
Budapesti Műszaki és Gazdaságtudományi Egyetem
Villamosmérnöki és Informatikai Kar

Optimization of Systems with Dynamic Structures

SCIENTIFIC STUDENTS’ ASSOCIATIONS REPORT

Authors:

Dániel László Magyar
Attila Hoangthanh Dinh

Supervisors:

Dr. András Pataricza
László Gönczy

2014.

Contents

Kivonat 3

Abstract 5

1 Introduction 7
1.1 Context . 7
1.2 Problem statement . 7
1.3 Case study . 7
1.4 Structure of the paper . 11

2 Problem description 12
2.1 Domain modelling . 12
2.2 Cost effective reconfiguration . 15
2.3 Suggested method . 19

3 Background 24
3.1 Optimization problems . 24
3.2 The PNS problem . 26

3.2.1 P-graph representation . 26
3.2.2 Process structure . 27

3.3 Alloy . 30
3.3.1 Overview . 30
3.3.2 Modelling in Alloy . 30
3.3.3 Using the Analyzer . 35

4 Modelling approach 38
4.1 Overview . 38
4.2 IT Process to PNS translation . 38
4.3 Defining P-graph in Alloy . 42

4.3.1 Materials and Operations . 42
4.3.2 Example translation of a P-graph . 43
4.3.3 Maximal Structure and Solution Structure 43

4.4 Defining Resource States . 44

5 Optimization and Reconfiguration method in Alloy 46

1

5.1 Overview . 46
5.2 Maximal Structure Generation . 46

5.2.1 Propagation rules . 47
5.2.2 Auxiliary structures . 47
5.2.3 An iteration example . 48
5.2.4 Second part of MS generation . 48
5.2.5 Metamodel in Alloy . 49

5.3 Optimization method in Alloy . 50
5.3.1 Resource states during the execution of our method 50

5.4 Reconfiguration method in Alloy . 51
5.4.1 Resource states during the execution of our method 53

6 Summary 55
6.1 Contributions . 55
6.2 Future work . 55
6.3 Acknowledgements . 56

Bibliography 59

2

Kivonat

Számos rendszer működése leírható folyamatok segítségével, melyek optimalizálására
növekvő igény mutatkozik. A valóságban azonban az előre nem tervezhető, környezeti
események a végrehajtás közben módosíthatják a folyamat paramétereit (például
erőforráshasználati- vagy beszerzési költségeit), illetve struktúráját (például már használt
erőforrások meghibásodása, vagy újabbak elérhetővé válása).

A dolgozatunk során célunk egy olyan módszer megalkotása volt, amellyel elősegítjük
az ilyen változásoknak kitett folyamatok optimálizálási- és rekonfigurációs problémájá-
nak megoldását. Az előbbi esettel ellentétben, a megfelelő rekonfiguráció keresése során
figyelemmel kell lennünk a korábbi futások által módosított rendszerállapotokra.

Napjainkban a biztonságkritikus rendszereken túl, mind üzleti-, mind ipari alkalmazá-
sokban egyre inkább kardinális kérdésként jelenik meg a költséghatékonyság mellett a
hibatűrő működés biztosítása is. Ez utóbbi szempont fő motivációja, hogy a szolgál-
tatások, illetve termelési folyamatok csupán átmeneti fennakadása is jellemzően komoly
bevételkiesést jelent a vállalatoknak, biztonságkritikus rendszerek esetén pedig gyakran az
anyagi vonatkozásokon túlmutató következményekkel is számolnunk kell.

E követelményeket kielégítő, helyreállítási- illetve rekonfigurációs folyamatok meg-
találásának fontos része az újraoptimalizálás és átkonfigurálás költségének, erőforrás- és
időigényének minimalizálása. Az általunk bemutatott módszer e komplex problémára
keres megoldást.

A munkánk alapötlete az optimalizálási folyamat konstrukciós és javítási fázisokra bon-
tásából ered, mellyel célunk az optimalizálási folyamat gyorsítása volt. A konstrukciós
fázis első lépéseként a bemeneti modellen strukturális redukciót végzünk a numerikus
paraméterek figyelmen kívül hagyásával, felhasználva a folyamatszintézis (PNS) területéről
megismert módszereket. Az ily módon redukált bemeneti modellen futtatott optimalizálás
az így csökkentett megoldástéren futtatva jelentősen gyorsítható. E megoldás kiegészítését
használtuk fel a rekonfigurációs feladat megoldására.

A megvalósítás során definiáltuk a folyamatszintézis (PNS) probléma formalizmusá-
nak kiterjesztését, illetve ennek leképzését az Alloy modellkereső eszköz elsőrendű logikai
nyelvére. Az így definiált modellt az eszköz elemző motorjának felhasználásával hatékony
módon transzformáljuk SAT problémává. Szintén a bemeneti modell szintjén definiáltuk
a folyamatot érintő változásokat, melyek szimulációját is megvalósítottuk. Kihasználva az
eszköz modellkereső képességeit, az ilyen eseményekre az új megoldási tér elemkészletének
és struktúrájának előállításával reagálunk. Ezen leírások előállításánál különös figyelmet

3

fordítunk az átkonfigurálandó folyamat által már elvégzett feladatok, illetve előállított el-
emek felhasználására, így minimalizálva a meghibásodás kezelésének költségeit, illetve a
folyamatok lehetőség szerint zavartalan működésének biztosítását.

4

Abstract

There is an increasing demand for the optimization of complex systems that are usually
modeled as processes. Although solving this problem unexpected external events during
the process execution can alter the parameters of the system (e.g. cost of resource usage
or supply), and its structure (e.g. component failures).

The purpose of our method is to help to find a solution to the problems of optimization,
confinement of error propagation, and reconfiguration of such dynamically changing pro-
cesses. Typically the solutions of the three problem classes require different approaches,
for example unlike in case of optimization, during the search of a reconfiguration plan, we
have to be attentive to the system states modified earlier, by previous process instances.

In addition to safety-critical systems, many areas of business and industrial applica-
tions require cost-effective operation even in the presence of resource failures. There are
several well-known methods for designing safety-critical systems, nevertheless, the issue
of determining an optimized plan for recovering or reconfiguring the process, in response
to a component failure or change in the parameters, is crucial. Since, even the slightest
interference in the services or the production process could result in immense financial
loss. Furthermore, the consequences of a failure in safety-critical systems might be more
severe than mere loss in revenue. As a result the time required to perform both the search
and the execution of the configuration process should be minimized along with its costs
and resource usage. Therefore, the calculation of recovery and reconfiguration processes,
including the re-optimization, should be performed with minimal time consumption, re-
source usage and cost. Thus, the goal of our method is to find a solution to this complex
problem.

The underlying principle of our work is to build upon the well-known “construct and
improve” two-phase optimization process, so that we can enhance it by means of reducing
its computational needs. As the first step of the construction phase, ignoring all the
numerical parameters, we perform a structural reduction of the input model, based on
the methods of Process Network Synthesis (PNS). Right after this step, the optimization
process is performed on the resulting reduced problem space, which makes the problem
space significantly easier to compute. We use an extension of this method solve the task
of confining error propagation and reconfiguration.

Additionally, we define an extension to the PNS problem, and create translation rules
to the first-order logic modeling language of the Alloy model finder tool. This model
is then efficiently translated to a SAT problem by using the tool’s analyzer component.

5

Moreover, we define the changes that affect the operation of the process, along with the
simulation of these changes. Afterwards, using Alloy’s model constructional features, we
generate the elements and structure of the new solution space. While determining these
elements, we pay particular attention to the finished tasks and already produced elements
of the process, in order to minimize the cost of reconfiguration.

6

Chapter 1

Introduction

1.1 Context

As most complex systems rely upon services which depend on IT infrastructures, the effect
of an error at the IT component level is increasingly important. Such errors can lead to
system failures which may result in huge financial loss, or in extreme scenarios, they can
even endanger human lives.

There are many methods described in the literature to improve the fault tolerance
properties of a system, but these typically introduce additional cost in the phases of design,
construction, implementation, operation, and maintenance, which naturally results in less
income from the business point of view. Hence finding the golden mean between fault
tolerance and cost-optimized operation is a cornerstone of the design of a system.

1.2 Problem statement

Our goal was to design a method that can satisfy a process based system’s optimization
and fault tolerance needs simultaneously. Also we wanted this method being able to
support numerous mathematical tools. The technical implementation of monitoring and
error detection is out of the scope of our current work, as we assume that such services
are available in most IT infrastructures. Therefore our objective is mainly focused on the
problem of error isolation and system recovery.

1.3 Case study

In Figure 1.1. the enterprise architecture model of our case study is shown, which will be
used to demonstrate the capabilities and main concepts of our method. The case study
describes the problem of depositing cash from the bank’s point of view, while the business
process and its underlying IT infrastructure are exposed to various failures. The example
was originally described in [30] for demonstrating a process diagnosis and failure analysis
framework. Our method also provides a fault tolerance technique, more precisely speaking,
a technique, which embodies the isolation and reconfiguration of a process based system.
Hence due to the numerous similarities shared by the two methods’ our problem domain,

7

we found it perfectly suitable for presenting our method as well. The model depicts the
process in three layer:

∙ Business Processes Layer describes the activities initiated by the cashier,
along with their precedence constraints (represented by execution path), sim-
ilar to a BPMN[12] model. The precedence constraints of the activities serve as
hard constraints i.e. they cannot be violated during the execution of any process
instances.

∙ Supporting Applications Layer describes the services and logical components
the above layer builds upon. The depicted dependency constraints also serve as
hard constraints.

∙ Physical Resources Layer describes the physical components, as the lowest level
structure of the system.

Figure 1.1. Example bank transaction workflow [30]

In [30] the failure modes of this example system were also discussed, which we can use
as an initial failed state of a system, from which we aim to recover. A brief overview of
the failure modes depicted on Figure 1.2:

∙ Single point of failure (1) A fault in a physical layer (i.e. failure of a resource,
such as the blade server) can lead to the failure of the whole system through
dependency relations. Such vulnerabilities of a system can be discovered during
the design phase. In case of this failure mode activates, the typical solution to this
recovery problem is to perform failover, i.e. to simply replace the failed resource
with a flawless one.

8

∙ Degradation (2) Assuming, that during the design of a system, the designers
paid attention to avoid using components, that would become single point of fail-
ure. A fault in a physical layer then may have less sever effects (e.g. failure in
the blade server farm). In this failure mode, instead of stopping the entire sys-
tem, the services might slow down, increasing the delay, which ends up with a
proper, but more expensive process execution. (e.g. Perform full check task
might terminate with a timeout exception, resulting in a mandatory execution of
manual laundering check of every transaction). The typical solution to this prob-
lem would be to perform a loadbalancing, i.e. to find alternative resources with
proper remaining capacity.

∙ Backwards propagation (3) The initial fault is not necessarily propagates from
lower logical layers to the higher logical layers of the infrastructure. In this case, a
fault in the logical layer, such as an SQL injection can cause the Database server

to become unstable, resulting in the failure of process execution. A possible solution
to this problem could be to perform a failover.

It is easy to see that during the recovery of these failures; spare resources and alternative
execution possibilities have to be considered. Our method aims to automatically find a
solution to this problem.

