s _ 4Sd 4
bd 0<s5<54,0< j<my 0<I<s4,0<m<my X xj $<Sq (x de)(x xj)
s=sg=j#by  l=sq=m#bg §=54= j#ba

and then
Vuoh = Vi) ]_[ ) ().
=1,d#d’

Note that the polynomials gozd only have single roots, thus if ¢f (x) = 0, then the only way for
the gradient not to be 0, is for go (xd) 0 to hold only for one d dimension. In this case, the
gradient is non-zero only in dlmensmn d.
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5 Numerical results

The simulations (model + filter) have been implemented in C++, as part of the Verdandi [1]]
framework. In Verdandi the Reduced Mortensen Filter is called Reduced Order Hamilton-
Jacobi-Bellman (ROHJB) filter, to imply that there is an underlying Hamilton-Jacobi-Bellman
to be solved (that is for the case with model noise).

5.1 Model

The model considered is a finite element discretization of a bar clamped at one end. The bar
is divided into n regions, and in each region there is a different constant parameter (stiffness,
mass, force) throughout a given region. Then there is some excitation applied to the model,
say at one end a certain force F(-) is exerted, and one observes the vibrations of the bar (dis-
placements, as is the case for medical imaging for the heart). The goal is to determine an
unknown subset of the parameters from this information.

The general partial differential equation describing such a system is:

x(t) = Ax+R (5.1)
x(0) Xo+1 (5.2)

with the notations of the previous sections; additionally x = (y,y) and R denotes a source
term. In the variational form it becomes:

d
fp—y-éydﬂ = fpy-éde, Yoy
o dr Q

dy
— . 6ydQ
fgpdt g

Here Q represents the domain of the equation, p is the mass density, X the second Piola-
Kirchhoff stress tensor, 0y, de denote the test functions (displacement, strain tensor) and f is
the applied force. Assuming small displacements leads to a linear operator A.

—fZ(y,y):dedQ+ff~6de, Yoy
Q Q

Now take the classical finite element approximation of the variational form described
above:

M19”1X+C19CX+K19/{X = Fﬁf
X©0) = Xo,

where X is a finite element discretization of y and ¥, .« s denote respectively the mass, damp-
ing, stiffness and force parameters, and the matrices that they index are the corresponding
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finite element matrices. This model is simulated numerically using a middle point Newmark
scheme that is unconditionally stable (for details, see [3]]):

Xh+l +Xh _ Xh+1 _Xh

Koy = 2 At
% X + X0 Xp — X
s T 2 At

This provides a triangular structure for the solution of the scheme:

B ZI LX), [ 0

—5Ky, + 3,Co, + 2= My, =My, )\Xi) " \Fi1 (@)’
I denoting the identity matrix. The triangular structure can be exploited by solving the equa-
tion in two passes; first for X, , then for Xj,,;. This no longer holds for the Luenberger filtered
model.

1Ky + +Co + =My, 0 X1
21 =)\ X1

The observations are the displacements of the bar. For the solution of the finite element
equations both direct and indirect methods are available; LU, GMRes in particular.

5.2 Reduced Order Mortensen filter

In fact, in order to implement the Mortensen filter, a time discretization must be chosen. The
most common question is to decide whether to discretize the continuous filter, or to derive
the discrete time filter from the discretized cost function. This last approach is preferable,
since by supposing stability and consistency of the discretized dynamical system, the derived
filter’s stability and consistency properties can be derived more directly. However, as a first
approach the discretization of the continuous filter as a prediction-correction model has been
implemented; as the results show, this implementation is also acceptable.

1. Prediction:

R = AR
ﬁr_z+1 = ﬁ:z—
2. Correction:
_ 0Xp41 2 _ -1 0%y ’ 0D, ! _
55;+1 = )Acn+1 - 0 Vn+1(ﬁn+1) MDn+1(5en+1)
677 ﬁ;ﬂ ( ! ) 07] ﬁ,;rl ax )AC’;_H
A A— A— -1 a-)Cn 1 r aDn 1 r A
77;+1 = My —(53,Vn+1(77n+1)) (97]+ R 6x+ N MDH+1(xn+1)
U/ )
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Preliminary examinations show that the solution of the problem determined by the discrete
cost function involves the use of Newton’s method. In other words, at each step n a certain
number of iterations of Newton’s method must be calculated to obtain the optimal estimate for
the discrete cost function.

