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Abstract

The Internet of Things (IoT) means the Internet with embedded devices too. The IoT
is becoming more and more important and ubiquitous in our everyday lives, for example
in the infrastructure of smart cities, in modern industrial applications, in transport and
in smart homes. The security of the IoT should not be overlooked as some of those
applications are mission critical. Connecting the embedded devices to the Internet opens
up a new and substantial attack surface, and the attacks targeting these devices are often
successful. The attackers often exploit software vulnerabilities, which are hard to avoid,
especially with low manufacturing costs. Such vulnerabilities can be fixed with software
updates, however also it must be done securely, so that the update mechanism itself cannot
be used for new attacks.

In this paper I propose a secure remote firmware update for embedded IoT devices, that
satisfies the following criteria: it can be carried out remotely, without the need to physi-
cally approach each and every device; it is secure, otherwise it can be exploited to com-
promise devices at large scale; it is reliable and fail-safe, meaning if an update failed, the
device automatically reverts to the last stable version of the updated component; and it
has version rollback prevention, to prevent attackers from installing an old, potentially
vulnerable version of the component through which they can compromise the devices
again.

In the paper I give an overview of the security problems of the remote firmware update,
present the design of my firmware update protocol, its security properties, and their analy-
sis with formal methods, as well as report a prototype implementation done by me, which
I did for the Raspberry Pi 3 Model B platform.



Kivonat

Az Internet of Things (IoT) a bedgyazott szamitégépeket is tartalmazé Internetet jelenti.
Az IoT egyre fontosabb és athatobb szerepet jatszik a mindennapi életiinkben, példaul az
okos varosok infrastrukturdajaban, modern ipari alkalmazasokban, kozlekedésben és okos
otthonokban. Az [oT biztonsagat nem szabad elhanyagolni, mivel az emlitett alkalmazasok
kozott vannak kritikus fontossaguak. A bedgyazott eszkozok Internethez valé csatlakoz-
tatdsa egy 10j és lényeges tdmaddsi feliiletet nyit meg, és az ezeket az eszkOzoket célzd
tamadédsok gyakran sikeresek. A tdamaddsok sokszor szoftveres sériilékenységeket hasznal-
nak ki, amiket nehéz elkeriilni, kiilénésen az alacsony el6allitasi koltségek mellett. Az ilyen
sériilékenységek javitdsa szoftverfrissitéssel lehetséges, am ezt is biztonsagosan kell megol-
dani, hogy ne maga a frissitési mechanizmus adjon lehet6séget ijabb tamadasokra.

Ebben a dolgozatban egy olyan biztonsagos tavoli firmware frissitést javaslok be-
agyazott IoT eszk6zokhoz, mely kielégiti a kdvetkezo feltételeket: tavolrdl végrehajthato,
anélkiil, hogy oda kellene menni minden egyes eszk6zhoz; biztonsagos, kiilonben ki lehetne
hasznélni nagyszamu eszkoz kompromittalasara; megbizhaté és iizembiztos, ami azt jelenti,
hogy ha egy frissités sikertelen, az eszkoz automatikusan visszadll a frissitett komponens
utolsé stabil verzidjara; és tartalmaz verzié rollback prevenciot, amely megakadalyozza
a tamadodkat, hogy feltelepitsék valamely komponens egy régi, potencialisan sériilékeny
verzidjat, mely segitségével tjra kompromittdlhatjak az eszkozoket.

A dolgozatban attekintést adok a tavoli firmware frissités biztonsdgi problémairdl,
bemutatom az altalam tervezett firmware frissitési protokollt, annak biztonsagi tulajdon-
sagait, illetve ezek formdlis médszerekkel torténd elemzését, valamint beszamolok egy al-
talam készitett prototipus implementaciérél, melyet Raspberry Pi 3 Model B platformra
készitettem.

ii



Chapter 1

Introduction

Internet of Things (IoT) systems are built from network connected embedded devices,
and their security heavily relies on the security of those embedded devices. One of the
most important security aspects in this context is the integrity of the software running on
embedded devices. The reason is that unauthorized modification of software can result
in arbitrary behavior of those devices, and as a consequence, loss of trust in the entire
IoT system built upon them. In particular, protecting low level software, such as the
operating system (OS) and the firmware, is important, because typically these components
are responsible for implementing many security controls and they provide trusted services
(e.g., in the form of system calls) to higher layer software.