9

Figure 1.2. Motivational example: failure modes of a bank’s en-
terprise architecture model [30]

10

1.4 Structure of the paper

The paper is written in the following structure. In chapter 2 we present problems aimed
by our method, and explain its main logical steps. In chapter 3 we present the underlying
technology of our method, both from the theoretical and practical point of view. In
chapter 4 we explains how we used the previously presented technologies to solve the
aimed problems. In chapter 5 we presents the main characteristics of our implementation
of the method. Finally in 6 we summarize our contributions and the limitation

11

Chapter 2

Problem description

In this chapter we discuss the general properties of the problem domain aimed by our
approach. In section 2.1, we present the general properties of the targeted domain of our
method. In section 2.2, we give a formal description of the problems, our method solves,
and at last in section 2.3 we introduce the way our approach handles these problems all
at once.

2.1 Domain modelling

Our method aims the domain of complex systems, whose structure and execution is both
subject to changes due to external events. Since such systems are highly diverse in terms
of their purpose, attributes, structures and events that can alter them in certain ways, we
need a representation to describe their similarities. Hence in this section we discuss their
common properties, in order to design the previously mentioned uniform model.

Behaviour The behaviour of complex systems is commonly described by a business
process model (for example a BPMN model[12]), which is an OMG standard, designed
to intuitively capture the process as an end to end flow of execution. Hence we mainly
use its concepts to initially represent the process’ behavioural properties as shown in the
topmost layer of Figure 1.1.

∙ Activities of a business process model are the smallest logical representation of
a process’ execution steps. An activity definition contains its input and output
objects (see Structure) and cost functions as well (see Objective). Hence an activity
can represent the task of form processing or record transaction.

∙ Execution flow defines precedence and temporal logical constraints between activ-
ities.

– Sequences represent simple precedence constraints between activities and are
depicted as arrows. By using sequence flow, in our case study we can express
the fact that the form processing activity must precede the money takeover.

12

– Gateways are depicted as rhombuses and express the temporal logical con-
straints of a group of activities, hence it can be used to represent basic boolean
operations and even more complex predicates. A gateway can express that
in case of suspected laundering the transaction must be reported before
creating a receipt.

Structure The structural elements of a complex system can be described by an in-
frastructure model, which - in comparison to BPMN’s data object concept - provides a
more sophisticated and detailed way to represent the hierarchy of elements while keeping
the BPMN’s perspective. Structural characteristics of our case study are depicted in the
Supporting Applications Layer and Physical Resources Layer of Figure 1.1.

∙ Objects represent the inputs and outputs of activities and may have different prop-
erties in terms of usage and role.

– Resources are initial or immediate inputs and outputs of activities from the
process perspective. Resources may have two different ways they react to the
operation of activity they are allocated to.

* Renewable resources can be reserved, used and then released by an
activity, hence they cannot be modified. Hence they can represent
logical services like application servers or physical components like
backend servers.

* Consumable resources are used by an activity if they serve as its inputs,
and usually have cumulative properties such as capacity constraints. Hence
they can represent immediate items that can be used by activities for com-
municating, such as an incoming form or a processed form which can be
processed (i.e. consumed) by another task. (Note that in figure 1.3 im-
mediate consumable resources (i.e. they serve as both inputs and outputs,
like processed form) are not depicted for the sake of clear presentation,
but they are innate parts of any processes).

– Products can only serve as outputs of activities, as they represent the result
of a flawless process execution. A product can stand as a receipt or a report

produced by different activities.

∙ Dependencies represent requirement relations between two objects or an activity
and an object. In other words, dependencies express that activities cannot be exe-
cuted and objects cannot be used without all of their dependent objects being usable.
Hence we can use dependency relation to represent that an application server ser-
vice requires both the database server’s service and the physical backend server

itself to be usable.

13

Objective Behavioural properties describe the logic of processes, structural properties
describe their underlying infrastructure, therefore together they provide the execution
policy (i.e. hard constraints) of a system. On the other hand, the following elements are
needed to describe the objective or purpose (i.e. soft constraints) of a system and its
processes in order to optimize it (i.e. to distinguish the effective process executions from
the space of valid executions).

∙ Cost functions are used to express the various costs of activity executions and
resource usage. Cost functions can describe either the time-requirements (i.e. dura-
tion) of an activity execution, or the prices of using a resource like the compliance DB

service. (Note, that cost functions have no standard notation, hence they are not
shown in Figure 1.1)

∙ Objective functions stand as the fundamental subjects of optimization, as they
directly express the purpose of the system processes. Objective functions can rep-
resent the intent to minimize the total execution time (makespan) of all the process
instances that can help to achieve maximized throughput of the system.

Dynamic structures: system changes In our approach, system changes are the ef-
fects of external events, which can either be an observed failure of a used resource, or a
new one becoming available to use. It’s important to emphasize that according to our as-
sumption, an activity has only one possible execution mode in terms of its resource usage.
In other words, the change of a resource will affect its consumer and producer activities
naturally, hence we do not have to take dynamic changes of activity execution modes into
account.
We make the assumption of activities with single-mode behaviour based on experimental
observations of problems from the given domain. The concept of multi-mode resource-
constrained project scheduling problem is discussed in [1]. The concept of multi-mode
resource usage can further simplify the complexity of the optimization for some particular
problems, but on the other hand it makes the reconfiguration more complex. Our current
work focuses on the single-mode resource-constrained project scheduling problem, while
activities with multi-mode executions can still be translated to our problem in case of
finite number of given execution modes. In conclusion, our concept of system changes is
suitable for modelling typical failures of the components of an IT infrastructure, e.g. a
faulty backend server’s error can propagate to the corresponding application server

and DB services, making the activity of form processing unavailable, resulting in a system
failure.

14

2.2 Cost effective reconfiguration

Given the definition of a process along with its underlying infrastructure, our goal with the
appliance of our method is to not only optimize the execution of the process, but to enhance
its fault tolerance by automatic resource reconfigurations and activity rescheduling. In
other words, our purpose is to minimize the costs of process execution and reconfiguration
together.

The problem consists of two well differentiated subproblems, which have known methods
of solving separately, but neither of them is directly applicable for solving the problems
together while scaling well with the size of the system model. Below we briefly describe
the properties of these subproblems.

Scheduling In our case, the scheduling problem can be formulated as 𝑃𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑖𝑛𝑔 =
⟨𝛼𝑤, 𝛽, 𝛾, 𝛿⟩ [26, 21, 1], where

∙ 𝛼𝑤 = {𝑎1, 𝑎2, ..., 𝑎𝑛} is the set of workflow activities given in the description, where
each activity 𝑗 ∈ 𝛼𝑤 determines its duration 𝑑𝑗 .

∙ 𝛽 = {𝑅, 𝐶, 𝑃} is the given set of objects, where 𝑅 is the set of renewable resources,
𝐶 set of consumables and 𝑃 set of products. For each 𝑘 ∈ 𝛽 object, its capacity 𝑔𝑘

is also defined, which represents

– the maximum number of simultaneous usage of 𝑔 at any point of time, if 𝑔 ∈ 𝑅

renewable, or

– the summed number of usage of 𝑔 throughout the process execution, if 𝑔 ∈ 𝐶

consumable.

∙ 𝛾 is the set of hard-constraints, i.e. for all 𝑗 ∈ 𝛼𝑤 activities their given set of inputs
𝐼𝑛(𝑗), outputs 𝑂𝑢𝑡(𝑗), predecessors 𝑃𝑟𝑒𝑑(𝑗), and furthermore for all 𝑘 ∈ 𝛽 objects
their given set of 𝑔𝑘 capacity constraints.

∙ 𝛿 is the set of soft-constraints, i.e. objective functions.

The task is to find a feasible, non-dominated schedule 𝑆 = {𝐴, 𝑇}, which is a pair of activity
and start time vectors with the size of 𝑚 ≤ 𝑛, representing the scheduled activities and
their start time. An 𝑆1 schedule is

∙ feasible, if none of the set of hard-constraints denoted by 𝛾 is violated. In other
words all precedence, resource and capacity constraints are satisfied in 𝑆1

∙ non-dominated[4], if there is no objective function 𝑓 ∈ 𝛿 and 𝑆2 schedule, for which
𝑓(𝑆2) ≤ 𝑓(𝑆1) assuming minimization problem.
Note, that a maximization problem can easily converted to a minimization prob-
lem, e.g.: for each 𝑓𝑥|𝑥 ≤ 𝑖 objective function that have to be maximized, the
𝑓𝑥(𝑆) = −𝑓𝑥(𝑆) transformation should be applied.

15

Informally we have to allocate start times for a subset of activities, while this allocation
does not violate any hard constraints and according to the objective functions it is the
best solution amongst the found ones.

Recovery Fault tolerance is carried out via error detection and system recovery. Our
method provides the latter, hence after the detection of an error (e.g. by proper monitoring
mechanics) the recovery task will be executed. Its goal is to transform a system state that
contains one or more errors and possible faults into a state without detected errors and
faults that can be activated again[2, 5, 16]. The recovery problem can be formulated as
𝑃𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦 = ⟨𝛼𝑤, 𝛼𝑟, 𝛽⟩, where

∙ 𝛼𝑤 = ⟨𝑎𝑓𝑎𝑖𝑙𝑒𝑑, 𝑎𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑑, 𝑎𝑖𝑛𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑑⟩ = {𝑎1, 𝑎2, ..., 𝑎𝑛} is the same set of workflow
activities that is described in the previous paragraph, but this time its partitioning
to three subsets is also defined:

– 𝑎𝑓𝑎𝑖𝑙𝑒𝑑 is the set of failed activities of the process workflow, i.e. the tasks, that
failed during their execution as a consequence of an object failure. Hence failed
activities are the ones, that did not terminated as expected.
(Note, that besides the monitoring of objects, these activity failures can signal
the presence of errors in the system, but proper detection mechanisms are still
required to identify the exact active errors.)

– 𝑎𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑑 is the set of successfully finished activities of the process workflow,
i.e. the tasks, that terminated properly before the occurrence of process failure,
hence the effects of their completion could possibly modified the system’s state.

– 𝑎𝑖𝑛𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑑 is the set of incompleted activities, of the process workflow, i.e. the
tasks, that haven’t even started operating before the occurrence of failure.

∙ 𝛼𝑟 is the set of recovery activities which can be an empty set. In comparison of the
process activities, instead of being a part of the business logic, recovery activities
represent repairing tasks assigned to set of objects. This assignment is expressed the
same way as the inputs and outputs of process workflow activities, i.e. all 𝑗 ∈ 𝛼𝑟

determines its duration 𝑑𝑗 , a set of failed objects to be repaired as its input 𝐼𝑛(𝑗),
and the set of fixed objects as its output 𝑂𝑢𝑡(𝑗).

∙ 𝛽 = ⟨𝛽𝑢𝑝, 𝛽𝑑𝑜𝑤𝑛⟩ = {R, C , P} is the same set of objects, defined in the Scheduling
paragraph, but again, with a partitioning of it is defined as well:

– 𝛽𝑢𝑝 is the set of objects, that are usable to use and flawless according to our
observations of the system, i.e. objects that can be possibly used by activities,
even without free capacity.

