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Abstract

The transformation of transport systems by connecting the vehicles into the network
is due. Cooperative and automated driving is becoming a widely researched topic
both by academia and industry, hoping that it can solve many issues we currently
struggle with. Reducing the occurrence of traffic jams, helping vehicles to emit
fewer greenhouse gases, and most importantly, preserving human lives may all be
achievable by these advancements.

To enable this, vehicles must share information efficiently. This can be done
by leveraging the aggregation of high-definition (HD) maps. These multi-layered
maps contain static and dynamic information regarding a certain situation. To
obtain a shared understanding between the vehicles without revealing the actual
data, federated learning is introduced in our proposed system, because it preserves
data privacy because the actual data is not traveling through the 5G network, only
the local model parameters.

To realize this idealized system the good intentions of each participant are
also required. With the current advancements in distributed ledger frameworks,
introducing a consortium blockchain that tracks the reputation and trustworthiness
of the participants and incentivizing them to show honest behavior is essential. To
assess feasibility, the entire system’s economic utility is modeled, optimized, and
simulated.
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Chapter 1

Introduction

Autonomous transportation is often hailed as one of the leading sectors that may
cause the next industrial revolution. At its center, just as once the steam engine was,
artificial intelligence is expected to be the nucleus. Considering recent developments,
however, this prospect may not be as far down the road as it may seem. With the
autonomous vehicle market already sitting at around 100 billion dollars in 2021,
and with the prospective growth to 1.8 trillion dollars by 2030, the breakthrough
is projected to happen in this decade. The main contributors and drivers of this
phenomenon are found in Europe, East Asia, and North America, as they are all
advancing toward Level 4 and 5 automation on the Society of Automotive Engineers
(SAE) scale, mainly because of the willingness to increase innovation by loosening
regulations and funding research project. The regulations are specifically innovation-
friendly in California and Arizona, where companies such as Waymo but even Ford,
and GM have all been running self-driving testing fleets.

The motivation behind the quick adoption of self-driving is that national and
international (EU) regulatory bodies hope that it helps to reduce traffic jams, road
fatalities, and also emissions. Simply because automated vehicles are programmed
to always adhere to traffic rules and use advanced routing algorithms. The parallel
revolution of electric vehicles is also helping to provide the possibility of attaining
these goals. In the case of automated vehicles, however, there is an important
additional presumption, namely, that unlocking the full potential and realizing the
above-mentioned goals requires a wide coverage of cooperating highly autonomous
vehicles.

To achieve autonomous transportation there is a consensus, even Tesla is start-
ing to agree [1], that merely sensors and road-side equipment are not enough, rather
there is a need for specialized maps that are made with autonomous vehicles in
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the focus. These are referred to as High Definition (HD) maps, which in contrast
to today’s SD maps contain centimeters-level road and lane information coupled
with traffic rules and even with highly dynamic data like current traffic or weather.
Such precision, although much welcomed, it mandates companies to employ a fleet
of mapping stations (vehicles) constantly, which makes the building and validation
really costly and time-consuming processes. Conclusively, to reduce these constant
advancements are being made by both industry and academia.

Apart from building and validation the third crucial aspect, given that traffic
circumstances are under constant change, is the automated delivery of the ever-
updated HD maps. These include altered or closed roads, incidental traffic jams, or
hundreds of other parameters. In this report, this problem is at the center and the
goal is to provide an applicable, secure, and fast solution.

As the task is too immense and impossible for a single entity to manage and since
transportation is among the basic needs of human life, causing numerous participants
to be commuting at all times, crowdsensing can provide a sensible solution. To use
this crowdsourced data to perform ML/DL efficiently and with respect to privacy,
Google introduced federated learning in 2015 for next-word prediction in Android
devices [2]. Since then FL has been adapted and researched in various fields. For
HD map updates the usage of FL is also adequate, as the edge-cloud consists of
vehicles and roadside equipment in a specific tile and they are running the learning
process with the aggregator being the cloud or another edge device at a higher
architectural level. Aggregated models can be transferred back, so the vehicle data
remains private.

Nevertheless, the application of FL is not secure nor performant without mea-
sures to guarantee the goodwill and reliability of the participants. Otherwise, ma-
licious actors may appear and hinder the learning process, thus causing the FL
process never to conclude. To eliminate this threat it is sensible to introduce a
reliability-managing blockchain in such a transactional and distributed system. By
doing so the participants get associated with a score that corresponds with their
truthfulness and reliability, so when the FL aggregation occurs, this grade is taken,
and the contribution of the specific participant’s contribution is weighted with it.
This way it is made sure only truthful information is considered when aggregating
the model.