Digitally signing software components, including the firmware and the OS kernel, and
important data, such as configuration files, combined with some hardware based root-of-
trust and a secure boot process, which ensures that software components are loaded and
executed only if their signature is valid, can help protecting the integrity of software, but
does not entirely solve the problem. In particular, signed code and verified boot ensure
that the device runs intact code right after a reset, but software can also be compromised at
run-time by exploiting design and implementation level vulnerabilities in it. For instance,
an attacker may be able to execute arbitrary injected code on a device by exploiting
software bugs, such as not checking the amount of data copied into a limited size buffer
or using dangling pointers, leading to memory corruption. [5]

When software vulnerabilities are discovered, they need to be fixed, and embedded devices
need to be updated with the fixed software. This applies to the OS and the firmware too. In
addition, due to the potentially large number of embedded devices used in IoT applications
and their often special operating environment, it is preferable that the update process can
be carried out remotely, without the need to physically approach each and every device.
Remote firmware and OS update is sometimes also called over-the-air (OTA) update,
because the update may be downloaded by the devices over wireless communication links.

Security of the remote update process itself is of paramount importance, as we would like
to avoid that attackers exploit an insecure update mechanism to install a compromised OS
or firmware remotely at large scale. Potentially, such compromised updates may prevent
any further legitimate update, leaving the control of all compromised devices in the hand
of the attacker. Recovering from such a situation would require manual update of every
device, which would be time consuming and expensive.



Besides security, the update process must be reliable and fail-safe, by which I mean that
an unsuccessful update should not leave the devices in a state where they cannot boot and
operate properly, but it should be possible to detect if the update failed and to load the
last stable version of the updated software. At the same time, attackers should not be able
to force a version rollback when the devices run a stable version of the software, because
if that was possible, then they could force the devices to re-install an old, potentially
vulnerable version of the software through which they can compromise the devices again.

In this paper, I introduce a secure remote update system and mechanism for embedded
IoT devices that satisfy the above requirements on security, reliability, and version rollback
prevention. The rest of this paper is structured in the five following chapters: First in
Chapter 2, there are introductions to the related researches and technologies for the above
mentioned problems. Then in Chapter 3, there are the design plans of my secure remote
firmware update. And in Chapter 4, there are the implementation details of my secure
remote firmware update. Then in Chapter 5, there are the my evaluations of my results.
And finally, in Chapter 6, there is a summary of my work and some possible future
improvements.



Chapter 2

Related work

Designing and implementing a secure remote firmware update architecture is a complex
task with many important details. The TCG [6] contains guidelines and best practices
for all the different details of a secure remote update process, and divides it to five main
parts that are: Secure Development, Secure Update Signing, Robust Distribution, Secure
Update Installation, Post-Update Verification and Attestation. Therefore I analyzed the
following articles based on those five main aspects and the detailed guidelines in them.

ASSURED [1] is a secure and scalable update framework for the Internet of Things. It
uses reliable cryptographic algorithms and keys with adequate strength, and places the
most important keys in Hardware Security Modules. The updates are countersigned by
the local controller of the devices. And it writes about the importance of carefully vetting
any Certificate Authorities and other parties trusted in the signing process. It includes a
recovery process with rollback protection by included version information. It authenticates
and tracks the endpoints, and the endpoints should verify any updates downloaded and
before installation. Update installation is done with attention to avoid time-of-check
to time-of-use attacks. The distribution is automatic (without overloading networks or
servers), but administrators can schedule updates. It also utilizes measured boot and
remote attestation.

An other framework for incorporating secure remote updates into embedded designs [4]
also highlights the need for reliable cryptographic algorithms/tools and who to trust in
the signing process, but it also mentions to use a dedicated and air-gapped computer for
production code signing. It includes a recovery process, but does not write about rollback
protection. Similarly, it authenticates and tracks the endpoints, and the endpoints should
verify any updates downloaded and before installation. The administrators can schedule
the updates.

The article about secure firmware validation and update scheme for consumer devices in
a home networking environment [2] focuses on the cryptographic side of the topic. And
besides authentication, verification and rollback prevention, it also writes about encrypting
the updates.

The article about design of a safe and secure bootloader for an RFID reader with a software
implementation of a secure firmware updater [3] uses reliable cryptographic algorithms/-
tools and keys with adequate strength. It also has a recovery process, however without
rollback prevention. The device verifies any updates downloaded and before installation,
and installs with attention to avoid time-of-check to time-of-use attacks. In addition the
updates are encrypted.



