
Enhanced-SZZ: an improved code change
labeling algorithm

Mina Remeli

Supervisors:
Dr Horváth Gábor

BME-HIT
Kollár Nándor

Cloudera,Inc.

2019

1

Contents
Kivonat 3

Abstract 4

1 Introduction 5
1.1 Motivation . 5
1.2 Background . 6

Code change labeling algorithm 6
Code change classifiers . 6

1.3 Contributions . 6

2 Related Work 8
2.1 The original SZZ algorithm . 8
2.2 SZZ variants . 8
2.3 Dependency based change labeling 10
2.4 Use case on real projects:

Software Change Classification 10

3 Enhanced SZZ 13
3.1 Study setting . 13

HIVE . 13
E-SZZ integration with JIRA and Git 13

3.2 Shortcomings of SZZ . 15
Multiple marked commits . 15
Changes with no effect on functionality 16
Additions . 16

3.3 Detailed description of E-SZZ . 17
Pipe-and-Filter architecture . 18

4 Evaluation and application 22
4.1 Evaluation . 22

Limitations . 22
Prior evaluation methods . 22
Proposed changes to the evaluation framework 23
A comparative analysis with the original SZZ algorithm 24

4.2 Application . 26
Building a code change classifier 26
Manual analysis . 28

4.3 Future work . 28
4.4 Conclusion . 29

2

Kivonat
A szoftverhibák elképesztően költségesek - körülbelül egy billió hétszáz mil-
liárd dollárba kerültek 2017-ben - mutatta be egy kutatásában a Tricentis, egy
szoftver teszteléssel foglalkozó cég. Nem is csoda, hogy a fejlesztői közösség
különböző minőségbiztosító (QA - Quality Assurance) folyamatokkal próbálja
ezen költségeket minimalizálni. QA folyamat lehet például tesztek, dokumentá-
ció írása és az ún. peer-reviewing (szakértői felülvizsgálat).

Míg a tesztelés és dokumentáció folyamata részben automatizálható, a peer-
reviewing továbbra is olyan szűk keresztmetszet maradt, ami kizárólag humán
erőforrásoktól függ. Emiatt számos publikáció született abból a célból, hogy
ezen felülvizsgáló folyamatokat felgyorsítsák, és a nagy valószínűséggel hibát
(ún. bug-ot) tartalmazó változtatások felülvizsgálatát priorizálják. Ennek egy
módja a change classification - egy olyan modell építése, ami egy kódváltoz-
tatásról (code change-ről) megmondja, hogy tartalmaz-e hibát, vagy sem. A
change classification több szempontból is előnyt jelentene a fejlesztők számára -
egyrészt hamarabb tudnának potenciálisan hibás kódot azonosítani - másrészt
a hibakeresést az adott kódváltoztatásra tudnák szűkíteni.

Hogy megépíthessük a change classifier tanítóhalmazát - előbb a múltbéli
kódváltoztatásokat kell ellátnunk “tartalmaz hibát” vagy “nem tartalmaz hibát”
címkével. Ezt egy SZZ nevű algoritmussal érhetjük el. Ugyan az SZZ algorit-
mus a legelterjedtebb módszer arra, hogy címkével lássuk el az adatunkat, van
néhány gyenge pontja is. Ezen kifogásolható tulajdonságai miatt gyakran fals
pozitív illetve fals negatív címkéket produkál.

Ezért is kihangsúlyoznám, hogy milyen fontos egy change classifier meg-
bízhatósága szempontjából, hogy az adat, amin tanul, a lehető legjobb reprezen-
tációja legyen a valóságnak. Az én célom ezen munka keretében az, hogy bemu-
tassam az SZZ-nek egy olyan variánsát, ami megoldást nyújt az eredeti algorit-
musban felfedezett gyengeségek nagy részére. Továbbá még a szakirodalomban
nem említett, ám általam jelentősnek vélt hiányosságait is javítottam az algorit-
musnak. Mindezeket a javításokat kombinálva egy jobb kódváltoztatás-címkéző
algoritmust kapunk, aminek az Enhanced-SZZ nevet adtam.

3

Abstract
Failures are extremely expensive - one study performed by Tricentis1, a software
testing company, shows that the cost of software bugs in 2017 was approximately
one-trillion seven hundred billion dollars, which is an astounding amount. To
minimize such costs software developer communities follow numerous QA (Qual-
ity Assurance) processes that begin in the design phase and follow the software
through its various life-cycles. Quality Assurance includes, but is not limited to
writing tests, documentation and peer review.

While testing and documentation can be (at least partially) automated,
peer review is still one of the core processes relying purely on human intel-
ligence and resources. To speed up and prioritize the review of potentially
bug-inducing commits, there have been numerous studies focused on classifying
software changes. One of the many benefits of change classification is that it
helps developers discover bug-prone code faster (as soon as they make a commit)
and more effectively by limiting the location of a bug to the change.

To build the training dataset of the code change classifier, we first have to
label past commits as “bug-inducing” or “not bug-inducing”. To achieve this,
we use an algorithm called SZZ. In essence, the algorithm finds bug inducing
commits by looking for changes made before a bug-fixing commit. While SZZ
is the most established way of labeling changes as bug-inducing, it also calls for
a few comments. The main issue with this algorithm is that it provides us with
many unwanted false positive and false negative samples.

I would like to emphasize, that it is of utmost importance to build a reliable
training dataset (an accurate ground truth) for change classifiers, otherwise the
correctness of the predictions become questionable. My aim in this work is to
present a new variant of SZZ, that combines the correction of most, if not all
of its criticized attributes. I also fix further shortcomings of SZZ, not handled
so far by the literature. By combining all of these improvements, I present
Enhanced-SZZ, an improved code change labeling tool.

1https://www.tricentis.com/resources/software-fail-watch-5th-edition/

4

https://www.tricentis.com/resources/software-fail-watch-5th-edition/

1 Introduction

1.1 Motivation
To ensure code quality, software developer communities follow numerous QA
(Quality Assurance) processes that begin in the design phase and follow the
software through its various lifecycles. They could include designing and running
tests, writing documentation, etc. in a predefined, regulated way. One of the
most commonly applied QA processes (almost everywhere) is peer code review.

Peer code review is a process where ”peers” look at a proposed code change
and decide whether it can be merged into the codebase. For example, the Apache
Software Foundation has its own predefined set of voting rules regarding code
modifications2. Members of the Apache community can vote for and against
code changes. Rules dictate that three positive votes and no negative votes are
needed for accepting a code change.

While testing and documentation can be (at least partially) automated, peer
review is still one of the core processes relying purely on human intelligence and
resources. Based on a case study, developers at Google spend on average 3.2
hours/week reviewing commits [1]. Another study found that the self-reported
time of developers spent on reviewing open-source projects is 6.4 hours/week
on average [2].

To aid and partially automate the review process, several commit-level
bug-prediction methods are actively researched. Most related research is cen-
tered around building classifiers, that group commits into two categories: ’bug-
inducing’ or ’not bug-inducing’. These are commonly called code change clas-
sifiers. A good code change classifier can save us time with commits that are
classified as safe, and gives us a chance to mitigate possible risks by looking into
commits that were classified as bug-inducing.

In order to build such a classifier, we need a dataset that labels code changes
as bug-inducing or not bug-inducing. Ideally, one would create a domain-expert
curated dataset, where the sources of bugs are pinpointed by the developers
themselves. Nonetheless, this is practically impossible for multiple reasons. Not
only is it a very time consuming task to label possibly thousands of commits,
but they would also need to revisit commits that date back years, which again
makes it more difficult to find the origin of a bug. In lack of such time and
resources we are forced to use methods that are less accurate - but infinitely
faster. Currently there is one preferred family of algorithms used in practice for
labeling commits, called SZZ [3].

Since the usefulness of the prediction depends directly on the quality of the
underlying training dataset, we need to ensure that the code change labeling
algorithm we use provides labels as close to the truth as possible.

I felt that this issue is not addressed properly in any of the proposed code
change classifiers found in the literature - even though their proposed models
are only as good as the ground truth that their datasets offer. I argue that
this issue has been glossed over long enough, and more research should be
focused on the algorithm that creates the dataset, rather than the
algorithm that learns from it.