For such a resource-demanding yet crowd-sourced data-based application, the
economic implications are non-negligible. Since the materialistic i.e. energy costs
that vehicles are paying to perform computations are high, the prospective rewards
should be able to compensate the clients. To grant this and conclusively, to boost
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participation some incentive mechanisms must be involved. As blockchain tech-
nology has already been introduced to enable reliability tracking, its tasks can be
broadened to incorporate client incentivization. This way, they are receiving both
tangible (blockchain-backed rewards) and intangible benefits from using the system,
causing their overall balance sheet to turn positive.

In this report, a framework with these key features is introduced. To briefly
summarize, it runs on top of the CARLA simulator backend, as that provides the
vehicular setting and the data to be used by the FL. The system then continuously
runs the HD map creation which receives the data and learns from it by applying
FL and using a Hyperledger Fabric-backed distributed ledger to correctly store the
calculated reliability metrics and provide incentives. These are maintained and used
in every iteration to prevent malicious intent. Upon the termination of the learning
process, the vehicles build the HD map from the learned variables.

In the next chapters, first, the use-cases for the proposed system are introduced
in Chapter 2, then the reviewed related work and existing solutions are presented in
Chapter 3. Following this, the system model is discussed in Chapter 4. In the end,
the results are presented and explained, in Chapter 5.
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Chapter 2

Use case description

Unexpected Heavy Rain
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Figure 2.1: Representation of HD map consisting of different
layers with static and dynamic information.

As we witness the gradual transition toward autonomous driving, the devel-
opment of digital maps for self-driving vehicles becomes imperative, transcending
their traditional role of aiding in navigation. Autonomous Vehicles (AVs) demand
an exceptionally detailed understanding of their surroundings, with precision down
to the centimeter level, to make critical decisions. To achieve this, these vehi-
cles employ an array of sensors to gather real-time data about their environment,
subsequently processing it to navigate autonomously. Yet, achieving real-time au-
tonomous navigation, particularly in urban settings, poses a formidable challenge
due to the limitations of sensor range and inherent inaccuracies. High Definition
(HD) maps play a pivotal role in enabling autonomous vehicles to comprehend their
environment with a high degree of accuracy and achieve precise localization [3].
This, in turn, empowers them to overcome the limitations of sensor visibility, ex-
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ercise context awareness, and effectively interpret local traffic regulations to make
safer decisions and proactively plan their routes.

HD maps, primarily designed for self-driving applications, excel in delivering
the level of accuracy necessary for vehicles to navigate in real-time. The creation of
HD maps typically involves specialized vehicles equipped with highly precise sensor
equipment, including Differential GPS (D-GPS), a plethora of cameras, and excep-
tionally accurate laser scanners. These sensors capture information about current
obstacles and the traffic regulations pertinent to the surrounding environment. HD
maps, illustrated in Figure 2.1, comprise various layers: the static layer, housing
infrequently changing information like road layouts; the transient static layer, con-
taining details that remain constant for a set period, such as roadwork; the transient
dynamic layer, which offers data subject to frequent changes; and the highly dynamic
layers, delivering real-time data about the surrounding environment, including vul-
nerable road users.

Given that the road network is far from static and constantly influenced by
factors such as traffic congestion, accidents, construction activities, and the status
of adaptive traffic signs, it is imperative to keep these maps continuously updated to
provide real-time information to autonomous vehicles. This necessitates the rapid
delivery of updated HD maps with minimal latency, a challenge that can be miti-
gated through the implementation of edge computing. The concept of deterministic
update intervals is advocated, and subsequent sections delve into the impact of
shorter update cycles on the overall system.

Notably, HD maps are location-specific and entail the transmission of sub-
stantial data volumes. Vehicles within the same geographical area often request
identical HD map data, referred to as a "tile," for autonomous driving. This recur-
rent transmission of large HD map datasets over the core network places significant
stress on capacity-constrained backhaul links. To alleviate this burden and substan-
tially reduce latency, a practical solution involves processing and storing HD maps
on Multi-access Edge Computing (MEC) servers situated at the vehicular network
edge, often referred to as Roadside Units (RSUs). This enables vehicles to access
the required HD maps from their associated RSUs through vehicle-to-infrastructure
(V2I) communication without the need to traverse the core network. Alternatively,
the emerging 5G edge infrastructure, offering broadcast communication as of Re-
lease 16 [4], can be harnessed to provide the necessary computing capabilities for
edge computing within close proximity to users.
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Chapter 3

Related work

3.1 Building of HD maps

HD map creation faces a lot of challenges, due to its complicated structure and
serious requirements. Mapping methods have been evolving, but full automation is
still out of reach.

