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Kivonat

A nagyméretű adathalmazok feldolgozása mindig is fontos szerepköre volt az informatikai
rendszereknek. Jelenleg amennyiben a felhasználó egy lekérdezést szeretne futtatni egy
ilyen ún. big data adathalmazon, akkor több eszköz közül is választhat. Ezek közül kettő
legelterjedtebb, nyílt forráskódú megoldás az Apache Hive és Apache Impala. A két meg-
oldást nagyon gyakran párhuzamosan használják egy valós környezetben. Bizonyos esetek-
ben a Hive, másokban az Impala tud gyorsabb végrehajtási időt elérni. Jelen pillanatban
a felhasználó feladata eldönteni, hogy melyiken fogja futtatni az adott lekérdezését. Ez a
feladat viszont meglehetősen nehéz, összetett. Rengeteg paramétertől függ a végrehajtási
idő: lekérdezésben szereplő táblák mérete, azok partícionálása, az SQL lekérdezésben lévő
illesztések, csoportosítások száma, az egymásba ágyazott allekérdezések száma stb. Ezeken
kívül feltételezhető, hogy sok más, ismeretlen, manuálisan nehezen felderíthető tényező-
től. Projektem, kutatásom célja, hogy megkönnyítsük a felhasználók feladatát azzal, hogy
automatikusan kiválasztjuk az optimális végrehajtó egységet az adott lekérdezéshez. Ezzel
összességében a felhasználói élményt, és a rendszerünk áteresztőképességét javíthatjuk.

A projektem neve QuDi (Query Distributor), amely egy proxy rétegként működük a
felhasználói réteg és az Apache Hive, Impala között. A bejövő lekérdezést elemzi, azokból
különböző változókat gyűjt (pl.: partíciók, illesztések, csoportosítások száma, a lekérde-
zésben szereplő táblák mérete stb.), majd ezek alapján egy machine learning modellt fel-
használva eldönti hogy melyik végrehajtó egységen érdemes az adott lekérdezést futtatni
a lehető leggyorsabb válaszidő érdekében. Ezen kívül képes fordítás nélkül eldönteni, hogy
egy lekérdezés hosszú vagy rövid ideig fog futni, melyet felhasználhatunk a lekérdezéseink
megfelelő ütemezésére.
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Abstract

Processing big data has always been an essential task in the IT industry. Currently, if the
users would like to run a query on a big dataset, they can choose from various solutions.
Among these, two of the most popular, open-source technologies are the Apache Hive
and Apache Impala. These two solutions are often used simultaneously in a real-world
environment. In some cases, Hive in some, Impala can provide a faster execution time.
Currently, it is the user’s task to decide where to run a given SQL query. This task is
very challenging and complex. The execution time depends on a lot of factors: number
of tables in the given query, sizes of those, and how they are partitioned, the number of
joins, group by-s, number of subqueries in the SQL query, etc. Besides that, probably
many more unknown and hardly detectable factors. The goal of my project and research
is to ease the work of the users by choosing the optimal execution engine automatically
for a given query. Using this, we can improve the user experience and the throughput of
our system.

The project is called QuDi (Query Distributor), which is a proxy layer between the UI
and Apache Hive and Impala. It analyses the incoming query, gathering different variables
from that (number of partitions, joins, group by-s, sizes of tables, etc.). Based on that,
using a machine learning model, we can predict where to run the given query to reach the
fastest response time. Besides that, it can predict if a query runs for a short or long time
without compilation, which we could use to schedule the queries accordingly.
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Chapter 1

Introduction

The digital era has led to large amounts of data being amassed by companies every day.
Data comes from multiple sources: sensors, sales data, communication systems, logging of
system events, etc.. Larger corporations can easily create hundreds of Terabytes daily. We
need a new solution to process this amount of data. The traditional relational databases
(RDBMS) can deal only with Gigabytes. Hadoop provides a software framework to scale
up our system for storing, processing, and analyzing big data.

Hadoop is the most popular implementation of the map-reduce programming paradigm
and widely used to process and store massive datasets in a distributed way. However, a
map-reduce program represents a low level of abstraction and is challenging to maintain
or reuse. Data scientists come from a world where SQL is the standard of querying data.
Nowadays, we can choose from several solutions to query from large datasets: Apache
Hive, Apache Impala, Apache Spark (SparkSQL), Presto, and many more projects that
people built on top of the Hadoop ecosystem. The most commonly used open-source SQL
engines are Hive and Impala, which companies often use in parallel.