2"Apache Voting Process - The Apache Software Foundation!." https://www.apache.org/
foundation/voting.html

5

https://www.apache.org/foundation/voting.html
https://www.apache.org/foundation/voting.html

1.2 Background
Code change labeling algorithm

Code change labeling algorithms have been around since 2005, when Sliwerswki,
Zimmerman and Zeller introduced an algorithm [3] for finding the source of a
bug based on a bug-fix change. Nowadays it is often referred to as SZZ (where
the letters stand for the first letter of the authors’ names). Its popularity can
be attributed to its simplicity and intuitiveness. The algorithm first searches
for bug-fix commits (eg. for commits that fixed bugs), and then links them to
the commit that induced the bug (eg. the bug-inducing commit) by going back
in the history of bug-fixing lines to find the commit that introduced the bug.

Five years later a different approach was proposed by Sinha et al. [4], which
analyzes changed dependences instead of changed lines. The authors implement
their solution partially (on an intraprocedural level) and compare it to SZZ.
While inspecting data and control dependences might yield better results, the
full implementation of this algorithm is non-trivial and time-consuming. The
computational cost of this approach is also much higher, taking on average 7.2
times longer when tested on 4 projects, therefore making SZZ a more preferable
candidate.

SZZ has many variants [5, 6, 7] that address various aspects of the algoritm’s
shortcomings. Further details on the original SZZ algorithm and its variants are
presented in Section 2.

Code change classifiers

Code change classifiers are used to classify code changes as ”bug-inducing” or
”not bug-inducing”, and are of equal interest to the research community [8, 9, 10,
11] as well as to the industry [12]. First, they build a dataset by labeling past
commits of a selected project using the SZZ algorithm. Subsequently they train
a machine learning model on this dataset, which is then used to classify new,
incoming commits. They use code change related features as input to their
models, like the changed code itself or related metadata (like commit time,
commit author or number of changed files).

Details on the different implementations and their reported accuracies are
elaborated in Section 2.

1.3 Contributions
My main contributions are as follows:

• I implemented a scalable, customizable variant of SZZ that handles most
if not all weak points pointed out by previous implementations. This
includes ignoring comments and blank lines like Kim et al. [9], ignoring
merge commits similarly to Costa et al. [13] and excluding refactoring
changes as seen in Neto et al. [7].

• Furthermore, I extend my implementation by including bug-fix hunks in
the search that only added lines. There have been no implementations
handling additions thus far, but it has been noted as a possible future
improvement to the already existing algorithms [14, 13].

6

• I evaluate my implementation based on the framework proposed by Costa
et al. [13], and some additional metrics proposed by me. Furthermore
I present its advantages on a simple change labeling algorithm, that was
trained on commits labeled by E-SZZ.

Details on my implementation can be found in Section 3, evaluations are in
Section 4.1.

7

2 Related Work

2.1 The original SZZ algorithm
SZZ is a popular algorithm for finding bug-inducing commits. It was first intro-
duced by Śliwerski, Jacek, et al [3]. The original algorithm has been developed
using software versioning systems like CVS or SVN, and bug tracking systems
like Bugzilla. The main idea of the algorithm is very simple - it first searches
for bug-fix commits (eg. for commits that fixed bugs), and then links them to
the commit that induced the bug (eg. the bug-inducing commit).

Now for a more in-depth explanation: it iterates over the commits and
searches for tokens possibly indicating a bugfix commit (like “fix”, or “bug”)
or a number (possibly an identifier of a bug in the bug tracking system). If
there was a number in the commit message, there is a potential link to a bug.
If the commit can be successfully linked to a bug report (having met one of the
required conditions of the algorithm), then it is deemed as a bug-fixing commit.

The locating of bug-inducing changes is as follows: we iterate over the bug-
fixing commits and call the CVS diff command. We note the deleted/modified
lines in our bug-fixing revision (SZZ does not handle additions). Then, the CVS
annotate command is called on the last revision not containing the fix. This
outputs the most recent revisions that touched each line, followed by the date
and author. We exclude revisions that were created after the bug report (since
the bug must have been introduced before it got reported). The remaining
revisions are marked as bug-inducing. The core concept of the original SZZ
algorithm can be observed in Figure 1, where the bug-fix change modifies both
a() and b(), revision 1.3 could not have introduced the bug because it was
created after the bug report.

bug report

bug fix

1.21.1 1.3 1.4 1.5 1.6

changes:
 - a()
 - b()

changes:
 - a()

changes:
 - b()

annotate

Figure 1: The original SZZ algorithm. The change made in revision 1.1 is marked as
bug inducing.

2.2 SZZ variants
Maybe the most well-known variant of SZZ (besides the original one) is the one
proposed by Kim et al [5]. It verified the benefits of their approach over the
original SZZ by way of demonstrating improvements on the commits of Columba
and Eclipse. It claims, that their algorithm can remove about 38%-51% of false
positives and 14%-15% of false negatives compared to the previous algorithm.

8

They apply five steps which achieve these results: (1) They use annotation
graphs to link lines of one revision to the other. (2) They ignore comments and
blank-line changes. (3) They ignore the blamed revisions that only introduced
formatting changes in the code (like moving brackets in a new line). (4) They
ignore outlier bug-fix revisions in which too many files were changed. (5) They
manually verify all hunks identified as bug-fix changes. Costa et al. [13] later
proposed an improvement to this implementation, which included a final step
which filtered all meta-changes (eg. all changes that are not related to source
code modifications, like merges).

Subsequent work by Williams and Spacco [6] reviewed the SZZ algorithm
improved by Kim et al. [5], and compared it to their variant that uses line-
number maps instead of annotation graphs, and DiffJ, a Java syntax-aware diff
tool that ignores comments and formatting changes. Finally, they manually
inspected 25 random bug fixing commits to see if the commits marked as bug-
inducing were actually bug inducing. The 25 bug fixing commits contained a
total of 50 changed lines, that were mapped back to a bug-inducing commit.
Only 43 of the 50 lines were actual bug-fixing changes. 33 changes out of 43
were actual bug-inducing commits. 4 false positives were due to the bug inducing
code being injected before them. The rest of the false positives stem from DiffJ
not quite producing an accurate set of changes and the source lines being lost
by the line mapper.

SZZ has also been criticized for not taking into account refactoring changes
- changes that impact the input (bug-fixing changes) and also the output (bug-
introducing changes) of the algorithm. Refactoring changes can not fix nor
induce bugs since they do not change how the code works. The effect of removing
refactoring changes from both the input and the output of the SZZ algorithm
was investigated by Neto et al. [7], and resulted in a new variant of SZZ, called
RA-SZZ (Refactoring-Aware SZZ). They use an existing tool that automatically
detects refactorings in code revisions, called RefDiff [15]. Their observations
that are based on 10 projects are as follows: 6.5% of lines that are flagged
as bug-introducing are in fact refactoring changes. Regarding bug-fix changes,
they observe that 19.9% of lines that are removed during a fix are related to
refactorings and, therefore, their respective inducing changes are false positives.

Given that the algorithm can link multiple bug-inducing changes to one bug-
fix change, there have been two proposals to reduce the number of candidate
bug-inducing changes to one. Davies et al. [14] choose to select either the largest
(in terms of changed lines of code, LOC) or the most recent of the candidate
bug-inducing changes. This reduces the number of false-positives, as well as the
number of true positives unfortunately. They also showcase examples of this
approach failing where there are indeed multiple sources being held responsible
for the existence of a bug. Based on their manual analysis of the approaches,
they conclude that filtering the candidate bug-inducing changes by looking at
either the largest or most recent revision does not produce any clear benefits.