The authors of [5] give an overview of the current process and techniques, with
the whole pipeline is depicted in Figure 3.1.

Figure 3.1: HD map generation steps

The first step in the process is data collection/sourcing. This is usually done
by a Mobile Mapping System (MMS), depicted in Figure 3.2, which is a vehicle
fitted with numerous sensors, including global navigation satellite system (GNSS),
inertial measurements unit sensors (IMU), light detection and ranging (LIDAR),
camera, and radar. These provide a huge amount of environmental, locational, and
traffic information at the same time so a given section only has to be traversed once.

6



Figure 3.2: Mobile Mapping System used by Baidu

Therefore, most incumbent players use this method because they tend to have a fleet
of MMS-es that can provide detailed data from large road sections. Researchers and
academia, on the other hand, are unable to use this method, given the huge upfront
costs of even one MMS, so, they focus on smaller areas like university campuses.
Alternatively, they can also use publicly available, but detailed datasets like the
KITTI or the Lyft dataset.

In the next step, the sensor data is fused into an initial point cloud map. These
are accurate and precise but they have to get through a multi-step process, called
point cloud registration, to get rid of noise and align some overlapping elements.

The last, and most time-consuming part to complete the HD map is feature ex-
traction. Features like roads/lanes and their markings, and pole-like objects (traffic
lights, signs) all need to be distinguished, validated, and loaded into specific layers.
As these tasks make the essence of the HD map, it needs to be precise so manual
work is indispensable as of now, but the emergence and adoption ML have shown
some realignment toward semi-automated and automated solutions.

Paper [6] shows how Baidu produces its HD maps, which is very similar to
the process described above. They initially gather vast data through their fleet of
mapping vehicles, then these are processed by deep learning and computer vision
algorithms to segment and classify the point clouds into separable objects. To verify
the automated processes they employ manual verification trying to make sure that
the final HD map is precise. Lastly, the maps are produced, released, and maintained
by the company, so frequent updates are ensured.

As a specific field study, the authors of [7] and [8] provided a detailed description
of the HD mapping of Taiwan and gave an overview on how to lower the costs of
HD map production. Their proposed strategy is based on five pillars, which are:
the usage of technical guidelines and standards in HD map production, flexible data
acquisition, automated HD map format conversion tool, (semi)automated HD map
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production tool and finally the upscaling of HD maps. They argue that by achieving
these, we can substantially lower the cost of HD map production and verification
thus accelerating the adoption of autonomous vehicles.

In Taiwan, they followed these steps to produce HD maps on five routes in a
research park by simulating crowdsourced data by using four third-party platforms.
The data also kept track of the environmental changes they performed and has been
published in an OpenDRIVE format. For further cost reduction, they examined
that format conversion, which was sufficiently performant for road networks with the
usage of the ASSURE map tool. They also tested their semi-automated production
tool for evaluation. The results showed that, when compared to verified HD maps the
overall network was consistent, however, the road edges and traffic lights had some
modeling errors. Ultimately they conclude that these techniques helped them to
lower the costs of HD map production from 1000000 NTD1/km to 350000 NTD/km.

3.2 Applications of FL in autonomous transporta-
tion

Given the data privacy conscientiousness and the network-preserving nature of fed-
erated learning, it has become a prime technique for performing different ML/AI-
related tasks in the field of autonomous transportation. One of these use-cases, and
perhaps the most prominent one, is the applicability of FL for HD map creation.
As sensor and video data result in high volumes, its transportation would strain the
available network bandwidth and ultimately also cause latency issues. In terms of
privacy, sharing location or other sensitive information may also be undesirable for
customers, which would understandably prevent their participation [9].

The authors in [10] first introduced a three-layered system, constituting the
cloud, edge, and vehicular layers, and provided a system that employs FL for dy-
namic map fusion. The role of the central server is to provide initial parameters,
and pre-trained models, if necessary. After receiving these the edge vehicles are con-
tinuously performing local fusion on their image and point cloud information and
upload the weights to the edge server. This then performs a three-stage fusion by
first partitioning objects in local maps, then generating them onto the global map,
and lastly, it removes the overlapping ones. The result is then sent back to the
vehicles.