5.3 Simulation results

Assimilation has been conducteﬂ for the stiffness parameters of the bar, with the same co-
variances for each method. Note that the stiffness parameter appears in a bilinear fashion in
the estimation, thus the problem is nonlinear to some extent.

—ROHJB —ROHJB

— ROEKF — ROEKF

— ROUKF — ROUKF
o6 —— Reference o4 — Reference

. mk\k
02 )
) \/\/f 0‘\/_/_’——,

L L L L L L L L L , » L L L L L L L L L ,
0 20 40 60 80 100 120 140 160 180 200 0 20 40 60 80 100 120 140 160 180 200

Figure 5: Estimation of the stiffness parameters of the bar with different methods

It can be seen that in this case, all three filters converge to the real value (reference), how-
ever, there is a great difference in the convergence rate. The reduced Mortensen (ROHJB)
filter converges considerably faster than the suboptimal counterparts ROEKF and ROUKEF. It
would be interesting to see how the reduced Mortensen filter behaves for more complex cases,
when the ROEKF and ROUKEF don’t even converge to the real value, see e.g. [31]. Neverthe-
less it must be noted that since the Mortensen filter requires parallel simulations of the model
for a certain number of particles, the computation time of the Mortensen filter is considerably
larger than as is for the ROEKF and ROUKEF. However, this difference can be diminished
by augmenting the number of processors involved in the parallel computations; by Moore’s
law, it is not completely unrealistic to expect a considerable growth (if not exponential) in the

10Note that several simulations have been conducted, all with similar results, this simulation is a representative
sample of those simulations.

35



number of cores to be found in a processor, thus reducing the computation time of the reduced
Mortensen filter to a comparable level to the ROEKF and ROUKF ﬁlterﬂ
The value function for the specific problem examined has the following form:

8000
S
N
6000 SSISERIID
c SIS
2 R SSROSTSTS
5 5SS SIS
2 4000 SIS SRS
E
[
> 2000
0

parameter 1

parameter 2

Figure 6: Value function for the stiffness parameter

Remark Note that the form of the value function contains information about the region of attraction. If
one takes as an initial condition a point too far from the (global) optimum of the value function (which
always exists and under not too harsh conditions is unique), for non-convex problems one might get
stuck in a local optimum.

1t should be noted that since separate particles are generated that can be simulated independently, speed-up
proportional with the number of cores can, and has been achieved. The limit of parallelization for the reduced
Mortensen filter was far from being reached, contrary to the ROEKF and ROUKEF. Further advances in this sense
depend on the technological improvements to follow.
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6 Conclusion and future perspectives

Conclusion In this work a reduced version of the filter first proposed by Mortensen has
been implemented and examined. The filter has been implemented in the framework of the
generic Data Assimilation Library, Verdandi. The filter is optimal in a certain maximum-
likelihood sense and simulation results show, that it exhibits good behavior compared to other
commonly used (suboptimal) nonlinear filters. A serious drawback of the method is its com-
putational complexity, that is due to the fact that the filter requires a HJB value function to be
calculated. Thus the dynamical system must be simulated for a set of particles, each of which
is computationally demanding. The number of particles has been relaxed to some extent by
the use of sparse grid methods for the approximation of the value function.

The usefulness of such a precise filter appears in determining unknown parameters of the
heart, that could be used in clinical applications for diagnostics and prognostics. The need for
an efficient filter proves to be necessary, there are cases [31] where the more common coun-
terparts (ROEKF and ROUKF) prove to be insufficient.

Future perspectives Still, there rest some aspects of the method that are yet to be examined.
Notably:

1. Derivation of the filter for the discrete cost function. Preliminary examinations show
that this shall require a Newton method in the correction phase of the filter.

2. Other approximation methods, such as Kriging could be examined instead of, or in
combination with, the Sparse Grid methods.