Since added lines do not have a history like deleted and modified lines do,
the original SZZ algorithm does not know how to find the source of a bug
fixed by an addition. Davies et al. [14] are also the first ones to evaluate an
extended version of SZZ that handles added lines as well (since the original
algorithm is only able to trace back deleted/modified lines). They found, that
70 out of the 301 observed commits in Eclipse had no bug-inducing commits
assigned to them (when running the original SZZ algorithm), which introduced a

9

significant amount of false negatives. This motivated them to treat the enclosing
block of additions the same way as if they were the subject of the bug-fixing
change. Because of the noticeable reduction of false negatives in their manually
analyzed set of commits, they infer that the results clearly benefit from this
feature. However, Davies et al. did not implement their proposed changes.
Instead, the steps of each variant were conducted manually. This restricted
them in their evaluation of the proposed algorithms: they had to limit their
scope of analysis to only 15 surveyed changes.

2.3 Dependency based change labeling
Sinha et al. [4] propose a dependency-based code change labeling algorithm in-
stead of SZZ. They compare revisions using program dependence graphs (PDG).
A PDG is a directed graph describing control and data dependence, where each
statement is represented as a node. A control dependence between nodes A and
B (A→ B) means that the execution of node B depends on the output of node
A. A data dependence on the other hand would indicate that B references a
variable that A defined.

First, they analyse what dependences changed in the bug-fix revision, by
comparing the PDG of the bug-fix with the PDG of its parent. Then they
follow this by searching for the revision that created the removed dependences,
and stop the search at the first revision that they find (multiple dependences
might be removed, but they only go back as far as the introduction of any one
of the removed dependences). In case there are no removed dependences, they
analyze the statements connected to the added statements, and search for the
last revision that touched those statements.

Thus far, this algorithm has only been implemented to detect bugs inside
one method (intraprocedural approach) using PDGs, but Sinha et al. made a
suggestion on how the interprocedural approach could be implemented as well.

An advantage of dependency based change labeling is that it takes seman-
tic information into consideration while searching for the bug-inducing changes,
and also tends to generate far less false positives compared to SZZ [14]. How-
ever there are several feasibility limitations to using this algorithm - reportedly
this algorithm takes 7.2 times longer to run than SZZ. The reason for this is
the amount of time it takes to build the dependence graphs - and the further
apart the bug-fix and bug-inducing commits are the longer it takes to run the
algorithm. Also, there is no readily available open source implementation for
building build PDGs. This would force us to implement it ourselves, which due
to its complexity would presumably take much longer than implementing SZZ.

2.4 Use case on real projects:
Software Change Classification

There are numerous aspects and research areas regarding bug detection. Some
studies focus on predicting fault prone classes [16] or modules [17, 18], while
others study defect prediction, where the goal is to predict the number of induced
bugs on a binary / class / package level [19]. Yet another mention-worthy area
is the prediction of the number of defects in a software over a defined period of
time using complexity information of past code changes [20].

10

However, the studies of interest to us address the problem of change clas-
sification. One of the many benefits of change classification is that it helps
developers discover bug-prone code faster (as soon as they make a commit) and
more effectively by limiting the location of a bug to the change.

The first study to predict bugs on a change level is the work by Aversano et
al. [8]. It uses the modified version of SZZ proposed by Kim et al. [5] for change
labeling. It tests its models on two systems - JHotDraw and DNSJava, on 132
and 1204 changes respectively. The tested models are the following: KNN (K-
Nearest Neighbor), LR (Logistic Regression), Multi-boosting, C4.5, and SVM
(Support Vector Machine) classifiers. The input of the models is the weighted
terms vector representation of code changes (where the code change is the vector
difference between two subsequent code snapshots). The achieved results present
high precision and recall when classifying non-bug-inducing commits across both
projects. For bug inducing commits on the other hand the recall was not as high
as the precision. In the case of JHotDraw the LR model performed best (with
a precision of 80%) and in the case of DNSJava KNN performed best (with a
precision of 69.4%).

The second study I would like to talk about is presented by Kim et al [9]. It
makes predictions using an SVM (Support Vector Machine) classifier on a wide
range of projects that are open source, and achieves an accuracy reaching from
64%-92% (depending on the project). He used a multitude of features as a base
for classification, including change log metadata, complexity metrics, change
log messages, source code and file names. Surprisingly enough, for identifying
bug-inducing changes he doesn’t use the modified SZZ algorithm [5] proposed by
himself and one of the original authors of SZZ, but the original one. However, he
conducts an extensive amount of experiments, playing with the different combi-
nations of features, noting their effect on accuracy and recall. He concludes that
there is no definitive feature set performing well on all of the projects. He noted
that one of the challenges of the study was to ensure that the SVM model fits
into memory. SVM models were a conscious choice for his study seeing that he
had a copious amount of features - the number of extracted features in his work
ranged from 6k to more than 23k features! The reason why he chose SVMs
is because the memory need of SVM models only increases with the number of
data points. Kim et al. used features from 500 (sometimes 250) revisions to
train and evaluate an SVM classifier.

Kamei et al. [10] has also achieved notable results on the data of 6 open
source and 5 commercial projects. Bug inducing commits are identified using
the SZZ algorithm. He chose a feature set of 14 features which he divided
into 5 dimensions based on the type of information the feature conveys: (1)
diffusion, (2) size, (3) purpose, (4) history and (5) experience. He produces an
average accuracy of 68% and an average recall of 64% using a Logistic Regression
(LR) model. He found that risk increasing factors include the higher number
of changed files in a commit and the fact that the commit itself is bug-fixing.
A risk decreasing factor is the average time interval since the previous change
(the older a file’s last change is, the lower the chance that the current change
will induce a defect). The results of this work were taken further in creating a
commit-risk analysis tool called Commit Guru [11], which is available for the
public to try out.

Industrial players are also displaying interest in the field of bug prediction.
Ubisoft, a well known video game company has collaborated with researchers

11

to create CLEVER [12], that can detect risky commits with 79% precision and
65% recall. In addition this tool can also recommend qualitative fixes in 66.7%
of the cases. They use the modified version of SZZ proposed by Kim et al [5]
for building their dataset of defect and bug-fixing commits. A pre-commit hook
was used to catch new commits and calculate the features used in Commit-guru.
Then they feed their data into a Random Forest classifier. If the classifier marks
the commit as risky, then the change code block is extracted and is matched
with a past bug-inducing commit using text-based clone detection techniques.
The fix of the matched bug-inducing commit will be the recommended fix.

12

3 Enhanced SZZ
In this section I present my proposed algorithm, Enhanced-SZZ (or E-SZZ for
short). It combines the improvements proposed so far by the literature (aimed to
reduce the false positives produced by the original algoritm), and even includes a
novel improvement that reduces false negatives. This new improvement includes
the processing of additions (which were not handled so far in the literature),
that represent a substantial 28.91% of the total bugfix hunks in the project
examined by me (as pointed out in Section 3.2). The significance of handling
additions was acknowledged both by Davies et al. [14] and Costa et al. [13],
but was not yet implemented, nor extensively evaluated. The new algorithm I
propose is also designed in a way that is scalable, and easily configurable.

This introduction will include a short insight on the project it was evaluated
on, and the issue tracking and version control systems it relies on in Section 3.1.
Subsequently in Section 3.2, I discuss the shortcomings of the original algorithm
as pointed out by the literature and include some of my own critiques. Then
I proceed on introducing the algorithm that is designed to solve the discussed
issues in Section 3.3.

We used Python 3.6, and E-SZZ was run on a server with a Intel(R)
Xeon(R) E5-2666 v3 @ 2.90GHz 32-core CPU. Some of the more important
libraries were: GitPython3, JIRA4 and jira-cache5. Implementation and eval-
uations are available at https://github.com/minaremeli/TDK_19.

3.1 Study setting
My proposed algorithm was applied on a real-world, large, active project. First,
I will introduce the project that I chose to work on, then I will go on to explain
how the tools used almost 15 years ago changed, and how this affected my
implementation of SZZ.

HIVE

HIVE6 is one of the projects of the Apache Software Foundation7, that facili-
tates the reading, writing, and managing large datasets via SQL that reside in
distributed storage. Currently, it boasts a code base consisting of approximately
18k files and 13k commits, where the oldest commit dates back to 2008. HIVE
has close to 200 contributors, and the project is mainly written in Java. I used
the HIVE project to create my very first labeled dataset using Enhanced SZZ.