The TCG guidance [6] also explains the popular concept of A/B Updates that uses two
sets of partitions to store the firmware. At any point in time, the system is only running
code from one of these, so the other one can be updated, and that is why it is also called
as Seamless Updates. It requires enough storage space to hold two copies of the system
image, but if an update fails, the older code is available in the other slot as a fallback.

In conclusion the articles covered most of the points in the TCG guidance [6], however
there were some uncovered important parts. The Secure Development part was not dis-
cussed at all, but this is not surprising, as it is left to the group implementing a specific
solution. Neither of the articles wrote about a revocation process, however due to the
rollback protection, if an update was successfully installed a previous version can not be
installed, so instead of revoking an update a newer shall be issued. The TCG guidance
[6] suggests restricting update installation privileges and activities to a minimally sized,
carefully coded, and tightly controlled Root Update Engine, which is a good practice, but
was not considered by any of the articles.

ASSURED [1] provided a good starting point when I started to design my secure remote
update process, and I used their stakeholders in my framework, but improved their model
by using a separated OS for the security critical tasks. This model also improves on the
concept of A/B Updates. I also followed the recommendations in the TCG guidance [6]
during my development.



Chapter 3

Design

3.1 Stakeholders

The entire secure remote update framework consist of the following stakeholders:

e Original Equipment Manufacturer: It produces different types of Devices with
their initial Images. During production, the Original Equipment Manufacturers
cryptographic keys are securely installed on the Devices. It also creates and signs
Updates for each type of Device.

e Distributor: If the Original Equipment Manufacturer does not want to build and
maintain the Update distribution, it can be outsourced to a Distributor.

e Controller: It configures and manages the Devices within its administrative do-
main. Before a new Device starts its regular operation it must be customized, and
that is when the Controllers cryptographic keys are securely installed on the Device.
This makes it possible for the Controller to countersign the Updates and to specify
constraints on them, such as which Device gets a particular Update and when.

e Device: The embedded IoT Device that is the target of the Updates.

3.2 Attacker model

Two different kind of attackers are considered:

e Remote attacker: Who may try to compromise the Updates between the Original
Equipment Manufacturer and the Controller, or attempt to remotely exploit software
vulnerabilities.

e Local attacker: Who may try to compromise the update process between the
Controller and the Device.

A physical attacker is out of scope for this paper, because this paper focuses on software
solutions and defending against a physical attacker requires tamper-resistant hardware
solutions.



3.3 Objectives

In order to defend against attacks the Device shall only install signed Updates originated
by the Original Equipment Manufacturer and approved by the Controller. The integrity
of the running Images, future Updates and cryptographic keys, and the confidentiality of
secret keys must be ensured. To achieve this, the following architecture is used.

3.4 Architecture

There are three types of Images that can be updated:

e Firmware: It includes low level software components, the Trusted Execution En-
vironment and the boot loader for the OSs.

e« UpdateOS: It is a trusted OS with minimal functionality, and contains only the
required parts to verify and install Updates. So it does not even has network access
in order to minimize its attack surface.

e MainOS: It is responsible for the main functionality of the Device. It has network
access in order to fulfill the intended tasks of the Device and to download the Up-
dates. It is extended with a self-testing mechanism that runs on startups and checks
if everything works as intended.

When the Original Equipment Manufacturer releases an Update, it uploads the new Up-
date to the Distributors repository. An Update contains one Image that needs to be
updated and its version, together signed by the Original Equipment Manufacturer.

The Controller must periodically check the Distributors repository for Updates for all types
of Devices that it manages. When it finds an Update in the Distributors repository for
any type of Device that it manages, it must download that Update to its local repository.
The process is illustrated in Figure 3.1.

check for Updates

o . Update
Original Equipment Manufacturer Distributor Controller

Update

Figure 3.1: Communication between Original Equipment Manu-
facturer, Distributor and Controller

A Device must periodically send its Device State Report to the Controller that it is
assigned to, and wait for the Controllers Response. A Device State Report describes the
current state of the Device, and contains the ID of the Device and the version numbers of
its current Firmware, UpdateOS and MainOS. It is signed by the Device.