3. The interest of implementing an adaptive Sparse Grid method should also be considered.

4. The dimensional limits of the method should be examined (i.e. what dimensions are still
calculable)

5. It would be interesting to see the method’s performance on real applications (determin-
ing parameters of the heart model comes to mind)

6. Applying the method to state estimation through model reduction (e.g. POD, Moment
matching methods ...)

Sparse Grid aspects Also, since the sparse grid library has been implemented indepen-
dently of Verdandi, for generic functions, it could be interesting to distribute the Sparse Grid
Library under a public licence, since at the moment aside from Klimke’s Sparse Grid Interpo-
lation MATLAB Toolbox, and the SPARSE_GRID Python package, we have not found other
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publicly available Sparse Grid Libraries (none in C++ whatsoever).

To aid development we also include a list of features that are to be added to the library in
the future.

1. Determine and implement an efficient way to calculate finite difference stepsize for a
certain sparse grid level L

2. Calculate domain from variance
3. Hierarchical error estimation
4. Implement all combinations of node-placement/order/approximation type

5. Possible improvement of distributing subgrids if processors are inactive (circumstan-
tial).
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A The optimal control problem

It is interesting to see the duality between the above examined optimal filtering problem and
the widely known optimal control problem. The goal of the optimal control problem is to steer
a system described by differential equations near a given trajectory, by minimizing one of the
following: fuel, energy, peak value, time. The quantity that is to be minimized is described by
a cost functional J(-) that associates costs with a given u(-) control function.

A.1 Problem formulation

Consider the following system:

X(1) A(x(1),1) + B(u(r)), (A.1)
x(0) = xo, (A.2)

where x € X represents the model state, A(:,-) : X X [0, T] — X is the dynamical operator,
u(-) : [0, T] — U represents the control and x; € X is the given initial condition.

Remark Note that a solution of (A.T)), (A.2) is completely determined by the choice of xo and u(-).
For a fix  we note a specific solution x; ,((-) defined on [z, T] emphasizing that we mean a solution of
(A.T)) with initial condition:

XeuH(®) = . (A.3)

Arbitrary states shall be noted by &.
Consider an x,(-) : [0, T] — X reference trajectory of the system given. Define the trajectory
error L(-,-) : XX [0,T] - Z(= X) as:

L&, 1) := x.(t) - &,

which measures the difference between the reference trajectory at a given instant x,(f) and a
given state &, but any other L(-, -) can be considered.

Consider the following, general class of feedback laws:

i(t) A(x(2), 1) + B(K(x(2), ) L(x(2), 1)), (A.4)
x(0) = xo, (A.S)

where K : X X [0,T] — ¥(Z,X) is a feedback gain of the state. The aim is to find a feedback
gain K(:,-) that is in some sense an optimal solution to this problem. To this end, introduce
the following cost functional:

1 1 T
J(, u(-),1) = Enxg,u(-)(T) - xADliy, + > f IL(Xzu0y(8), 9137 + ()15 ds, (A.6)
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The problem in the variational sense can be written as

m(l)n J(xo, u(-), 0). (A7)

Using the dynamic programming approach, the problem is embedded in a larger class of prob-
lems, notably for ¥Y({, 1) € X x [0, T] find i ,(-) satisfying:

Tt ().0) = min I uC), 1), (A8)
for the moment supposing existence and uniqueness.

Fix ({,t) € X x [0, T]. Using Bellman’s Principle of Optimality, we have that the optimal
trajectory X(-) := x;a,,((-) associated with the solution i, (-) of (A.8) satisfies

J(X(5), g 1), 8) = m(l)n J(x(s), u(-), 5), Vselr,T]

or in other words an optimal trajectory on [¢, T] must be optimal on every subinterval [s, T'].

Remark This is a simple consequence of the additivity of the cost function J:

1 N
J&u(),0 = 5 f Lk ey (0 Dy + (S A7+ TCi ey () uC), ), Vs € [T
t

A.2 Optimal feedback law

Throughout this section fix arbitrarily (£,7) € X X [0, T']. To facilitate notation, subscripts of
Xz.u()» are only noted when necessary.