E-SZZ integration with JIRA and Git

It is important to note, that the original SZZ algorithm dates back to 2005,
when the version control system of choice was SVN8 (which happens to be an
Apache project as well). At that time there were no issue tracking systems, only

3https://pypi.org/project/GitPython/
4https://pypi.org/project/jira/
5https://pypi.org/project/jira-cache/
6https://github.com/apache/hive
7https://www.apache.org/
8https://subversion.apache.org/

13

https://github.com/minaremeli/TDK_19
https://pypi.org/project/GitPython/
https://pypi.org/project/jira/
https://pypi.org/project/jira-cache/
https://github.com/apache/hive
https://www.apache.org/
https://subversion.apache.org/

bug tracking systems like Bugzilla9, which occasionally tracked feature requests
and improvements as well, but had no labeling system to distinguish between
the different categories.

Issue tracking system: JIRA Most projects in Apache use issue tracking
systems like JIRA, where each issue is assigned a label (by the creator of the
issue) such as “Bug”, “Improvement”, “New Feature”, “Sub-Task”, etc. The main
improvement over systems such as Bugzilla is, that it allows issues to be cat-
egorized, whereas Bugzilla had no way of distinguishing bug reports from new
feature requests, etc. This allows us to completely forego the original, rather
fragile way of identifying bug-fixing commits where we searched for bug-fixing
issues by parsing certain keywords (like "bug" and "fix").

HIVE uses JIRA10 as its primary issue tracking system as well. Linking com-
mits to issues, identifying bug fixing changes and finding bug inducing changes
became both simpler and more efficient: nowadays more and more projects have
a predefined workflow which requires (or at least strongly advises) to link every
commit to an issue ticket. This applies to all of the Apache Software Foundation
projects as well. I have verified that indeed only 2.8% of HIVE commits could
not be linked to any issue ticket, which is a negligible loss.

Version control system: git HIVE currently uses git as its version control
system. There are many advantages of using git over SVN: past works had
to build annotation graphs with SVN annotate to connect lines from a newer
revision to the lines of an older one [5]. Connecting lines across revisions becomes
a much simpler task using git log that doesn’t require an annotation graph.

Here are some short explanations of the git commands that I frequently
used:

• git diff <commit1_sha> <commit2_sha>
Shows changes between two commits. Some useful flags I used
with it: –-ignore-cr-at-eol (ignores carry at end of line),
–-ignore-space-change (ignores change in number of spaces),
–ignore-blank-lines (ignores blank lines) and –diff-filter=MRC (used
for filtering files that have undergone a specific change type, marked with
the appropriate flag: M - modified, R - renamed, C - copied etc.).

• git log -L <range>:<file> <rev>
Outputs the history (aka. all the revisions that touched it) of
the given line in given file starting with <rev>. Some useful
flags I used with it: –-ignore-cr-at-eol (ignores carry at end of
line), –-ignore-space-change (ignores change in number of spaces),
–ignore-blank-lines (ignores blank lines). This command discontin-
ues the need to build annotation graphs to track the history of a line as
seen in Kim et al. [5] and Neto et al. [7].

Integration Our implementation of the algorithm achieves the same goals as
the original SZZ implementation, but with different tools. In Figure 2 we can

9https://www.bugzilla.org/
10https://issues.apache.org/jira/projects/HIVE

14

https://www.bugzilla.org/
https://issues.apache.org/jira/projects/HIVE

HIVE-21039
HIVE-21040

HIVE-21041: NPE,
ParseException in
getting schema
from logical plan

commits

parse
JIRA ID*

* 2.8% of the HIVE commits
dropped because no JIRA ID
could be parsed

HIVE-21041

JIRA issues

get issue

{

"key": "HIVE-21041",

"fields": {

 "summary": "NPE, ParseException in

 getting schema from logical

 plan",

 "issuetype": "Bug",

 "fix version/s": "4.0.0, 3.2.0",

 "reporter": "Teddy Choi",

 . . .

 },

}

jira issue

HIVE-42
HIVE-62

HIVE-20552: Get
Schema from
LogicalPlan faster

[IF issuetype == "Bug"]
trace back to bug-inducing commits

(with git diff + git log)

Figure 2: E-SZZ integration with JIRA and git.

see how E-SZZ integrates with JIRA and git. First, we link commits to JIRA
tickets by parsing the JIRA IDs in commit messages. Then, if the linked JIRA
issue is of type “Bug” (e.g. the linked commit fixes a bug), we use git diff
to see which lines were changed. Then we find the corresponding bug-inducing
commits by calling git log on the changed lines.

3.2 Shortcomings of SZZ
The motivation behind creating Enhanced SZZ is to address most of its short-
comings pointed out by the literature, as well as some additional shortcomings
pointed out by me.

Multiple marked commits

Due to how SZZ works and traces back all lines belonging to a bug-fix, it tends
to not only find one potential bug-inducing commit, but multiple. Many of these
can be false positives, for which reason multiple suggestions have been made to
select the most probable candidate. Davies et al. [14] select either the largest
(in terms of changed LOC) or the most recent of the candidate bug-inducing
changes. They evaluate the effect of these suggested modifications by manually
analysing 15 commits, and conclude that filtering the candidate bug-inducing
changes by looking at either the largest or most recent revision does not produce
any clear benefits. They also point out that not every bug is necessarily caused
by one commit and that in such cases by blaming only one commit can introduce
false negatives.

15

r1: bug-inducing commit r2: false positive

1
2
3
4
5
6

1
2
3
4
5
6

trace back

// print all children correctly
for(Person p: listOfPeople){
 children = p.getChildren();
 for(i=0; i<children.size(); i++)
 System.out.println(children[i]);
}

r3: bug-fixing commit

1
2
3
4
5
6

// print all children
for(Person p: listOfPeople){
 children = p.getChildren();
 for(i=0; i<=children.size(); i++)
 System.out.println(children[i]);
}

for(Person p: listOfPeople){
 children = p.getChildren();
 for(i=0; i<=children.size(); i++)
 System.out.println(children[i]);
}

Figure 3: An example of an introduced false positive. r3 fixes a bug but also alters
the comment added in r2. Nevertheless the original SZZ algorithm marks both r1 and
r2 as bug-inducing.

Changes with no effect on functionality

Bug-fix commits do not always modify lines exclusively related to the bug they
are fixing - more often than not they include opportunistic refactorings, added
test cases (for preventing future occurences of similar bugs) or comments to
improve code readability. This however results in more false positives when
tracing back the origin of those lines. I present an example of an introduced
false positive in Figure 3.

The most obvious flaw pointed out by all previous SZZ variants is SZZ’s in-
ability to detect changes that have no effect on functionality whatsoever. Kim
et al. [5] filter comments, blank lines and formatting changes. Williams and
Spacco [6] use DiffJ, a Java syntax-aware tool that ignores comments and for-
matting changes. Neto et al. [7] present RA-SZZ (Refactoring-Aware SZZ),
that detects refactoring changes using RefDiff. They show, that using the RA-
SZZ a significant amount of false positives can be filtered (they observe a 20.8%
decrease in lines that are flagged as bug-introducing).

Additions

While research made important contributions to improving the original SZZ
algorithm, they fail to address one issue that might be just as important as fil-
tering out changes that have no effect on functionality. And that is the handling
of additions in bug-fix changes. SZZ is only able to trace back bug-fix lines that
have a history, which does not hold true for newly added lines. In Figure 4 I
present a common bug-fixing example, the handling of a null-pointer-exception,
to justify the incorporation of additions in my proposed algorithm.

Furthermore, I found that a substantial amount of bug-fixing commits con-
tain changes that are purely additions. If one compares a revision with its parent
using git diff, then they get back all of its changes (called hunks) made across
all files, with respect to the parent revision. Each hunk shows one area where
the files differ. For each of them the git diff output starts with some header
lines, followed by the actual modifications (an example of such an output can be
seen in Figure 7). Lines that were removed from the first revision of the file are
prefixed with a -, while lines that were added are prefixed with a +. Hunks that
only have lines starting with a +/- prefix are purely additions/deletions, and
hunks that have both are modifications. I examined the bug-fixing commits of
HIVE, and found that 28.91% of the hunks are in fact purely additions.