1New Taiwanese Dollar
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To expand the work to more complete HD maps, the same authors improved
the system, and in [11] they provided a complex FLCAV solution. They identified
multiple tasks like object and road detection, weather and sign classification, or
trajectory prediction and built a framework that uses the same approach as the
previous article. The difference is that here, during the local FL training, actual
DNNs are utilized. They also consider the resource implications of the proposed
system. The framework is built on top of, and trained in CARLA [12] (see later
in section 5.1 but validated on a real-world dataset. Here it achieved roughly 58%
accuracy for object detection, which means that some additional transfer learning
and real-world testing are indispensable.

The authors of [13] focus on energy-efficient map data distribution. They pro-
pose an algorithm that minimizes the power consumption while receiving HD maps.
An RSU serves a vehicle only if the energy required to receive data from the RSU
and for basic movement is less than the remaining energy of the vehicle. For such ve-
hicles, the data is divided among all the RSUs in proportion to the received power to
provide the service. The authors in [14] propose a joint power control and spectrum
assignment policy to maximize the sum data rate of the overall network for HD map
dissemination. They study the interference effect on data transmission and formu-
late a model that describes the interference control problem in V2X-enabled HD map
dissemination. The authors suggest cooperative delivery of HD maps through V2I
and V2V communications by dividing the HD map into many data blocks based
on data volume and infrastructure environment. The work in [15] discusses HD
map caching for autonomous driving in vehicular networks with unknown vehicle
requests and trajectories. The proposed caching algorithm defines a reward function
that considers the historical tile request data.

A new architecture is proposed in [16] that combines Multi-access Edge Com-
puting (MEC), and Software Defined Networking (SDN) to enable HD map-assisted
autonomous driving. A two-tier server structure is proposed with cloud and MEC
servers to achieve resource utilization and network scalability. The applications
and services are deployed on the MEC server using Network Function Virtualiza-
tion (NFV) at the network edge. A MEC system framework is proposed in [17]
for HD map applications. The authors introduce the application mode, functional
modules, HD map data distribution workflow, and communication process between
the autonomous vehicle client and the server.

In terms of system applicability and dimensioning, the authors in [18] did
widespread simulations using a multi-level architecture, similar to the one in [10].
They also utilized a queuing theory-based approach to model the changing (mobility-
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influenced) demands. In their findings, an HD map building FL system is most
optimal when using 1 km2 tile areas with as high bandwidth as possible and as low
trigger time, which they defined as the time interval that an HD map layers gets
refreshed, as possible.

3.3 Blockchain-based reliability and incentive
mechanism

The authors in [19] introduce a complex system, where a network task publishers in
a federated learning scheme are tracking the reputation of the clients in a dedicated
blockchain. These metrics are then used for node selection in successive iterations
to exclude malicious clients. They are calculated by the current task publisher
based on the computation time and responsiveness of the client. Following the
initial calculation, poisoning detection schemes like RONI or FoolsGold [20] are also
executed to get a more exact value. This local reputation vector is then combined
with other task publishers’ historical data and as a result, a composite reputation
value is reached. This is then stored in the blockchain and also used for upcoming
worker selections in future FL iterations. The main shortcoming of this model is
that a latency analysis is not given, so the overall applicability in a highly dynamic
scenario, like HD map updating, is not reviewed.

In a slightly different approach, the authors of [21] built a system with general
IoT devices as participants of an FL scheme. Here the manufacturers submit their
models to a blockchain, which is then used to keep the model up to date as the FL
is being executed. When the local models are trained and the weights are sent, they
propose a novel consensus mechanism for miners to validate the aggregated model
and calculate the reputation of the customers. If a local update is deemed to be in
the top majority then it is accepted and the corresponding customers’ reputation is
increased and also recorded in the blockchain otherwise it is decreased. Once every
update is validated the aggregated model in committed to the blockchain. The
main drawback of this approach is that in a mobile HD map maintaining setting,
the models of a given tile should not be stored on a global, or on an otherwise wide-
scale blockchain as it creates overhead. Instead, as the traditional FL suggests,
the weights are propagated upwards to get better-fitting models. The complicated
consensus mechanism poses another drawback as it would delay the execution of the
FL process decisively.
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For providing incentivization in a federated setting the authors in [22] propose
a system that is based on contract theory so that mobile users are compensated
for joining a system. Here they provide detailed theoretical descriptions based on
proofs for their mechanism: the utilities for both the clients and the system are
thoroughly introduced and optimized. They also show that this approach can result
in improved learning accuracy. This solution, however, is not directly applicable to
the defined use case, because here the client and system utilities are different due to
the system building on FL being for the overall betterment of all the participants.
Therefore, there are non-materialistic benefits for the clients to remain engaged, i.e.
they receive the contribution of others when creating an HD map.
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Chapter 4

System model

In this section, I propose a comprehensive model that introduces both the architec-
tural aspects and its economic considerations. These jointly describe the systems’
thorough operation and protocols, while also mathematically analyzing the intro-
duced incentivization mechanism to model economic feasibility. In order to ascertain
real-life applicability, some realistic bounds and constraints are also considered while
analyzing the output of the numeric optimization, enabling the formulation of some
guidelines and best practices for creating such federated-networked system with op-
timized performance.