When the Controller receives a Device State Report, it must reply with a signed Response
that consists of the action the Device has to take and optionally an Update. The action can
be one of the following: Continue operation, if there is nothing to be updated. Or update
the specified software Image with the included Update in the Response. The process is
illustrated in Figure 3.2.



Device State Report

Controller Device

Response

Figure 3.2: Communication between Controller and Device

When a Device receives the Controllers Response, one of the following actions must happen
based on the Response: If the action in the Response is to continue operation, the Device
closes the connection, and reopens it only, when it is time to send the next Device State
Report. If the action in the Response is to update, the Device closes the connection, and
installs the included Update. See the detailed process in Chapter 4.

To sign and verify the above mentioned artifacts the following cryptographic keys are used:

e« Update Image signing key pair: It is unique for each type of Image for each
type of Device.

— Private key: The Original Equipment Manufacturer stores the private keys
for each type of Image for each type of Device.

— Public key: The Controller stores the public keys for each type of Image for
each type of Device that it controls, and each Device stores the public keys for
each type of Image that corresponds to its type.

e Device State Report signing key pair: It is unique for each Device.

— Private key: The Device stores its own private key.

— Public key: The Controller stores the public keys for each Device that it
controls.

« Response signing key pair: It is unique for each Controller.
— Private key: The Controller stores its own private key.
— Public key: The Device stores the public key for its Controller.

In order to keep track of all the important events, the following log files are used:

o updatelog_Firmware: An entry consists of a version number and a state. The
state can be stable or failed.

e updatelog_ UpdateOS: An entry consists of a version number and a state. The
state can be stable or failed.

« updatelog_ MainOS: An entry consists of a version number and a state. The state
can be stable, installed, executed or failed.

« selftestlog: It stores the results of the self-tests done by the MainOS. An entry
consists of a version number and a state. The state can be successful self-test, failed
self-test or failed root file system.

« downloadlog: It stores the downloaded Updates. An entry is the type of the
downloaded Update (Firmware, UpdateOS and MainOS).



There are three partitions with different access restrictions:

« BOOT: It is where the Device boots from. It stores the verified Firmware, Upda-
teOS and MainOS Images; the cryptographic keys!; the three update log files; and
the control file (nextOStoboot); as well as the configuration files. The control file,
called nextOStoboot tells the boot loader which OS to boot (UpdateOS or MainOS).
And the configuration files store the ID of the Device, the connection details to the
Controller, the parameters needed by the self-tests and the time period to send a
Device State Report. Furthermore, the BOOT partition must have hardware write
protection, so that it is only writable by the Firmware and the UpdateOS.

e images: It holds the selftestlog, the downloadlog and the Responses downloaded
from the Controller.

e data: Application data is saved here.

'For increased security it is better to store the cryptographic keys in a Hardware Security Module
(HSM).



Chapter 4

Implementation

4.1 Used Components

4.1.1 ARM Trusted Firmware-A

As ARM is a widely adopted platform among IoT devices, this implementation is for
ARM based devices as well and uses the ARM Trusted Firmware-A. “Trusted Firmware-A
(TF-A) is a reference implementation of secure world software for Arm A-Profile archi-
tectures (Armv8-A and Armv7-A), including an Exception Level 3 (EL3) Secure Monitor.
It provides a suitable starting point for productization of secure world boot and run-
time firmware, in either the AArch32 or AArch64 execution states” TF-A utilizes the
ARM TrustZone technology, which provides system-wide hardware isolation for trusted

software.?

4.1.2 OP-TEE

To further improve the secure operation of the Device the security subsystem can be
separated from the normal OS. The TF-A supports this approach, as it can hold such a
trusted component, which is available to the normal OS through the Secure Monitor of the
TF-A. In this implementation the Open Portable Trusted Execution Environment (OP-
TEE) was chosen as the security subsystem, because it is available on GitHub, has an active
development and supports a variety of different devices. “OP-TEE is a Trusted Execution
Environment (TEE) designed as companion to a non-secure Linux kernel running on Arm;
Cortex-A cores using the TrustZone technology. OP-TEE implements TEE Internal Core
API v1.1.x which is the API exposed to Trusted Applications and the TEE Client API
v1.0, which is the API describing how to communicate with a TEE. Those APIs are defined
in the GlobalPlatform API specifications.”3

"https://github.com/ARM-software/arn-trusted-firmware (Accessed October 29, 2020)
2https://developer.arm.com/ip-products/security-ip/trustzone (Accessed October 29, 2020)
3https://optee.readthedocs.io/en/latest/general/about.html (Accessed October 29, 2020)
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4.1.3 U-Boot

Das U-Boot?, or U-Boot for short, is an open source boot loader for embedded devices,
and it works with several different architectures. It provides a low-level interface through
its commands, and those commands can be entered through its shell command interpreter.
Its settings are saved in environment variables. These scripting abilities make it possible
to create a customized boot flow.

