

Budapest University of Technology and Economics

Faculty of Electrical Engineering and Informatics

Department of Measurement and Information Systems

Pattern-based Formalization of Safety

Requirements

Author

György Bártfay

Advisor

Dr. István Majzik

2015

2

CONTENTS

Kivonat .. 4

Abstract ... 5

1. Introduction ... 6

2. Related Work .. 7

3. Requirement specification workflow .. 9

4. The Formalisms .. 11

4.1. The features to be supported ... 11

4.1.1. Timing extensions ... 12

4.1.2. Context related extensions .. 12

4.2. Metamodel for the requirements and patterns .. 13

4.3. Description of the additional parts .. 19

4.4. Concrete syntax (graphical representation) .. 19

4.5. Output formalism: CaTL .. 21

4.5.1. The precise syntax of CaTL .. 22

5. The Patterns .. 26

5.1. Description and classification of the patterns ... 26

5.2. Scopes description .. 27

6. Composition of patterns .. 29

6.1. Rules of the pattern composing .. 29

6.2. Mapping between the formalisms ... 30

7. Tool design ... 33

7.1. EMF .. 33

7.2. Sirius ... 33

8. Use cases supported by the tool .. 35

8.1. User Interface .. 35

8.2. New requirement ... 36

8.3. Use existing pattern from store ... 37

8.4. Parameterize elements .. 37

8.5. Make contexts ... 37

8.6. Save requirement as a pattern ... 38

3

8.7. Generate output ... 38

9. Conclusions ... 39

9.1. Results ... 39

9.2. Future work ... 39

References ... 40

Appendix ... 41

Metamodel in high resolution ... 41

4

Kivonat

A követelmények megfogalmazása igen fontos fázist jelent a szoftverfejlesztésben, kü-

lönösképpen a biztonságkritikus alkalmazások esetén. Ez egy komplex feladat, továbbá

a helyes és konzisztens követelmények megalkotása specifikus tudást és gyakorlatot is

igényel.

A szokásos, természetes nyelven leírt követelmények gyakran nem elég precízek és

könnyen félreérthetőek. Ugyanakkor a matematikai formalizmusok (például automaták,

logikai nyelvek, stb.) használatakor a leírás bonyolulttá válik, ezért nehéz elkészíteni,

megérteni illetve módosítani.

A dolgozatban ismertetett megoldás célja a biztonsági követelmények összeállításának

egyszerűbbé és könnyebbé tétele, a helyesség és precízség megtartásával. A megoldás

kihasználja, hogy a tapasztalatok szerint a biztonsági követelmények jellemzően sémák-

ra épülnek. Erre alapozva kidolgozható egy módszer, melynek segítségével az össze-

gyűjtött minták komponálhatóak és paraméterezhetőek, így összeállítva a komplex biz-

tonsági követelményeket.

Ehhez elméleti kutatásként szükséges volt a minták leírásához használható formalizmus

kidolgozása, a paraméterezési módszer definiálása, valamint a komponálhatóság sza-

bályrendszerének megalkotása. A formalizmus támogatja a temporális logikai követel-

mények, a kontextusfüggő viselkedés és az időzítések, határidők megadását. A minták-

ból összeállított összetett követelményekhez leképezést definiáltunk egy precíz, formá-

lis nyelvre. Az így formalizált követelmények felhasználhatók tervek ellenőrzésére vagy

futásidőbeli verifikációhoz monitorok szintézisére.

A módszer alkalmazására készített eszköz tartalmazza a leggyakoribb minták gyűjtemé-

nyét valamint lehetővé teszi saját minták készítését és beillesztését. A kidolgozott for-

malizmusok és szabályok alapján biztosítja a minták grafikus megjelenítését, valamint

ezek könnyű paraméterezhetőségét és grafikus formában történő összeállítását. Az esz-

köz beleillik az Eclipse környezetbe, így könnyen tanulható és használható a fejlesztés

során.

5

Abstract

Specification of requirements is a very important phase in software development, espe-

cially in case of safety critical systems. This is a complex task; moreover, writing cor-

rect and consistent requirements requires specific knowledge and experience.

Requirements described in natural language are often imprecise and easy to misunder-

stand. However, using precise mathematical formalisms (like automata, logic languages,

etc.) has the risk that the expressions become complicated, so it is difficult to write, un-

derstand, and change them.

The goal of the solution described in this paper is to make the specification of safety

requirements simpler and easier, while preserving the preciseness of formal techniques.

Experience shows that safety requirements are typically based on patterns. Based on this

fact a method can be developed which helps to specify complex requirements by com-

posing and parameterizing requirement patterns collected in a repository.