4.1 Architecture

Designing a comprehensive and feasible navigation system that helps autonomous
transportation involves solving numerous core requirements. These can be separated
into economic and technical issues, namely that the system should provide useful,
highly precise, and actual information in the face of High Definition (HD) maps
that encompass static, like road geometry, and dynamic data, like weather or other
commuting parties, respectively. Given the excessive variability and size of the data
that would be needed for such a task, user participation is beneficial and desired
because a centralized solution is impractical and supposedly infeasible. The traffic
infrastructure users could collaborate in a decentralized fashion to provide data on
their surroundings and so aggregated HD maps could be constructed. For this con-
struction technique, however, providing data privacy and security is indispensable,
along with the assuredness that the user behavior is honest and so only valid and
useful data is taken into account.
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The system I am proposing, therefore, aims to fulfill the above-mentioned ob-
jectives and requirements by introducing several state-of-the-art technologies that
work together to ensure them. The architecture of the system, on the physical level,
has two main actor groups: the users, who are considering the use-case, vehicles,
and the operators, edge RSUs, and the central servers in the cloud. These are, on
a logical level, complemented by two consortium blockchain networks, responsible
for reliability and user rewards. This conceptual architecture is presented in Figure
4.1. Here, the designed operation and protocols can also be examined.

Figure 4.1: Logical system architecture

For producing an HD map tile in a given area, the actor groups perform a
Federated Learning scheme with different frequencies for different HD map layers.
The RSUs and the central server first distribute the initial models to the users
present at the tile (0). The users then train the models on their local data (1)
and upload the weights of these to the weights blockchain (2). The RSUs fetch
these transactions (3A) to calculate the reputation scores of each participant (4A)
and commit these to a separate reputation blockchain (5A). The users then fetch
the scores (3B), and the user with the highest reputation gets to prepare (4B) and
commit (5B) the block containing the weights transactions while earning a block
reward. Naturally, the block committer must eliminate low-reputation transactions
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to keep good faith. After committing the block, the other users validate the block
to keep the block committer in check, and to produce the aggregated global model
for themselves, from the committed transactions.

Operating in the described fashion ensures data privacy by employing Federated
Learning so that the local data is never shared or exposed, only the weights of the
local model are broadcast. Other decisive requirements, such as data security and
system usefulness are guaranteed by the fact that the system only allows transactions
from reputable nodes to be added to the ledger. This way the updates are carrying
the results of the actually performed computations so these are strongly expected
to be beneficial for the system. Finally, the most neglected aspect in other works,
the economic feasibility of the system, is solved by incentivizing users to contribute.
Namely, that the system encourages users to achieve a high reputation, i.e., to put
in more work, so they can receive rewards from block commits.

4.2 Theoretical model

Every system that expects user activity must provide some advantage of a certain
nature, e.g.: entertainment, information, easement of some process, or even financial,
to reward or compensate for their efforts. This notion is most understated if the
user "suffers" high costs for participating or operating the system. Therefore, the
compensation should be manifold to balance these out and encourage honest and
symbiotic utilization of such a system.

Hence the proposed system demands image recognition model training for local
models, there is a high expected cost from participants. These mostly materialize
in higher energy needs to power CPUs or GPUs for training, so there is a decreased
fuel efficiency. The benefits, henceforth, are required to outweigh these costs making
the system effective and efficient for both actor groups. In other words, modeling
the economic feasibility is indispensable to acquire a sense of applicability in reality.

To model the utilities of each actor group we define these as the difference of
the incomes and the costs, as can be seen in Equations 4.1 and 4.2. It is important
to emphasize that the model considers a single iteration on a single tile, thus it
measures a single local iteration. Moreover, in our model, we factor in the energy
used to achieve a given reputation instead of the concrete reputation value, due to
the more materialistic nature of the energy that is useful in economic evaluations.
These two metrics, however, are expected to be closely correlated so by spending
more energy on local calculations the achieved reputation grows higher.
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Table 4.1: Mathematical notations used in the system model.