4.1.4 Linux

The majority of the IoT devices run a GNU/Linux distribution as their OS, also OP-TEE
is designed to work with the Linux kernel as the Rich Execution Environment (REE), so
both the UpdateOS and the MainOS are Linux based.

e UpdateOS: Due to its minimal functionality it is a stripped down Linux, built
together with an initial RAM file system as one image. The initial RAM file system
stores everything the UpdateOS needs to perform its tasks, so there is no need for a
separate root file system.

e MainOS: It is a normal embedded Linux image with a separate root file system.
The root file system is packed into a single file so it can be verified.

4.2 Secure boot process

In order to build such a secure update process a secure boot process is also necessary, to
boot into a known and secure state. In which all of the loaded components are digitally
signed and each stage verifies the next stage before executing it. If the verification fails at
any of the stages, the process is halted.

The TF-A has a feature, called Trusted Board Boot. “The Trusted Board Boot (TBB)
feature prevents malicious firmware from running on the platform by authenticating all
firmware images up to and including the normal world bootloader. It does this by estab-
lishing a Chain of Trust using Public-Key-Cryptography Standards (PKCS).”

After reset, the process starts with the boot ROM verifying the read only part of the
TF-A using the hardware root of trust. The hash of the signature verification public key
used by the boot ROM code is stored in a special, one-time programmable memory, which
is written during device customization, after which this signature verification public key
can no longer be modified. Then the read only part of the TF-A verifies the updateable
part of the TF-A, with the necessary public key stored in the read only part. Next the
TF-A verifies the Secure Monitor before handing over control to it to initialize itself, and
does the same for the secure payload, which is a Trusted Execution Environment, in this
case OP-TEE. It also does the same for U-Boot, the boot loader of the Rich Execution
Environment, but in this case the control is not handed back, so the boot process can
carry on. The process is illustrated in Figure 4.1. All of the necessary public keys are
stored in the updateable part of the TF-A.

“https://wuw.denx.de/wiki/U-Boot/WebHome (Accessed October 29, 2020)
Shttps://trustedfirmvare-a.readthedocs.io/en/latest/design/trusted-board-boot.html
(Accessed October 29, 2020)
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Boot ROM

1.
TF-A ROM
2.
3. D.
TF-A SM 1 TF-A 5 OP-TEE
7.

U-Boot

Figure 4.1: Trusted Firmware-A Trusted Board Boot: boot flow.

U-Boot supports verified boot through booting a Flattened Image Tree (FIT). “It is a
flattened device tree (FDT) in a particular format, with images contained within. FIT
supports hashing of images so that these hashes can be checked on loading. This protects
against corruption of the image. However it does not prevent the substitution of one image
for another. The signature feature allows the hash to be signed with a private key such
that it can be verified using a public key later. Provided that the private key is kept
secret and the public key is stored in a non-volatile place, any image can be verified in
this way. The public key can be stored in U-Boot’s CONFIG__OF_CONTROL device
tree in a standard place. Then when a FIT is loaded it can be verified using that public
key. Multiple keys and multiple signatures are supported.”6”

U-Boot has another signature verification public key baked into its code, which is used
to verify the digital signatures of the Linux kernel images. U-Boot always checks the
nextOStoboot control file, and acts according to what is indicated in that file. When the
UpdateOS is about to be booted, U-Boot writes in the nextOStoboot file that the MainOS
should be loaded next time, and verifies and executes the UpdateOS kernel. When the
MainOS is about to be booted, U-Boot writes in the nextOStoboot that the UpdateOS
should be loaded next time and checks the updatelog MainOS file. If the new MainOS
is about to be executed for the first time (its state is installed) U-Boot writes in the
updatelog  MainOS file that it executed the new MainOS (its state is executed). If the
stable MainOS is about to be executed (its state is stable) U-Boot does not change the up-
datelog_ MainOS file. Then in both cases makes the BOOT partition write protected, and
verifies and executes the MainOS kernel. Otherwise (latest state in the updatelog MainOS
is executed or failed) an unexpected error happened, for example a power loss during the
operation of the UpdateOS, and U-Boot should not start the MainOS, so it resets the
Device. The process is illustrated in Figure 4.2.