Currently, if the users want to execute an SQL query, they need to decide on which engine
they want to run it to get their results as quickly as possible. The decision is a hard and
challenging task since the execution time can depend on various factors of the data and
the query itself: number of joins, aggregations, subqueries, and also on table metadata
on which the query is operating: number of partitions, rows, data size etc. An incorrect
decision can result in unexpectedly long execution times that can last as long as hours.

This work introduces QuDi, a Query Distributor that aims to provide a solution for pre-
dicting the optimal execution engine for a given SQL query. Currently, it focuses on the
two most frequently used big data SQL software: Apache Hive and Impala. QuDi pro-
vides a framework to analyze and gather feature variables from a query, and measure its
execution times on both engines. This way, we can collect data that can be later used
to build multiple machine learning models. Using this defined model, it can select the
optimal execution engine for any given query automatically.
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Until today, in the Hadoop ecosystem, there has not been any project to ease the job of big
data analysts. With QuDi my goal is to introduce a machine learning model that we can
use to predict the optimal execution engine and if a query will be short- or long-running.
The predicted values can be used in multiple scenarios. I.e., the needs mentioned above
should be satisfied by taking over the difficulty of choosing the optimal execution engine
for the query. As an additional benefit, it would not only ease the work of our users but
increase the throughput of our data warehouse system.

Having a prediction without the actual execution of the query can be valuable in multiple
aspects. We can even use that for scheduling our workload. Suppose we have multiple
queries hitting our execution engine in a short amount of time, and the number of queries
is higher than what our engine is capable of executing in parallel. In this scenario, the
traditional first-come-first-served scheduling is not beneficial. Consider the following: if
our first queries are long-running ones (let us say daily, or weekly reporting queries have
started), and after those several short ”interactive” queries arrive, those will wait until
the long-running ones execute. This causes user frustration due to suboptimal scheduling.
We should instead schedule the queries in a way that the short queries would run first. In
a real-world customer use-case, it is usually not a problem to delay long-running queries
- in the worst case the report will be finished a few minutes/hours after the original time
-. However, with short running queries, our users most often are doing some exploratory
analytics, and it is not acceptable to make them wait for several minutes or even hours until
some resources will free up. Previously, we could not do such scheduling, since execution
time could not be predicted before it begins to compile on the given execution engine, but
having a predicted runtime will introduce the possibility of this improvement as well.

1.1 Project timeline

This section summarizes the different phases of the research so the reader can have a
basic concept about the project and the wide subtopics that I covered within the area of
computer science.

Understanding the query engines Since the project aims to decide the optimal ex-
ecutor for queries, I had to gain more in-depth knowledge about how the different solutions
work and what use-cases they are optimized for in the world of big data analytics. For
the prototype, I restricted the supported engines to Apache Hive and Impala. The rea-
son behind this decision is straightforward: these are the most commonly used big data
query processors, and both projects are open source, so the available documentation and
knowledge are sufficient for a deeper understanding.
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Creating QuDi - first phase To build a machine learning model that can be used to
predict runtimes, we need a lot of data about queries. This requires an environment that
can analyze a query without executing or compiling it. As a solution for this requirement,
I created the specification and architecture of QuDi and, based on those, developed and
later integrated the software that communicates with Hive and Impala and connects them
with the users. Given a query, QuDi analyzes it saving the collected features and executes
them on both engines while measuring the response time.

Gathering data At this phase, I had an infrastructure that can analyze a query. How-
ever, to have enough data for building different machine learning models, I need giga-
bytes/terabytes of data on a distributed filesystem (in my case HDFS - Hadoop Distributed
File System) and thousands of queries. No doubt, the hardest part of the project was to
obtain queries and data that can simulate a real-world use-case. Customers are not will-
ing to make their data public, therefore to solve this, I had to come up with a different
method, that I can use for collecting features from thousands (or any number of) queries.

Building the machine learning model Having data about thousands of queries made
it reasonable to start the data science work, the first purpose of which was to predict if a
query is a short or long-running one. At this phase of the project, I began with exploratory
data analysis (EDA) to summarize the main characteristics of my dataset. Afterward, I
developed multiple machine learning models and validated the performance of these and
chose the best suited for my use-case.

Evaluation of the project The evaluation I did was running the same queries with
and without QuDi (using the machine learning model) and checked what effects it has on
the overall response time and throughput. I also considered scalability, robustness, and
the security of the system.

