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Kivonat

Újabban nagy érdeklődés övezi az önvezető járműveket; az ipar szereplői is egyre
több hangsúlyt fektetnek az ezzel kapcsolatos kutatásra és fejlesztésre. Az autonóm
ágensek jellemzően mély neurális hálózatok, amelyek tanításához nagy mennyiségű
felcímkézett adatra van szükség, ezek előállítása pedig komoly erőforrásokat igényel.
Léteznek azonban szoftveres szimulátorok, amelyekben közvetlenül rendelkezésre áll-
nak a tanító adatok, továbbá alkalmazásukkal ritkán előforduló vagy kockázatos
szituációkra is felkészíthetjük az algoritmusainkat.

Komoly kérdést vet fel azonban, hogy a szimulátorban jól teljesítő ágens a való
életben is tud-e működni. A jelenlegi state-of-the-art megoldások sajnos erre nem
képesek, melynek oka, hogy a szimulátor által generált adatok nem elég valósze-
rűek. Képek esetében ez azt jelenti, hogy rendkívül primitív és túlzottan homogén
textúrákkal rendelkezik a szimulátor, így nem képes a valóság ábrázolására. Megol-
dást egy olyan képtranszformáció jelentene, amely a képen található objektumokat
helyben hagyja, csak azok textúráit alakítja realisztikusabbá.

Habár erre az ún. domain transfer problémára számos megoldás született az
elmúlt időben, ezek valamennyire megváltoztatják a kép szemantikus tartalmát is
a textúra mellett, továbbá jobbára két valódi domain között működnek eredménye-
sen. Ebben a dolgozatban újszerű megoldást adunk a problémára a saját Label-
Consistent Swapping Autoencoder névre hallgató architektúránkkal, amely a Swap-
ping Autoencoder továbbfejlesztett változata. Két új hibafüggvényt mutatunk be,
amelyek arra hivatottak, hogy kikényszerítsék a szemantikus egyezést a bemenet és
a kimenet között. Megmutatjuk, hogy ezek alkalmazásával a képtranszformáció még
pontosabbá tehető.

State-of-the-art módszereket használva vetettük össze megoldásunkat korábbi-
akkal, valamint a céldomainen előre tanított szegmentáló hálózatot is igénybe vet-
tünk a szemantikus egyezés vizsgálatához. Azt találtuk, hogy a kiegészített archi-
tektúra jobban megőrizte az objektumok térbeli helyzetét a textúracsere folyamán,
így elmondhatjuk, hogy az újításaink beváltották a hozzájuk fűzött reményeinket.
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Abstract

Interest in autonomous driving has grown tremendously in the last few years,
with industry players also emphasizing the research and development in this field.
Autonomous agents are typically deep neural networks, which require a large amount
of expensive labeled training data. However, there are simulator softwares available
in which labeled data is directly accessible. Using simulators in autonomous re-
search comes with further advantages, for example algorithms can be prepared for
dangerous or rare traffic situations at no additional cost.

However, the question is whether an agent trained in a simulator is able to
operate in real world environments. Current state-of-the-art methods are not able
to do so, because the simulated data are not realistic enough. In the field of vision,
simulated images usually have very primitive and homogeneous textures, and thus
they are not able to represent reality.

The solution to this problem could be an image-transformation that is able
to convert the textures to be more realistic, while preserving the positions of the
portrayed objects. There are numerous solutions for this so-called domain trans-
fer problem, but they usually corrupt the semantic content of the image during
the transformation in some way. They also tend to work well only on datasets
based on real images. In this work, we propose a novel architecture called the
Label-Consistent Swapping Autoencoder, which is an improvement to the Swapping
Autoencoder. We introduce two new objectives to the neural network, whose goal is
to enforce the semantic consistency between the input and output image. We show
that using these, the style-transformation can achieve better results.

We compared our method with prior state-of-the-art works using a segmentation
network pretrained on the target domain to study semantic consistency. We found
that the improved architecture could better preserve the positions of the original
objects, so we can determine whether our method reached its goal.
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Chapter 1

Introduction

Autonomous driving has been enjoying an unbroken popularity in the last few
years; more and more industry players in the automotive field are trying to get
involved in the research and development of self-driving cars.

A key element of autonomous driving algorithms is the fast and reliable percep-
tion of the surroundings, which can provide the required information for the higher
level decision-making. Although there are numerous other sensors used in modern
self-driving development, visual information and camera-based systems play a major
role in the detection.

Image-processing and decision-making methods nearly always use some sort of
deep neural network, and the training of these networks requires a large amount
of labeled training data, which can be prohibitively expensive. Software-simulators
can, however, reduce the cost of the development, as training data with the corre-
sponding labels are directly accessible in them. Using such simulators comes with
further advantages: we can prepare the car for dangerous or extremely rare traffic
situations at no additional cost.

Despite having such benefits, one can also face difficulties when trying to use
a software-simulator like this. The data gained from the program is not realistic
enough, which means an agent performing well in a simulated environment won’t
necessarily be suitable for driving on the street. Regarding images, simulated ones
usually have very homogeneous and primitive textures, and thus they are not able
to represent reality.

The solution to this problem could be an image-to-image transformation that
is able to convert the textures to be more realistic, while preserving the positions
of the portrayed objects. This way, we could benefit greatly from the simulator as
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we could utilize the generated labels and also traing the agent using more realistic
pictures.

Such image translation can be achieved via generative neural networks. There
are many proposed solutions to this so-called domain transfer problem, but they
mostly work only between two real datasets or corrupt the semantic content of the
picture in some way. In this work, we added two new features for a state-of-the-art
architecture called Swapping Autoencoder [25] that we found very promising for the
texture-swapping task. Our new loss functions are based on the fact that we possess
the semantic labels of the synthetized images and have also access to real labeled
datasets. We can utilize these new information in a novel way to force the translation
network to keep the semantic meaning of the picture during the transformation. We
named these functions Inner Semantic Loss and Outer Semantic Loss.