To derive the equations of an optimal feedback, introduce the adjoint variable p(-) associ-
ated with a given trajectory x(-) on [¢,T']:

T T

p(s) + 6_A p(s) = 8—L ML(x(s), s), s€t,T] (A.9)
Ox x(8),s Ox x(8),s

p(T) = —Us(x(T) - x(T)) (A.10)

We have the following theorem:
Theorem A.1 The optimal feedback law minimizing J(&, -, t) is given by:
a(s) = S'BT p(s), Vselt,Tl, (A.11)

where by p(-) we denote the adjoint variable defined on [t, T] associated with the trajectory
determined by the given { and the associated optimal u(-).
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Proof. The partial derivative of J with respect to u writes as:

T
oJ su() = x(T)'U, o6 Su(-) + f L(x(s), s)"M oL Ox Su(-) + u(s)' Ssu(-)ds
Ou Lu()t Oulr t Ox x(s),s Oou s
T T T
= x(T)TU, Ox Su(-) + f (p(s) + oA p(s)) ox Su(-) + u(s)' S éu(-)ds
oulr ; O& | 15).5 Ou
d d r T d(o
= x(T) Uy a—zTéu(-H p(s)! a_if”(')]t - f ”(S)Td_t(a_zf”(')) ds

ox

x(s),s (91/!

T aA T
+f p(s)T 8_§ ou(-)ds +f u(s)’ S éu(-)ds

T
= f (u()"'S = p(s)" B) 6u(-) ds
t

using that p satisfies (A.9) and that the sensitivity of the state with respect to the control
variable satisfies:

d (ox 0A ox
— = = — —| +B
dr \Ou )|, 0X | x(s).s Outls
ox|
oul,
To minimize J by u, for a fix £ we must have
aJ
— =0.
8u Ea()t

Using the DuBois-Reymond lemma leads to the optimum of u:
u(s) = S~'B" p(s), Vse[t,T]. O
Since ¢ and ¢ have been fixed arbitrarilty, this theorem provides amongst its solutions the

# minimizing J(xo, u(-), 0).

Define the control Hamiltonian as

HE, ) : XXX XUX[0,T] - R

1 1 (A.12)
& p.u.) = HE p,u1) = SIILE, Dl + Ellullé - p" (A1) + Bu)

It can be easily verified that H for a given control u(-) : [t,T] — U with the resulting
trajectory x(-) : [t,T] — X and the associated adjoint variable p(-) : [t,T] — X satisfies the
following relations:

OH|"

Tae = p(S), Vs € [t7 T]
aé: x(8),p(s),u(s),s
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OH|"
— = —x(s), Vse[t,T]
0P Lx(9).p(srauts).s

Furthermore, from (A.T1) for the optimal control #(-) and the associated optimal trajectories
p(+) and %(-) we also have

o
ou

T

= Si(s) — B  p(s) = 0, Vsel[t,T]

X(5),p(s),u(s),s

Remark This characterization of the optimal control is also known as Pontryagin’s Maximum Princi-
ple.

Now let us introduce the value function V(., -):

V(&0 = J(, al),1), (A.13)
where i(-) is the optimal control determined for the given (£, ¢) pair.
Theorem A.2 Assume that the following minimization problem has a unique solution for Vt €
[0,T]and V¢ € X:
min 7‘{(5’ —(9XV(§:, t)T’ u, t)
ueU
For a given (¢,1) pair, we note this solution iig,. Suppose furthermore that this solution varies

continuously with respect to (&, 1).
Then V(-,-) is a solution of the following Hamilton-Jacobi-Bellman (HJB) equation:

OVE D+ HE -0, V(ED g t) = 0 (A.14)
VET) = SlE- xR, (A15)

For a fixed & the optimal control is given by:
Ug(t) = itg,. (A.16)

Proof. Define X¢(-) := x¢z,y(-) on [z, T]. By Bellman’s principle of optimality:

t+0t
Vg0 = 3 f IL(Ee(5), 9l + (I ds + V(Xe(t + 61), 1 + 61),

which using the continuity of L(-, -) and i.(-) leads to

(V()_Cg(t +01),t + 01) — V(Xe(2), 1) 1

_ + 5 (LG, Dl + ol + 0(5”))

0= lim
ot—0

0t | 2|| & Dlly 2|| DIl
ov ov 1 !