– 𝛽𝑑𝑜𝑤𝑛 is the set of failed objects, that can not be used by any 𝑗𝑤 ∈ 𝛼𝑤 workflow
activity. Failed objects can only be allocated to 𝑗𝑟 ∈ 𝛼𝑟 recovery activities for
repairing purposes.

16

Isolation The first part of recovering the system is the isolation step, since the de-
pendency and control flow mechanics can enable the ’chain of threats’ to be completed, i.e.
by propagation, several errors can be generated before a failure occurs. Hence adherent
to the detection of an error, the isolation step must be executed, which performs logical
exclusion of the faulty objects from further participation in service delivery, i.e. makes the
fault dormant.

Besides the separation of 𝛼𝑓𝑎𝑖𝑙𝑒𝑑 failed activities and the 𝛽𝑑𝑜𝑤𝑛 failed objects, the isola-
tion step also determine their 𝜎 = ⟨𝛼𝑓𝑎𝑖𝑙𝑒𝑑, 𝛽𝑑𝑜𝑤𝑛, 𝛼𝑏𝑙𝑜𝑐𝑘𝑒𝑑, 𝛽𝑏𝑙𝑜𝑐𝑘𝑒𝑑⟩ error confinement re-
gion, which is a logical environment of activities and objects around the detected errors.
The error confinement region consists of:

∙ 𝛼𝑓𝑎𝑖𝑙𝑒𝑑 is the set of activities that are detected as failed (see Recovery paragraph).

∙ 𝛽𝑑𝑜𝑤𝑛 is the set of faulty resources (see Recovery paragraph). It is noteworthy, that
these resources stand as the root causes of system failures.

∙ 𝛼𝑏𝑙𝑜𝑐𝑘𝑒𝑑 is the set of blocked activities, where 𝑗 ∈ 𝛼𝑏𝑙𝑜𝑐𝑘𝑒𝑑 can either be

– (i) a 𝑗 ∈ 𝛼𝑤 activity, which dedicatedly enables a 𝑘 ∈ {𝑅
⋂︀

𝛽𝑑𝑜𝑤𝑛} failed
renewable resource. In other words, 𝑘 ∈ 𝑂𝑢𝑡(𝑗) and there is no other
𝑗′ ∈ 𝛼𝑤 : 𝑘 ∈ 𝑂𝑢𝑡(𝑗′) activity, which enables the usage of 𝑘.
The motivation of this rule is to eliminate activity executions, which could
enable the usage of failed resources, since its usage could lead to further
propagation of the detected error, e.g. an activity of starting up a faulty
Database server can result in numerous erroneous transaction, hence the iso-
lation of this activity is mandatory.

It is noteworthy, that in case of a consumable resource, its failure can be masked by
simply producing this item again, i.e. re-executing its 𝑗 producer activity. For ex-
ample in case of an erroneous processed form it can be reproduced by rerunning its
producer form processing activity (as seen on Figure 1.3). If the error does not oc-
cur again, it was an intermittent fault of a corresponding component (e.g. Customer

and Account Identification service), which does not necessitate reconfiguration.
If the error recurs, then an error remained undiscovered.

– (ii) a 𝑗 ∈ 𝛼𝑤, which uses at least one 𝑘 ∈ 𝛽𝑑𝑜𝑤𝑛faulty resource. In other words,
𝑘 ∈ 𝐼𝑛(𝑗).
The motivation of this rule is to eliminate activity executions, which could use
failed resources, regardless of its type, i.e. this rule applies to the activities,
which uses failed either consumable or renewable resources, since using a faulty
erroneously processed form (consumable) or the services of a faulty Database

server may result in further error propagations.

17

∙ 𝛽𝑏𝑙𝑜𝑐𝑘𝑒𝑑 is the set of blocked resources, where 𝑘 ∈ 𝛽𝑏𝑙𝑜𝑐𝑘𝑒𝑑 is a resource whose all
producer activity is either failed or blocked. The motivation of this rule is to dis-
able the usage of possibly erroneous resources by blocking them. For example if
a transaction form could be processed by several activities and they are all er-
roneous, blocking the transaction form will signal in the business logic, that a
request for this resource cannot be satisfied.

Informally speaking, we have to isolate activities and objects whose execution or usage
could further propagate the erroneous state. The isolation step does not only protects
the yet flawless components of a system by the confinement of the possibly faulty region,
but it also reduces the number of possible process execution scenarios, i.e. the there can
be no dead-end executions of a process. For example, if an error of cashier module

gets detected, blocking only its dependent record transaction activity may still let the
form processing and money takeover activities to be executed. The error confinement
region will block these activities as well, avoiding the wasting and unnecessary executions
of them.

Reconfiguration Adherent to the isolation step of recovery the reconfiguration step
is to be executed. Generally speaking the goal of this step is to either switch in spare
resources or reassign tasks among non-failed resources for two reasons, (i) to secure the
interruption-free service of the system, and (ii) to recover the elements of error confinement
region. This problem is approached from the cost minimization point of view, i.e. the step
aims to reduce the amount of loss of work already done before the error detection and the
price of actual reconfiguration as well.
The reconfiguration problem can be formulated as 𝑃𝑟𝑒𝑐𝑜𝑛𝑓𝑖𝑔𝑢𝑟𝑎𝑡𝑖𝑜𝑛 = ⟨𝛼𝑤, 𝛼𝑟, 𝛽, 𝜎⟩, whose
elements are defined above. We have to emphasize, that 𝛼𝑟 set of recovery activities
can be an empty set, that represents the absence of activity definitions, which could
repair failed resources. In this case, the reconfiguration step can only use the diversity
and redundancy, built in the infrastructure and process workflow design, since removing
errors of components is cannot be carried out automatically, manual assistance is needed.
On the other hand, if 𝛼𝑟 is not empty, this step can mix the activities that implements
recovery and business logic (i.e. process workflow) tasks. In other words, the output of
this reconfiguration is a set of trajectories (i.e. workflow) of recovery and business logic
activities to carry out parallel recovering and service execution. This set of trajectories
will be scheduled to obtain the cost minimized execution plan of this extended process.

18

Hence our job is to find a new resource allocation of resources to activities that satisfies
the following criteria:

∀ 𝑘𝑙, 𝑗𝑖, 𝑗𝑚 : 𝑘𝑙 ∈ 𝐼𝑛(𝑗𝑖)
⋃︁

𝑂𝑢𝑡(𝑗𝑚) ⇐⇒ (𝑖) 𝑘𝑙 ∈ 𝛽𝑢𝑝 ∖ 𝛽𝑏𝑙𝑜𝑐𝑘𝑒𝑑, 𝑎𝑛𝑑

(𝑖𝑖) 𝑗𝑖, 𝑗𝑚 ∈ 𝛼𝑟

⋃︁
(𝛼𝑤 ∖ (𝛼𝑏𝑙𝑜𝑐𝑘𝑒𝑑

⋃︁
𝛼𝑓𝑎𝑖𝑙𝑒𝑑))

Informally speaking, in the new allocation a 𝑘𝑙 resource can be an input of 𝑗𝑖 or output
of 𝑗𝑚 if and only if 𝑘𝑙 is a usable (up), not blocked, and 𝑗𝑖, 𝑗𝑚 can either be recovery
activities, or workflow (business logic) activities, that are not failed or blocked. The exact
method we used to determine such an allocation is described in the Optimization and
Reconfiguration method in Alloy chapter.

2.3 Suggested method

Overview Generally speaking, our method is based on the principle of the two-phase
optimization methodology, that is in order to enhance scaling and reduce computational
complexity, initially a construction phase is executed, which generates a partial solution
to the given problem. Adherently to this pre-optimization phase, the improvement phase
is performed on the resulting reduced state space, which makes the problem space sig-
nificantly easier to compute. Our current work focuses on the construction phase, which
provides both a partial solution and a reconfiguration state space as well, that can be elab-
orated through an optimization solver interface such as the Minizinc constraint modelling
language [19] or the JSR-331 constraint programming API [6] to find a complete schedul-
ing. The usage of such solver interfaces may also allows us to run the improvement phase
on different solver engines, based on the characteristics of the construction phase’s result,
making it possible to exploit the different strengths of the supported solvers.

Our method’s workflow is shown on Figure 2.1. as a BPMN workflow, where the
activities represent the logical steps of our method, and the data objects represent the
data (such as models and problem descriptions) used or produced by the activities. In this
workflow, the direction of dependency arcs (dashed arrows) play an important role, that
is the incoming dependencies of an activity represent its inputs, while the outgoing ones
represent its outputs. The color of data objects aims to capture the similar usage modes
of data objects, such as:

∙ Orange: workflow input data objects, they cannot be produced by any activities of
our method.

∙ Green: internal data objects, they are only produced and used by activities of our
method.

∙ Blue: data objects that is the mixture of above, they can be workflow inputs and
also produced (simulated) by activities

∙ Red: workflow output data objects, these are the data that our method provide as
service.

19

Problem relaxation steps

Transform problem to PNS model This step stands as a cornerstone of our
method, where we perform an abstraction to express only the desired properties of the
system and its process description, while eliminating undesired ones [20]. The translation
rules of this abstraction function is defined in the IT Process to PNS translation section,
that are applied to the input Problem model, which removes its numerical parameters
(such as cost functions, capacity constraints, etc.). As a result of this function, the output
PNS model will only express the structural constraints of the process and the underlying in-
frastructure. The structural constraints refer to the previously described hard-constraints,
i.e.: the precedence and dependency constraints of the system.

The result of this step is then used by the maximal structure generation to find the
solution space of structurally (combinatorially) feasible solution. It is also noteworthy,
that even though we used BPMN Problem model to represent our case study, we could
also use other methods for this purpose, such as the ArchiMate[25], which is an Open
Group Standard and modelling language, that is capable of describing, analyzing and
visualizing relationships among business domains. In conclusion, this step provides the
relaxed problem description, which is elaborated by later steps.

Transform process instances to PNS model This step extends the previous one
activity’s function of abstracting (i.e. relaxing) the input problem, hence the usage of
and-gateways in the workflow description, which semantically represents simultaneous
execution of the two steps. While the Transform problem to PNS model step created
an abstraction from the problem model, this task applies the same translation rules to
the currently active instances of the problem model’s process. Thus the process instances
describe the current resource allocations of each instances, i.e. the current state of the
process execution. The output of this step is a set of solution structures (see chapter
Background). The output of this step is the input of the recovery step to calculate the
𝛼𝑤 = ⟨𝛼𝑓𝑎𝑖𝑙𝑒𝑑, 𝛼𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑑, 𝛼𝑖𝑛𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑑⟩ partitioning of the process workflow activities, in
order to minimize the loss of work already done before the error detection. If there are no
active process instances (i.e. the system is idle), there are no allocated resources and we do
not have to calculate with the effects of previous executions. Errors can still be detected
by external monitoring services or can be simulated. In conclusion, this step provides the
snapshot of the system at the time of error detection, projected to the relaxed problem.

20

Steps of introducing errors

Get component changes This step embodies the function of reading the data pro-
vided by an error detection service. Hence its output is the set of erroneous elements.

Simulate component changes This step comes into play if there are no erroneous
elements detected by an error detection service, if there is any. Thus this activity represents
our implementation of error simulation, which randomly flags a subset of resources as
faulty. Note, that the exclusive-gateway is used to represent the relationship of the task of
change simulation and change reading, i.e. only one of these can be executed and produce
the change model.