The Inner Semantic Loss’ responsibility is to constrain the autoencoder’s latent
representation to resemble the original semantic meaning of the picture. On the
other hand, the Outer Semantic Loss examines the final translated image, and pe-
nalizes the generator for the semantic differences. With these two innovations, the
full architecture is called Label-Consistent Swapping Autoencoder. We show that
it can outperform the baseline Swapping Autoencoder using a semantic segmenta-
tion network pretrained on the target dataset. We also utilize modern metrics to
compare translation results with real streetview images.

We organize our report in this way: the second chapter explains the basics of
neural networks, and focuses directly on image-processing tasks. We will look at
the semantic segmentation task since we uzilized its concepts in our innovations.
We will also discuss the basics of generative models, and turn to the state-of-the-
art approaches for the image-to-image translation task. Thereafter, in the third
section, we will present our Label-Consistent Swapping Autoencoder, introducing
the 2 new loss functions. We will also explain the implementation details of these
innovations. The 4th chapter presents our experiments. In this section, we will
shortly touch upon our synthetic dataset creation. After explaining the experimental
setup using our novel architecture, we will demonstrate our results compared to a
baseline model. In the last, 5th chapter we will draw conclusions and also talk about
future improvements.

Our contributions are summarized as follows:

• We proposed a novel architecture called Label-Consistent Swapping Autoen-
coder by introducing two new objectives.
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• We evaluated our method by a SOTA metric and a semantic segmentation
network and found that our innovations reached their goal.

• We created an own dataset from a widely used simulator-software.

7



Chapter 2

Related Work

2.1 Neural networks

Neural networks (NNs) became popular in recent decades because of the massive
growth in computational capacity and the growth in the amount and quality of the
data that this field requires. Neural nets (in other words Deep Learning) is one of
the forms of machine learning, an alternative of classical programming.

In the classical way, when someone writes a code or function, they shall know
the relationship in detail between the input and output of the given function to be
able to create it. Contrarily, machine learning, as its name tells, encourages the
machine to learn the relationship or transformation between the input and output,
typically by providing many coherent input-output pairs. This approach is very
useful when the task cannot be mathematized in an explicit way, e.g. one can not
tell exact formulas for the differentiating task between cats and dogs from pictures.

When using neural nets, the ability to learn diverse transformations is achieved
by connecting very simple — but usually numerous — computational blocks. The
name — neural network — comes from the analogy with the human brain, as re-
searchers found that it is built from simple units — so-called neurons — with prim-
itive duties, and the strength does not come from the complexity of the nodes, but
from the large amount of the interconnections between these simple units. The
nodes have many inputs, and their outputs are passed onto many other nodes.

In artificial NNs, the nodes typically apply a weighted summation on their
inputs, followed by an non-linear function on the sum. Neurons are organized in
layers, meaning that more nodes get the same inputs. In this way, the different
neurons in the same layer provide the input for the next layer and so on. The final
layer depends on the task, e.g. a binary classification problem implies a single scalar
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as output, but when classifying into more classes, the final layer shall produce more
numbers. These outputs are then considered as probabilities for the corresponding
category.

NNs are usually trained by applying backpropagation [11], meaning that we
are able to compute the gradients of the model’s inner parameters (the weights and
biases of the weighted summations) by comparing the model’s prediction and the
ground truth output for a given input. Then, we modify the parameters according
to the computed gradient in small steps. To be able to do this, we should tell the
network the expected output for each input. In supervised learning, we provide the
data by labeling them in advance. In addition, we should provide a great quantity
of labeled data in order to force the network to learn principal rules rather than
becoming a look-up-table for the training data. Because of the small training steps
and the big amount of data, a training takes a long time and also requires enormous
computational capacity.

2.1.1 Image processing

When applying NNs to computer vision tasks, we must first consider some of
the specialities of this field. Most importantly, images contain a relatively large
amount of data to be processed: the digital representation of a single image with
the current resulutions contains millions of pixels, not to mention the color channels.
We can not use the so-called fully connected layers described above to weight all the
pixels, because they would require too many parameters and so too large amount of
memory.

From another point of view, applying fully connected layers would lose infor-
mation about the contiguity: dense layers would flatten our 2D-shaped images, so
that pixels above and below each other would not be neighbours.

However, using convolutional layers solves both difficulties. The convolution
operation can be understood as a shared-weight matrix-multiplication: we need
considerably fewer parameters, but still can create deep networks of these layers. 2D
convolution also takes neighborhood into account, as the adjacent locations affect
each other. A typical convolution layer has a shape of H ×W × Cin × Cout, where
Cin and Cout are the numbers of the input and output channels. At the first layer,
channels mean the color channels of the image, but deeper into the net, we refer to
these as feature maps as they contain information about more and more complex
features. The convolution layer can be understood as it has a 2D convolution kernel
for all input channels for a given output channel, so there are ultimately Cin×Cout of
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them. Networks applied to image processing tasks are therefore CNN-s [20], [12] —
convolutional neural networks —, as most of the layers utilize convolution in some
way.

Typically, the numbers of channels grow as we go deeper into the network as
more complex features are discovered. In order to cut back memory-consumption,
we reduce the spatial dimensions of the image (we call them feature maps after
the first layer) by pooling operations or by strided convulutions. It also allows the
convolutional kernel at the same size to have bigger field of view, in other words we
increase the output stride.

The most widely used CNN is ResNet[13] or residual net. This network is
composed of blocks; in every block there is a skip-connection from the input to the
output of the given block in order to assure the gradient-flow. The name tells that
the layers of the block should only learn the remaining difference beside the identical
transformation.