To achieve this goal, it was necessary to define a formalism to describe the patterns,

work out a method to parameterize them, and construct a set of rules for the composi-

tion of the patterns. The proposed formalism supports the specification of temporal

properties, context-dependent behaviour, and timing constraints (deadlines). We defined

a mapping from complex requirements (composed using the patterns) to expressions of

a precise formal language. The requirements constructed and formalized this way can be

used to verify designs or synthesize monitors for run-time verification.

The tool designed and implemented to support this method contains a collection of the

most often used patterns and also provides the possibility to create and integrate custom

patterns. Based on the defined formalism and the set of composition rules, it allows the

representation, parameterization, and composition of the patterns in a graphical way.

The tool is implemented in the Eclipse environment in order to make it easy to learn and

use in the development process.

6

1. Introduction

Specification of requirements is a very important phase in software development, espe-

cially in case of safety critical systems. This is a complex task; moreover, writing cor-

rect and consistent requirements requires specific knowledge and experience.

Requirements described in natural language are often imprecise and easy to misunder-

stand. However, using precise mathematical formalisms (like automata, logic languages,

etc.) has the risk that the expressions become complicated, so it is difficult to write, un-

derstand, and change them. The goal is to make this workflow easier without decreasing

the precision.

Inspecting the typical (manually written) requirement suggests an idea. Some expres-

sion occurs frequently, such as “The system never reaches the error state.” or “If <con-

ditions hold> then <specific state shall be reached>“. This discovery implicates the idea,

that we can identify some frequently recurring patterns. If there are patterns (schemes)

matching to lots of requirements, then we can make the formalization process of new

requirements easier by providing a formalization for the schemes. This approach looks

promising in the field of context-aware autonomous systems.

The goal of the research described in this report is to create a methodology and a sup-

porting tool based on this approach. The methodology offers a formalism to describe the

patterns and a classification and description of widely used patterns. Then it defines a

method to parameterize the collected patterns to prepare concrete requirements.

Finally, we present the developed tool based on the Eclipse environment, which con-

tains the pattern collection, provides a graphical interface to parameterize and compose

patterns and provides the possibility to generate formal expression from the composed

pattern.

7

2. Related Work

The papers [1] and [2] pay attention to the requirement patterns that frequently occur in

the field of the formalization of safety requirements. These patterns will be described in

detail later in the Chapter 5. Here we recall the most important conclusion that it is pos-

sible to identify a set of often used schemes of requirements. These will be referred as

patterns from now. Moreover we can make a classification too.

Figure 2.1:The distribution of pattern usage in % [1]

In paper [1] they present the result of a survey, what they made. They observed devel-

opers, who actually worked in the field of safety critical system development. The result

8

(Figure 2.1) shows, that there are several patterns that are often used. It means that we

can cover the majority of requirements with 5-6 patterns. Accordingly, it’s an oppor-

tunity to create a supporting tool based on built-in schemas for these patterns, as it

would make faster the safety requirement formalization process.

The two bars in Figure 2.1 indicate two groups. One of them is formed by the people

working in a given project, while the people in the other group are outsiders. It turned

out that the difference between the two groups is not significant.

Figure 2.2: The distribution the scope usage in % [1]

Figure 2.2 is from the same survey. It is not a big surprise that the usage of the scopes of

the patterns shows a similar result. Note that the detailed description of the scopes can

be found later in the Chapter 5. Here we can make a same conclusion as before: most of

the usages can be covered with a few scopes.

9

3. Requirement specification workflow

The requirement specification workflow using our methodology is presented in Figure

3.1. The red highlighted area is what can be supported by our tool. The pattern and con-

text metamodel define the underlying formalisms that are built-in. Right now the con-

text metamodel is presented together with the requirement pattern metamodel, but it can

be separated and attached (read-in) in runtime.

The Pattern Store is a collection of the predefined patterns. The mostly used ones are

provided with the tool, but the user can also save to the store the requirements made by

him as patterns. Through the composing process the user can anytime use patterns from

the store by inserting it to the requirement (expression) which is under construction.

To specify a requirement, the user can work from (1) the patterns stored, (2) so-called

basic elements (like atomic propositions) from a palette, and (3) context fragments. The

expression and the context fragments are displayed in the same view, but they are sepa-

rated. From the expression the contexts can be referenced by parameterizing the com-

posed elements.

When composing and parameterizing is finished, the result is the requirement represent-

ed graphically. In the background it is stored in an object model (based on the meta-

model of the supported requirements). This means it can be stored in the file system

(like a normal programming project), but it offers even more possibility. It can be saved

as a pattern, so it will be the part of the pattern store for later reuse. The other oppor-

tunity is to generate a formal expression from the requirement in the form of a temporal

logic CaTL. (The CaTL in the picture is an output formalism, it will be described later

in Chapter 4.)