Notation Description

n Number of clients
s Subscription fee
r Block reward
ν Vehicle density coefficient
E[X] Expected value of required energy for reputation (Ecmp)
m Maximum value of Ecmp

ξ Effective capacitance coefficient
cn Number of CPU cycles using a single data sample by usern

dn Size of local data samples for usern

fn CPU frequency of usern

α Energy cost coefficient

In the case of the clients, the materialistic income, the first term, consists of
the expected reward, considering all vehicles in the tile. It is calculated, as seen
in Equation 4.5, by taking the probability of a vehicle having spent the maximum
energy on achieving a high reputation among its peers and multiplying it with the
attained block reward. The next two terms are the suffered costs, in terms of
computational energy, detailed in Equation 4.4 [22] and subscription fee. The last
term is an abstract income, referred to as perceived value, that tries to capture
the beneficial character of the system from the users’ perspective. Specifically, it
captures a logarithmic growth in relation to the total spent computational energy
by the users. The logarithmic function is a simpler choice to replicate the notion
that having a growing number of spent computational energy is analogous to having
a curve with a gradually deteriorating, but positive gradient.

Uc = fY (y)r − αE[X] − s + α ln(nE[X]) (4.1)

Compared to clients, the system has a more straightforward model. Here, the
incomes are the subscription fees from all participating users in the given tile, while
the cost is simply the block reward that the most reputable vehicle receives. The
number of users, Equation 4.3, is central to both functions, it depends on the vehicle
density and the current subscription fee. The function has a radical hyperbolic curve
characteristic in terms of the subscription fee, representing the lower willingness to
participate as the fee increases. This feature is analogous to the demand curve in
economics.

Us = ns − r (4.2)
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n = ⌊ ν√
s

⌋ (4.3)

Ecmp = ξcndnf 2
n (4.4)

X1 . . . Xn − Ecmp of each vehicle on given tile X ∼ U [0, m]

Y − max{X1 . . . Xn}; Y ∼ U [0, m]

P (Y < y) = P (X1 < y, . . . , Xn < y) = Πn
i=1P (Xi < y) = ( y

m
)n

fY (y) = d
dy( y

m
)n = n

mn yn−1

(4.5)

To make the system applicable there are certain constraints, C1−4 that are
required. Firstly, both of the actor groups must have a positive utility, otherwise,
it is economically damaging to participate in or operate the system. Secondly, in
strong correlation to the previous constraints, the number of users is required to
be a natural positive number. Lastly, the CPU cycles on a single data sample is
maximum the CPU frequency enables under a given time period.

(C1) : Uc > 0

(C2) : Us > 0

(C3) : n ∈ N+

(C4) : cn ≤ 1f for 1 sec timeframe

(4.6)

4.3 Optimization

To ensure model usefulness it is essential to gain the optimal setting under which
the system is materialistically profitable for the system operator and at the same
time overall beneficial to the clients. The first criterion stems from the fact that
the system needs to make a profit in order to ensure investments for continuous
operation, maintenance, and further development. The sensible clients, on the other
hand, are anticipated to participate in a commonly beneficial system that proves
to be also rewarding individualistically. Therefore, the system utility function is
maximized as long as the client utility function is non-negative.

Plotting the functions while using common parameters for vehicle density (∼
100 vehicles/km2 [18]) and energy consumption cost (taking the cost of Tesla’s
AMD Ryzen APU as reference [23]) shows the surfaces of Figure 4.2. It is easy to
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observe, given the derivatives, which taken from the smoothed surface (without the
lower integer part function), in Equation 4.7, that the client utility is growing as
limr→∞ Uc, but diminishing as lims→∞ Uc, given the C1−4 constraints. On the other
hand, the system utility derivatives, seen in the Equations 4.8, have a somewhat
inverse face. The system utility grows as lims→∞ Us, but decreases with a constant
degree when lims→∞ Uc. Ultimately, the derivatives of the defined functions only
take zero when some input parameters are zero, conclusively the functions reach
their extremes at the edge of the defined domain.