1.2 Overview

In Chapter 2, I briefly present the used frameworks, Hive and Impala, and expound the
desire to have a solution to the problems mentioned above. Chapter 3 describes the spec-
ification and architecture of QuDi and how it analyses a query. Chapter 4 demonstrates
the method and model behind the solution that was used to generate thousands of queries
on a given dataset. The developed machine learning models and data science workflow
is introduced in Chapter 5. Chapter 6 contains the evaluation of the project, including a
simulated workload. Finally, Chapter 7 summarizes the work and describes the afterlife
of QuDi and the planned future improvements.
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Chapter 2

Background

This chapter briefly introduces the background technologies that are necessary to under-
stand the motivation behind QuDi and how it is working. I start with the idea behind
large data processing focusing on Hadoop, continuing how SQL engines like Hive and Im-
pala work in a high-level overview and compare the basic use-cases that the two engines
were created for and how they developed in the meantime.

2.1 Hadoop [15]

Apache Hadoop is an open-source distributed framework for managing, processing, and
storing large amounts of data in clustered systems built from commodity hardware. All
modules in Hadoop were designed with an assumption that hardware failures are frequent
and the framework should automatically handle those. One of the most important char-
acteristics of Hadoop is that it partitions data and computation across many hosts and
executes in parallel close to the data it uses. This section describes the basics of the
Hadoop ecosystem that is essential to understand the two projects that build upon it.

The base of the Hadoop framework contains the following modules:

• HDFS - Hadoop Distributed File System: designed to store large data sets reliably
and stream those at high bandwidth to user applications. It is divided into two
main components: a Namenode, which stores data location, and many Datanodes
that store data and stream it to their clients.

• Hadoop MapReduce: an implementation of the MapReduce programming model for
large data processing

• YARN - Yet Another Resource Negotiator: resource management and job scheduling
technology
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The basic principle of Hadoop A computation is much more efficient if we execute
near the data it operates on. This is especially true for big data.

2.1.1 MapReduce [8]

Understanding the MapReduce paradigm is a must to understand how Hive works (and
in the latest Hive, LLAP).

An input to a MapReduce algorithm is a list of key-value pairs
{⟨k1, v1⟩, . . . , ⟨ki, vi⟩, . . . , ⟨kN , vN ⟩}

Definition A mapper µ takes an input ⟨k, v⟩ and produces a list of key-value pairs
⟨k′1, v′1⟩, . . . , ⟨k′s, v′s⟩

Definition A reducer ρ takes an input key k and a list of values v1, . . . , vm and produces
the same key and a new list of values v′1, . . . , v

′
M .

Definiton A MapReduce program M is an alternating list of mappers and reducers
M = (µ1ρ1, . . . , µKρK) . It executes for each k = 1 . . .K:

1. Ur−1 is a list of key-value pairs from the output of the previous round or the input
of the MapReduce program if r = 1. We will apply µr for each key-value pair of the
list. The output will be

∪
⟨k,v⟩∈Ur−1

µr(k, v)

2. Shuffle and sort phase: group the values by key. Vk,r = {k, (vk,1, . . . , vk,s)}

3. Assign a ρr for each Vk,r that can be run parallel and the output will be Ur =∪
k ρr(Vk,r)

2.1.2 Advantages of MapReduce

Parallel Processing In MapReduce, we divide the job among multiple nodes (Datan-
odes), so they can work on their part of the data parallelly. This way, data processing is
done by multiple machines instead of one, so the time is significantly reduced.

Data Locality In Hadoop MapReduce, instead of moving data into the processing unit,
we move the processing unit to the data. The traditional approach has its limitations when
it comes to processing big data. Moving large amounts of data is costly: network issues
can occur, and the master node (where data is stored) can get overloaded and may fail.

Using Hadoop, we need to provide the map and reduce functions, and the framework
handles the rest: parallel, distributed execution.

5



2.1.3 The need for SQL engines

The traditional way to execute MapReduce operations is that the users specify the Map
and Reduce functions in Java. However, this approach has some problems:

• It is not a high-level language for data processing

• Data scientists do not understand Java. They came from the world of traditional
databases, where SQL is used.

• Even a simple problem can result in hundreds of lines of code.

Hive gave a solution, and later multiple other projects were created to fulfill this need.

2.2 Hive

Apache Hive gives us a data warehouse solution built on top of Hadoop to write SQL-like
queries so we can utilize the advantage of a declarative language. Its language - similar to
SQL - is called HiveQL. Hive is a great choice if we want to analyze large, relatively static
data sets, and easy, low-cost scalability is required.

2.2.1 Architecture

Figure 2.1: Hive architecture

The main components of Hive are the following [16]:
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• Driver: manages the lifecycle of a HiveQL query. The Driver also collects the result
after the execution phase.

• MetaStore: stores metadata about tables, columns or partitions. For example, it
stores the table schema and location of the data.

• Compiler: compiles the HiveQL statement and generates the execution plan using
the partition and table metadata obtained from the MetaStore. First, it parses the
query and does semantic analysis. The compiler then converts it into AST (Abstract
Syntax Tree), and after compatibility checking, to a DAG (Directed Acyclic Graph)
of Map and Reduce tasks (if Hadoop MapReduce is the execution engine).