With the generated formal temporal logic expression, one can use existing tools to veri-

fy system designs or synthesize monitors for runtime verification. The CaTL output is

saved in a text file in the file system and provided in property view inside the compos-

ing tool.

The composed requirements are more than a simple LTL expression. It can contain

temporal logic, Boole algebra and atomic expressions such as time constraints, and con-

text-dependent requirements.

10

Figure 3.1: The complete workflow

11

4. The Formalisms

In this chapter we describe our expectations towards the requirements to be specified,

then define the metamodel that is able to capture both the patterns and the (complex)

requirements composed using these patterns. Finally, we introduce the formalism that is

the output of the requirements composer tool.

4.1. The features to be supported

Using our methods, we would like to support the formalization of requirements of sys-

tems that are characterized by real-time, event-driven and context-aware behaviour.

Examples of such systems include autonomous robots or vehicles.

Basically, the requirements shall capture safety properties (“something bad never hap-

pens”) and liveness properties (“something good will eventually happen”). These mo-

dalities can be formalized using the temporal operators of the Propositional Linear

Temporal Logic (PLTL). PLTL expressions can be defined on a trace of steps, in which

each step can be characterized by atomic propositions, i.e., local characteristics of the

step. In the following we call these atomic propositions in general as events, and the

trace of steps is the trace of events. The concept of event includes all elements of a re-

quired execution that are relevant from the point of view of the specified properties:

input/output signal, sent/received message, function call/return, started/expired timer,

entered/left state, change of context, change of configuration, predicate on the value of a

variable etc.

Besides the usual Boolean language operators, basic PLTL has the following temporal

operators:

 X: “Next” (X P means that the next step in the trace shall be characterized by

event P).

 U: “Until” (P U Q means that a step characterized by the event Q shall eventual-

ly occur, and until that occurrence all steps of the trace shall be characterized by

event P).

 G: “Globally” (G P means that each step in the trace shall be characterized by

P).

12

 F: “Future” or “Eventually” (F P means that eventually a step shall occur in the

trace that is characterized by P).

To support the expression of context dependence and real timing, the following exten-

sions are needed:

 Explicit context definitions: Context may appear in the properties typically as

condition for a given behaviour. For example, in context of a nearby obstacle a

slowdown command is required.

 Timing: Timing related criteria shall also be expressed. For example, the slow-

down command shall occur in 10 time units after the observation of the nearby

obstacle.

In the following subsections these basic ideas related to time- and context-related exten-

sions are detailed.

4.1.1. Timing extensions

The basic PLTL cannot specify real-time requirements as it is interpreted over models

which retain only the temporal ordering of the events (without precise timing infor-

mation). Therefore PLTL cannot specify requirements like “An alarm must be raised, if

the time difference between two successive steps is more than 5 time units”. To tackle

this issue, various approaches can be found in the literature. We apply the so-called

timeout based extension of PLTL that uses an explicit global clock and both static and

dynamic timing variables. Using this extension, the above example property is ex-

pressed as 0 0(() ((5)))G x t X x t alarm , where x is the clock variable and t0

is a timing variable.

4.1.2. Context related extensions

In our approach, the context is captured in form of a context model that describes the

environment that is perceived and internally represented in the specified system to in-

fluence its behaviour. The static part of the context model supports the representation of

the environment objects, their attributes and relations, this way a scene of the environ-

ment (e.g., the furniture of a room with their colours, sizes and positions). The objects

are modelled using a type hierarchy. The dynamic part of the context model includes the

concepts of changes with regard to objects as well as their properties and relations.

Changes are represented as context events (e.g., appears, disappears, moves) that have

13

attributes and relations to the changed static objects and their relations (depending on

the type of the context event).

The abstract syntax of the context model is defined in form of a context metamodel

(note that the type hierarchy of this metamodel can be systematically constructed on the

basis of existing domain ontologies).

An example context metamodel of a household robot is presented in Figure 4.1

Figure 4.1: The context metamodel

In requirements, the contextual condition is referenced in the form of context fragments

which are (partial) instance models of the context metamodel.

4.2. Metamodel for the requirements and patterns

The goal of the formalism is to define the inner structure of the workspace contents,

such as composed requirements, stored patterns or contexts in order to make possible to

represent and save them for later usage without any loss. The advantage of this ap-

proach is the possibility to change the output formalism: it only requires a new mapping

from the metamodel to the new formalism.

The whole metamodel is presented in Figure 4.2 (the high resolution version is in the

Appendix section). The details are described in the following part.

14

Figure 4.2: The metamodel

The main parts of this metamodel are the following:

15

 ‘A’ section: the base of the structure.