2.2 Semantic segmentation

Semantic segmentation is a high-level image processing task. The goal is to
classify each pixel of an image to a class, resulting in Nclasses binary masks at the
original resolution. This requirement causes a difficulty: as we described above,
basic CNN-s successively reduce the spatial dimensions of the feature maps as we
approach the final output. It is not a problem for a simple image-classification task,
but it is problematic when segmenting semantically, because we cannot restore the
fine detailed information from the low-resolution feature maps.

As we need the feature masks in detailed resolution, after reducing the feature
maps, we should grow them back to the original size. This can be achieved by learned
or by fixed upscaling methods. An example for learned techniques is the transposed
convolution, where the kernel’s weights can change during training. Fixed upscaling
practices include simple interpolations as nearest neighbor, bilinear or bicubic, and
also a special one for neural nets that is called unpooling. With these techniques,
we get into an encoder-decoder architecture.

However, by simply upscaling the low-resolution features either by learning or
by fixed methods, we do not get the detailed output that we want. Therefore,
another assumption is to make skip-connections between the shallow layers — that
possess fine detailed informations — and the upscaled feature maps. This way, the
fusion of high-level low-detail information and low-level high-detail features allows
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the network to produce the expected outcome. It was the main idea of the first
segmentation network, FCN [22]. The popular U-NET [26] improves the architecture
further by making skip-connections on every scale.

The DeepLab [1, 2, 3, 4] networks constitute another popular and modern ar-
chitecture family. They use a special block named ASPP (atrous spatial pyramid
pooling), which performs several strided convolutions in paralell on the same input
feature map, then fuses their outputs (Figure 2.1. Because of this, ASPP’s output
has a large field of view with little increase in the number of parameters. DeepLab
also uses conditional random fields on the final output predictions. In this work,
we utilize the newest member of the family, DeepLabV3+ [4] with ResNet [13] and
MobileNet [16] backbones. Contrary to the robust and large ResNet architecture,
MobileNet is a smaller classification network especially made for mobile applications.

Figure 2.1. Schematic of the DeepLabV3+ encoder-decoder
type architectecture with the ASPP module on top. Source:
[4]

2.3 Generative models

Before we turn to the style-transfer problem and its proposed solutions, we need
to touch some elementary building blocks of the generative neural networks. We use
generative models for creating data like a large training dataset. To do this, we have
to force the model to learn the underlying essence of the data to be able to generate
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samples similar to them. If the training dataset contains much more samples than
internal parameters the model has, this constrain is met.

2.3.1 Autoencoder

The classical autoencoder is an encoder-decoder structure that is able to pro-
duce a compact representation of the input in a latent space. It is important that
the dimensionality of the latent space must be less than the input’s, so the en-
coder is forced to find the best representation in the narrower space with the least
information loss possible. The decoder’s task is to reproduce the input from this
compact latent representation as accurately as possible. Figure 2.2 shows us the
simple architecture.

E

x z = e(x)

D

x' = d(z)

Figure 2.2. Sketch of the classical autoencoder

The training objective is to minimize the L1 or L2 (MSE) loss between the
input and the output as follows:

LAE = ||x− x′||p∈{1,2}= ||x− d(x)||p∈{1,2}= ||x− d(e(x))||p∈{1,2}

Using multi-layer neural networks is a great way to build both the encoder and the
decoder.

Notbaly, there is a more modern architecture called Variational Autoencoder
(VAE) that can be better utilized in image-generation tasks. VAE does not map
its inputs into latent codes directly, rather it learns the distributions of the latent
codes of the encoded training images. This way, the encoder provides information
about the expected values and the covariance matrix of the latent parameters, so
that the decoder can randomly sample from it, creating an image that differs from
the training set.
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2.3.2 GAN

The other elementary generative network is called GAN (Generative Adverserial
Networks)[10]. Since its release, this idea has revolutionalized the field of AI-based
image synthesis, along other data synthesis tasks. Most of SOTA methods utilize
GANs in some way to create realistic images.

The basic setup of GANs is as follows: there is a single unlabeled dataset —
a typical unsupervised setup — containing real images, and we want the network
to be able to produce new images that are different but indistinguishable from the
training images. It means that the network should learn the charactesistics of the
training images to make synthesized images similar to them. Main idea of the GAN
is that we achieve this by applying two adverserial neural networks: one is called
generator, the other is called discriminator. The generator’s job is to synthetize
realistic (or at least indistinguishable) data from a randomly sampled noise-vector
to fool the discriminator, while the discriminator’s role is to distinguish the real
datapoints from the synthetized ones. A simple sketch of the GAN can be observed
on Figure 2.3.

Generator

z ~ N(0, I) 

Synthesized
image

Discriminator

Real
image

Real or
not?

Figure 2.3. Scheme of a classical GAN architecture

Thus, discriminator is a simple binary classifier that aims to maximize its output
in the case of real (training) image and minimize it if feeded with a synthetized
image. The generator has an opposite goal: it aims to minimize the second term.
The objective for both parts can be fromulated as a min-max game:

min
G

max
D

V (D,G) = Ex∼pdata (x)[logD(x)] + Ez∼pz(z)[log(1−D(G(z)))].
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We can notice that the generator does not see training images directly, it can
only draw conclusions from the discriminator’s behavior. From a practical point of
view it means that we train the generator by backpropagating through the whole
discriminator network.

We train both parts simultaneously: first, we generate images utilizing the
generator with freezed weights and compare them with randomly selected images
from the training set. We refresh the weights of the discriminator, then we freeze
them to train the generator. We generate images with it and discriminate them, then
backpropagate through the whole network to refresh the generator’s parameters.