• Optimizer: transformations are performed to optimize the DAG for better perfor-
mance. It is an evolving component. Previously, only rule-based optimization was
available, which performed column pruning and predicate pushdown. Later, map-
side join was introduced, and several other join optimizations, as well as cost-based
optimization, were added.

• Execution Engine: executes the plan created by the compiler. The plan is a DAG
of stages. The engine manages the dependencies between these stages and executes
them in the corresponding component. Hive is compatible with three execution
engines: MapReduce, Apache Tez, and Spark, which can run on Hadoop YARN.
In the case of MapReduce, the Map and Reduce jobs will be distributed between
Datanodes in a way that the previously mentioned data locality is maintained.

• HiveServer2: a service that provides a Thrift interface so clients can execute queries
against Hive. Thrift is an RPC (Remote Call Procedure) framework for defining
services for multiple languages. HS2 is also the process that contains the Driver.

• Clients: multiple clients are available to interact with Hive. Examples include
Beeline (CLI), JDBC/ODBC etc..

2.2.2 Data Storage

Hive structures data in the following units [16]:

• Databases: namespaces to avoid conflicts of table, partition, or bucket names.

• Tables: a storage unit for data with the same schema. Tables map to directories in
HDFS.

• Partitions: Tables can have multiple partition keys. These will determine how data
is stored. In HDFS, partitions map to subdirectories in the table’s directory, which
speeds up analysis. Instead of running the query in the whole table, Hive will only
run our query in the relevant partitions.

7



2.2.3 Limitation of Hive on MapReduce

Hive was created to work on top of Hadoop, creating a MapReduce program that can
be executed by the framework. But Hadoop MapReduce is batch-oriented, so it is not
suitable for interactive queries, so developers had to choose between two solutions. Create
an entirely new framework from scratch for interactive querying (Impala), or improve
the already existing Hive until it is capable of serving such use-cases (Hive Tez and Hive
LLAP).

2.2.4 Hive on Tez [7]

Tez is a framework that was built on top of Hadoop Yarn to execute DAGs of data
processing tasks and can be used as an execution engine in Hive, apart from MapReduce.
Tez improves Hadoop MapReduce in multiple aspects:

Multiple reduce stages With Tez, several reducers can be linked directly, without the
need of mappers writing temporary files to HDFS. Using this feature, Hive can create a
more sophisticated DAG that can drastically speed up the execution time.

Pipelining With Tez, Hive can send the entire query plan at once, allowing the frame-
work to allocate the resources more intelligently and pipeline data through the stages.

Less disk access When executing a MapReduce job, it typically looks like the following:
Mappers read data from the file, they finish their task and write out the result to the disk.
Followed by running the shuffle and sort phase, which rereads the data, and when finished,
writes it. Afterward, reducers will read the sorted data and execute their task, finally save
the final results to disk. That means 6 disk access overall. With Tez, it first executes the
plan without accessing data; once everything is ready, it will get the data from disk and
produce the output. Furthermore, Tez allows smaller datasets to be handled entirely in
memory. It is beneficial for queries that are aggregating or sorting a smaller dataset after
the filtering is done.

Summarizing, Tez is the successor of MapReduce, which uses Hadoop containers (YARN)
efficiently, can link multiple reduce phases without maps, and effectively uses HDFS.

2.2.5 Hive LLAP [1]

Hive introduced the Long Live and Process (LLAP) functionality to make the engine
more interactive and competitive with its challengers, like Impala (introduced in the next
chapter).
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LLAP is not an execution engine (like MapReduce or Tez). The execution is scheduled
and monitored by Tez over LLAP nodes, and an LLAP daemon handles I/O, caching, and
query fragment execution. The daemons have in-memory data cache, which can accelerate
queries if common data is accessed multiple times. To avoid long startup times, LLAP
uses persistent query servers.

The following diagram summarizes the differences - that I presented in this chapter -
between Hive on MapReduce, Hive on Tez, and Hive LLAP.

Figure 2.2: Hive modes [14]

2.3 Impala [5]

Originally, Impala gave a solution for a use-case Hive could not cover at that time (because
only Hive on MapReduce existed). Impala is an open-source massively parallel processing
SQL framework that builds upon Hadoop. It provides an engine for interactive, real-time
querying of big data.

Impala took over many existing solutions from Apache Hive, including its Thrift interface,
and Hive MetaStore, where table and column metadata are stored. The core Impala
component is the daemon that runs on each slave node of the cluster, accepts queries,
reads, writes data files, and distributes the work across the other daemons running in the
cluster.