Shttps://gitlab.denx.de/u-boot/u-boot/-/blob/master/doc/ulmage.FIT/verified-boot.txt
(Accessed October 29, 2020)

"https://gitlab.denx.de/u-boot/u-boot/-/blob/master/doc/ulmage .FIT/signature.txt
(Accessed October 29, 2020)
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nextOStoboot

nextOStoboot = MainOS

UpdateOS

nextOStoboot = UpdateOS

l

updatelog MainOS.state

installed executed / failed

protect BOOT partition

updatelog  MainOS.state = executed

{stable MainOS}

protect BOOT partition

new MainOS

Figure 4.2: U-Boot: custom boot flow. The updatelog MainOS
entries are referring to the entries with the version
number of the latest MainOS.
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The verification of the root file system, is done with dm-verity. “Device-mapper is infras-
tructure in the Linux kernel that provides a generic way to create virtual layers of block
devices. Device-mapper verity target provides read-only transparent integrity checking of
block devices using kernel crypto API. [..] The dm-verity was designed and developed by
Chrome OS authors for verified boot implementation.”®

Finally, the MainOS kernel verifies the integrity of the root file system image on the
BOOQT partition, and on success, it mounts the root file system, after which the secure
boot process is completed. See in Figure 4.3.

initramfs

check root file system

J failed

root file system selftestlog.state = failed root file system

|

failed selftestlog.state = failed self-test

stable

updatelog MainOS.state download running

executed

selftestlog.state = successful self-test downloadlog.type = *

(bt

Figure 4.3: MainOS: control flow of the secure boot and update
process. The selftestlog entries are referring to the en-

tries with the version number of the currently running
MainOS.

Shttps://gitlab.com/cryptsetup/cryptsetup/-/wikis/DMVerity (Accessed October 29, 2020)
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4.3 Secure update process

First let’s assume that the latest stable MainOS is booted, the download service is run-
ning and there is no Update on the Device. When the Controllers Response includes an
Update, the download service in the MainOS, which sends the Device State Reports and
processes the Responses, puts it to the images partition and writes the type of the Update
into the downloadlog, then reboots the Device. See in Figure 4.3. Upon the next boot,
the UpdateOS detects the Update from the downloadlog (Figure 4.4), verifies its digital
signature, and on success, it places the new Image on the BOOT partition.

initramfs

updatelog MainOS.state

downloadlog.type

Firmware

{check new Firmware} {Check new UpdateOS} {check new MainOS}

Figure 4.4: UpdateOS: overview of the control flow.
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In case of an update of the Firmware or the UpdateOS, the new Image replaces the old
one, as these must be thoroughly tested Images that function properly. The process is
illustrated in Figure 4.5 and Figure 4.6.

check new Firmware

OK

failed version

delete new Firmware

replace stable Firmware with new Firmware updatelog Firmware.state = failed

l |

updatelog Firmware.state = stable

delete new Firmware

updatelog Firmware.state = stable

reb@

Figure 4.5: UpdateOS: control flow of the Firmware update. The
updatelog Firmware entries are referring to the en-
tries with the version number of the new Firmware,
except the entry after “delete new Firmware” that has
the version number of the current Firmware.
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check new UpdateOS

failed signature

OK

delete new UpdateOS

failed version

replace stable UpdateOS with new UpdateOS

updatelog UpdateOS.state = failed

updatelog UpdateOS.state = stable

—

delete new UpdateOS

updatelog UpdateOS.state = stable

reboot

Figure 4.6: UpdateOS: control flow of the UpdateOS update. The
updatelog UpdateOS entries are referring to the en-
tries with the version number of the new UpdateOS,
except the entry after “delete new UpdateOS” that
has the version number of the current UpdateOS.




However, in case of a MainOS update, both the new Image and the old image are kept on
the BOOT partition. See in Figure 4.7.

check new MainOS

failed version

OK

delete new MainOS

place new MainOS to BOOT partition updatelog MainOS.state = failed

updatelog MainOS.state = installed delete new MainOS

updatelog MainOS.state = stable

reb@

Figure 4.7: UpdateOS: control flow of the MainOS update
(part 1). The updatelog_MainOS entries are refer-
ring to the entries with the version number of the new
MainOS, except the entry after “delete new MainOS”
that has the version number of the current MainOS.