However, GAN’s training raises some problems. One of them is the so-called
collapse during training: in many cases the discriminator defeats the generator at
the beginning, and the generator cannot learn anymore. There are techniques to
minimize this effect, for example the R1 regularization [23] that penalizes the dis-
criminator’s gradients on real data. Other difficulty is the training of the generator,
because the gradients can vanish while flowing through the whole discriminator ar-
chitecture. Novel GANs therefore use special activations in the discriminator to help
the gradient’s flow such as Leaky ReLU rather than the classical ReLU [19],[28].

2.4 Style transfer

Neural style transfer is a widely researched area, as generating photorealistic
images based on existing ones is advantageous in many situations, such as image
augmentation to increase the performance of CNNs used in computer vision [8],
artistic stylization [31] or editing [25] of pictures or sim-to-real image-translation.
We aim to do the latter: we want to reduce the domain-gap between real images and
synthesized images from a simulator to aid the research on autonomous vehicles. In
this section, we take a look at recent proposals that inspired our work.

2.4.1 CycleGAN

CycleGAN [31] by Zhu, Park et al. is a fundamental work in this topic. It was
presented in 2017, and since then, it became one of the most cited publications in this
field, and is considered as a baseline. Back then, there already existed some image-
translation methods based on neural networks and GANs, but they were only able
to solve the problem in a special case, when paired datasets were available for the
training, i.e. a bijection between individual elements of the domains. CycleGAN was
the first method that solved the image-translation without this proper "dictionary"

14



available, so it worked in an unsupervised manner. The only supervision is that
one should separate the pictures into 2 folders — it is called domain-supervision.
CycleGAN’s main idea that there should be not only one but two transformation
functions between domains X and Y . G : X → Y maps from X to Y , while
F : Y → X does its opposite. The generators input is not noise in this case, rather
an image from the source domain that should be transformed to the other. There
are also two discriminators that discriminate if the given image comes from their
respective domains. This objective function can be formulated as:

LGAN (G,DY , X, Y ) = Ey∼pdata (y) [logDY (y)] + Ex∼pdata (x) [log (1−DY (G(x))] .

between G : X → Y and its discriminator DY . CycleGAN is a symmetrical archi-
tecture, so F and DX are similar to G and DY .

G and F trained along these principles can (at least in theory) create pictures
that are indistinguishable from the target domain’s images, but it does not guarantee
the correlation of the input and the output images. The so-called cyclic consistency
presented at CycleGAN provides an answer to this problem: it means that the
two functions performed one after the other should restore the original image, so
F (G(x)) ≈ x,∀x ∈ X and similarly G (F (x)) ≈ y,∀y ∈ Y . This behavior is
enforced by the cycle consistency loss:

Lcyc (G,F ) = Ex∼pdata (x) [‖F (G(x))− x‖1] + Ey∼pdata (y) [‖G(F (y))− y‖1]

The full objective of the architecture is a combination of Lcyc (G,F ), LGAN (G,DY )
and LGAN (F,DX).

2.4.2 UNIT

UNIT[21] was published at the same time as CycleGAN by NVIDIA researchers
Liu et al. They take a completely new perspective on the task: they assume that the
images of the different domains can be mapped to a common latent space, meaning
that semantically matching images’ latent code is the same in this common latent
space (Figure 2.4).
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Z

X Y
x1 y1

z1

E1
G1

E2

G2

Figure 2.4. Shared latent space in the UNIT[21] method

The architecture consists of two combined VAE-GAN combinations. There is
an encoder E, a generator G and a discriminator D for both domains. E and G form
a VAE, G and D form a GAN in turn. The last layers of E1 and E2 and the first
layers of G1 and G2 that carry the high-level, semantic information, and therefore
their weights are shared to further constrain the common latent space. They also
use a cycle-consistency loss-term: the two times translated image should represent
the original. The VAEs and GANs are trained simultaneously with reconstruction,
translation and cycle-consistency loss-terms.

2.4.3 Swapping Autoencoder

Zhu, Park et al. published another architecture called Swapping
Autoencoder[25] in 2020 for texture swapping and photo editing. This method
is fully unsupervised, meaning that there is not even a need for domain-supervision.

The main idea is related to the latent space once again. The core of the archi-
tecture is a special autoencoder (shown in Figure 2.5) that encodes the images into
two latent components, where one is responsible for the structure, the other is for
the texture of the image. The latent space is divided asymmetrically: the structure
code zs is a 3D tensor with spatial dimensions and a msall channel size, while the
texture code zt is a 1D vector. Our goal is to ensure that the reconstruction of
swapped components results in a photorealistic image that represents the structure
of the first input with the texture of the second input.
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Figure 2.5. The Swapping Autoencoder

The reconstruction of the images must be accurate and realistic. The swapping
autoencoder employs a classical L1 loss to ensure that the recombination is accurate:

Lrec(E,G) = Ex∼X [‖x −G(E(x))‖1] ,

and it is assisted by a GAN-discriminator that is responsible for enforcing photore-
alistic reconstruction:

LGAN ,rec(E,G,D) = Ex∼X[− log(D(G(E(x))))].

They also enforce the decoder (or generator) to create realistic images from
swapped latent codes that come from different pictures using a GAN-loss, termed:

LGAN,swap (E,G,D) = Ex1,x2∼X,x1 6=x2

[
− log

(
D
(
G
(
z1

s, z2
t

)))]
,

where z1
s, z2

t are the structure code of image x1 and the texture code of image x2,
respectively.

These constraints are enough to learn a factored representation, however, it is
not necessarily true that zt and zs actually represent the texture and structure of the
input. To address this, the authors encourage zt to carry the texture information
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by utilizing a so-called patch discriminator Dpatch. Any images created with zt

should have the same texture, which means that small crops from them should be
indistinguishable from small crops of the original image. The loss is formulated in
this way:

LCooccurGAN (E,G,Dpatch ) =

Ex1,x2∼X

[
− log

(
Dpatch

(
crop

(
G
(
z1

s, z2
t

))
, crops

(
x2
)))]

.