 ‘B’ section: temporal logic operators.

 ‘C’ section: Boole operators.

 ‘D’ section: the atomic formulas.

 ‘E’ section: the context part.

Figure 4.3: The ‘A’ section of the metamodel

Many parts of the metamodel presented in Figure 4.2 is caused by the implementation

technology’s requirements. For example, the tons of compositions are exactly this kind

of details. Now I will describe the important and relevant parts.

Figure 4.3 shows the base of the whole structure. The CaTLExpression is the root. It

will contain everything. The most important element is the Pattern. It’s a high level ab-

straction in order to handle together the different elements. The root contains one Pat-

tern as the developed requirements, and it can contain more of them as the elements of

16

the Pattern Store. The Pattern Store is a collection of composed and parameterized pat-

terns to improve the reusability.

Figure 4.4: The ‘B’ section of the metamodel

Figure 4.4 shows, that the Pattern can be a Temporal Logic formula. But these formulas

can contain other Patterns realizing the nested expressions. Next, Future and Globally

can contain one inner expression, but the Until has two arguments. Moreover these two

should not be swapped, because of the behaviour of the Until formal expression. That’s

why there is special element name LeftOp. The RightOp is presented in Figure 4.5.

17

Figure 4.5: The ‘C’ section of the metamodel

In Figure 4.5 the Boole formulas are presented. It is similar to the previously discussed

part of the metamodel. A Boole formula can be a Negation, an Implication, an Or, or an

And. The Negation can contain one inner expression, the Implication is similar to the

Until, it has two separated reference. The Last two formulas (Or, And) are different

from the others. These can contain more than 2 nested expressions.

18

Figure 4.6: The ‘D’ section of the metamodel

In Figure 4.6 the most interesting part is presented. A Pattern can be a Temporal Logic,

a Boole formula or an Atomic Formula. This part is where the point is stored.

Every Atomic formula has a temperature. It can be hot or cold. Hot means, that the re-

quirement written by that element is mandatory, colt means it’s optional.

An Atomic formula can be one of the four element type. All of them has different con-

tent, because these used to express different kind of requirements. The detailed descrip-

tion of these elements can be found later in this paper.

19

4.3. Description of the additional parts

Figure 4.7: The ‘E’ section of the metamodel, part1 Figure 4.8: The ‘E’ section

of the metamodel, part2

 The last two parts of the metamodel contains the additional information. These are not

used the same way as the other parts. The goal of these is to provide contexts (in Figure

4.7) or system level properties (in Figure 4.8). These are not contained in the concrete

requirement, but the atomic formulas reference them. When the output expression is

generated, these won’t be mapped into that as other elements, but the information they

contains will be written into the final formal sentence.

4.4. Concrete syntax (graphical representation)

Model element
Graphical representa-

tion
Comments

RootExpression white rectangle
Root element of the

whole structure

20

Propositions square
Hot → red frame

Cold → blue frame

TimingConst circle
Hot → red frame

Cold → blue frame

ContextConst triangle
Hot → red frame

Cold → blue frame

PropertyConst diamond
Hot → red frame

Cold → blue frame

NextForm light blue rectangle

Future light yellow rectangle

Globally light orange rectangle

UntilForm green rectangle
Has two separated inner

space

OrForm light red rectangle

NegationForm turquoise rectangle

AndForm light brown rectangle

ImpForm grey rectangle
Has two separated inner

space

SystemProperties light grey rectangle With label

SystemProperty
white square with black

frame

Contexts light grey rectangle With label

21

Context grey rectangle With label

Node white circle

NodeProperty white square

Connection Edge between nodes

PatternStore light grey rectangle
With label and three sep-

arated inner space

Some of the elements has a same graphical element, but isn’t a problem, because they

can be identified by the place, where they are. The rules of this will be described later in

Chapter 6.

4.5. Output formalism: CaTL

To use the composed expressions for verification and monitor synthesis we need a for-

malism, which supports the used extensions such as context- and time dependent re-

quirements. This formalism is the “Context-aware Timed Propositional Linear Tem-

poral Logic”, called CaTL. [3]. It’s already used by the Department of Measurement

and Information Systems for verification and monitor synthesis using the requirements

represented in CaTL.

The basic vocabulary of CaTL consists of a finite set of propositions, static timing vari-

ables and static context variables (these static variables are implicitly quantified with a

universal quantifier). The value of a context variable is an instance of the context meta-

model (e.g., a context fragment, which contains objects with unique identifiers, attrib-

utes and links). Moreover, two dynamic variables are used that represent the current

time (clock variable) and the current context (observed context). The set of atomic for-

mulas consists of the following elements:

 Propositions are labels, referring to events in the observed trace (each step may

include multiple events). Each proposition can be evaluated to true or false in

each step.