If the digital signature verification fails or the version number in the Update is not greater
than the version number of the stable Image on the Device, the new Image is deleted
by the UpdateOS. In any case, an appropriate log entry is created in the corresponding
update log file, except when the digital signature verification fails, in order to prevent
putting untrusted version numbers in the update log files. Then the Device is rebooted.
See in Figure 4.5, Figure 4.6 and Figure 4.7.

When the Device executes the secure boot process next time, U-Boot detects from the
updatelog MainOS that it should load and start the new MainOS for the first time. Then
it writes in the updatelog MainOS the version to be booted, and continues the secure boot
process with the new MainOS. See in Figure 4.2.

After successfully verifying and mounting the new root file system, the new MainOS
performs self-testing. The self-test consists of running the xtest test suite of OP-TEE and
checking the network connection to the Controller. If everything goes well, the result of
the self-testing is written in the selftestlog. See in Figure 4.3.
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Upon next boot, the UpdateOS detects that the update was successful by observing the
updatelog  MainOS and the selftestlog, so it deletes the old MainOS image from the
device and logs in the updatelog MainOS that the update was successful. However, the
self-testing may fail or the new version of the MainOS may hang or crash. Such hangs
or crashes are handled with a watchdog mechanism that reboots the Device. In this
case, the UpdateOS detects the failed self-testing of the new MainOS by observing in the
updatelog MainOS that an new MainOS was booted, while missing any indication of a
successful self-test in the selftestlog. When this happens, the UpdateOS deletes the failing
update from the Device, logs the failure in updatelog_MainOS, and reboots the Device.
The process is illustrated in Figure 4.8. After the reboot, the latest stable MainOS is
loaded and executed.

selftestlog.state

successful self-test for new MainOS failed * or N/A for new MainOS

replace stable MainOS with new MainOS updatelog MainOS.state = failed

updatelog MainOS.state = stable delete new MainOS

updatelog MainOS.state = stable

reboot
Figure 4.8: UpdateOS: control flow of the MainOS update
(part 2). The updatelog_MainOS entries are refer-
ring to the entries with the version number of the new

MainOS, except the entry after “delete new MainOS”
that has the version number of the current MainOS.

4.4 Raspberry Pi 3 Model B

I implemented the above discussed secure update process on the Raspberry Pi 3 Model
B. It is a widely used platform and it has a large software development community. It is
also important, that it has the Broadcom BCM2837 System on a Chip (ARMv8-A) in it,
which supports the ARM TrustZone technology, so it can run the TF-A.
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Chapter 5

Evaluation

5.1 Formal verification

The described secure update process is complex enough to warrant for a thorough verifi-
cation. For this reason, I used the UPPAAL model checker to model the secure update
process and to formally verify its correctness. “UPPAAL is an integrated tool environ-
ment for modeling, validation and verification of real-time systems modeled as networks of
timed automata, extended with data types (bounded integers, arrays, etc.).”t It supports
a limited version of Computational Tree Logic (CTL). My goal was to formally verify the
following two requirements:

e Update is possible: When a given version of the MainOS is running and there is
a functioning update available, it is possible to reach a state where this update is
successfully installed.

¢ Rollback is impossible: It can never occur that a given version of the MainOS is
successfully installed when a newer version was running and marked as stable in the
past.

The “Update is possible” requirement can be formalized as following: Let’s assume that
initially the MainOS is running with the version number v, (version == v). Then
the “Update is possible” requirement is the E ((version == v) U (version > v)) CTL
formula, which describes that a path exists in the model, where the version number goes
from v to a number that is greater than v in the future. To formalize the “Rollback
is impossible” requirement let’s assume that initially the MainOS is running with an
arbitrary version number v, (version == v ) and it is not possible that somewhere in
the future the version number goes from v to a number that is less than v. CTL formula:
A (not ((version == v) ==> F (version < v))).