Our findings are in accordance to those of Davies et al. [14], who find that
out of the 301 changes labeled with SZZ, 70 had no bug-inducing commits

16

int someFunc(arg1){

 arg1.doSomething();

}

int someFunc(arg1){
 if(arg1 != null){
 arg1.doSomething();
 }
}

r1: bug-inducing commit r2: bug-fixing commit

1
2
3
4
5
6

1
2
3
4
5
6

trace back addition to bug-inducing change

Figure 4: A classic example of a bug: a null pointer exception. This example demon-
strates the importance of tracing back additions as well. r2 is the revision where the
null pointer exception is fixed, and by calling git log on the surrounding lines we can
trace the bug back to r1.

linked to them owing to the fact that these changes were purely additions. This
gives us all the more justification to consider bug-fixing additions as a valuable
source for finding bugs, that should not be ignored. By including the handling of
additions in our algorithm, we can eliminate a considerable amount of possibly
false-negative samples that the original algoritm does not address. We handled
additions by calling git log on the lines surrounding the change (by including
one line above and under the change), as shown in Figure 4.

3.3 Detailed description of E-SZZ
The main steps of my algorithm are explained in Figure 5. First, I find the
bugfix commits as shown in Figure 2, then I filter them. The output of the
filter are the bug-fixing lines whose history we have to trace back using git log
to obtain the candidate bug-inducing commits. They are also passed through
a filter and last but not least we repeat the trace back step as long as the
candidates are refactors.

Before running the Enhanced SZZ algorithm, we first need to retrieve/build
the data sources that are used later on for some of the steps in our algorithm
(Figure 6).

Extracting refactoring data using RefDiff I begin by building our refac-
toring data, which stores all past refactorings on a line-level granularity. This is
done in exactly the same way as shown in Neto et al.’s work [7], where RefDiff
[15], an open source11 tool to mine refactorings is modified so it saves all past
refactoring-related information (like revision, filename and line range).

RefDiff is a tool that identifies refactorings performed between two revisions
in a git repository, and it supports three languages: Java, JavaScript, and C.
It combines static code analysis and code similarity to detect 13 well-known
refactoring types out of the 63 from Fowler’s catalog [21]. RefDiff takes as input
two versions of a system, and outputs a list of refactorings found. They use
a model to represent high level source code entities (like types, methods and
fields) similar to ASTs (Abstract Syntax Trees). They compare the models of
two such revisions and create a bipartite graph by connecting the entities with
relationships describing the change.

11https://github.com/aserg-ufmg/RefDiff

17

https://github.com/aserg-ufmg/RefDiff

Figure 5: The Enhanced SZZ algorithm.

get bugfix
commits

filter1 filter2 is refactor trace backtrace back
yes

no

bug-inducing
 commits

1 filter bugfix commits
2 filter bug-inducing commits

Enhanced SZZ

repo data

JIRA data

refactoring data

Enhanced SZZ

retrieve
commits

filter

Figure 6: How different data sources contribute to some of the steps in the Enhanced
SZZ algorithm.

The tool already provides an interface for extracting information on which
line the refactorings start. It was not difficult therefore to extend it to find
the ending line as well. I created a script which iterates over each revision of
a project and uses RefDiff to extract all introduced refactor changes. For each
matched refactor relationship I saved the revision, file, start and ending line
associated with it.

Repository and issue tracking data I clone the examined project locally
and use GitPython to extract repository-related information. Finally, I down-
load all issue tickets using JIRA12, and save them using jira-cache13.

Next I am going to delve into more detail on the pipe-and-filter architecture
and the individual filters that I implemented.

Pipe-and-Filter architecture

The pipe-and-filter architecture was created to streamline the processing of com-
mits. There are four types of filters that I created: commit filters, file unit filters,

12https://pypi.org/project/jira/
13https://pypi.org/project/jira-cache/

18

https://pypi.org/project/jira/
https://pypi.org/project/jira-cache/

commit

commit filter

file unit

file unit filter

hunk

hunk filter

line unit

line unit filter

git diff <commit_sha1>^ <commit_sha1>

file unit
diff --git a/example/fileA.java

index bbb34df982..773bca100 106440

--- a/example/fileA.java

+++ b/example/fileA.java

@@ -5,7 +5,7 @@

// print string

void printStr(String myStr){

- if(myStr==null){

+ if(myStr!=null){

 System.out.println(myStr)

 }

}

diff --git a/example/fileB.java

index abccdf123..d639172acf 432343

--- a/example/fileB.java

+++ b/example/fileB.java

@@ -1,2 +1 @@

 // my first comment

-

hunk

line unit

Figure 7: Pipe and filter architecture.

hunk filters and line unit filters (Figure 7). Commits are commit objects, while
file/hunk/line units are parts of the outputs of the git diff command. I fil-
tered these using regular expressions. This solution provides us with a very
flexible, and customizable implementation, that can be easily manipulated to
fit different project/programming languages as well. Since every commit goes
through the same pipeline, it enables us to parallelize these steps, thus making
my solution scalable as well.

The pipe-and-filter architecture is only one part of the design that I have
implemented. Some filtering functionalities were simply achieved by using the
right flag with git diff, as shown in Section 3.1. For a complete list of flags
and filters and their motivation see Table 1.

Bugfix commit filters The following are the main filters that I used to filter
the bugfix commits:

• commit filters

1. has jira
2. is bugfix

• file unit

1. test files
2. filetypes

• line unit

1. [if hunk != addition] context
2. comments
3. blank lines
4. imports

19

5. refactor

Most of the filters are quite self-explanatory - like checking if a commit has a
corresponding JIRA ticket (has jira) or if the modified file is a test file (test files
excludes modifications made to test files). The file creation filters changes where
new files were created (since they have no history to trace back). The filetypes
file unit filter filters all changes where the changed files do not have a ”.java”, ”.g”
or ”.g4” extension (the latter two are ANTLR file extensions). We focused our
search of bugs on source files based on the suggestion of professional developers
and because of the language-specific nature of the line unit filters. This filter
can be easily modified in case we wanted to apply E-SZZ on a different project,
written in a different language. The first line filter is a conditional line unit
filter (context), that is only applied if the hunk (where the line originates from)
is not an addition. Refactor discards all lines that didn’t alter the behaviour of
the program. And finally we filter comments (single and multiline), blank lines
and lines that import modules.

After passing through these filters, we get the resulting bug-fixing lines that
we can trace back to find their respective bug-inducing lines (and their revision).

Bug-inducing commit filters The following are the main filters that I used
on potentially bug-inducing commits:

• commit filters

1. committed before bug report
2. refactor
3. has jira

These filters are aimed at reducing false positives produced by our algorithm.
The first one filters commits that were created after the bug got reported (seeing
as commits that are created after the bug report can not be the cause of the
bug). Then the refactor filter checks whether the traced back line is a refactor-
type change. And as the final step we make sure that we are able to link the
commit to a JIRA ticket (has jira).

20

name
(affects)

type motivation

–-diff-filter=MRC
(bug-fix)

git diff flag Excludes (A)dded files from
search since they have no history
tracing back to potential bugs.

–-ignore-cr-at-eol
(both)

git diff flag,
git log flag

Added carriage-return to end
of line can not be the origin,
nor the fix of a bug.

–-ignore-space-at-eol
–-ignore-space-change
(both)

git diff flag,
git log flag

Changes in the number of
spaces and added spaces to
end of line can not be the
origin, nor the fix of a bug.

–-ignore-blank-lines
(both)

git diff flag,
git log flag

Blank lines can not be the
origin, nor the fix of a bug.

–-no-merges
(bug-inducing)

git log flag Metachanges do not introduce
bugs.

testfiles
(bug-fix)

file unit filter Bug-fix changes often include
added test cases to eliminate
future bugs of similar origin.
Since our algorithm traces back
additions as well, I wanted to
eliminate possible false positives
with this filter.

filetypes
(bug-fix)

file unit filter Since the line unit filters are
specific to language, we limit the
scope of the bug-search to source
files.

context
(bug-fix)

conditional
line unit filter

The context of hunks that are not
additions are not the source of the
bug.

comments
(bug-fix)

line unit filter Comments do not fix bugs.

blank lines
(bug-fix)

line unit filter –-ignore-blank-lines only
filters blank lines where the code
was changed. The context of the
resulting hunks therefore can still
contain blank lines, which need
to be filtered.

imports
(bug-fix)

line unit filter On the suggestion of professional
developers, we excluded changes in
imports from our search.

refactor
(both)

line unit filter
commit filter

Refactor lines can not be the
origin, of a bug. Refactoring
change in bug-inducing commit
can not be the cause of the bug.

committed before bug report
(bug-inducing)

commit filter Commits coming after the bug
report can not be bug-inducing.