22

 Property constraints are predicates over properties of a context object.

 Timing constraints are defined as inequalities on the timing variables, constants

and the dynamic clock variable.

 Context constraints are defined using a compatibility relation between context

definitions and the current context. Context definitions can be created from con-

text variables and operators as object exclusion, object addition, relation exclu-

sion and relation addition. A context definition e1 context is compatible with the

current context e2 (denoted as e1 e2) if and only if there exists a bijective

function between the two object sets e1 and e2, which assigns to each object in

e1 a compatible object from e2. Two objects are compatible, if and only if both

have the same type and have the same relations to other objects.

To form CaTL expressions, these atomic formulas can be connected by using Boolean

operators and PLTL temporal operators. Note that for each atomic formula, a modality

can be assigned, where hot means a mandatory formula, and cold means an optional

one.

In summary, PLTL atomic propositions are extended with context constraints (to be

evaluated with respect to the observed context) and timing constraints (evaluated with

respect to the current clock). These expressions are evaluated with respect to a particular

step, without affecting the evaluation of the temporal operators.

Let us demonstrate the use of CaTL by the following examples from [3]:

 It is always true, that if the system is in the connected state, then it will eventual-

ly become disconnected: (())G connected F disconnected

 It is always true, that if the system is connected, then it will be disconnected in 5

time units: 0 0((5))G connected t t F disconnected t t

 It is always true, that if the system is connected and it is in the e1 context, and it

will be disconnected in the next step, then eventually it will be in the e2 context:

1 2(() ())G connected e e X disconnected F e e

4.5.1. The precise syntax of CaTL

The vocabulary consist of a finite set P of propositions, a finite set T of static timing

variables and a finite set CM of static context variables.

23

Each ci CM is an instance of M context metamodel (ci M). A context metamodel is

defined as a 2-tuple M = (N,R), where N represents the set of classes in the metamodel

and R represents the relations (i.e., association or generalization) in the model. An ni

N is a class, which has a set of properties. Each property has a name and a type (e.g.,

Boolean or string). One can create an EM set of predefined contexts, where ei M for

all ei EM. The context variables and the predefined contexts contain instances of the

classes (objects) from M. Each object has a unique identifier and an ni N class. The

values of the properties can be defined by property constraints (defined later), which

refer to the objects by the unique identifiers given in the variables. It is important, that if

two context variables contain two objects with the same identifier, then that two objects

must be equivalent.

In addition, one can use two dynamic variables: t, which represents the clock and e,

which represents the context of the system. M must be defined in such a way, which

ensures that e is always a valid instance of M (e M).

Af is the set of atomic formulas, which consists of propositions from P, atomic timing

constraints, context constraints and property constraints.

 Propositions are labels, referring to properties of a system. Each proposition can

be evaluated to true or false in each state of the system.

 The timing constraints are defined in the following form: t u, where t is the

dynamic clock variable, {<, >, =}, u {ti + c, c}, ti T and c N.

 The context constraints are defined in the following form: xy, where x EM

VM and y CM {e}. In this notation is a compatibility relation (meaning x

is compatible with y) and VM is a set of context definitions. Context definitions

are instances of the M metamodel. A context definition can be one of the follow-

ings:

o a static context variable (ci CM), or

o a new context, created from a static context variable, with one of the fol-

lowing operators:

Node exclusion: z - v, where z is a context definition and v is a present

class instance of z,

24

Node addition: z + w, where z is a context definition and w is an instance

of the classes of M,

Connection exclusion: z - - a, where z is a context definition and a is a

present connection in z,

Connection addition: z + + b(c, d), where z is a context definition and b

is connection between c and d, compatible with M.

 The property constraints are expressions over properties of an object. The fol-

lowing syntax is defined to unambiguously select a p property: context.object.p.

The syntax of the property constraints is: p v, where p is a property, v is a val-

ue, which has to be from the same type as the property, and is a comparison

operator, which can be evaluated to a Boolean value.

For each atomic formula, assigns the modality of that atomic formula (a so-called

“temperature”): : Af {hot, cold}. An atomic formula with hot temperature is a

mandatory, while cold formulas are optional. The notation of the modality is the follow-

ing. If no additional notation is given, then the modality of the atomic formula is hot

(mandatory). The cold (optional) modality of the af atomic formula is written like < af

>.