= o . A(&,1) + Bug(t ZNILE. DII? izl
ot L,,Jr Ox é_»5,( (&, 1) + Bitg( ))+ SILE DIy + SaDlls,

(A.17)
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from which #.(t) = u,, follows, otherwise it would be possible to decrease the value of V(¢, 1)
by replacing i.(-) with iz, on a sufficiently short [z, 7 + 6¢] interval. Expressing this equation
with the Hamiltonian function gives the desired result. It is easy to see that the boundary
condition is satisfied. ]

Theorem A.3 The following relationship holds between the adjoint variable and the value
function:

p(t) = =0:V(x(0), 1", vt e [0,T]. (A.18)
Proof. From the HIB boundary condition (A.15) we have:
O V(XT),T) = X(T) Uy = —p(T)" .
From the HIB equation (A.14)), we have:
d T
T (OVED + HE -0V ED . 1)

dx
= 0:0,V (&, 1) + OHE =0 V(E D g, 1) — O, HE =0 V(E D i, DIFV(E, 1)
= 0:0,V(E, 1) + L&, D) MOLLE, 1) + 8:V(E,DDAE, 1) + (A&, 1) + Bitg) 9;V(£,1) = 0,

which gives on the optimal trajectory x(¢):

d
3 (F0eV(E0.07) = eL(5(0). T ML((1), 1) = (=0A(), 1) 9V (E(1). 1))
Thus p() associated with X(-) satisfies the same dynamics as —d:V (x(1), nr. O

As aresult of this theorem we can express the optimal feedback law as a function of V:
ie(t) = =S ' BT 8. V(x(t), " (A.19)
A.3  Stability
We base this part on [39]].
The stability of such a control system is a central question, it is crucial for safety issues.

Since stability of a dynamic system is defined on R*, the domain of the x,(-) reference
trajectory must be extended to R* and the original cost function must be modified to:

8 1~
J(,u(), 1) = Ef ILCxzu)(8), )l + ()l ds,
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Remark The first natural question to pose is whether there exists u(-), for which J is finite. For our
purposes, it is supposed that such a u(-) exists. Note nevertheless that if there exists a control u,(-),
for which J(x,(0), u,(-), 0) is finite, and the system is controllable, then by composition of the control
functions there exists #(-) with which J(xo, @(-), 0) is also finite.

To examine stability, Lyapunov’s Direct Method is applied. V(-,-) := V(-,-) by definition
is positive, thus it is a valid Lyapunov function candidate.

Theorem A.4 V(&,1) is a valid Lyapunov function, for the system (A1), (A.2) with feedback
(A.19).

For V(-, ) to be a Lyapunov function,

dv

— 0.
dr <

).t

is necessary (additionally to being a Lyapunov function candidate). From (A.17)) it follows:

av

Ox

av
ot

dv
dr

X(1)
).t (A.20)

1
=5 (ILG@). 1)l + @l

().t X(1).t

which is negative, hence the system is stable.

44



B Luenberger state estimation

Calculating the value function requires the solution of a HIB equation, which for high dimen-
sional systems is computationally intractable. Such is the case e.g. for the systems encountered
in the numerical methods of partial differential equations. In high dimensions, the computa-
tional intractability also holds for the Kalman filtering and its extensions (EKF, UKF) because
of the high dimensional dense structure of the covariance matrices, that have to be propagated.

To circumvent this difficulty, it is possible [35] to use the numerically less expensive
method of Luenberger type filters. However, the design of Luenberger type filters for high
dimensional systems poses difficulties. Nevertheless, there exist operators for specific sys-
tems, that give directly in some sense an optimal feedback law.

Furthermore, in systems that are not stable, or not asymptotically (e.g. vibrating systems,
as is the case of the beating heart), to obtain convergence of the parameter estimation it is
desirable to enhance stability, by applying a Luenberger filter on the system, and perform the
parameter estimation on the filtered system; this however entails a trade-off with observability
properties.