∂
∂s

Uc = νrm
−ν√

s x
ν√
s

−1
(ν log m−ν log x−

√
s)−s(2s+α)

2s2

∂
∂r

Uc = νm
−ν√

s x
ν√
s

−1
√

s

(4.7)

∂
∂s

Us = ν
2
√

s

∂
∂r

Us = −1
(4.8)

The joint utility function shows the optimal setting with regards to block reward
and subscription fee, as seen in Figure 4.2c. Here, the darker surface shows the
system utility, which is being maximized, while the yellow one is the client utility
where it is above zero, making joining sensible. The remaining part of the system
utility function is cropped due to being economically unviable. As it is evidently
seen, with a fixed number of potential clients the plot exhibits direct proportionality,
so when s grows r likewise needs to grow to attain max utility. If that were not
the case, the users would be discouraged from joining the system, as equation 4.3
shows. Keeping this constraint shows that the system has a maximum utility when
r and accordingly s is the biggest.

It is important to note that the vehicle density can be highly varying in different
areas, therefore both economic quantities need to be set dynamically. Making oper-
ators implement a dynamic pricing model based on actual characteristics. Pricing
strategy moreover, is not solely decided based on the mentioned metrics, but there
are further socioeconomic considerations. In other words, even if the theoretical
model shows that the highest utility is achieved as long as the block reward and
the subscription fee are mutually expanded, customers have price sensitivity. Con-
clusively, this may make having a high subsription fee unfeasible, even if the client
utility function is positive.
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(a) Client utility function (b) System utility function

(c) Joint utility function

Figure 4.2: Utility functions with common parameters
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Chapter 5

Numerical simulation

To gather evidence on the actual system proceedings, performance, and ultimately
on the real-world applicability of the proposed system, thorough simulations were
conducted. Here, the theoretical variables are substituted with some values taken
from a range that could occur in reality, and the utility values are evaluated against
these. Finally, there are clear showings of how the system would perform under
various settings.

5.1 Setup

The simulation framework that is used to numerically evaluate the designed sys-
tem, is multi-tiered, as its structure can be observed in Figure 4.1. At the core,
the industry-standard tool, CARLA is utilized for holistically simulating every com-
ponent of a vehicular environment. This encompasses vehicles, their sensors, and
other actors, such as pedestrians and micro-mobility users. To control these possi-
bly large-scale multi-actor scenarios, CARLA provides an interface and an API, so
simulations can be controlled externally. In this fashion, the controller application
can gather information regarding the simulation, including the position and status
of the vehicles, sensor data, and infrastructure details, at every step. These data
produce the local data for each vehicle to be learned via FL.

To carry out the basic processes of an FL scheme, the custom framework utilizes
the CarlaFLCAV project [24]. This can provide, among other features, out-of-the-
box dataset generation and labeling, and FL using the YOLOv5 object-detection
model. The latter was taken as the starter, but it needed to be adapted to perform
the proposed protocol. This required changing the implementation of the cloud
aggregation from simple averaging to the reputation-calculating Fool’s Gold algo-
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rithm and extending the FL to store its data, both weights and reputation on the
corresponding distributed ledgers. The rewarding procedure was also added, so at
each iteration, the maintained balance of the participants changed according to their
current reputation. Other than these adjustments the FL process was unmodified.

The distributed ledgers are managed by the Hyperledger Fabric [25], which pro-
vides a consortium blockchain network. Essentially here the network members are
trusted, identified parties who can access, modify, and commit to the ledger. In the
proposed system these parties are operator companies or different national or gov-
ernmental organizations. In the simulation framework, a basic network was running
with two organizations, maintaining two different channels (these can be considered
as separate ledgers in Hyperledger). One of these is the weights channel, which
receives the weight transactions from the vehicles, while the other is the reputation
one, which keeps track of the balance of each vehicle as well as its reputation.

The simulations were run on a machine with a dedicated NVIDIA A100 GPU
and an AMD Epyc-Rome 16-core CPU in the cloud of HUN-REN Research Network.

5.2 Results

To corroborate the theoretical optimization, simulations were carried out. Most
importantly the energy-related costs were researched, by measuring the CPU and
GPU usage on the server, in 1-minute intervals, during the simulations to answer
how these directly affect them. Meanwhile, the FL-based object-detection simula-
tions, as previously thoroughly introduced, were performed by the custom simulation
framework under different configurations. These can be browsed in Table 5.1.

In the test cases value sets were chosen with careful consideration. As the
number of clients, and with a strong correlation, the number of FL iterations have a
tremendous impact on the simulation time, they were kept within reasonable bounds.
Specifically, when 5 clients were simulated the iteration count was set to 10, but
during the other simulation, the ratio was inverted. The subscription fee and block
reward, conversely, traversed a wide logarithmic scale to get a correct measurement
of how the actual resource usage compared to them. Finally, there were some taken
to see how the energy price coefficient influences the utility functions, if it deviates
from the current average.