A CaTL formula can be one of the following:

 Atomic formula: af Af

 Disjunction:

 Negation:

 “Next” operator: X

 “Until” operator: 1 U 2

All static variables used in a formula are implicitly quantified with a universal quantifi-

er. Additional operators can be defined with the previously defined ones as syntactical

abbreviations. The most commonly used abbreviations are defined as follows:

 Conjunction: a b = (a b)

 Implication: a b = a b

 “Eventually” operator: F = true U , where “true” denotes the Boolean true

value

25

 “Globally” operator: G = (F)

 “Weak until” operator: 1 W 2 = (G 1) (1 U 2)

The precise semantics of CaTL is described in [3].

26

5. The Patterns

5.1. Description and classification of the patterns

Figure 5.1: Classification of patterns [1]

Occurrence Patterns are used to express properties related to the existence or to the lack

of existence of certain states/events in the pattern scope. They have been classified into

four subtypes:

 Absence, also known as never happens. The event will never occur within the

scope.

 Universality, also known as henceforth. The event will always occur within the

scope.

 Existence, also known as eventually. The event may occur at least one time

within the scope.

 Bounded existence. The event has to occur a fixed number of times within the

scope. Variations of this pattern may be defined replacing the fixed counting of

events with ‘‘at least” or an ‘‘at most” construct.

Order Patterns are used to express requirements related to pairs of states/events during

defined scopes. There are two order related patterns:

 Precedence. P event has always to precede Q event within the scope.

 Response, also known as Follows, Leads-To. P event has always to be followed

by Q event within the scope.

27

 Chain Precedence. A sequence of Pi events has always to precede a sequence of

Qi events within the scope. It can be regarded as a generalization of the Prece-

dence pattern.

 Chain Response. A sequence of Pi events has always to be followed by a se-

quence of Qi events within the scope. It can be regarded as a generalization of

the Response pattern.

In the above classification, the Chain Precedence and Chain Response patterns can be

considered as specific cases (a specialization) of Precedence and Response patterns. [2]

5.2. Scopes description

Figure 5.2: Scopes [2]

Based on studies [1], [2] five basic kinds of scopes should be discussed, as shown in

Figure 5.1: Classification of patterns:

 Global – the property has to hold for the entire execution.

 Before R – the property has to hold up to the occurrence of state/event R.

 After Q – the property has to hold after the occurrence of state/event Q.

28

 Between Q and R – the property has to hold in every interval having state/event

Q on left and state/event R on right. Please note that multiple overlapped inter-

vals having the same end point are included in the scope, see Figure 5.2: Scopes,

for this scope and interval covering Q–Q–R sequence.

 After Q until R – the property has to hold in every interval having state/event Q

on left and state/event R on right or no ending event; this means that this proper-

ty holds even when the interval is not closed by R.

29

6. Composition of patterns

6.1. Rules of the pattern composing

There are 3 general types of composing rules:

 How many instances can exists from an element type?

 How many Pattern can an element contains?

 Where is it allowed to put an element?

We can identify two groups based the number of allowed instances. The first group’s

members are allowed to exist in as many instances as they want. The other group is,

where the members can only exist in one instance. The members of this group:

 CaTLExpression

 PatternStore

 RootExpression

 SystemProperties

 Contexts

We can see that all of them are a system level element, so this restriction is acceptable.

The second classification is based on the number of nested Patterns they can contain.

(Here we are talking about top level nested elements, deeper they can contain more.)

In this classification only the subclasses of Pattern are mentioned. The others are irrele-

vant in this topic.

 More than two: Or, And

 Exactly two: Until, Implication

 One: Globally, Future, Next, Negation

 None: Atomic formulas

Every element has an own place in the structure. Most of them are very strict, but the

subclasses of Pattern are replaceable with each other (with their potential children to-

gether). This freedom was one of the main goal in the planning stage.

30

6.2. Mapping between the formalisms

It is not necessary to use the same metamodel for the composed requirement model and

the output formalism. It’s sufficient if there exists a precise mapping between them. One

of the advantages achieved by this, for example, that a formal language does not have to

support all operators of the temporal logic, because by using some of them, the others

can be expressed. This also allows changing the output formalism to another one with a

different metamodel, if there is a mapping from the requirement metamodel to that too.

Here is an example for the mapping. You can see a graphically composed and parame-

terized requirement, and the context information.

Figure 6.1: Context fragments and System Properties

The context explanation is already presented in the earlier section. Now we will use it

together with the requirement.

31

Figure 6.2: Object diagram of a requirement

Figure 6.2 is mapped to the formal CaTL sentence presented in Figure 6.3. (The refer-

ences between Figure 6.1 and Figure 6.2 are not occurring here, but from the metamodel

presented earlier the structure of them can be guessed.)

Figure 6.3: CaTL expression

32

The two top level box is needed from implementation reasons.

The third box labelled ‘next1’ is mapped to X(…). Inside this there is an ‘AND’ ele-

ment, which contains the following elements:

 Property ‘connected’, which is a System Property.