Table 1: A complete list of all filtering techniques used in E-SZZ, along with the
motivation of usage. Under the name of said filters the affected type of commit is
listed (bug-fix/bug-inducing/both). Type indicates the nature of the filter (flag of a
used command, or a custom filter).

21

4 Evaluation and application

4.1 Evaluation
Limitations

Evaluating and comparing different SZZ implementations is a rather challenging
task, given that there is no complete baseline dataset for doing so. To create
a dataset with labeled revisions of a project, one would need to hire domain
experts, preferably developers that are already familiar with the code base.
This could include analyzing hundreds, possibly thousands of commits, some of
which date back years.

The reason why SZZ is used in so many cases is because of how laborious and
time consuming manual labeling can be. But then again, a manually labeled
dataset would be required to evaluate these different implementations, which
makes us circle back to the original question at hand. How do we evaluate
an SZZ implementation without the ground truth?

Prior evaluation methods

The evaluation methods of prior work can be grouped into three different ap-
proaches. Since all suggested variants are created with the goal of reducing
false positives, the first obvious approach would be to observe the decrease in
bug-inducing commits compared to different implementations [5, 7]. The second
approach involves evaluating the algorithms on a small set of manually labeled
commits [14].

Last but not least, there has been one evaluation framework proposed by
Costa et al. [13] that was used to evaluate 5 different SZZ implementations.
The framework evaluates the following criteria: (1) the earliest bug appearance,
(2) the future impact of changes, and (3) the realism of bug introduction. The
explanations and used evaluation metrics proposed by them are shown in Table
2.

22

name explanation metric

Earliest Bug Ap-
pearance

Developers estimate the version
when the bug got introduced with
the affected version field. If the ver-
sion of a found bug-inducing com-
mit comes after the estimated ver-
sion, it counts as a disagreement.

Disagreement Ratio,
D
B
, where D is the

number of disagree-
ments and B is the
total number of bugs.
A lower value is pre-
ferred.

Future Impact of a
Change

Evaluates the number of
bugs that were fixed more
than once (e.g. introduced
future bugs).

Count of Future
Bugs (% of mul-
tiple future bugs).
A lower value is
preferred.

Timespan of Future
Bugs (median of
days) A lower value
is preferred.

Realism of Bug In-
troduction

Evaluates the feasibility of the
candidate bug-inducing changes
(linked to the same bug-fix) by
looking at the time gone by
between the earliest and latest
bug-inducing changes.

Timespan of Bug-
introducing Changes
(median of days) A
lower value is pre-
ferred.

Table 2: Evaluation metrics proposed by Costa et al. [13]. The affected version field
is a non-mandatory field in the JIRA issue tracking system.

Proposed changes to the evaluation framework

The evaluation metrics proposed in the previous paragraph are a great first in-
tuitive step towards analysing and comparing SZZ variants. However, I do find
that they do have some limitations. The earliest bug appearance relies on the
fact that developers document the affected version JIRA field accurately. This
is aknowledged by the authors as well, but in their evaluation another interest-
ing occurence can be observed. In their comparison of 5 SZZ implementation,
the baseline SZZ implementation outperformed the others! They counted very
little to none disagreements, compared to the number of bugs detected by the
algorithm. Since SZZ is an algorithm that produces the most candidate bug-
inducing commits out of all, this certainly plays a role in the disagreement ratio
being so low.

Found Bug Inducing Commits To counter the shortcomings, I propose
a different evaluation metric called found bug inducing commits. Sometimes
when the exact origin of a bug is known, JIRA offers an opportunity to link the
cause to the fix. Even though this is not too common, it offers a perfect way
for evaluating how many bug inducing commits we managed to locate correctly
on a small, labeled dataset curated by the developers themselves. In HIVE,
we found 174 such commits. We can quantify this feature with the agreement
ratio and average linked bugs metrics. The agreement ratio is the number of

23

correctly identified bugs divided by the number of labeled bugs, while average
linked bugs gives us an idea how many false positives the algorithm produces
in the process (average of the total number of bug-inducing commits belonging
to the same bug-fixing commit).

Bug-fix Coverage Ultimately, I would like to suggest one last metric: bug-fix
coverage. It looks at how many bug-fix commits were linked to a potential bug-
inducing commit. The metric used to describe this feature is ratio of linked
bugs, which is the number of bug-fix commits that have a bug-inducing commit
linked to them divided by all the bug-fix commits.

name
(affects)

type motivation

–-diff-filter=MRC
(bug-fix)

git diff flag (A)dded files have no history
tracing back to potential bugs.

test files*
(bug-fix)

file unit filter This filter was not removed due
to comparability reasons.

filetypes*
(bug-fix)

file unit filter This filter was not removed due
to comparability reasons.

additions
(bug-fix)

hunk filter Additions have no history
tracing back to potential bugs.

committed before bug report
(bug-inducing)

commit filter Commits coming after the bug
report can not be bug-inducing.

Table 3: A complete list of all filtering techniques used in SZZ, along with the moti-
vation of usage. Under the name of said filters the affected type of commit is listed
(bug-fix/bug-inducing/both). Type indicates the nature of the filter (flag of a used
command, or a custom filter). The filters marked with a * are not part of the original
algorithm.

A comparative analysis with the original SZZ algorithm

By combining the metrics proposed by Costa et al. [13] (see Table 2) and my
own metrics, I have evaluated and compared my proposed version of SZZ and
the base implementation. As previously pointed out in Table 1, E-SZZ filters
files using the test files and filetypes filters. This focused our search for bug-
inducing commits to the source files that were of interest to us, and made sense
for our application. However to make the comparison fair, I altered the original
algorithm in such a way that it traced back changes from the same set of files
as E-SZZ. A complete list of filters used on SZZ (similar to Table 1) can be seen
in Table 3.

Given that the changes proposed by past work are aimed at reducing the
number of false positives, whereas the handling of additions possibly increases
them, I decided to iteratively evaluate my proposed algorithm. First I evaluate
a variant of E-SZZ that does not handle additions to showcase the benefits of
the filters, then I proceed onto the benefits of E-SZZ. Results of the evaluations
can be seen in Table 4.

At first glance, one can see the obvious benefits of combining all filtering
techiques that were so far proposed in the literature. The disagreement ratio,
count of future bugs and timespan of future bugs are the lowest in this imple-
mentation out of the three. The longest timespan of bug-introducing changes

24

value can be attributed to the refactor-filtering feature - the further the algo-
rithm goes back to find the potential bug-inducing commit, the farther apart
will the first and last proposed bug-inducing commit be. However, based on
my metrics we can see a decrease in the agreement ratio compared to the base
implementation - which means that even though many false positives are filtered
out, some true positives are lost in the process.

In conclusion, while on one hand the naive approach of E-SZZ introduced
slightly more false positives than the base implementation, it also managed to
find more of the known bugs (higher agreement ratio). On manual inspection
of the commits that E-SZZ managed to correctly label I found a commit that
beautifully demonstrates the usefulness of tracing back the context of additions
- the example is presented in Figure 8. To top it off, E-SZZ also manages to
increase the bug-fix commit coverage (it links more bug-reports to bugs). In
total, SZZ flagged 4667, while E-SZZ flagged 5282 commits as bug-inducing.

SZZ E-SZZ
(w/o additions)

E-SZZ

C
os
ta

et
al
.