"http://www.uppaal.org/ (Accessed October 29, 2020)
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Based on the previously discussed flowcharts I created three automata in UP-
PAAL, one for U-Boot, one for the UpdateOS and one for the MainOS.
The “Update is possible” requirement can be formalized in UPPAAL:
E<> (mainos.running and (updatelog_MainOS_version > 2)) where the
mainos.running is a state in the automaton of the MainOS that represents the stable
running of the MainOS without errors, and the updatelog_MainOS_version is version
number of the MainOS. To verify the requirement, I set the updatelog_MainOS_version
variable to 2, so I verified the requirements in a way that the model starts with 2 as the
version number.

However, the “Rollback is impossible” requirement can not be formalized in UPPAAL.
The p ==> q operator in the formula is eqivalent with the A[] (p imply A<> q) CTL
formula. So there should be more than one CTL temporal operator in the beginning of the
formula, and that is not supported by UPPAAL. To verify the requirement, I introduced
the following auxiliary variables:

e updatelog_Main0S_version_was_less_than_2: Is true, when the automaton was
in a state, where the version < 2 formula was true.

e updatelog_Main0S_version_was_3_and_state_0: Is true, when the automaton
was in a state, where the version == 3 formula was true and it was with a sta-
ble version, state ==

With the help of the two auxiliary variables the “Roll-
back is impossible” requirement can be formalized in UP-
PAAL: A[l ((not updatelog_MainOS_version_was_less_than_2) and
(not (updatelog_Main0S_version_was_3_and_state_O and mainos.running and
(updatelog_MainOS_version < 3)))) that means the model will never be in a state
that a version with version number less that 2 was running and after the stable running
version with version number 3 there runs a version with version number less than 3. This
solution satisfies the original requirement, which was formalized in a general way, because
the value of the version number can be set to an arbitrary number, and by changing
the semantics of the two auxiliary variables it is possible to verify that the “Rollback is
impossible” for any version number.

5.2 Security

Security is achieved by installing only properly signed updates by the trusted UpdateOS
and logging all relevant events to the update log files that cannot be modified by the po-
tentially compromised MainOS or any applications running on it. Trust in the UpdateOS
is based on the following factors:

1. The UpdateOS is signed and its signature is verified before loading and executing it.
2. The UpdateOS executes only for a limited amount of time.
3. The UpdateOS has a reduced functionality.

4. The UpdateOS can potentially be formally verified due to its stripped functionality.
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5.3 Fail-safety

Fail-safety is achieved by using a watchdog mechanism that reboots the Device upon
failures and by using log files in order to detect a failed self-test after an update. Moreover,
the latest stable version of an updated Image is kept on the Device until the success of
the update can be verified, so in case of failure, the Device can still boot the latest stable
version.

5.4 Version rollback prevention

Finally, rollback protection is achieved by keeping information about updates in the up-
date log files, which cannot be modified by the potentially compromised MainOS or the
applications running on it, and by removing old versions from the Device after a successful
update.

5.5 Limitations

Unfortunately the Raspberry Pi 3 Model B lacks a lot of security functions, for example
it does not have a one-time programmable memory, and it does not have hardware write
protection. As a result the implementations is only a proof of concept.
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Chapter 6

Conclusion

An important security problem in IoT systems is the integrity protection of software,
including the firmware and the operating system, running on embedded IoT devices. Dig-
itally signed code and verified boot only partially solve this problem, because those mech-
anisms do not address the issue of run-time attacks that exploit software vulnerabilities.
For this issue, the only known solution today is to fix the discovered vulnerabilities and
update embedded devices with the fixed software. Such an update should be performed
remotely in a secure and reliable way, as otherwise the update mechanism itself can be
exploited to install compromised software on devices at large scale.

In this work, I proposed a system and related procedures for remotely updating the
firmware and the operating system of embedded IoT devices securely and reliably.

First I researched the topic of secure remote firmware updates. Then I made my design
plans based on that research. I designed a secure remote firmware update for embedded
IoT devices, which is secure, fail-safe and prevents version rollback attacks. I also formally
verified this design with UPPAAL.

Then I made a proof of concept implementation on the Raspberry Pi 3 Model B. However,
it is a proof of concept only because the Raspberry Pi 3 Model B lacks some secure
hardware elements. On another ARM A-Profile Device that has and utilizes those secure
hardware elements the implementation is truly secure. And porting the implementation to
such a Device is straightforward, with a possible improvement of using a formally verified
microkernel such as seL4! as the UpdateOS.

"mttps://seld.systems (Accessed October 29, 2020)
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