 Time dependent expression: ‘t0 = t’.

 Next temporal logic. It’s a complex element contains an ‘AND’:

o System Property ‘disconnected’.

o Time dependent expression: ‘t < t0 + 5’.

o Context expression: ‘e1 is compatible with e’.

o Context Property: ‘e1.a.speed < 10’.

33

7. Tool design

For the implementation I used Eclipse-based technologies. It’s very practical, because

the target audience (designers) is typically familiar with the Eclipse environment. A tool

developed in this environment is easy to learn and use.

7.1. EMF

The EMF project is a modeling framework and code generation facility for building

tools and other applications based on a structured data model. From a model specifica-

tion described in XMI, EMF provides tools and runtime support to produce a set of Java

classes for the model, along with a set of adapter classes that enable viewing and com-

mand-based editing of the model, and a basic editor. [4]

Figure 7.1: The logo of EMF

I used it to design the abstract syntax and to create a base for the developed tool.

7.2. Sirius

Sirius is an Eclipse project which allows the users to easily create their own graphical

modelling workbench by leveraging the Eclipse Modeling technologies, including EMF

and GMF.

Sirius has been created to provide a generic workbench for model-based architecture

engineering that could be easily tailored to fit specific needs.

34

Based on a viewpoint approach, Sirius makes it possible to equip teams who have to

deal with complex architectures on specific domains.

A modelling workbench created with Sirius is composed of a set of Eclipse editors (dia-

grams, tables and trees) which allow the users to create, edit and visualize EMF models.

The editors are defined by a model which defines the complete structure of the model-

ling workbench, its behaviour and all the edition and navigation tools. This description

of a Sirius modelling workbench is dynamically interpreted by a runtime within the

Eclipse IDE.

For supporting specific need for customization, Sirius is extensible in many ways, nota-

bly by providing new kinds of representations, new query languages and by being able

to call Java code to interact with Eclipse or any other system. [5]

Figure 7.2: The logo of Sirius

With Sirius I defined the concrete graphical syntax, the mapping between the graphic

and model elements, the rules of composing and the supporting features.

The following advantages of Sirius were especially useful:

 Fast graphical language developing.

 Cooperation with EMF.

 Validation of the composed expressions can be run-time with the ordinary

Eclipse warning, error and quick fix features.

 Drag and drop support in the composing process.

 Possibility to create custom views to improve the understandability.

35

8. Use cases supported by the tool

8.1. User Interface

Figure 8.1: The UI of the tool

Figure 8.1 presents the user interface of the tool. It has four main part indicated with

capital letters. ‘A’ is the most important. The goal of this area is to realize the compos-

ing process. It supports some useful helping feature, for example the ‘Arrange All’

function. It can be used with the button in the top left corner of the area. It makes the

whole working area more ordered by resizing and relocating the elements. It is recom-

mended to use it after every bigger modification.

The elements displayed in this working area are separated into three layers (CaTL layer,

Context layer, Store layer). These layer can be turned on and off in runtime. It helps to

organize the contents. Turning off a layer just hides the element associated to the layer

from the graphical working area, they will remain in the object structure.

‘B’ is the properties view. Here can be seen and modificated all of the details of the el-

ements. For example here can be set the name of a named element, or a reference. It

always shows the properties of the selected element.

36

‘C’ is the area where you can see the underlying object structure, such as projects, ob-

ject and representation files, etc.

‘D’ is the ‘Palette’ section. Form this area you can drag-and-drop elements to the work-

ing area (‘A’). Or if you just select an element from the Palette, and move the cursor

above the working area, the shape of the cursor will give you hint about where you can

place the selected element. The Palette contains the earlier presented elements of the

graphical syntax. It has five groups:

 Basic Elements: atomic formulas (timing constraint, propositions, etc.)

 Temporal logic elements: next, globally, etc.

 Boole logic elements: and, or, etc.

 Context elements: context, node, connection, etc.

 Pattern store element.

8.2. New requirement

To start a new requirement developing process you should create a new project. It con-

tains your composed requirement (in object and graphical representation too), the pat-

tern store with your own patterns and the context fragments together.

It’s not necessary to create a new project for every requirement; it is fine to store more

requirement model file in one project.

To start composing your own requirement you should follow these steps:

 Start a new Modeling Project.

 In this project create CaTLEditor Model. It uses an own file extension;

‘.catleditor’.

 When the wizard asks for a Model Object, choose ‘CaTLExpression’ from the

list.

 Right click on the project. In the Viewponts selection: check the catleditor line.

 Right click on CaTLExpression (it is under the *.catleditor file, you just creat-

ed). Here choose the New Representation: new CaTL Diagram option.

After this the graphical editor is going to open automatically.