The size of the crops varies between 1
4 and 1

8 of the original image size.

Lastly, the final training objective is defined as a weighted combination of these
losses:

Ltotal = Lrec + 0.5LGAN,rec + 0.5LGAN,swap + LCooccurGAN .

In each training interation, two images x1 and x2 are randomly sampled from
X, then encoded and decoded, computing the Lrec and LGAN,rec losses on them
individually. Finally, the LGAN,swap and LCooccurGAN losses are enforced on the
hybrid image created from x1 and x2.

We shortly touch upon the implementation details of the encoder and decoder of
the Swapping Autoencoder (shown in Figure 2.6), because we use this as a base for
our Label-Consistent Swapping Autoencoder. We have to note that SAE borrows
many ideas and elements from another state-of-the-art stylization method Style-
GAN2 [19]: weight demodulation, antialiased bilinear down/upsampling, equalized
learning rate, noise injection at every layer and the use of leaky ReLU. They also
use StyleGAN2’s discriminator almost directly, without minibatch-discrimination.

Figure 2.6. Encoder and generator architecture in the Swap-
ping Autoencoder. Source: [25]

As described above, the encoder maps the input image into texture and struc-
ture codes. The common part consists of a convulutional layer and 4 downsampling
residual blocks [13]. From this point, structure code is computed by two convolu-
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tional layers, so that its shape isH/16×W/16×32. For the texture code, the network
branches off from the common point and adds 2 convolutional layers, followed by an
average pooling layer and a dense layer. In order to lose positional information, the
convolution layers in this branch use no padding and average pooling. The generator
maps the codes back to an image, using the structure code in its main branch and
injects the texture code’s information with the weight modulation/demodulation
layer from StyleGAN2 [19].

2.4.4 Style-transfer using semantic information

As previously stated, we aim to benefit from the extra information that we
have, namely the semantic segmentation maps that are available in training time
for both domains. We therefore examined GAN-based image generation methods
that utilize semantic information.

The first group of related works used the segmentation maps directly. A fun-
damental work in this field, pix2pix [17] was published again by CycleGAN authors
Zhu and Isola et al. It uses conditional GANs, meaning that both the generator and
the discriminator have access to the labels of the given input. It also means that
we have to provide semantic labels for every training image, so our dataset must
be a so-called paired dataset. Pix2pix’s generator is a classical encoder-decoder
architecture made of residual blocks [13], where the input is the semantic map in-
stead of noise. Pix2pixHD [27] extends this baseline by using multi-scale generators
and discriminators and extra information on the input such as object boundaries.
Pix2pixHD is able to generate visually appealing images at 2048× 1024 resolution.

Other works, such as SPADE [24] by Park et al. do not feed the segmentation
maps directly to the network. It samples noise according to the classical GAN,
and uses a special normalization layer, which enables the injection of the semantic
information to the generator at every scale. Although these networks can create
visually appealing images from semantic maps allowing users to manipulate images
on the semantic level, they require a paired dataset at training time and semantic
maps in inference time.

Sem-GAN [5] and CyCADA [15] do not feed the segmentation maps to the
network, they only use them to compute loss-terms. They both utilize the cycle-
consistency loss, meaning that they both have two generators in both direcrions
between domains. Both architectures use semantic loss that is computed from the
difference of the ground-truth label and the segmented output of the translation.
Sem-GAN is a symmetric architecture and they train its two segmentation networks
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alongside the translation models. In CyCADA [15] the architecture is asymmetrical
as only the source domain is labeled. There is a pretrained segmentation network
used on the source domain, and they constrain that the image before and after the
translation should represent the original segmentation information. The goal of this
architecture is to learn a segmentation function on the target domain.
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Chapter 3

Methodology

We picked the Swapping Autoencoder as our starting point. We also considered
CycleGAN [31] and UNIT [21], but former experiments showed that the gap between
our synthetic dataset and real images is too large for them, resulting only in color
transformation. Swapping Autoencoder does a real style-conversion, but semantic
consistency is weak. Therefore, we aimed on improving this architecture by adding
more constraints.

We first modified the original architecture so it could only create sim-to-real
hybrids, i.e. it could only mix structure codes extracted from synthetic images with
texture codes extracted from real ones. Therfore, the swapping GAN-loss is modified
in this way:

LGAN,swap (E,G,D) = Ex1∼Xsim,x2∼Xreal

[
− log

(
D
(
G
(
z1

s, z2
t

)))]
,

where Xsim is the synthetic, Xreal is the real dataset, and z1
s, z2

t are the structure
code of image x1 and the texture code of image x2, respectively. Similarly, the
co-occurrence patch-discriminator’s loss is also modified, as only sim-to-real hybrids
are created:

LCooccurGAN (E,G,Dpatch ) =

Ex1∼Xsim,x2∼Xreal

[
− log

(
Dpatch

(
crop

(
G
(
z1

s, z2
t

))
, crops

(
x2
)))]

.

The reconstruction GAN-loss and the L1 loss are computed for both datasets equally.
We refer to this model as our baseline.

As mentioned above, we want to utilize the semantic labels to further constrain
the style-transfer. We introduce two novel objectives to the network: the Inner
Semantic Loss and the Outer Semantic Loss.
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3.1 Inner semantic loss

Swapping Autoencoder encodes the input images into structure and texture
codes, where structure code is a 3D tensor with spatial dimensions. It should repre-
sent the semantic information of the image, as it should not carry any information
about the texture (assuming disentanglement of structure and texture). However,
only two facts guarantee that structure code actually represents the semantic mean-
ing of the image: the 3D shape of the code and the Dpatch discriminator.