Another component of Impala is the Statestore, that periodically checks the health of all
the Impala Daemons. If one goes down due to any reason (hardware, software failures
etc.), it informs other nodes to avoid sending query parts to the unavailable daemons.

The Catalog Service is a component of Impala, that relays the metadata changes done in
Impala (e.g. creating new tables, repartitioning etc.) to all Impala daemons so that they
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can be used for querying data from the new tables. It is essential to mention that Impala
can also query data from tables that we created through Hive (and vice versa).

2.4 Problem statement

Hadoop gave us a scalable, distributed framework to process big data, in not a very user-
friendly manner. First, Hive provided a SQL engine that was able to execute declarative
queries over Hadoop MapReduce, but it was designed for batch processing rather than in-
teractive querying. Impala made it possible to run real-time analytic queries over Hadoop.
However, in the meantime, Hive improved its interactive querying capability as well, with
Apache Tez and later with LLAP.

Currently, users need to decide which one to use for every workload or query, and the
decision is difficult to make. We cannot draw a strict border between the use-cases when
to use Hive or Impala. My question for this issue was why the users have to choose
themselves? Their goal is simple: get the results as quickly as possible, without the
challenge to analyze, categorize, then execute the query on the engine that they believe is
more capable of giving results in a reasonable time. In the following chapters, I introduce
my project, QuDi, that aims to answer the question automatically: should I use Hive or
Impala for my query?
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Chapter 3

QuDi - Query Distributor

In the previous chapter, I presented the background technologies and the reason behind
starting this project. In the following, I introduce the architecture of QuDi and how I
managed to collect data from a given query without even compiling it.

3.1 Architecture

QuDi introduces a new layer between the users and the supported SQL engines. It works
like a proxy between them. The following figure illustrates the architecture of QuDi.

Figure 3.1: QuDi architecture
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Nowadays, most of the users work with HUE (Hadoop User Experience) to launch their
query, but QuDi can work with any client (i.e. Beeline, JDBC clients etc.). HUE connects
to Hive or Impala using their Thrift interface, which is the interface of HiveServer2. QuDi
also implements the same interface, so users do not recognize the presence of the new
layer, it is transparent to them and works as a server for the users, and as a client for
Impala and Hive.

The plan is that QuDi will have three basic modes: turned-off, learn, and execute mode.

• When QuDi is in turned-off mode, it just routes the query to the engine that was
originally selected by the user.

• During learning mode, it will run the same query on all the engines, and collect
metrics from it. When QuDi gathered enough data, it builds a model that will we
can use for prediction.

• During execution mode, QuDi will use the model to select the best engine and
executes the query on it. At certain queries (e.g. periodically), QuDi can adapt to
the changes made on the data by executing some queries on all the engines and
improve its model.

3.2 Collecting metrics from a query

After implementing the communication between clients, QuDi, Hive, and Impala, my first
step was to analyze a query when it reaches QuDi. It is a must to collect data that we
can use later for building several machine learning models.

The right place to analyze a query is before it is executing. The Thrift method that starts
the execution is called ExecuteStatement, so in the implementation of this function in
QuDi, I inserted the analyzer calls. I collect two types of metrics during the analyzation:
query features and table metadata.

3.2.1 Query features

Query feature means the metrics that I can collect just by looking at the query string
itself. The full list of these features:
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• number of select
• number of where
• number of different tables
• number of columns
• number of orderby
• number of groupby
• number of unionall
• number of function
• number of casts
• is disdinct

• number of if
• number of join
• number of rightouterjoin
• number of leftouterjoin
• number of subquery
• number of having
• number of in
• number of ifexists
• number of ifnotexists
• number of aggregates

Getting these features from only using the string representation of the query can be chal-
lenging in certain cases: how can we identify the number of joins or the number of sub-
queries?

Suppose we have a θ-join (▷◁θ) between R and S tables:

R ▷◁ S
a θ b , where θ ∈ {<, >, ≤, ≥, =, ̸=}

This type of join can be expressed in two different way in SQL, since

R ▷◁
θ S = σθ(R× S)

. Translating relational algebra to SQL where θ is ’=’:

select ... from R join S on R.a = S.b ⇔ select ... from R, S where R.a=S.b

As a result of these equivalencies, identifying joins that can be expressed by multiple syn-
taxes would be challenging and time-consuming. An even more difficult task would be to
count the number of subqueries in the statement. Of course, writing a complicated parser
that recognizes when a new subquery begins and when it ends, and that can recognize
different join syntaxes can be an approach. However, looking back to how Hive works, we
can find a simple solution to this: Hive has its parser, which creates an AST (Abstract
Syntax Tree) of the given statement. This tree contains the tokens, like ”tok_subquery”
or ”tok_join” etc., and transforms joins which are represented by where statements into
join tokens.