The plots contain the balance at each point in the linear space defined by the
set of values of the block reward and subscription fee. These data points are the
sum of Equation 4.1, but now with simulated results. The first component is the
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Table 5.1: Variable settings for test cases

Notation Description Set of values

n Number of clients (5, 10)
s Subscription fee [$] (0.01, 0.1, 1)
r Block reward [$] (0, 0.01, 0.1, 1)
α Energy coefficient [kW h

$ ] (0.16)

vehicle balances throughout the iterations, r − s, for a given setting of r and s. The
second component is the average of the energy cost of physical server usage (CPU
and GPU), while the third, perceived value, is the logarithm of the second term
times the number of vehicles.

The simulation results for the lower client count are depicted in Figure 5.1.
Both the client and server utilities show the expected behavior. The prior grows as
the block reward increases, but heavily decreases as the subscription fee is upped. It
is easily noticeable how quickly the utility deteriorates as s grows, making the usage
of the system excessively unprofitable. Hence, having block reward is indispensable.
Moving to the latter, its behavior is inverse, growing in s and receding in r. It is
conspicuous, although, that here the growth of s is linear, not radical as seen before
in Figure 4.2b, because the number of vehicles in the simulations was not expressed
as a function of s, rather it was fixed.

In terms of the joint plotting of the utility functions it is observable that the
slopes for Uc in s and Us in c are different, making the optimal Us a trapezoid where
Uc is non-negative. The optimal utility could be found at the edge of the block
reward domain along the upper edge of the trapezoid, with an assigned subscription
fee, that is marked by the ∂

∂r
Uc sloped line. This result strongly correlates to the

findings in Section 4.3. It is important to notice, however, that here the α parameter
was kept at the base setting, i.e., US average price of 1 kWh for EVs [26], and this
was within the same order of magnitude as the block reward and subscription fee.

To visualize the effect of change in the number of clients, the utility functions
were plotted alongside each other in Figure 5.2. In the first subfigure, showing
the client utility, the effect of the only non-materialistic value contained in the
equations, the perceived value, can evidently be inspected, as this quantity depends
most directly on the number of participants. The purple surface denoting the Uc

of the 10 client setting is much flatter. Additionally, even at the most unprofitable
setting, where r is zero, it has a much higher utility value, although also negative,
than the 5-client setting. Given the flatness and overall higher values, a larger
portion of the utility function becomes non-negative upon client increase, and this
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(a) Client utility function for 5 clients (b) System utility function for 5 clients

(c) Joint utility function

Figure 5.1: Utility functions for 5 clients

implies that the system also gets more optimization opportunities to maximize profit,
making a client number dependent dynamic pricing approach possible.

As for the second subfigure, the impact is even more obvious as the utility
linearly depends on the ns product. The plot clearly shows this increment in slope
with regard to the subscription fee. Therefore, the utilities for the same r−s settings
show the same proportionality as the number of clients.

For large-scale simulations, some selected test cases were run with a high, 50
participating client number, to evaluate the growth of perceived value. The results
are illustrated in Figure 5.3. The trend is clearly visible that as the number of clients
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(a) Client utility (b) System utility

Figure 5.2: Comparing utility functions between 5-client and
10-client settings

Figure 5.3: The growth of perceived value with regards to
client number

increases the perceived value is moving accordingly, although the rate is different.
The deviation between the test cases is likely due to some system utilization anomaly,
as it is directly not dependent on r.

Ultimately the acquired results reassure the initial conceptual assumptions and
expectations made during the architectural and theoretical modeling when running
the system on an industry-standard simulator with the physical resource usage taken
into account.
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Chapter 6

Conclusion

In this work, I present a reliable and economical information aggregation and shar-
ing system for vehicular use-cases. Specifically, the construction of HD maps that
provide real-time information regarding various aspects of the environment of trans-
portation, from road geometry to dynamic traffic data. The proposed system uses
a reliable federated learning scheme, aided by blockchain, to aggregate informa-
tion from trusted reputable sources only. To complete the system and encourage
honest user participation, an incentivization protocol is developed boosting system
usefulness for all parties.

Apart from the comprehensive modeling of the system, a thorough economic
analysis is also provided including the optimization of both system and client util-
ities. The theoretical claims are corroborated by numerical simulations based on
industry-standard tools, to ensure theoretical, physical, and economic feasibility.
The conclusion is that, as long as the utility of the clients is positive, the system
is highly profitable by giving out large rewards as the clients are compelled to join
and earn both material and immaterial benefits.
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