Inject changes This step simply set faulty the elements of PNS model which corre-
spond to the faulty components listed in the change model, thus producing the changed

PNS model output.

Solution space reduction and Recovery steps

Process state space reduction Generally speaking, this step produces the solution
space of the previously relaxed problem elements, which is carried out via the execution
of MSG algorithm, described in chapter Background. The output of this algorithm is the
reduced solution space, Maximal structure and the impact estimation of changes, i.e.
the error confinement region and the new elements introduced to the process for example
by a repairing activity. It is noteworthy, that the elements of error confinement region
and the maximal structure form disjunct sets, i.e. blocked components cannot be parts of
the solution space.

Calculate reconfiguration trajectory space This function produces that space of
all possible reconfiguration trajectories of the system. Generally speaking, this step takes
𝛼𝑟recovery activities into account as well, and it adds them to maximal structure to its
corresponding resources. Then it removes the execution paths that cannot be used in any
reconfiguration trajectory, which is carried out via the above mentioned MSG algorithm.
The result is the space of possible reconfiguration trajectories, which will be used by the
reconfiguration step.

Numerical optimization

Scheduling This step embodies the function of finding the numerically feasible and
non-dominated scheduling to the problem, as described previously, which is carried out via
the usage of an also previously mentioned solver interface, and by exploiting the generated
reduced solution space.

21

Reconfiguration and scheduling This task is an extended version of the
Scheduling step, i.e. the scheduling is not only executed over the reduced set of 𝛼𝑤

workflow activities, but the reduced set of 𝛼𝑟 reconfiguration activities are taken into
account as well. Note, that the numerically feasible and cost minimized reconfiguration
trajectory cannot be generated separately from the scheduling, since the 𝑗𝑖 ∈ 𝛼𝑤, 𝑗𝑙 ∈ 𝛼𝑟

activities can use the same resources, thus they can either conflict, and joining the two
non-dominated solutions could result in a non-feasible, or dominated solution.

22

Figure 2.1. Method workflow

23

Chapter 3

Background

In this chapter, we briefly introduce optimization problems from a more generalized per-
spective based on [21], along with the main modelling and optimization paradigms(i.e.
Constraint Programming, Boolean Satisfiability and Mixed Integer Linear Programming),
to provide a further understanding of the motivation of our method. Adherently we present
the main properties of the problem representation we used to simplify the problem on the
theoretical field (i.e. PNS). Finally we present the basic characteristics of the modelling
language we used to practically solve exact problems (i.e. Alloy).

3.1 Optimization problems

Generally, optimization problems can be formulated as

𝑧 = 𝑚𝑖𝑛𝑓(𝑥) (3.1)

𝐶 (3.2)

𝑥 ∈ 𝐷 (3.3)

where 𝑧 is the value of objective function 𝑓(𝑥) of the variable x to be minimized, 𝐷 is
the domain of 𝑥, while 𝐶 is the finite set of constraints to be satisfied. Then we call 𝑥

a solution, which is feasible iff it satisfies all the constraints of set 𝐶. The 𝑥* solution is
called optimal, if 𝑓(𝑥*) ≤ 𝑓(𝑥) for all feasible 𝑥.

Note, that in section Scheduling we described a specific part of optimization problems,
for which 𝑓(𝑥) is a composition of objective functions denoted by 𝛿, the 𝐶 constraints
is represented by 𝛾 and 𝐷 domain was denoted by 𝛼

⋃︀
𝛽 set of activities and objects

respectively.

24

The Constraint Programming (CP) paradigm is used to declarative model and effectively
solve large optimization problems, and solves Constraint Satisfaction Problems (CSP),
which can be formulated as a triple ⟨𝑥, 𝐷, 𝐶⟩, where

∙ 𝑥 = {𝑥1, 𝑥2, ...𝑥𝑛} represents the set of variables

∙ 𝐷 = 𝐷1 × 𝐷2 × ... × 𝐷𝑛 represents the domain of the above mentioned variables

∙ 𝐶 represents the set of hard-constraints restricting the values that can be assigned
to the variables.

The task of solving CSP defined by the above properties is to find one feasible solution,
all feasible solutions or prove that there is no feasible solution. If an 𝑓 objective function
is given, then we may want to find optimal solution to the problem as well. The CSP
includes satisfiability problems as special case, hence CSP is 𝒩 𝒫-hard.

The Boolean Satisfiability Problem (SAT) is a specific case of CSP, where the problem is
to determine whether the variables of a given formula of propositional logic can be assigned
so, that the variables satisfy the formula, or prove that no such assignment exists. The
formula in propositional logic is expressed clauses, where a clause is a disjunction of literals,
that are atomic propositions or their negations. SAT problems may seem simple compared
to the other discussed problems, they are also 𝒩 𝒫-hard, which was proven first to be such.

The Mixed Integer Linear Programming (MILP) are problems, that has linear objective
functions and constraints, while being mixed integer because noninteger values are also
allowed in the problem[13]. MILP can be formulated as

𝑧 = 𝑚𝑖𝑛𝑐𝑇 𝑥 (3.4)

𝐴𝑥 ≤ 𝑏 (3.5)

𝑙 ≤ 𝑥 ≤ 𝑢 (3.6)

𝑥 ∈ R (3.7)

𝑥𝑗 ∈ Z∀𝑗 ∈ 𝐼 (3.8)

where 𝑐𝑇 𝑥 is the objective function, 𝐴𝑥 ≤ 𝑏 represent the set of linear constraints, 𝑙

and 𝑢 stand for the lower and upper bounds of variable 𝑥respectively and 𝐼 denotes, that
the variables must be integers. A special case of the above model when the integer values
are bound as 0 ≤ 𝑥𝑗 ≤ 1, i.e. variables are binary. Since SAT is a special case of such a
Binary Program (BP), BP and most MILP are 𝒩 𝒫-hard. Finding a solution to a MILP
problem is typically carried out via the execution of branch and bound (BB) algorithms.

Exceptions are Linear Programs (LP), for which 𝐼 = ∅ holds. LPs were proven to be
polynomially solvable, although in practice the simplex non-polynomial algorithm is used
to solve them. Also its noteworthy, that MILPs are mixed, since noninteger variables

The recent solution methodologies for resource-constrained scheduling problems are
typically use the concept of MILP, which is shown to be 𝒩 𝒫-hard, hence the same applies
to the scheduling subproblem, that our method partially focuses on.

25

3.2 The PNS problem

The Process Network Synthesis (PNS) problem is a MILP problem, which originates from
the domain of chemistry. Informally speaking PNS problems are production problems,
where the desired products of the given process must be produced, which is carried out
by the consecutive and simultaneous executions of operating unit actions, that transform
their input materials into output materials. Operational units may have attributes, that
describe their cost of execution, such as fix cost and proportional cost.

3.2.1 P-graph representation

A process graph (P-graph)[8] is a simple and intuitive way to represent a PNS problem.
A P-graph ⟨𝑀𝑎𝑡, 𝑂𝑝⟩ is a directed bipartite graph where the two disjoint, sets of nodes
are:

∙ 𝑀𝑎𝑡 which represents the finite set of materials, symbolized by circles. Materials
are further classified by a partition to 3 disjoint set of materials:

– 𝑅𝑎𝑤 ⊂ 𝑀𝑎𝑡 raw materials are the ones that cannot be outputs of operating
units

– 𝐼𝑛𝑡𝑒𝑟 ⊂ 𝑀𝑎𝑡 intermediate materials are the ones that can serve as an input
and output of any operating units as well

– 𝑃𝑟𝑜𝑑 ⊂ 𝑀𝑎𝑡 products are the ones that can only be produced, i.e. no operating
unit can use use them as inputs.

∙ 𝑂𝑝 which represents the finite set of operating units, symbolized by horizontal bars.
For the set of operating units 𝑂𝑝 ⊆ 𝑀𝑎𝑡 × 𝑀𝑎𝑡 and 𝑀𝑎𝑡

⋂︀
𝑂𝑝 = ∅ hold.

Arcs originate from a material with potential loss towards an operating unit (i.e. a con-
sumer), or from an operating unit (i.e. a producer) towards a material with a potential
gain. This property indicates that the directions of arcs are usually identical to the direc-
tion of material flows in a process. Such representation was originally dedicated to describe
the material flow of chemical processes, but it’s also suitable for describing the data flow
of an IT infrastructure, thus the potential error propagations as well. Such representation
is described in section IT Process to PNS translation. An example P-graph is shown in
Figure 3.1.

26

Figure 3.1. An example P-graph representing a simple PNS prob-
lem [22]

3.2.2 Process structure

The structure of a process can be defined as a P-graph of a PNS problem as described
previously. The possible solutions on the other hand, are represented by solution struc-
tures (SS), that are P-graphs which conform the following necessary and sufficient combi-
natorial properties:

1. Every product of the PNS problem is represented in the P-graph.

2. A material has no input operating unit (i.e. producer) iff the material is raw.

3. Every operating unit in the P-graph represents an operating unit in the PNS prob-
lem.

4. Every operating unit has at least one path leading to a product of the PNS problem,
thus there are no isolated (and non-functional) operating units in the P-graph.

5. Every material is an input or an output (or both) of an operating unit, thus there
are no isolated materials in the P-graph.

Hence all the solutions of a given PNS problem can be represented by corresponding
solution structures, i.e. subgraphs which conform the above listed axioms. We use this
interpretation to describe the instances of a given IT process, detailed in section IT Process
to PNS translation. The set of solution structures of the previously shown example PNS
problem can be seen on Figure 3.2.

27

Figure 3.2. P-graphs denoting all the solution structures of the
PNS problem shown in Figure 3.1 [22]

Another artefact of the PNS concept of process structure description is the
maximal structure (MS). Since the set of combinatorially feasible solution structures is
closed under union, the superstructure of these solution structures form the maximal
structure, i.e. a solution structure which contains all the solution structures. In other
words, a node is present in the P-graph of the maximal structure if and only if that node
is present in at least one of the P-graphs representing the solution structures of the PNS
problem. Hence we can use this concept of MS to represent the possible execution paths
of an IT infrastructure.

A maximal structure generation (MSG) algorithm is proposed in [9], which generates the
superstructure of the combinatorially feasible solution structures by eliminating the un-

28

necessary materials and operating units in polynomial time. We exploit the characteristics
of the MSG to find all the possible execution paths of a given system process.

Figure 3.3. P-graph denoting the maximal structure of the PNS
problem shown in Figure 3.1 [22]

29

3.3 Alloy

3.3.1 Overview

Alloy is a language and a tool for describing structures and analyzing them, developed by
the Software Design Group at MIT [14] [15] . It has an expressive and flexible first-order
logic based declarative language with relational algebra, that is used to define complex
structure models. The structures that satisfy the constraint of the model in Alloy can be
analyzed by the Alloy Analyzer tool. It can both explore or check certain properties of the
model, by generating sample structures or a counterexample structure respectively. The
Alloy model is efficiently translated into a SAT problem and can be solved by a variety
of powerful SAT-solvers. The output of the SAT-solver, which contains the structures
that satisfy the model, is translated back into Alloy, and can be viewed and evaluated by
queries. In addition, Alloy has a customizable built-in visualizer feature as well, that can
visualize the solution structures found by the Analyzer.