Disagreement Ratio 20.25% 19.08% 23.82%
Count of Future Bugs 57.01% 53.86% 60.13%
Timespan of Future Bugs (median) 837.39 788.08 829.69
Timespan of Bug-introducing Changes (median) 1834 1926 1911

P
ro
-

po
se
d

m
et
-

ri
cs

Agreement Ratio 40.23% 37.36% 42.53%
Average Linked Bugs 2.17 2.29 2.79
Ratio of Linked Bugs 67.08% 62.67% 74.16%

Table 4: SZZ and two variants of E-SZZ evaluated on metrics proposed by Costa et
al. [13] and me. The middle column contains the results of an E-SZZ implementation
that does not handle additions. Agreement ratio was calculated based on 174 labeled
commits.

(a) Bug-fix commit: HIVE-14483

(b) Bug-inducing commit: HIVE-12159

Figure 8: An example from the 174 labeled commits (Section 4.1: Found Bug Inducing
Commits) where E-SZZ found the bug, but SZZ did not, because the bug-fix commit
included only the addition of a single line.

25

4.2 Application
The purpose of this section is to demonstrate on simple code change classifiers
that even though E-SZZ introduces more false positives than the original algo-
rithm does, it might be more advantageous to catch as many suspicious commits
as possible, regardless of the higher number of false positives. Whether our goal
is to build a classifier that has higher precision or higher recall, it undeniably
depends on the circumstance and use-case what one might consider advanta-
geous or not. In case of code change classifiers, the primary goal would be to
catch as many bugs as possible, because undetected bugs (False Negatives) cost
more to companies than some extra time of the developer spent on re-checking
commits that were labeled as bug-inducing (False Positives). First I start by
introducing what features and machine learning model I used to build my classi-
fier, then I will proceed onto the manual analysis of a commit that was marked
as ”bug-inducing” by the classifier trained on E-SZZ data, but marked ”non
bug-inducing” by the classifier trained on SZZ data.

Building a code change classifier

In this section, I want to show an application of our algorithm. I took the labeled
commits produced by E-SZZ and SZZ, and used them as an input to train a
basic code change labeling algorithm. I extracted 16 features from the available
metadata provided by JIRA and git. 2 out of the 16 features are categorical
features (components and affects version), and it has some complexity-related
features (like number of insertions) and classic metadata features (like day of
week). A complete list of features can be seen in Table 5. My model of choice
for building a classifier was a RandomForestClassifier, with n_estimators
set to 200. I built two classifiers: one that was trained on data labeled by E-
SZZ, the other that was trained on data labeled by SZZ. 80% of the commits
were used to train the models, while the remaining 20% were used to evaluate
their predictions. Both models achieve identical precision scores (72.6%), but
the model trained on E-SZZ generated labels has a sligtly higher recall (62.9%
instead of 59.3%). Both models achieve almost identical accuracies - the SZZ
variant achieves 77.8% while E-SZZ achieves 78.6%.

26

feature name explanation
number of insertions Number of added lines.
number of deletions Number of deleted lines.
num. of changed files Number of changed files.
day of week Day of week it was committed.
hour of commit Hour of commit time.
solve time Time of JIRA creation - commit time.
resolution time Time of JIRA creation - JIRA resolution time.
solve res. diff. Solve time - resolution time.
number of comments Number of commits on JIRA ticket.
number of patches Number of JIRA patches. Patches are created

using git diff.
patch size mean

Different patch size related metrics.patch size variance
patch size rel. variance
filepath contains test 1 if any of the filepaths contain ’test’ as a

string. Otherwise 0.
components The components that the change affects.
affects version Affected version described by the ticket.

Table 5: Features used in code change classification.

Figure 9: HIVE-2676: An example commit where the code change classifier trained on
E-SZZ generated labels predicts that this commit is bug-inducing, while the classifier
trained on SZZ generated labels does not.

27

Manual analysis

In total, there were 949 disagreements on the prediction of test samples out of
2672. 560 E-SZZ based predictions marked a commit as bug-inducing (where
SZZ based predictions did not), and 389 predictions were marked as bug-
inducing by the SZZ based approach, where the E-SZZ based approach did
not. I would like to show a typical example where the classifier trained on
E-SZZ labels deemed a commit risky while the other did not.

The commit I would like to present is the modification of the progress()
method in HadoopJobExecHelper.java (see HIVE-2676 in Figure 9). While it
might not seem risky at first glance, the justification for the predicted risk is
quite obvious on further inquiry. After searching HIVE’s issue tracking system
with the keywords ”HadoopJobExecHelper” and ”progress”, and narrowed the
search to bug reports, I immediately got 14 different bug reports related to the
same progress() method modified by this commit! While on one hand the
commit itself might not introduce any bugs, it still deserves further attention
than other commits based on the number of related bugs found.

Yet another reason for commits such as these deserving more attention is
related to the type of change it represents. We conducted a survey amongst
Cloudera developers in Budapest, and asked them to rate specific changes on a
scale 1-5, in terms of likelihood of introducing bugs. Based on 38 answers, the
Modification of existing class / interface / method behaviour category got the
highest average (4.08), as well as lowest variance (0.9968) score! This means
that the developers highly agree that modifying the behaviour of existing meth-
ods/interfaces is extremely risky.

4.3 Future work
My proposal of handling additions is an important first step to improve SZZ-
based code change labeling algorithms. Nevertheless it still is a slightly naive
approach to assume that every addition’s surrounding lines could be accused
of breaking the code. To reduce the number of introduced false positives, one
could consider filtering the context, based on the type of the addition we are
examining. For example, the surrounding lines of a newly added class or test case
most likely do not contain a bug. Notwithstanding, the surroundings of added
control statements like if and try-catch blocks are quite likely the source of a
bug! There are many promising researches dedicated to understanding bug-fix
patterns [22, 23, 24], that could be used to narrow down bug-fix changes to the
lines truly related to the bug.

There is one more approach that could effectively reduce the number of false
positives - limiting the number of proposed bug-inducing changes to the one that
most likely caused the bug. Some naive approaches have already been proposed
- like selecting the most recent bug-inducing revision as proposed by Sinha et
al. [4], or by selecting the longest change as proposed by Davies et al. [14]. But
these approaches could be further improved by applying the idea of IR-based
(Information Retrieval based) bug localization to our problem. The core idea
behind IR-based bug localization is to find the source file that needs to be fixed
based on the description given in the bug report. This can be done by calculating
the textual similarity scores between the candidate source files and the given
bug-report. The algorithm marks source files as the probable source of a bug

28

that are most similar to the bug report. IR-based file-level bug localization is
backed by extensive research [25, 26, 27]. Nonetheless, more recent research has
also proposed to localize bugs on a change level [28], which is of greater interest
to us. By combining the finite set of candidate bug-inducing changes proposed
by E-SZZ and the methods of IR-based change-level bug localization, we could
effectively find the true source of our bug.

4.4 Conclusion
My implementation of the E-SZZ is the first stepping stone to improving the
original SZZ algorithm, by applying filters already proposed by the literature.
Furthermore, I am the first in the literature to include an extensive evaluation
on the effect of handling additions. By implementing a naive approach (trac-
ing back the context of additions), we get an implementation that finds more
bugs (77 out of 174 labeled bugs, compared to 70 out of 174) than the origi-
nal implementation. Nonetheless, a weakness of this implementation is that it
also introduces many false positives in the process. Future research could focus
on reducing introduced false positives due to handled additions, by identifying
which parts of a bug-fix change are actually responsible for fixing a bug, or by
selecting the most likely candidate from the proposed bug-inducing changes.

29

References
[1] Caitlin Sadowski et al. “Modern code review: a case study at google”. In:

Proceedings of the 40th International Conference on Software Engineering
Software Engineering in Practice - ICSE-SEIP ’18. Gothenburg, Sweden:
ACM Press, 2018, pp. 181–190.

[2] Amiangshu Bosu and Jeffrey C. Carver. “Impact of Peer Code Review on
Peer Impression Formation: A Survey”. In: 2013 ACM / IEEE Interna-
tional Symposium on Empirical Software Engineering and Measurement.
Baltimore, Maryland: IEEE, Oct. 2013, pp. 133–142.

[3] Jacek Śliwerski, Thomas Zimmermann, and Andreas Zeller. “When Do
Changes Induce Fixes?” In: Proceedings of the 2005 International Work-
shop on Mining Software Repositories. MSR ’05. St. Louis, Missouri:
ACM, 2005, pp. 1–5.