We help the encoder learn a more appropriate disentanglement by training the
structure code using the semantic labels. We assume that if the structure code
truly represents the structure, then the ground-truth semantic label maps could be
computed from the structure code (or the structure path of the encoder) with a
function called I : Zs → Y/4 where Zs is the space of the structure codes, Y/4 is the
space of the labels, downsampled twice. Our inner semantic loss can be termed as:

Lsem,in (E) = Ex∼Xsim∪Xreal,y/4∼Y/4

[
NLL

(
I (zs) ,y/4

)]
,

where x and y/4 are corresponding image-label pairs and NLL stands for the neg-
ative log-likelohood function that penalizes the deviation of the prediction from the
correct label at each position. In our work, we used its reduced form that takes the
mean of the losses across the spatial dimensions.

With all these, the combination of E and I can be considered as an universal
semantic segmentation network that can predict the semantic labels at a lower reso-
lution for both Xsim and Xreal datasets. We used a smaller resolution at this inner
segmentation network, because even with learned upscaling, the network can not
predict higher resolution segmentation maps without skip-connections from earlier
layers with larger scales. Smaller resolution also increases computational efficiency.

3.1.1 Implementation of the inner semantic loss

We completed the encoder with a side-branch (named inner semantic branch)
that branches off from the last convolutional layer just before the structure code.
Because the spatial dimensions at this point are 1/16 of the original image size,
the inner semantic branch is an upsampling network to reduce the gap in the scales
between its output and the ground-truth semantic maps. Thus, it performs 2 learned
upscalings, as it is a composition of transposed convolutional layer and classical
convolutional layer from StyleGAN2 [19], repeated twice. The channel-size is halved
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at every upscaling. At the end, there is another convolutional layer with a kernel
size of 1 to make the final pixel-level predictions.

This way, the side-branch can be considered as the decoder part of a small-scale
semantic segmentation network. We did not use skip-connections from shallower
layers, because that part of the main branch contains informations about the texrue
as well. The ouptuts of this part are then compared with the ground-truth label
masks using the negative log-likelihood loss that penalizes if the network does not
predict the correct class, for each pixel. Figure 3.1 shows this part of the architecture.
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Figure 3.1. Completion of the encoder part of the Swapping
Autoencoder with the inner semantic branch.

3.2 Outer semantic loss

We also constrainted our translation network from its outside: as we had access
to the segmentation labels of the source dataset, we knew what the translated image
should look like. We therefore prescribed that the result of the translation should
have semantic content that corresponds to the original semgentation map. To be
able to do this, we needed a function O that segments the translated images. If
the style-transfer is performed correctly, then the textures of the translated image
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correspond to the target dataset, meaning that a segmentation network pretrained
on the target dataset with frozen weights is well-suited for the task.

We note that other works as Sem-GAN [5] also used a segmentation network sim-
ilarly, but they trained their segmentation network simultaneously with the trans-
lation network. Also, at the beginning of the training, it could help the generator-
network create objects that are similar to the real ones. The outer semantic loss can
be formulated as:

Lsem,out (E,G) =

Ex1∼Xsim,x2∼Xreal,y∼Ysim

[
NLL

(
O
(
G
(
z1

s, z2
t

))
,y
)]
,

where y is the label for x1 and z1
s, z2

t are the structure code of image x1 and the
texture code of image x2, respectively.

3.2.1 Implementation of the outer segmentation loss

We used a DeepLabV3+ [4] model with a MobileNet [16] backbone as the seg-
mentation network O on the target dataset. We chose Mobilenet because of its small
size: during training, we needed to backpropagate through the full network at each
iteration, so we wanted to use as small network as possible to reduce the effect of
vanishing gradients, and also increase computational efficiency.

3.3 Final objective

We combined our two new objectives with the former Swapping Autoencoder
objectives, so our final objective is:

Ltotal = Lrec + 0.5LGAN,rec + 0.5LGAN,swap +LCooccurGAN +λinLsem,in +λoutLsem,out.

We kept the original weights of the SAE objectives, while λin and λout are hyperpa-
rameters.

In summary, we added two novel objectives to the Swapping Autoencoder [25],
subsection 2.4.3 architecture, both penalizes deviation from semantic label maps:
the inner semantic loss compares the structure codes with the downscaled labels,
while outer semantic loss investigates a semantic segmentation of the translated
image. The full architecture can be seen on Figure 3.2.
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Chapter 4

Experiments

4.1 Datasets, data preparation

First, we needed a synthetic and a real dataset, both labeled. As real dataset
we picked the widely-used CityScapes Dataset [6]. It contains 3475 finely labeled
pictures at 2048×1024 resolution (2975 for training, 500 for validating) and another
1525 for test purposes.

To create our own synthetic set, we used the popular CARLA Simulator [7].
CARLA is an open-source and often updated software, specifically created to aid
autonomous driving research. Although its visualization is very far from photore-
alism, it has numerous advantages compared to similar frameworks (i.e. computer
games or expensive simulators) as it is completely free and provides a wide range
of options for developing autonomous agents: it has several virtual sensors, while it
also allows manipulation of the environment, the weather, the traffic situation and
so on. In CARLA, we have the opportunity to create heterogeneous images as it
has 8 different maps, ranging from rural environments to big cities.

We utilized CARLA’s RGB and semantic camera sensors — the latter directly
provides the semantic maps — and collected 20, 000 images with their corresponding
labels. During data collection, we tried to create a set as similar as possible to
CityScapes [6], so we varied the maps and weather accordingly, meaning that we
collected more images from big cities and fewer from small towns, and allowed only
dry weather without fog in daylight. Sample images can be seen in Figure 4.1.
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Figure 4.1. Sample images from our CARLA Dataset

After the image generation, we also performed some filtering: we removed pic-
tures that did not contain enough traffic actors (vehicles or pedestrians) based on
the semantic maps, and we also deleted too similar pictures manually. At the end,
we picked 5000 images (from which 2500 comes from Town10HD, the city with the
most realistic textures) for training and another 100 for test.