3.3.2 Modelling in Alloy

Core building blocks At its core, Alloy’s language has predicate logic and relational
calculus, i.e. relational logic. Hence, it has multiple ways of expressing constraints and
structures, from using quantifiers known in predicate logic, to using natural join known in
relational algebra. Moreover, Alloy uses atoms as primitive entities (which are indivisible,
immutable, uninterpreted) and relations which associate atoms. A relation is a set of
ordered tuples of atoms, i.e. a table, where atoms in a specific tuple means they are
related. Furthermore, their arity is the number of atoms in each tuple, i.e. number of
columns, and their size is the number of tuples, i.e. number of rows. In fact everything
that can be described and used in the language itself is a relation. Additionally, there are
three main ways a user can view and read the syntax of an Alloy model, from the highest
abstraction level to the lowest:

∙ as an Object-oriented programming model

∙ using set theory (sets, elements, relations)

∙ as atoms and relations, i.e. the real formalism behind the language

The most intuitive way is to use the second option, set theory. Although there are two
types of expressions, relation-valued and boolean-valued, the grammar of Alloy does not
distinguish one from the other. Nevertheless, they are disjoint.

Basic elements Listing 3.1 shows the basic signature element, that can be used to
describe structures declared using the sig keyword. A signature is a unary relation, i.e.
table with one column, that can also be viewed as a simple set. For example, sig Person

represents a set that contains Person instance elements. The fields driver and passenger

in the sig Taxi are binary relations, i.e. tables with two columns, that are containing
binary tuples between concrete elements in the form of (𝑇𝑎𝑥𝑖, 𝑃𝑒𝑟𝑠𝑜𝑛). For the driver

30

Listing 3.1. Signature examples
sig Person {}

one sig Truck {
driver: Person

}

sig Taxi {
driver: Person,
passenger: set Person

}

in sig Truck it is in the form of (𝑇𝑟𝑢𝑐𝑘, 𝑃𝑒𝑟𝑠𝑜𝑛). These relations can also be viewed as
mappings from one set’s element to another set’s element.

Moreover, the multiplicity of each relations and sets are defined as the following: for
signatures, if nothing is written explicitly, it is by default a set multiplicity, i.e. there
can be any number of Taxi. For relations, one multiplicity is the default, as a Taxi has
exactly one driver, i.e. exactly one driver tuple exists with each specific Taxi instances.
Whereas a Taxi can have multiple passengers, even zero, denoted by the set keyword, i.e.
there can be multiple passenger tuples with each specific Taxi instances. As we can see,
there is exactly one element in the set Truck. The remaining multiplicity keywords are
lone, that is zero or one, some which means at least one, and no means zero elements.

As Alloy contains first-order logic, the relations cannot contain other relations in their
tuples, only signatures. Most importantly, Alloy creates a solution structure by instantiat-
ing the defined signatures and relations, i.e. creating set elements in the signature sets and
relations between these concrete set elements, along with satisfying all other constraints
and scopes.

Furthermore, Alloy has three important set constants.

∙ none, which is the empty set

∙ univ, which is a set, that contains all concrete signature elements

∙ iden, which is the identity relation, i.e. every concrete signature element is in a
tuple with exactly itself

Set operators The basic set operators work between relations that have the same arity,
i.e. between two arbitrary signatures, or two arbitrary binary relations.
Operators that return a set, relation:

∙ union: a + b returns a set, relation that contains all elements of a and b

∙ intersection: a & b returns a set, relation that contains elements that are both in a

and b

∙ difference: a - b returns a set, relation that contains elements that are in a but not
in b

Operators that evaluates to a boolean value:

31

∙ subset: a in b evaluates to true if a is a subset of b, i.e. all elements from a is in b

as well

∙ equality: a = b evaluates to true if a and b contains the same elements

The number of tuples in a set, i.e. the size of the relation, the number of instances can be
counted with the # operator, for example #Taxi is an integer number that equals to the
number of Taxi set elements. Note, that none in a returns true for every set a.

Listing 3.2. Example of inheritance
sig Person {}

abstract sig Vehicle {
driver: Person

}

sig Truck extends Vehicle{}

sig Taxi extends Vehicle {
passenger: set Person

}

Inheritance With the extends keyword, a signature can extend another signature, i.e.
inherit its fields and constraints as Listing 3.2 shows. Taxi and Truck are disjoint subsets
of Vehicle, i.e. they partition the parent set, and inherit the driver relation, which is
in the form of (𝑉 𝑒ℎ𝑖𝑐𝑙𝑒, 𝑃𝑒𝑟𝑠𝑜𝑛). Therefore, the set of Vehicle and the left-side of the
driver tuples contain elements that are Taxi, Truck, or simply Vehicle. Additionally,
we can use the keyword abstract to prevent Vehicle from having instances that are not
from its subsets, i.e. the set of Vehicle contains elements that are either from Taxi or
Truck.

Navigation In Alloy, navigation can be achieved by using the relational join operator,
unary operators and the set operators already discussed. Due to the fact that everything is
a relation in Alloy, and relations can be addressed outside the signature they were defined
in, we can use relational join between any signatures or relations by utilizing the . dot join
operator. The resulting product is also a set, but as the natural join is not commutative,
switching the order of the operands yields a completely different product, and might not
even be meaningful, i.e. an empty set. In addition, the box operator [] can also be used
for relational join, in the form of b[a], which is the same as a.b with dot join. Listing 3.3
shows a few examples in Alloy.

Furthermore, Alloy’s unary operators are the following:

∙ transpose: ~driver is the transposed driver relation, i.e. in the inverted form of
(𝑃𝑒𝑟𝑠𝑜𝑛, 𝑉 𝑒ℎ𝑖𝑐𝑙𝑒)

∙ transitive closure: a.^b, the set of all elements that can be reached from a by
repeatedly joining with relation b, but where a is not included

32

Listing 3.3. Relational join examples
//if two subsets have the same body, they can be defined on the same line
sig Man, Woman extends Person{}

...

//return a set of all persons who drives a vehicle
Vehicle.driver

//return a set of all persons who are travelling in a taxi
//NOTE: the union of driver and passenger binary relations
//is a binary relation with every tuples from driver and passenger
Taxi.(driver + passenger)

//return a set of all vehicles where the driver is a woman
//REMINDER: driver contains (Vehicle, Person) tuples!
driver.Woman //or with box join: Woman[driver]

...

∙ reflexive transitive closure: a.*b, the same as above, but a is included as well

Note, that in order to have a meaningful transitive closure in the case of a.^b, b must be
in the form of (𝑎, 𝑎) or any subset of a. Listing 3.4 shows an example usage of transitive
closure for the famous Erdos number.

Listing 3.4. Transitive closure example
sig Mathematician{

coAuthor: set Mathematician
}

one sig ErdosPal extends Mathematician {}

...

//return the set of all mathematicians
//who has a finite (i.e. defined) Erdos number,
//including Paul Erdos himself
ErdosPal.*coAuthor

...

Ternary relations The cross product operator -> can be used to define ternary re-
lations, i.e. tables with three columns. Moreover, we can set the multiplicity as in the
case of binary relation, but the default is not one, but set multiplicity. Listing 3.5 shows
an example, where sig Project contains a ternary relation superior in the form of
(𝑃𝑟𝑜𝑗𝑒𝑐𝑡, 𝑃𝑒𝑟𝑠𝑜𝑛, 𝑃𝑒𝑟𝑠𝑜𝑛). For each element in the set Project, there is a set of bi-
nary relations between Person. A specific tuple in the superior relation shows that in
a Project a Person has a superior other Person. Furthermore, the multiplicity implies
that in a specific Project a Person can have zero or one superior, and zero or more
subordinates.

Domain and range restriction The operators domain restriction (<:) and range re-
striction (:>) are used for getting a set of relations where the left, or right tuple element

33

Listing 3.5. Ternary relation example
sig Person {}

sig Project {
superior: Person set -> lone Person

}

is from a specific set. For a signature a and a binary relation b, a <: b returns the set of
tuples from b, where the left tuple element is from a. Whereas b :> a returns the set of
relations from b, where the right tuple element is from a.

Boolean operators and quantifiers We can use boolean operators between expres-
sions that return boolean values. There are two ways of writing each of these operators,
except the alternative operator else.

∙ negation: !, not

∙ conjunction: &&, and

∙ disjunction: ||, or

∙ implication: =>, implies

∙ bi-implication, i.e if and only if: <=>, iff

∙ alternative: else

Alloy’s quantifiers can be used in the form of Q x: s | E, where Q is a quantifier, x: s

is a variable from the set s, and E is a boolean expression of x that holds true based on Q.
The quantifiers are the following, expression E is true for

∙ all: every

∙ some: at least one

∙ one: exactly one

∙ lone: zero or one

∙ no: zero

element x from set s. In addition, quantified expressions can be created by using the
some, one, lone, no quantifiers before a relation-valued expression, similarly as the
multiplicity in front of a signature definition. For example, some (a & b) means the
intersection of sets a and b must not be empty.

34

Facts We can define constraints in the body of a fact with the keyword fact, or as an
appended fact in a signature definition after its field definitions. These constraints must
always hold for every valid model instance. Listing 3.6 shows examples of facts. In an
appended fact’s body, we can always assume an implicit this. relational join in front of
every relation that was defined in the signature of the appended fact. Therefore, every
relation that the signatures has can be used as sets instead of binary relation in appended
facts.

Listing 3.6. Examples of facts
abstract sig Person {}

sig Man, Woman extends Person{}

sig Taxi {
driver: one Person,
passenger: set Person

}{
//appended constraints of the signature Taxi

//The driver cannot be the passenger of the Taxi!
//Note the implicit (this.) before "driver" and "passenger" relations
//i.e. here the "driver" is the driver of this signature
//"passenger" is the set of passengers of this signature
driver & passenger = none

}

//some fabricated constraints
fact someConstraints {

//there must be some taxi, where the driver is a woman
some p: Person, t: Taxi | (t.driver = p) and (p in Woman)

//every person must be a passenger or a driver of a taxi
all p: Person | some (passenger.p + driver.p)

//every existing taxi passenger must be a man
Taxi.passenger in Man

}

Predicates and functions Predicates (pred) and functions (fun) are language ele-
ments that can make an Alloy model more compact. They can be viewed as templates,
that can be instantiated multiple ways in the model. Both work on relational parameters,
the former returns a boolean value, while the latter returns a relational value. Listing 3.7
shows a few examples.

3.3.3 Using the Analyzer

Assertion and check After defining structures and constraints, we can define assertions
with an assert block, which is similar to a fact block. However, the constraints defined
inside an assertion are properties of the model that we want to investigate, i.e. whether
they hold and implied by the the model itself, or there is a counterexample that refutes
them. Furthermore, assertions can be checked by the Analyzer, using the check command.
In the finite scope defined, Alloy negates the assertion constraints and tries to find a model
instance, i.e. a counterexample.

35

Listing 3.7. Predicates and functions
...

//returns true, if the given Taxi and Person instance
//satisfies the body of the predicate
//i.e. the driver is a woman
pred womanDriver [tax: Taxi, pers: Person] {

(tax.driver = pers) and (pers in Woman)
}

//return all taxis of a person
//set Taxi is the return value here
fun taxiOfPerson [pers: Person] : set Taxi {

passenger.pers + driver.pers
}

//using the predicate and function
fact examples{

//there must be some taxi, where the driver is a woman
some p: Person, t: Taxi | womanDriver[t, p]

//every person must be a passenger or a driver of a taxi
all p: Person | some taxiOfPerson[p]

}
...