Take the following query as example: select a, b, c from A, B where A.a = b.b
group by c

The Hive Parser represents this in a tree format:
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Figure 3.2: Example of an AST

Walking through this AST gives us the correct number for every feature we want to collect
from the query without writing a completely new parser for my need.

3.2.2 Table metadata

We can gather more data from a query in milliseconds without compiling it. As previously
mentioned, Hive and Impala stores metadata in a separate component called the Hive
MetaStore (HMS). It provides a Thrift interface for clients, which I can use to get the
metadata from tables that are present in the query. Using the parser, I can identify the
tables that the query contains and get information about them from the Metastore.

For building a prediction model, it is ideal to have a fixed number of features. The values
that we can collect from HMS are table-level metadata. Thus for getting an accurate
picture of the presented tables, we should collect those for every table. Therefore, the
number of features would be proportional to the number of tables. As a restriction,
instead of storing the values for each table, QuDi will aggregate them: storing the average
and maximum of those. E.g., rather than collecting the number of partitions for all the
tables in the query, QuDi will calculate the average and maximum partition numbers.

The full list of metadata features:
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• average raw data size
• max raw data size
• average number of files
• max number of files
• number of casts
• average buckets
• max buckets
• average number of rows
• max number of rows

• average total size
• max total size
• average partitions
• max partitions
• number of partition keys
• number of text tables
• number of compressed tables
• number of parquet tables
• number of orc tables

Most of the above features are self-explaining however, some of them needs an explanation:

Number of text/orc/parquet tables: Both Hive and Impala can work with different
file formats. The simplest among these is the text format, which stores the text represen-
tation of the data. ORC and Parquet formats are quite similar: to simplify them, both
are column-oriented formats and store metadata of the data itself.

3.2.3 Measuring execution times

Now that we have our predictors (features), we still need the target variables, which in
this case will be two numbers: the execution time of our query with Impala and execution
time with Hive. Right before passing the request from QuDi to Hive or Impala, we start
a timer that will measure the execution time of the given query. Query execution on Hive
and Impala begins in parallel. When the original execution engine finishes (the one that
the user wanted to connect to), QuDi immediately returns the resultset. After the second
engine finished, the execution times, as well as the feature variables, are saved in a CSV
file that I will use for creating the prediction model. The following sequence diagram helps
to understand the introduced process of analyzing and executing a query.
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Figure 3.3: Execution of a statement
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Chapter 4

Data collection

QuDi can analyze a query, collects 40 different features, executes the statement on both
engines, measures the execution times, and finally saves these to a file. The only thing
that is missing from building a machine learning model is thousand of lines of data. This
chapter presents the two ideas I investigated to collect data and queries to simulate a
workload.

4.1 First approach - Real workload

The obvious approach would be to use a real workload with thousands of different queries
and analyze those using QuDi. As obvious, it seems as difficult it is to accomplish. The
three main problems with this method:

• Data volume: It means around hundreds of Terabytes or even Petabytes when
we speak about a real workload. Even storing this volume would require a huge
cluster, not mentioning the computation resources, which are much more expensive.
Running a single Impala or Hive LLAP daemon on such a volume would require a
minimum of 60 Gigabytes of memory, and it would not be enough to run only one
daemon. Taking into account that this cluster would run for weeks to collect enough
data, it would be a costly approach.

• Privacy: It is not easy to get terabytes of meaningful data and schema information
for them. Companies would never publish this amount of data since it harms their
privacy or business.

• Queries: Even if we had a meaningful amount of data and a schema above them
(e.g. star schema), another issue would be to get queries that can run on the defined
dataset.

To sum it up, collecting data using this approach is extremely difficult. Once QuDi is
production-ready, it would run on such environments, but until then, a basic model is
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essential to launch the project. Eventually, QuDi would change and adapt its internal
prediction model to the current data and workload that the customer has.

4.2 Second approach - Data and query generation

Synthetic data generation can be used to generate a dataset that we can query later and
build a model based on it. A pure synthetic method would create a dataset that is far
away from an actual analytic dataset. Therefore, we should take into account the data
domains and schemas that are usually used in the industry.

4.2.1 TPC-DS dataset [10]

Transaction Processing Performance Council (TPC) is an organization founded to define
database and transaction processing benchmarks. Their Decision Support standard is
a benchmark to measure the performance of decision support systems. This includes a
schema definition that simulates a business database. TPC-DS provides the possibility to
scale the volume of data to our needs. In this section, I will briefly introduce the schema
of the TPC-DS dataset that I used to simulate a real-world use-case.