We needed to modify the labels of the CityScapes Dataset [6] and our CARLA
Dataset, because their labels were not consistent with each other. We first merged
categories where it was needed. CARLA for example has a single vehicle category
and person category, while CityScapes has separate classes for every vehicle-type
(car, truck, bus, etc.) and for pedestrian and rider. On the other hand, we had
to merge CARLA’s road and roadline classes, because CityScapes did not have
separate class for the roadlines. At the end, there remained 16 classes. After that,
we downsampled the images and their labels to 512× 256 resolution using Lanczos
and nearest neighbor methods respectively in order to speed up the training.

In summary, we used two datasets for our training: the real set contains 3475,
while the synthetic one contains 5000 labeled images, and the generated labels are
consistent across the two datasets. The images and labels are at 512×256 resolution.

4.2 Setup

The original Swapping Autoencoder [25] worked on very large datasets, e.g.
LSUN Church and Bedroom [29]: ∼ 126k and ∼ 3M , FFHQ [18]: ∼ 70k, in
contrast, our dataset only contained 5000 + 3475 = 8475 pictures. Due to the
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relatively small size of our training dataset, we had to use some sort of augmentation.
We used random 256× 256 sized crops during training, since working on images of
street scenes allows us this type of augmentation, as these pictures do not lose their
meaning due to horizontal shifts. Fortunately, the fully convolutional architecture
allows us to train on crops and test on the full images.

At each training iteration, we sampled N images from Xsim and N images
from Xreal. We reconstructed N/2 real and N/2 synthetic images (chosen randomly
from the inputs), and computed the reconstruction loss using these. We created N
hybrid images, using all of the available structure and texture codes. The image
discriminator’s loss is computed on the 2N real, the N reconstructed and the N
hybrid images, where both reconstructed and hybrid images are considered as fake.
As for the patch-discriminator, we used its basic settings (8 crops for each image,
averaged features for the reference image). Note thatDpatch in our case works only on
the target domain as it discriminates between sim-to-real hybrids and their textures
that come entirely from the target domain.

For the other details, we also followed the basic setting of the Swapping Autoen-
coder [25], including the lazy R1 regularization with a weight of 10.0 for the image
discriminator and 1.0 for the patch-discriminator, and the non-saturating GAN-loss.
We used the basic optimizer ADAM with the default learning rate 0.002, β1 = 0.0
and β2 = 0.99.

We used an out-of-the-box DeepLabV3+ [4] model with Mobilenet [16]
backbone as our outer segmentation network (https://github.com/VainF/

DeepLabV3Plus-Pytorch), pretrained it on the resized and relabeled CityScapes [6]
dataset with the original train-val split. The network reached 55% on the valida-
tion set, which is smaller than expected from DeepLabV3+ (claimed 72%). The
significantly inferior performance is likely attributable to the heavy reduction in the
input resolution. Table 4.1 shows the hyperparameters used for the training of this
network. We used the maximum batch size that fitted into into the memory of a
single 32GB Titan V100 GPU.

train 256× 256 crops iterations 30k

validation
whole image
512× 256

learning rate 0.1

output stride 16 lr policy polynomial
batch size 128 weight decay 0.0001

Table 4.1. Hyperparameters used to train our segmentation networks.
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For the training of our Label-Consistent Swapping Autoencoder, we also used
the maximum batch size that fitted into our memory: that is 8 when training
with 256× 256 crops, meaning that the network works with 16 images at the same
time on our hardware. We set the maximum run-time to 5M iterations for all our
experiments. Table 4.2 shows the important hyperparameters for our experiments.

batch size 8 total number of images 5M
crop size 256× 256 learning rate 0.002

texture code dimension 2048 structure code’s shape 16× 16× 8
λGAN 1.0 λL1 1.0

λpatch−GAN 1.0 patch scale for Dpatch 1/4− 1/8

Table 4.2. The most important hyperparameters used in the training of the Label-
Consistent Swapping Autoencoder

4.3 Results

We first trained our baseline model (i.e. λin = λout = 0), then trained another
5 models with different combinations of λin and λout. For evaluation, we used the
100 test images from our CARLA Dataset as structure images with 4 images from
the CityScapes’ [6] test set. With all the possible sim-to-real hybridizations, we get
400 result images.

As we wanted to increase semantic consistency, we used another segmentation
network to evaluate it quantitatively. We picked a DeepLabV3+ [4] again, but
with a more robust backbone ResNet50 [13] from the same repository (https://

github.com/VainF/DeepLabV3Plus-Pytorch). This network has circa ten times
as many parameters as the MobileNet [16] version. We pretrained it on our modified
CityScapes Dataset [6]. For this training, we used the exact same hyperparameters
as we used for the outer segmentation network. These can be seen on Table 4.1. We
segmented all the 400 translated images, and compared it with the original CARLA
images’ ground-truth segmentation maps.

We used classical semantic segmentation metrics for quantitative investigation.
The overall pixel accuracy metric is a ratio of the correctly predicted pixels. Mean
pixel accuracy is computed by taking the mean of the pixel accuracies for each class.
mIoU stands for mean intersection over union, it computes the intersection and the
union of the correct and the predicted locations of a given class, then divides them,
and takes the mean across the classes. The results can be seen on the Table 4.3.
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We also employed the Fréchet inception distance (FID) [14] to measure the
similarity of two image-datasets, as this metric is widely used to evaluate GAN-
based image-generator networks. We computed the FID [14] metric between the
400 result images and the 5000 images of the CityScapes Dataset [6].