Predicate, function simulation In addition to checking for counterexamples of an
assertion, we can also simulate functions and predicates by using the run command. In
the finite scope defined, Alloy generates example model instances that satisfy the given
predicate or function. If Alloy finds no instance, the model is likely to be inconsistent.

Executing search Alloy uses bounded exhaustive search to find a counterexample, or
a sample model instance. First, the structures and constraints of the model in Alloy is
translated to the language of Kodkod, which is a model finding engine that optimizes the
reduction of the model to its likewise relational logic language [28] [29]. Kodkod uses
efficient finite SAT-based constraint solving for finding a model or a minimal unsatisfiable
core [27]. From Kodkod, the model is translated to a SAT problem in CNF form, which
is then solved by a SAT-solver the user specified.

Alloy uses finite scope check, because if an assertion is wrong, we can usually find
small counterexamples for it, and hence there is usually no need to search larger spaces.
Therefore, Alloy checks all cases within a finite (small) bound with SAT-solvers, which
have become very effective throughout the years for solving hard problems despite the
fact that SAT problems themselves are NP-complete [3] [11] . Furthermore, the solution
model instances are translated back to Alloy, and we can enumerate on the sample model
instances or counterexamples, and therefore can return all non symmetrical (by utilizing
symmetry-breaking) model instances, counterexamples of the specified model one-by-one.

Evaluator and visualizer The model instances returned by the SAT-solver can be
queried by the same expressions that can be used to define a model in Alloy. However, a
model instance has concrete signature, relation elements (for example, a concrete element

36

of the set Person would be Person$0, and #Person would return the concrete number
of elements in Person). Therefore we can create expressions using the concrete instance
elements as well.

The visualizer of Alloy visualizes the model instance as a graph, where nodes are sig-
nature elements, arcs are relations between them. We can also project the model instance
on any signature, and customize the colors and shapes of the elements.

37

Chapter 4

Modelling approach

4.1 Overview

Our motivation is to handle all structural models and tasks of our method workflow shown
in Figure 2.1 in one place, with one tool. Thus, we can take advantage of Alloy’s flexible
modelling language when constructing our models, and structural modelling capabilities
when modelling changes in our process system. As already discussed in Chapter 2 our
method is based on the principle of the two-phase optimization methodology, and focuses
on a construction phase, where we reduce the search-space by considering structural fea-
sibility.

First, we create a PNS representation of the process instance and problem definition,
and extend the PNS definition with state properties of availability, and error for Mate-
rials. Subsequently, we translate the resulting P-graph model into an Alloy model with
appropriate structures and constraints for solving the task of our method. The structural
model instance that Alloy finds contain the structural models of our method workflow.
We performed the following steps in Alloy:

∙ the definition of translational rules from PNS to Alloy’s modelling language,

∙ extension and implementation of basic PNS algorithms and axioms,

∙ creation and calculation of initial MS and SS

∙ specification and simulation of arbitrary Resource configurations, i.e. errors and
availability,

∙ in case of recovery, the calculation of current MS and a reconfiguration alternative
for the original SS.

4.2 IT Process to PNS translation

In this section, we present the translation rules we used for the translation of BPMN model
to the PNS problem. As an example, the model of Figure 4.1 is the resulting model after
the application of the rules listed below to the model of Figure 1.1. It is noteworthy, that
there is a tool [24], which can make this translation automatically as well.

38

∙ An activity is represented by an Operation of the PGraph. (e.g. Process Form)

∙ If an execution flow element is a:

– BPMN sequence (i.e. arc), it will be translated to a material, representing the
execution token flow between the activities (e.g. Processed form)

– BPMN AND gateway will be translated to a single operation. Then the out-
going sequences of the gateway can be mapped by using the previous rule, i.e.
by materials representing the outgoing execution token.

– BPMN XOR gateway is translated to the composition of one operation and
one material, which serves as a semaphore. Then the output sequences of the
gateway can be translated according to the above rules. It is noteworthy, that
the operation-material pair representation can be eliminated, as they do not
express additional business logic. Hence in the case of Large transaction

gateway, its input transaction recorded execution token can immediately
transferred to any of the following operations, thus we can reduce the number
of elements of the P-graph.

In case of objects we have to consider their role and type as well. For this problem
two separate sets of translation rules are given, and to properly translate an object
to a PNS element, one corresponding rules from both sets must be applied.

∙ Considering its role, if an object is an:

– input resource of the process, then it will be translated to a corresponding Raw
material. (e.g. transaction request form)

– output, i.e. product of the process, then it will be translated to a corresponding
Product of the P-graph(e.g. receipt)

– input and output resource of the process activities as well, then it is translated
to an Intermediate material (e.g. Transaction recorded)

∙ Considering its type, if an object is an:

– renewable resource, then an arc has to be defined in both direction between the
object and its consumer operation, hence the execution of the operation will
enable the material again. Note, that arcs marked with ’*’ symbol represents
such loops, i.e. to model renewable resources in the P-graph. E.g. there is
an arc pointing from backend server1 online to backend server1 marked
with ’*’.

– consumable resource, then an arc has to be defined pointing from the resource
to its consumer operation. (e.g. Transaction recorded).

∙ The dependency relations’ translation rule is similar to the sequence’s translation
rule, i.e. an operation is defined between the two objects, which represents the usage
of that object. If the object cannot be used, then in the BPMN model will cancel its

39

dependent object’s usage via the dependency arc, while in P-graph, the operation
representing the usage of the object will not be enabled, because of the faulty input
material.

Note, that in case of the dependency relation connects an object and an activity,
then a simple arc is enough to represent the dependency.

40

Figure 4.1. P-graph translation of the case study
41

4.3 Defining P-graph in Alloy

Overview Our approach to modelling a P-graph (𝑀, 𝑂) is to model the sets 𝑀 and 𝑂 as
abstract Alloy signatures, and create separate signatures for each concrete materials and
operations. The SS and MS are represented as signatures with relations to their Material
and Operation components. Furthermore, the SS must satisfy the axioms defined, while
the MS is generated with the help of auxiliary structures.

4.3.1 Materials and Operations

As P-graphs are bipartite graphs, we use this aspect on our model, namely every Material
and Operation is a Node signature. Consequently, an arc relation is present between two
nodes only if a directed arc is present in the P-graph as well. Also, we enforce the bipartite
structure with an Alloy fact, i.e. every arc is between a Material and an Operation.
An arc from a Material 𝑚 to an Operation 𝑜 means that the 𝑜 uses 𝑚 as input, and
on the other way around it means that 𝑚 is produced by 𝑜. We define the three group of
Materials as extensions of the Material signature. Moreover, Raw materials have a sanity
constraint, that no Operation can produce them.

Listing 4.1. Metamodel of P-graph
abstract sig Node {

arc: set Node
}
/********
MATERIALS
********/
abstract sig Material extends Node{}

//Material subtypes
abstract sig Raw, Inter, Product extends Material{}

/****************
OPERATIONS
****************/
abstract sig Operation extends Node{}

/****************
FACTS

****************/
// Materials can only be connected to operations and vica versa
//Sanity constraint: Raw materials cannot be produced by any Operation
fact PGraphProperties{

all m: Material | m.arc in Operation
all o: Operation | o.arc in Material

all r : Raw | arc.r = none
}

In order to capture the structure of a concrete P-graph as Alloy model, and control pre-
cisely what instances are created in Alloy, we defined for every P-graph element a concrete
signature, which is instantiated only once. As seen in the source code on Listing 4.1 the
signatures discussed so far are all abstract on purpose. Conversely, all concrete elements
are defined as signatures that are not abstract, and extended from either one of the three
Material types, or from the Operation. Moreover, these signature have a multiplicity

42

of one, in order to be instantiated exactly once. Hence, the arc relations defined are
created correctly as well. In conclusion, our model is ultimately a static definition, that
is referenced and used by the other structures discussed later.

4.3.2 Example translation of a P-graph

In Figure 4.2 an example P-graph is shown. 𝑅 stands for Raw material, 𝑂𝑝 for Operation,
𝐼 for Intermediate, 𝑃 for Product respectively. The corresponding source code of the
concrete elements is presented on Listing 4.2. Note, that we can write every 𝑎𝑟𝑐 = 𝑋 + 𝑌

safely, because the multiplicity is one for every concrete Node.

Figure 4.2. An example of a P-graph

Listing 4.2. Concrete P-graph elements
/*****************
Concrete elements
*****************/
one sig R1 extends Raw{}{arc = Op1}
one sig R2 extends Raw{}{arc = Op2}

one sig I1 extends Inter{}{arc = Op2}

one sig P1 extends Product{}{arc = none}
one sig P2 extends Product{}{arc = none}

one sig Op1 extends Operation{}{arc = I1}
one sig Op2 extends Operation{}{arc = P1 } P2}

4.3.3 Maximal Structure and Solution Structure

The MS and SS are structures that both contain a set of Materials and a set of Operations.
Hence, in Alloy they both are represented as signatures with relations that specify which
Materials and Operations they contain. In addition, the concrete instances of SS and
MS are calculated by Alloy, and we do not specify concrete signature descendants, i.e.

43

subsets, as previously with the Nodes. Instead, we define constraints on the structure of
SS and MS, and Alloy will construct correct instances from our defined model. Therefore,
their signatures are not abstract.

Constraints on MS MS constraints are defined as to reflect the MSG steps presented
in Chapter 5.

Constraints on SS SS constraints in Alloy are based on the Axioms of PNS discussed
in Chapter 3. Additionally, these constraints are formulated as facts of a predicate outside
the definition of the SS signature. This predicate only requires the set of Materials and
Operations as parameters. Therefore, we are able to check without an actual SS instance
whether an arbitrary set of Materials and Operations define a valid SS or not.

Listing 4.3. The PNS Axioms in Alloy
pred SolStructAxioms [mats : set Material, ops : set Operation] {

//A1 - Every product is present in the SS
Product in mats

//A2 - If a Material has no producer from the set of ops <=> that Material is Raw
all m : mats | (arc.m & ops = none) <=> (m in Raw)

//A4 - From every Operation, there is a route to a Product
//NOTE: The route must only be composed of the arcs between the ops and mats!!
let n = (mats + ops) | ops in Product.*(~((n <: arc) :> n))

//A5 - Every Material is connected to an ops Operation
//A3 - Everfy operation has all of its inputs and outputs
//NOTE: Operations can only be used as they were defined
//i.e. every one of its input and output Materials must be included!
mats = arc.ops + ops.arc

}

4.4 Defining Resource States

After creating the basic P-graph model, we continue with the notions of error and avail-
ability. Contrary to the classic PNS problem, where unusable elements are deduced from
incomplete or syntactically problematic elements of the static problem definition, our
model’s structure can change dynamically and therefore elements may have an error, or
be unavailable at one time, and be usable in other times. As already established, Resources
are represented as Materials, hence we define availability and error on Materials only.

Error An error can occur when an inner or outer event happens that makes a Resource
faulty. Therefore, a Material has error, if it is no longer usable in its current form.