37

8.3. Use existing pattern from store

In the PatternStore you can find the built-in and your own earlier saved patterns. Every

pattern is represented by a white square. To use in your requirements you just have to

drag-and-drop one of the patterns from the store into your requirement. Make sure that

there is a suitable place for the pattern in the destination. For example you can’t move it

into a Next formula if it is not empty. Always keep in mind the composing rules de-

scribed in Chapter 6.

The used pattern is going to appear in the destination fully detailed, but it is also re-

mains in the store for later usage.

8.4. Parameterize elements

To customize a pattern in order to make it a perfect requirement you have to parameter-

ize some of the elements. For example set a Proposition’s reference, or add a value to a

timing variable.

In the Properties view select the Semantic tab. After just select an element is the work-

ing area. Now you can see and change the selected element’s properties. Where is it

possible you can choose from a list (for example: make reference to another element).

This helps to reduce the typing errors. Keep in mind, that you can only reference an

existing element.

8.5. Make contexts

In order to define context fragments, first you have to make sure that there is exactly

one Contexts element in the working area. You can’t make a second one, if already exits

one. If isn’t any you can create one using the Palette.

Inside this Contexts element you can create almost infinite amount of context fragment.

Inside the fragments you can create nodes, connection between nodes and properties to

the nodes.

38

8.6. Save requirement as a pattern

To save a composed requirement (or a part of it) as a pattern, there is a possibility to add

it to the Pattern Store. Just right click on the element, which you would like to make the

root of the saved pattern. From the appeared menu choose the Save Pattern option.

The selected element, and the whole structure contained by it will be saved as a pattern

to the Store. The new pattern element will appear in the Store User category. Naturally,

the original elements will remain in the requirement, because it’s just a copy placed into

the Store.

The default behaviour of the tool is to put every pattern saved by the user into the User

category, but you can move it to another category, by changing the ‘Type’ value of the

created pattern element in the properties view.

When a pattern is saved, the tool generates a simplified CaTL expression into its proper-

ties. It is used as a tooltip to make easier to choose the right pattern from the store.

Moreover the user can add a name and a description to the pattern elements in the store.

These are also used as a tooltip.

8.7. Generate output

To generate the CaTL expression from the composed requirement, just double click on

one of the graphical elements. It will generate the output, and store in two different

place.

One of them is inside the object structure, it’s one of the properties of the root element.

It can be seen if you click on the background of the working area (not on the elements).

Then it’s in the Properties view.

Here can be edited the filename of the output file. The generated formal expression will

appear in a text file with the specified filename. It will appear in the user’s home folder.

It works under Windows and Linux operating systems.

39

9. Conclusions

9.1. Results

First I was reading about safety requirements, patterns and some different point of view

about the topic of the formalization of safety requirements. It’s an interesting filed, there

are difficulties, but there are possibilities too to achieve something.

The next step was to make plans and define a syntax. The defined graphical syntax is

not the final version, but at first it was enough to start the project. To create useful

equipment it was necessary to choose an output formal language, which is used in real

projects and suitable to express a wide range of safety requirements.

Now the planned tool is implemented with the chosen technologies. There were some

difficulties, for example in the middle of the implementation a new major release ar-

rived for Eclipse and Sirius, but it was just a little bump.

Now the tool is working. Sometimes there can be found a bug, but these problems are

not so serious. But before a tool can be presented to the public it should be developed

further.

9.2. Future work

There are a lot of possibilities to go forward. The main plans are the following:

 Modify the context editing process. Now it can be very huge and confusing if

we have lot of context fragments. The plan is to separate the currently edited

context fragment from the others.

 The graphical elements should be redesigned. The colours and the shapes are

not the best, and in this filed we can achieve a big gain.

 The context metamodel right now is a static part of the whole tool’s metamodel.

The plan is to separate it, so it could be read in runtime. Then the tool could

work with other context model. It could improve the usability.

40

References

References

[1] M. B. Dwyer, G. S. Avrunin and J. C. Corbett, “Patterns in Property Specifications

for Finite-State Verification,” 1999.

[2] P. Bellini, P. Nesi and D. Rogai, “Expressing and organizing real-time specification

patterns via temporal logics,” The Journal of Systems and Software, 2009.

[3] G. Horányi, “Monitor synthesis for runtime checking of context-aware

applications,” 2014.

[4] M. Koegel and J. Helming, “EclipseSource Blog,” [Online]. Available:

http://eclipsesource.com/blogs/tutorials/emf-tutorial/. [Accessed 2015].

[5] “Sirius website,” [Online]. Available: http://www.eclipse.org/sirius/overview.html.

[Accessed 2015].

41

Appendix

Metamodel in high resolution

42