TPC-DS schema TPC-DS implements a so-called snowflake schema, which is a hybrid
solution between 3NF and pure star schema. It includes large fact tables and several small
dimension tables. Fact tables are frequently growing, while dimensions store data that do
not change regularly. In addition to the pure star schema, dimension tables can not only
have relations with fact tables but with other dimension tables as well.

Figure 4.1: TPC-DS example of snowflake schema
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4.2.2 Generating random queries

TPC-DS also provides queries that simulate a real workload. I intended to use these queries
to collect data for the machine learning models, but the defined 100 queries which TPC-
DS provides is inadequate for that purpose. To build a proper model, I need thousands
of queries. The only solution that left is to generate queries randomly. In this section, I
introduce two already existing solutions that I investigated and explain which one I chose
and how it generates queries that cover a wide section of the SQL language.

4.2.2.1 SQLSmith [9]

SQLSmith is a domain-aware fuzz tester, which means it provides random data as input
to a program. It targets database systems while generating random queries and aims to
find bugs in the database under test (DUT). The basic idea behind SQLSmith also applies
to the other framework I investigated.

The query generation begins with investigating the given database for available tables,
columns, and types. After analyzing the database, it starts producing SQL statements.
It works as a probabilistic recursive model. SQLSmith selects the statement type and
fills its clauses randomly (FROM, WHERE, GROUP BY, ORDER BY). When it needs
an expression, it chooses one from the following: function, the result of unary, binary
operators, table, or column expressions etc.. If an expression needs some arguments - i.e.
the ’+’ operator takes two arguments - they might also require an expression which can
continue to select one from the presented list. This will recurse until a given point. As
it is a recursive algorithm, it has to stop at some point. SQLSmith defines a boundary
that limits the generation of new expressions so that the system can execute the query in
a reasonable time.

Consider the statement
SELECT email_address,

Concat(first_name, last_name)
FROM customer
WHERE birth_year >= 1996

AND birth_country = ’Hungary’;

The below figure shows a simplified parse tree of the query.
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Figure 4.2: Parse tree for the above statement

Walking through this parse tree, we can read out the query manually. SQLSmith and
the other project introduced in the next section - Discrepancy Searcher - does the same,
except that it builds the tree stochastically as it walks it.

Drawbacks of the project SQLSmith is a great tool for fuzz testing of our system,
that aims to break our database. I spent two weeks connecting the C++ project to Apache
Hive and managed to make it work so it can analyze a given Hive database and collect
schema information about those. However, it was not aware of the HiveQL language, which
mostly follows the SQL standard but has some limitations and differences. It resulted that
only around half of the queries could run on Hive and Impala as well. Therefore I decided
to search for another option.

4.2.2.2 Discrepancy Searcher [2]

Apache Impala already had a similar solution to SQLSmith. The community used it to
find discrepancies between Impala and a second reference system, like PostgreSQL, Oracle,
or Apache Hive. It generates a query, using the same idea as presented above and runs
the query on Impala and the reference engine. Afterward, analyzes the resultset of the
statement and reports if it finds any discrepancy. The great feature of the Discrepancy
Searcher that it is already aware of Hive’s and Impala’s SQL grammar and can generate
syntactically and semantically correct statements.

The stochastic model it uses relies on a QueryProfile object. This contains probabilities of
different clauses, functions, operators, etc.. The QueryProfile also contains the boundaries
of the query being generated. This allows the user to customize the type of queries.
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self._bounds = {
'MAX_NESTED_QUERY_COUNT': (0, 2),
'MAX_NESTED_EXPR_COUNT': (0, 3),
'SELECT_ITEM_COUNT': (1, 8),
'WITH_TABLE_COUNT': (1, 3),
'TABLE_COUNT': (1, 5),
'ANALYTIC_LEAD_LAG_OFFSET': (1, 100),
'ANALYTIC_WINDOW_OFFSET': (1, 100),
'INSERT_VALUES_ROWS': (1, 10)}

Also, the user can change the weights of different query features, that the tool will use
to determine probabilities. The probabilities of some clauses can be independently set by
the user, as shown in the example below.

self._weights = {
'SELECT_ITEM_CATEGORY': {
'AGG': 7,
'ANALYTIC': 5,
'BASIC': 5},
'TYPES': {
Boolean: 1,
Char: 1,
Decimal: 1,
Float: 1,
Int: 10,
Timestamp: 1},
'JOIN': {
'INNER': 90,
'LEFT': 30,
'RIGHT': 10,
'FULL_OUTER': 3,
'CROSS': 1}, ...