Availability If no other external process instance is using a Resource, then it is available
to us as a Material. Logically, for our purposes the MS is calculated only from the set of
available Materials. However, the availability of a Material is not a sufficient condition for
usability, as the Material may have error or may require other elements that are connected

44

to them and are unavailable or unusable at the moment of calculation. As the definition
states, the Materials that are used by our process instance is available to us. In addition,
the Materials that are not part of our SS, i.e. process instance, but are available to us
form the set of Resources called the Reserve.

Environment In order to represent the various states of Materials at different times,
i.e. different Resource configurations, we define an Environment signature, that describes
the concrete state of the whole system at a given moment. Specifically, it describes which
Material is available, and which has error. Furthermore, an MS and SS can only be in-
terpreted over a specific Environment. Therefore, for every Environment we can generate
one MS and multiple SS-s (depending on the specific Environment) if the constraints are
satisfied. The MS of an Environment contains all elements that can be used for our pur-
poses, i.e. it is the union of every combinatorially feasible structures. Thus, every SS of
that Environment works on the elements of the MS of that Environment.

Simulation By not specifying the concrete errors and available elements, only the ex-
istence of the Environment we can simulate different error and available elements config-
urations. Due to less Environment model constraints, Alloy can construct an arbitrary
instance model, or multiple models each time we make a request. Therefore, with the
Environment signature we are able to model and simulate structural dynamic system
changes and configurations in Alloy.

The part of our Alloy metamodel presented in this chapter is shown in Figure 4.3.

Figure 4.3. Part of the metamodel in Alloy

45

Chapter 5

Optimization and Reconfiguration
method in Alloy

5.1 Overview

As discussed in Chapter 2, our main goal is to support the optimization and the reconfig-
uration of our process instance by structurally reducing the search-space, i.e. calculating
the new MS. We also return a SS that can function as a potential optimization or reconfig-
uration alternative, which is then used by the numerical optimization phase as an initial
bound. In situations where there are only limited resources at our disposal, this initial
bound is close to the theoretical optimum. We achieve this in the reconfiguration case by
reusing elements from the initial SS, i.e. the process instance that has error and must be
reconfigured, that are still usable, i.e. are not in the error confinement region of the initial
process instance. Therefore, it can greatly reduce the search-space, and ensure speed-up in
the execution of the numerical optimization phase. Figure 2.1 shows our method workflow.

We define the signatures ReconfEnv and OptEnv as extensions to the Environment

signature, where OptEnv is used by the Optimization, the ReconfEnv used by the Recon-
figuration method. In the latter, we define a initialSS relation that contains the initial
SS.

5.2 Maximal Structure Generation

As Alloy has a declarative modelling language, the MSG algorithm is implemented by
defining appropriate structural elements and constraints. Based on these definitions Alloy
finds and constructs a model instance, that reflects the steps and the outcomes of the
generation. Similarly as in the classic MSG algorithm, we generate MS with two main
steps. However, as the consequence of the sanity constraint on Raw materials, there is no
need to filter out the Operations that produce Raw material.
Main steps are the following:

1. Iteratively identify the elements, both Materials and Operations, that are unusable
with the propagation rules. We represent these propagations iteration-by-iteration as

46

a set of Nodes, contained in an IterationSet. These IterationSets are chained
into a sequence, where each IterationSet is implied by the previous sets. This
whole sequence is contained by the UnusableElements signature.

2. Examine which remaining elements can be reached from a Product. More precisely,
an Operation has a valid path, if it is not unusable and can reach a Product through
not unusable elements, on the other hand a not unusable Material has a valid path
to a Product if it is a Product or connected to an Operation that has a valid path
to a Product. These Nodes make up the MS. Note, that if not all Products are
amongst the set of these elements, no MS exists.

5.2.1 Propagation rules

The propagation rules of the original MSG is not sufficient for our model with errors
and availability, thus we define the following extended propagation rules for finding the
unusable elements.
A Material becomes unusable if any of the following holds:

∙ it is not available to us

∙ it has an error

∙ it is not Raw, and all of its producer Operations are unusable

An Operation becomes unusable if any of the following holds:

∙ at least one of its input Material is unusable

∙ at least one of its output Material is unusable

5.2.2 Auxiliary structures

The first part of the MS generation requires the definition of two auxiliary structures,
which supports the selection of unusable elements.

IterationSet An IterationSet signature has a relation to either a set of Materials

or a set of Operations. This set of Nodes represents the outcome of a single iteration of
unusable elements selection based on the propagation rules. IterationSets are sorted
into a sequence, where every IterationSet is implied by the previous sets in the se-
quence. Furthermore, no Nodes are repeated, every iteration contains exactly the new
Nodes that became unusable as a consequence of previous sets. Trivially, every consecu-
tive IterationSet is of a different type, i.e. a set of Materials imply a set of Operations,
and vice versa. Note, that the maximal number of IterationSets is the number of Nodes,
i.e. it has a finite scope and can be calculated in Alloy.

47

UnusableElements The UnusableElements signature contains (has relations to)
IterationSets, and has a ternary relation called implyEdge, that links together these
IterationSets into a sequence discussed previously. Every Environment contains one
UnusableElements, which supports the generation of the Environment’s MS. Further-
more, in order to ensure correctness, the structure of the sequence is set rigorously, i.e. we
define constraints on adjacent IterationSets, on the first and last IterationSet and on
the sets between them. We determine the first set of Nodes by checking which elements
are initially unusable in the P-graph, by definition, these elements are Materials. Also,
every interim IterationSet must have exactly one preceding and one following neighbor
in the sequence and no more.

5.2.3 An iteration example

Figure 5.1 shows an example P-graph, where the name of each node through A to F
represents exactly one iteration, i.e. IterationSet of UnusableElements.

∙ Materials (A1 - A2): these are the rootElements of the UnusableElements, they
are either unavailable or faulty.

∙ Operations (B1 - B4): B1 becomes unusable because of A1, while B2, B3, B4 oper-
ations are unusable because of A2. As we can see if one input or output material of
an operation becomes unusable, then that operation becomes unusable as well.

∙ Materials (C1 - C2): note, that E1 and P do are not unusable (yet), because they still
have producers left, and A2 is not included in this iteration, because it is already a
part of a previous iteration. However, in the case of C1 and C2, all of their producers
are unusable. Materials R and I are unaffected, because only operations that use
them became unusable.

∙ Operation (D1): The unusability of C2 implies the unusability of D1. Notice that
B3 is not repeated, because it is already a part of a previous iteration.

∙ Material (E1): in this iteration, E1 becomes unusable, because both D1 and B4 are
unusable now.

∙ operation (F1): F1 is unusable, because E1 is unusable. This is the last iteration,
because P still has producers left, and no new Node becomes unusable, therefore the
propagation stops.

Moreover, the second part of the MS generation excludes Op1 and I, because they have
no path to a product, thus the MS consists of R, Op2 and P.

5.2.4 Second part of MS generation

The IterationSets of the UnusableElements contain all elements that are unusable. The
Materials and Operations of MaximalStructure are every element that is not unusable,
and has a path to a Product. Therefore, on the set of Product we use transitive closure

48

Figure 5.1. Iteration of unusable elements

with the arcs that are defined between two still usable nodes, i.e. two nodes from the
complement of UnusableElements. By using transitive closure on the usable arcs, we get
all elements that are usable, and have a path to a Product, i.e. the elements of the MS.
Note, that we have to transpose the arcs in order to be able to define a valid transitive
closure on Product.

5.2.5 Metamodel in Alloy

We can see the complete metamodel in Figure 5.2.

49

Figure 5.2. The metamodel in Alloy

5.3 Optimization method in Alloy

For a given Environment where our process instance is not specified initially, we support
the initial optimization, i.e. process instance calculation, by generating the MS from the
currently available elements. Therefore we combinatorially reduce the search-space for
the following numerical optimization phase, which calculates the final optimal process
structure.

In Alloy, we define an OptEnv with the specified or simulated errors and available
elements. The UnusableElements, the MaximalStructure, and the SolutionStructure

of OptEnv is calculated by Alloy. Furthermore, the UnusableElements is calculated based
on the errors and available elements of the OptEnv, the MaximalStructure is calculated
based on the nodes of the UnusableElements, and the SolutionStructure is calculated
based on the MaximalStructure.

5.3.1 Resource states during the execution of our method

In Figure 5.3 we present through multiple diagrams the changes in Resource states during
the execution of our method. Note, that while the sets discussed in the following are about
Resources only, our Alloy model handles both Materials and Operations.

50

Initial Resource configuration In Figure 5.3a we can see the initial Resource config-
uration. The set Others represent the Resources that are used by other process instances,
hence are not available to us. We do not handle the errors nor the Resource changes in
Others, it is separate from our process instance. The complement of Others is the set
Available, which contains all Resources that we can work with. Finally, the set Errors,
which can be empty, represents all initial Resource errors in Available.

After first part of MS generation We use UnusableElements for calculating every
unusable Resources. Figure 5.3b shows the outcome of the first part of the MS generation.
Additionally, we can see that the set Unusable includes the set Errors as well. The initially
unusable Resources are the Resources with errors, and the the unavailable Resources, i.e.
the sets Errors and Others. Consequently, all other unusable elements are derived from
these initial elements using the propagation rules.

After second part of the MS generation After finding all unusable elements, all
remaining Available elements must be examined, whether they have a valid path to a
Product or not. In Figure 5.3c the set Available is reconstructed into three disjunct sets.
The set Unusable is the same as in the previous Figure, set MS is composed of every
Resource that is part of the MS, and the Not connected contains all Resources that have
no valid path to a Product, i.e. they are excluded by the second part of the MS generation.
Note, that it is possible, that no MS exists, i.e. MS is empty.

SS bound generation To support the bounding of the numerical optimization phase,
we generate an initial SS from the set MS. Figure 5.3d shows how the set MS is made up
of sets SS and Not used.

After numerical optimization The outcome of the numerical optimization is a final
SS, which will be used by our process instance. The final configuration is similar to
Figure 5.3d, but the sets SS and Not used might be different depending on the final SS.

5.4 Reconfiguration method in Alloy

After an initial SS becomes faulty and the Resource configuration changes, we want to sup-
port the reconfiguration by calculating the new MS and generate a SS that uses elements
from the original SS, i.e. gives a sharper initial bound for the numerical optimization
phase. We define a ReconfEnv where we set the initial SS as the faulty SS and the errors

and availables are set as the new Resource configuration. Moreover, the initial SS is
a SS that can also be defined through the optimization of an earlier OptEnv, or specified
directly by defining an OptEnv with this SS, or we can completely simulate the OptEnv.
The errors and availability of the ReconfEnv can also be specified in advance, or simulated.

As discussed in the case of OptEnv, the UnusableElements, MaximalStructure,
SolutionStructure of the ReconfEnv are calculated by Alloy accordingly.

51

(a) Initial Resource configuration (b) After first part of MS generation

(c) After second part of the MS generation (d) Generate a SS

Figure 5.3. Resource configurations during Optimization

52

5.4.1 Resource states during the execution of our method

Again, in Figure 5.4 we show only Resources, but in Alloy both Materials and Operations

are handled.