Remark Imagine, that the state is filtered with a high gain; the innovation D thus becomes zero (or
close to it) and observability is destroyed.

The following approach is based on [33]] and [35]]. For a detailed analysis of these filters,
we refer the reader to these articles; for our purposes only a short presentation of the methods
is given.

The general Luenberger filter can be formulated as follows:

(1) AR(®0), 1) + BIKD(X(0), 1), 1), (B.1)
20) = xo, (B.2)

with the same notations introduced previously.

For the state estimation problem the finite element approximation of mechanical systems

is considered:
d Xd\ _ 0 I Xd 0
E(xv)‘(—M—lK —M“C)(xv)-'_(M‘lF) (B.3)

where x,(:), x,(:) : [0,T] — X and M, C, K, F denote respectively the mass, damping, stiffness
matrices and the force vector, or

X(1)
X(0)

AX(H) + R(1)
Xo + n.
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Now the goal is to formulate a filter

X() AX(®) + R(t) + Kx(Z(t) — HX(?))
X0) = X,

for which the error dynamics defined by X := X — X, satisfying

X1 = (A-KgH)X()
X©0) = n,

18 stable.

B.1 Direct Velocity Feedback

In the following the measurement H : X — Z is a function of the velocities:
zy = H(x,) + X

Here y € Z denotes the measurement error, which consists of a discretization error and the
measurement noise. Now by taking as an DVF feedback as in [33]]

0
KX - (,yM—lH/) ’
the "closed-loop’ system writes as
MX +CX + (K +yH'H)X =R +yH'Z,

with K denoting the stiffness matrix.

B.2 Schur Displacement Feedback

In this section, the measurement H : X — Z is a function of the displacements:
Za = H(xg) + x,

This is the case e.g. in medical imaging. Now by taking as a SDF feedback as in [35]

K—IH/
Kx=(7 0 )

such that the "closed-loop’ system writes as

K3, KX, + yH'(Z — H %)
Mx, +Cx, + K%, = F.
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with K denoting the stiffness matrix. Note, that X = %, no longer holds; hence the notation
Xds Xy

By spectral analysis (of specific problems) it is possible to calculate the gain y such, that
the poles are placed in an optimal way; that is

max min |4;]
b% i

where 4; is the set of eigenvalues of the (discrete) operator.
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C Reduced Order Variational Method

The variational approach already has all the measurements on a time window [0, 7'], thus the
problem to be solved is
min Jy(, T).
n

A standard approach to the solution of this minimization problem (as of all minimization prob-
lems) consists of taking an initial guess 170 = 0 and then using the gradient (or the Hessian)
of the function to be minimized - Jy(-, T). The difficulty with this strategy is that, at each
iteration, to obtain the gradient of the cost function the system must be simulated for ¢, (n de-
noting the optimization iteration) on [0, 7'], similarly for the adjoint variable, only backwards.

Another approach could be the following: Take an approximation Jy(-, T') of Jy(-, T), say
using Sparse Grid or any other methods, and minimize the approximation of Jy(-, T). Note
that this approach is also computationally demanding; it still requires simulation of a set of ¥
particles. However, a big advantage compared to the standard variational method is that the
simulation for the set of particles can be done parallelly. On the numerical implementation of
the Sparse Grid approximation of the cost (value) function, see details in section 4 on Numer-
ical strategies.

An advantage of this method is that the simulations of the ’particles’ are done parallelly as
opposed to the standard variational approach (i.e. via the adjoint equation). Once the particles
have been generated, the evaluation of the Sparse Grid interpolant is not demanding, the opti-
mization problem can be solved rapidly. However the drawback of this method is the same as
of the Reduced Mortensen Filter’s, that is the simulation of the particles for complex systems
is very demanding, and even if the ’curse of dimensionality’ is treated by sparse grids to some
extent, the method remains computationally demanding.

Implementation-wise, NLOPT has been used for the solution of the nonlinear optimization
problem.
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