λout λin Overall Acc Mean acc mIoU FID [14]
0.0 0.0 0.530 0.167 0.112 65.26
0.0 1.0 0.500 0.170 0.109 60.13
1.0 0.0 0.672 0.326 0.215 61.95
1.0 1.0 0.665 0.332 0.227 68.59
1.0 5.0 0.632 0.329 0.216 64.78
2.0 2.0 0.675 0.351 0.237 66.26
3.0 0.0 0.692 0.382 0.254 76.08

Table 4.3. Validation results using semantic segmentation metrics and FID [14]
score. We bold the best results per column.

The table shows us that the use of outer segmentation loss highly increased the
semantic consistency (doubled the mean pixel accuracy and the mIoU metrics) while
the FID [14] metric did not change substantially (λout < 3 cases). It seems that the
inner segmentation loss did not help the effectiveness of the network, as using only
this loss lowered both pixel accuracy and mIoU compared to the baseline model.
This likely means that the base encoder by itself could find a better representation
(regarding the generation) than the strict semantic label maps. Notbaly, using the
inner loss resulted in a somewhat sizeable reduction in the FID metric. The best
performing model based on the semantic metrics is the one with λout = 3 and λin = 0,
however, its Fréchet distance is significantly higher. The model with λout = λin = 2
can be considered as a best of both, because its semantic scores almost reach the
best in this category, but there was no significant change in the FID score compared
to the baseline model. Figure 4.2 reports some visual results of the translation
network.
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Figure 4.2. Visual results. From top to bottom: original pic-
ture from the CARLA set, transformed image with the baseline
model and our best model (λout = 3), colorized ground-truth
label, segmentation result of the baseline model’s image and
our model’s image. 31



The above figure shows us the strength of our improvement: it prevents the
translation from "hallucinating" cars next to the roads. CityScapes’ [6] main ad-
vantage is that it is manually filtered and thus contains a large amount of traffic
actors: cars and pedestrians. However, in our case, this appears as a weakness:
there are too many cars in the CityScapes set, and therefore our GAN-based model
collapses slightly: it can hardly imagine a road in the target domain without many
cars parking aside. Our outer segmentation loss reduces this effect as it does not
allow the translation network to park cars where there should not be any.

Figure 4.3 shows us another cases where our constraints resulted in more ac-
curate translations as our model preserved the layout of the scene more accurately.
The right side of the figure provides another demonstration of the weakness the
CityScapes Dataset [6]: our real dataset contains only images captured in big cities,
and there are very few images that portray the open sky, therefore our model places
buildings or vegetation in place of the sky.

Figure 4.3. More visual results with another model (λin =
λout = 2). From top to bottom: original image, translated
image with the baseline and our model.

It is worth emphasizing, however, that our model is not perfect, as errors in the
generated images sometimes still persist. For instance, our model ereases byciclists
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and smaller objects on the road as seen on the left side of Figure 4.4, but still
prevents adding unnecessary cars into the scene. There are also failure cases where
our constraints ruin the translation: one example can be examined on the right side
of Figure 4.4: the baseline places the car onto the right place while our model misses
the object.

Figure 4.4. Another visual results

It can be said, however, that overall our model improves upon the baseline
in far more cases than it fails, a claim evidenced by the significant improvement
in the quantitative segmentation metrics. It is also worth emphasizing that we
used a different segmentation architecture for training and evaluation to minimize
the possibility that the generator simply learns to hide the semantic labels in the
generated images.
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Chapter 5

Conclusion

Sim-to-real image translation is a useful tool as it can aid the research of au-
tonomous cars, as it can help creating more realistic videogames, or with its help
we can make artistic images. In this work, we proposed a novel architecture for
translating simulated images into a more realistic domain while also preserving its
semantic content.

We investigated a state-of-the-art method called Swapping Autoencoder [25]
made for texture swapping and proposed two new features to increase the semantic
consistency of the translation. As an inner semantic loss, we added an semantic
segmentation mini-branch into the middle of the architecture that constrainted that
the structure code should match with the semantic labels of the image to be trans-
lated. We also utilized a semantic segmentation network pretrained on the target
domain, and built it around the whole translation network to further enforce the
semantic consistency of the output image.

We found that our inner semantic loss function had a negative effect on the
consistency: this likely means that the Swapping Autoencoder with its original
limitations is able to learn a more meaningful representation as structure code than
the semantic label maps for the image-generation.

Our outer semantic loss highly increased the semantic consistency of the images
as it doubled the mean pixel accuracy and the mIoU metric compared to the baseline.
It is a notable outcome, but we believe it can be improved even further by additional
considerations. With the unweighted crossentropy-loss, this objective forced the
translation network to better preserve the layout of the scene, however, it attached
greater importance to bigger objects like the road, trees and the sky, at vehicles’ and
pedestrians’ expense. Therefore, we want to finetune the semantic constraints used
in the outer semantic objective: we intend to differentiate between important and
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not important categories. This way, we could punish the network more for replacing
important objects as cars, pedestrians or traffic signs, and less for confusing not
important categories as the sky or vegetation. We could weight our loss function
based on classes, or instead of the cros-entropy loss that works pixel-wise, we could
also use more sophisticated objectives, such as dice loss, a soft version of mIoU.

In our experience, the real dataset we used was not suitable for this task as
it was small and too homogeneous as well. Our GAN learned the idiosyncracies of
the target dataset — such as parking cars next to the roads, rich vegetation and
big buildings that cover the sky etc. — along with the real-world textures, and this
caused problems in the translation. In the future, we plan to use more datasets (e.g.
KITTI [9], BDD [30]) merged with the CityScapes [6] to reduce the effect of this
overfitting.

As for the translation network itself, we could try to condition the GAN with
the semantic label maps, i.e. feeding the labels into the network at some point. In
this case, however, one needs to be careful to avoid the generator network learning
to hide the semantic information in the generated images.
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