System during operation Figure 5.4a shows a snapshot of the system with a Re-
source configuration, and our process instance represented as set Process. Moreover, the
Resources that are in Available, but not used by our process instance are in the set Reserve,
which contains Resources that can be used for our reconfiguration purposes. During the
operation of the system, the sets Others and Reserve, i.e. the structure of our system can
change dynamically depending on the other process instances, which we do not handle, or
as a consequence of events that cause errors.

Errors in our process The system changes, if our process instance cannot function
with the generated errors, we must reconfigure. As shown in Figure 5.4b, first we determine
the available elements we can work with, i.e. the Reserve and its Errors. After that, we
begin the calculation of MS.

After first part of MS generation In Figure 5.4c we can see the outcome of the
calculation of the unusable elements. The UnusableElements comprises of the set Others,
set Unusable in Process and set Unusable in Reserve. Moreover, the initial unusable
elements are the set Others, set Errors in Process and set Errors in Reserve.

After second part of MS generation In the second part we search for the elements
that have a valid path to a Product. Figure 5.4d shows how one part of the set MS is from
Process and the other one is from the set Reserve. In addition, every remaining Resources
are in sets Not connected present in both set Process and set Reserve. Set MS contains
all Resources that can be used for constructing a reconfigured valid SS. Note, that it is
possible, that MS is solely from Reserve, i.e. every Resource we use to reconfigure is from
the Reserve, or that no MS exists, i.e. MS is empty.

An SS bound generation From set MS we generate a SS that is used as a bound
in the following numerical optimization phase. Furthermore, by re-using as much already
used Resources as possible, i.e. constructing a SS that contains the still usable part (the
MS part) of set Process, we save on the reconfiguration cost, hence the constructed SS
will be a good cost-effective initial bound. Additionally, the numerical optimization phase
might decide to backtrack even further, and use less Resource from set Process. Figure 5.4e
shows a set SS, that contains Resources from both sets Process and Reserve. Moreover,
the Resources from our process instance that we cannot use for reconfiguration is the error
confinement region of that specific initial process instance, which consists of sets Unusable
and Not connected in set Process.

After numerical optimization Numerical optimization yields the final SS that will
be used as the reconfigured process instance.

53

(a) System during operation (b) Errors generated

(c) After first part of the MS generation (d) After second part of the MS generation

(e) An SS bound generation

Figure 5.4. Resource states during the Reconfiguration

54

Chapter 6

Summary

6.1 Contributions

We created a method for the optimization and reconfiguration of system processes in the
domain of IT infrastructures with dynamic structures, where system changes can influence
both the execution and structure of the complex system. Our main work focused on the
construction phase of this problem, i.e. supporting the numerical optimization of the
improvement phase. This construction phase was carried out via an abstraction method
we created by extending the definition of process graphs, hence our method exploits the
benefits of structural relaxation possibilities of a PNS problem. This extension is primarily
dedicated to the fault tolerance concepts of IT infrastructures, by the definition of error and
availability. By using a modified maximal solution generation algorithm, we structurally
reduced the search-space of the improvement phase, reducing its computational needs. We
defined a translation from the P-graph definition to the language of Alloy, hence we were
able to exploit the benefits of Alloy tool to construct the structural models and model the
effects of a change defined in our method. Our method is also able to simulate the effects
of failed components of a system.

6.2 Future work

We will investigate options for improving our implementation in Alloy, as it has limitations
when working with large problems. Other potential uses for our work includes validat-
ing the structures of process instances, determining single point of failures, simulating
different error and recovery scenarios, calculating the largest set of errors that a given
process instance can recover from. Furthermore, we will extend our method to be able
to handle more complex systems with multiple process instances, where the system can
reallocate resources from process instances with lower priority to process instances with
higher priority.

We will also explore options for the improvement phase of the optimization, as our work
focused mainly on the construction phase. Possible approaches include the extension of
Accelerated Branch and Bound used in the PNS problem domain [7] [9] [10], Branch and

55

Bound for Boolean Optimization [17], Weighted Boolean Optimization [18], Incremental
SAT solving [23].

6.3 Acknowledgements

We are grateful for the contribution and valuable guidance of our supervisors, Dr. András
Pataricza and László Gönczy. We would also like to express our gratitude to Szilvia
Varró-Gyapay for her valuable advice and assistance.

56

Bibliography

[1] Shahriar Asta, Daniel Karapetyan, Ahmed Kheiri, Ender Özcan, and Andrew J
Parkes. Combining monte-carlo and hyper-heuristic methods for the multi-mode
resource-constrained multi-project scheduling problem. In 6th Multidisciplinary In-
ternational Scheduling Conference: Theory & Applications (MISTA2013), 2013.

[2] Algirdas Avizienis, Jean claude Laprie, Brian Randell, and Carl Landwehr. Basic
concepts and taxonomy of dependable and secure computing. IEEE Transactions on
Dependable and Secure Computing, 1:11–33, 2004.

[3] Armin Biere. Understanding Modern SAT Solvers, 2012. http://fmv.jku.at/

biere/talks/Biere-VTSA12-talk.pdf.

[4] X. Blasco, J.M. Herrero, J. Sanchis, and M. Martínez. A new graphical visualiza-
tion of n-dimensional Pareto front for decision-making in multiobjective optimization.
Information Sciences, 178(20):3908–3924, October 2008.

[5] György Csertán, András Pataricza, Harang Péter, Orsolya Dobán, Biros Gábor, An-
drás Dancsecz, and Ferenc Friedler. BPM Based Robust E-business Application De-
velopment. 2002.

[6] Jacob Feldman. JSR-331 - Java Constraint Programming API. pages 1–58, 2012.

[7] F Friedler, K Tarjan, YW Huang, and LT Fan. Combinatorial algorithms for process
synthesis. Computers & chemical . . . , 1992.

[8] F Friedler, K Tarjan, YW Huang, and LT Fan. Graph-theoretic approach to process
synthesis: axioms and theorems. Chemical Engineering Science, 1992.

[9] F Friedler, K Tarjan, YW Huang, and LT Fan. Graph-theoretic approach to process
synthesis: polynomial algorithm for maximal structure generation. Computers &
Chemical . . . , 1993.

[10] F Friedler, JB Varga, E Feher, and LT Fan. Combinatorially accelerated branch-and-
bound method for solving the MIP model of process network synthesis. State of the
Art in Global . . . , 1996.

[11] Carla P Gomes, Henry Kautz, Ashish Sabharwal, and Bart Selman. Satisfiability
Solvers. 2008.

57

http://fmv.jku.at/biere/talks/Biere-VTSA12-talk.pdf
http://fmv.jku.at/biere/talks/Biere-VTSA12-talk.pdf

[12] Group Object Management. Business Process Model and Notation (BPMN) version
2.0. http://www.omg.org/spec/BPMN/2.0/.

[13] S. Gyapay and A. Pataricza. A combination of Petri nets and process network syn-
thesis. SMC’03 Conference Proceedings. 2003 IEEE International Conference on
Systems, Man and Cybernetics. Conference Theme - System Security and Assurance
(Cat. No.03CH37483), 2:1167–1174, 2003.

[14] Daniel Jackson. Alloy: a language & tool for relational models.
http://alloy.mit.edu/alloy/.

[15] Daniel Jackson. Software Abstractions: logic, language, and analysis. The MIT Press,
2012.

[16] Harold Henry Kollmeier. Reconfiguration for Fault Tolerance and Performance Anal-
ysis. (November), 1987.

[17] Javier Larrosa, Robert Nieuwenhuis, Albert Oliveras, and Enric Rodr. Branch and
Bound for Boolean Optimization and the Generation of Optimality Certificates. SAT
2009 - Theory and Applications of Satisfiability Testing, 2009.

[18] Vasco Manquinho, Joao Marques-Silva, and Jordi Planes. Algorithms for Weighted
Boolean Optimization. pages 1–14, 2009.

[19] Nicholas Nethercote, Peter J Stuckey, Ralph Becket, Sebastian Brand, Gregory J
Duck, and Guido Tack. MiniZinc : Towards A Standard CP Modelling Language.
CP 2007 - Principles and Practice of Constraint Programming, 2007.

[20] András Pataricza. Model Based Dependability Analysis. Dsc thesis, Hungarian
Academy of Sciences, 2006.

[21] Domenico Salvagnin. Constraint Programming Techniques for Mixed Integer Linear
Programs. 2009.

[22] Varró-Gyapay Szilvia. Trajectory set approximation for optimization and verification
of IT systems. Phd thesis, Budapest University of Technology and Economics, 2014.
Chapter 3: Process Network Synthesis, pp. 23-32.

[23] Soh Takehide. Studies on Applying Incremental SAT Solving to Optimization and
Enumeration Problems. Phd thesis, Department of Informatics, School of Multidisci-
plinary Sciences, 2011.

[24] Tünde Tarczali, Zoltán Süle, and Károly Kalauz. Structural alternatives of business
process models applying P-graph methodology. pages 1–11.

[25] The Open Group. Archimate. http://www.opengroup.org/subjectareas/

enterprise/archimate/.

58

http://www.omg.org/spec/BPMN/2.0/
http://www.opengroup.org/subjectareas/enterprise/archimate/
http://www.opengroup.org/subjectareas/enterprise/archimate/

[26] Vincent T’kindt, H Scott, and Jean-Charles Billaut. Multicriteria scheduling: theory,
models and algorithms. Springer, 2006.

[27] Emina Torlak, Felix Sheng-ho Chang, and Daniel Jackson. Finding Minimal Unsat-
isfiable Cores of Declarative Specifications. pages 1–16.

[28] Emina Torlak and Greg Dennis. Kodkod for Alloy Users, 2006. http://homes.cs.

washington.edu/~emina/pubs/kodkod.alloy06.pdf.

[29] Emina Torlak and Daniel Jackson. Kodkod: A relational model finder. In In Tools
and Algorithms for Construction and Analysis of Systems (TACAS, pages 632–647.
Wiley, 2007.

[30] Gábor Urbanics, László Gönczy, Balázs Urbán, János Hartwig, and Imre Kocsis. Com-
bined Error Propagation Analysis and Runtime Event Detection in Process-driven
Systems. 2014.

59

http://homes.cs.washington.edu/~emina/pubs/kodkod.alloy06.pdf
http://homes.cs.washington.edu/~emina/pubs/kodkod.alloy06.pdf

	Kivonat
	Abstract
	Introduction
	Context
	Problem statement
	Case study
	Structure of the paper

	Problem description
	Domain modelling
	Cost effective reconfiguration
	Suggested method

	Background
	Optimization problems
	The PNS problem
	P-graph representation
	Process structure

	Alloy
	Overview
	Modelling in Alloy
	Using the Analyzer

	Modelling approach
	Overview
	IT Process to PNS translation
	Defining P-graph in Alloy
	Materials and Operations
	Example translation of a P-graph
	Maximal Structure and Solution Structure

	Defining Resource States

	Optimization and Reconfiguration method in Alloy
	Overview
	Maximal Structure Generation
	Propagation rules
	Auxiliary structures
	An iteration example
	Second part of MS generation
	Metamodel in Alloy

	Optimization method in Alloy
	Resource states during the execution of our method

	Reconfiguration method in Alloy
	Resource states during the execution of our method

	Summary
	Contributions
	Future work
	Acknowledgements

	Bibliography