[4] Vibha Singhal Sinha, Saurabh Sinha, and Swathi Rao. “BUGINNINGS:
Identifying the Origins of a Bug”. In: Proceedings of the 3rd India Software
Engineering Conference. ISEC ’10. event-place: Mysore, India. New York,
NY, USA: ACM, 2010, pp. 3–12.

[5] S. Kim et al. “Automatic Identification of Bug-Introducing Changes”. In:
21st IEEE/ACM International Conference on Automated Software Engi-
neering (ASE’06). Sept. 2006, pp. 81–90.

[6] Chadd Williams and Jaime Spacco. “SZZ Revisited: Verifying when
Changes Induce Fixes”. In: Proceedings of the 2008 Workshop on Defects
in Large Software Systems. DEFECTS ’08. event-place: Seattle, Washing-
ton. New York, NY, USA: ACM, 2008, pp. 32–36.

[7] E. C. Neto, D. A. da Costa, and U. Kulesza. “The impact of refactoring
changes on the SZZ algorithm: An empirical study”. In: 2018 IEEE 25th
International Conference on Software Analysis, Evolution and Reengineer-
ing (SANER). Mar. 2018, pp. 380–390.

[8] Lerina Aversano, Luigi Cerulo, and Concettina Del Grosso. “Learning from
Bug-introducing Changes to Prevent Fault Prone Code”. In: Ninth In-
ternational Workshop on Principles of Software Evolution: In Conjunc-
tion with the 6th ESEC/FSE Joint Meeting. IWPSE ’07. event-place:
Dubrovnik, Croatia. New York, NY, USA: ACM, 2007, pp. 19–26.

[9] Sunghun Kim, E James Whitehead, and Yi Zhang. “Classifying Software
Changes: Clean or Buggy?” In: Software Engineering, IEEE Transactions
on 34 (Apr. 2008), pp. 181–196.

[10] Y. Kamei et al. “A large-scale empirical study of just-in-time quality assur-
ance”. In: IEEE Transactions on Software Engineering 39.6 (June 2013),
pp. 757–773.

[11] Christoffer Rosen, Ben Grawi, and Emad Shihab. “Commit Guru: Analyt-
ics and Risk Prediction of Software Commits”. In: Proceedings of the 2015
10th Joint Meeting on Foundations of Software Engineering. ESEC/FSE
2015. event-place: Bergamo, Italy. New York, NY, USA: ACM, 2015,
pp. 966–969.

30

[12] M. Nayrolles and A. Hamou-Lhadj. “CLEVER: Combining Code Metrics
with Clone Detection for Just-in-Time Fault Prevention and Resolution in
Large Industrial Projects”. In: 2018 IEEE/ACM 15th International Con-
ference on Mining Software Repositories (MSR). May 2018, pp. 153–164.

[13] D. A. da Costa et al. “A Framework for Evaluating the Results of the SZZ
Approach for Identifying Bug-Introducing Changes”. In: IEEE Transac-
tions on Software Engineering 43.7 (July 2017), pp. 641–657.

[14] Steven Davies, Marc Roper, and Murray Wood. “Comparing text-based
and dependence-based approaches for determining the origins of bugs”. In:
Journal of Software: Evolution and Process 26.1 (2014), pp. 107–139.

[15] Danilo Silva and Marco Tulio Valente. “RefDiff: Detecting Refactorings
in Version Histories”. In: 2017 IEEE/ACM 14th International Conference
on Mining Software Repositories (MSR). 2017 IEEE/ACM 14th Interna-
tional Conference on Mining Software Repositories (MSR). Buenos Aires,
Argentina: IEEE, May 2017, pp. 269–279.

[16] Khaled El Emam, Walcelio Melo, and Javam C. Machado. “The Prediction
of Faulty Classes Using Object-oriented Design Metrics”. In: J. Syst. Softw.
56.1 (Feb. 2001), pp. 63–75.

[17] N. Ohlsson and H. Alberg. “Predicting fault-prone software modules in
telephone switches”. In: IEEE Transactions on Software Engineering 22.12
(Dec. 1996), pp. 886–894.

[18] Nachiappan Nagappan, Thomas Ball, and Andreas Zeller. “Mining Met-
rics to Predict Component Failures”. In: Proceedings of the 28th Interna-
tional Conference on Software Engineering. ICSE ’06. event-place: Shang-
hai, China. New York, NY, USA: ACM, 2006, pp. 452–461.

[19] T. Zimmermann and N. Nagappan. “Predicting defects using network
analysis on dependency graphs”. In: 2008 ACM/IEEE 30th International
Conference on Software Engineering. May 2008, pp. 531–540.

[20] A. E. Hassan. “Predicting faults using the complexity of code changes”. In:
2009 IEEE 31st International Conference on Software Engineering. May
2009, pp. 78–88.

[21] Martin Fowler. Refactoring: Improving the Design of Existing Code.
Addison-Wesley Longman Publishing Co., Inc., Aug. 2002, p. 256.

[22] Kai Pan, Sunghun Kim, and E. James Whitehead. “Toward an under-
standing of bug fix patterns”. In: Empirical Software Engineering 14.3
(June 1, 2009), pp. 286–315.

[23] Matias Martinez, Laurence Duchien, and Martin Monperrus. “Automati-
cally Extracting Instances of Code Change Patterns with AST Analysis”.
In: 2013 IEEE International Conference on Software Maintenance. 2013
IEEE International Conference on Software Maintenance (ICSM). Eind-
hoven, Netherlands: IEEE, Sept. 2013, pp. 388–391.

[24] Yungbum Jung, Hakjoo Oh, and Kwangkeun Yi. “Identifying Static Anal-
ysis Techniques for Finding Non-fix Hunks in Fix Revisions”. In: Proceed-
ings of the ACM First International Workshop on Data-intensive Software
Management and Mining. DSMM ’09. event-place: Hong Kong, China.
New York, NY, USA: ACM, 2009, pp. 13–18.

31

[25] Stacy K. Lukins, Nicholas A. Kraft, and Letha H. Etzkorn. “Source Code
Retrieval for Bug Localization Using Latent Dirichlet Allocation”. In: 2008
15th Working Conference on Reverse Engineering. 2008 15th Working
Conference on Reverse Engineering. Oct. 2008, pp. 155–164.

[26] Shivani Rao and Avinash Kak. “Retrieval from Software Libraries for Bug
Localization: A Comparative Study of Generic and Composite Text Mod-
els”. In: Proceedings of the 8th Working Conference on Mining Software
Repositories. MSR ’11. event-place: Waikiki, Honolulu, HI, USA. New
York, NY, USA: ACM, 2011, pp. 43–52.

[27] Jian Zhou, Hongyu Zhang, and David Lo. “Where should the bugs be
fixed? More accurate information retrieval-based bug localization based
on bug reports”. In: 2012 34th International Conference on Software En-
gineering (ICSE). 2012 34th International Conference on Software Engi-
neering (ICSE). June 2012, pp. 14–24.

[28] M. Wen, R. Wu, and S. Cheung. “Locus: Locating bugs from software
changes”. In: 2016 31st IEEE/ACM International Conference on Auto-
mated Software Engineering (ASE). Sept. 2016, pp. 262–273.

32

	Kivonat
	Abstract
	Introduction
	Motivation
	Background
	Code change labeling algorithm
	Code change classifiers

	Contributions

	Related Work
	The original SZZ algorithm
	SZZ variants
	Dependency based change labeling
	Use case on real projects: Software Change Classification

	Enhanced SZZ
	Study setting
	HIVE
	E-SZZ integration with JIRA and Git

	Shortcomings of SZZ
	Multiple marked commits
	Changes with no effect on functionality
	Additions

	Detailed description of E-SZZ
	Pipe-and-Filter architecture

	Evaluation and application
	Evaluation
	Limitations
	Prior evaluation methods
	Proposed changes to the evaluation framework
	A comparative analysis with the original SZZ algorithm

	Application
	Building a code change classifier
	Manual analysis

	Future work
	Conclusion