}
self._probabilities = {

'OPTIONAL_QUERY_CLAUSES': {
'WITH': 0.1,
'FROM': 1,
'WHERE': 0.5,
'GROUP_BY': 0.2,
'HAVING': 0.25,
'UNION': 0.1,
'ORDER_BY': 0.2},
'OPTIONAL_ANALYTIC_CLAUSES': {
'PARTITION_BY': 0.5,
'ORDER_BY': 0.5,
'WINDOW': 0.5} ...}

}

After setting up the environment and upgraded some deprecated dependencies, I made
it working and turned off the execution of the queries since I planned to execute them
differently. With the Discrepancy Searcher, I am now able to generate thousands of queries
for the TPC-DS database in minutes.
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Figure 4.3: An example of the generated queries

Using this tool, I generated thousands of different queries and executed them using Beeline
that is a console JDBC client for Hive and can also work with Impala. When more than a
thousand queries have executed through QuDi, on the TPC-DS database of a scale of 100
GB, I had enough data to start the Exploratory Data Analysis (EDA) on the collected
results.
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Chapter 5

Building Machine Learning models

Predicting where a query will run faster can be approached from multiple directions. We
can define the task as a binary classification: the target variable would be the execution
engine for the query. The other solution would be to consider this as a regression: predict
the runtime for both Hive and Impala - using different models - and choose the engine
with the smaller number. The latter would require a massive amount of data gathered by
QuDi to provide an accurate prediction. Since the queries for larger dataset - 100 GB in
this case - vary in runtime from milliseconds to hours, it takes weeks or even months to
collect a meaningful amount of data.

The original goal is to extract patterns and predict the optimal execution engine. However,
this requires weeks to collect enough data. In the meantime, during the collection, a logical
step was to start with a simpler task, what we can use for another use-case and the data
preparation part can be reused in the execution engine prediction. This task is to predict
if the query is a short- or long-running one. For this classification, fewer data proved to
be enough. This chapter introduces the models and results of the two different goals. The
first part focuses on the classification of the query (short or long-running), the second one
will introduce a prototype model developed for predicting the optimal SQL engine and the
issues that it has and needs a solution in the future. The following diagram summarizes
the data science workflow I used during the research.

Figure 5.1: Data Science Workflow
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5.1 Cleaning the data

For both prediction models, I used the same data cleaning techniques. This included
finding and dropping the outliers, but replacing nulls was not necessary since the dataset
does not contain any rows that have empty values.

5.1.1 Dropping outliers

First, it is necessary to clarify what we consider as an outlier. Generating random queries
has some serious drawbacks. It can generate statements that can run for an extremely
long time hence preventing the collection of ML data. To overcome this issue, I maximized
the execution time for both engines in 2 hours. Hive and Impala both ran on two nodes
with 45 GB of available memory. On a scale of 100 GB, queries running over 2 hours are
probably bad queries that can run even for days. These should be stopped, and QuDi
should continue executing the other queries. This will result in rows, where the execution
time is close to the maximum allowed. We should drop these rows not to confuse our
model. However, before that, we should look at the data to identify more outliers that
should also be deleted.

hiveExecTime impalaExecTime
mean 8.781037e+04 5.010635e+04
std 5.310370e+05 4.956381e+05
min 1.200000e+01 1.100000e+01
25% 3.040000e+02 7.525000e+01
50% 1.558500e+03 3.785000e+02
75% 1.580100e+04 1.692500e+03
90% 6.959900e+04 8.326700e+03
98% 7.708386e+05 2.024716e+05
max 7.112459e+06 7.200016e+06

Table 5.1: Basic statistics of the execution times

The above table describes the basic statistical measures of the two execution times in
milliseconds. In addition to the quartiles, I calculated the 90th and 98th percentile to
determine what I should consider as an outlier. The standard deviation is an order of
magnitude bigger than the mean of the execution times, which is not surprising because
we used random queries that cover a vast area of the SQL language and vary greatly.
Based on the performance measures discussed in the following section, I decided to drop
the rows where the execution time on Hive or Impala is below the 2nd percentile and
above the 98th percentile helping the model to learn frequent patterns.
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Figure 5.2: Execution times of both engines

If we look at the above scatterplot representing both execution times, we can identify
another type of outliers. Some queries have a huge difference in the runtime of the two
engines. Using random queries can cause this issue. E.g., for some queries that do not have
a resultset, either Hive or Impala could optimize based on the statistics, or just simply on
one of the engines, a query can stuck executing, causing a significant delay for the other
queries. Our first intention would be to keep this type of rows since it can contain useful
information. However, the sample size of these type queries are very small, so these values
would only confuse our model because they are distinct from the rest of our data.

To identify the queries to be dropped, I introduced a new column,

ratio = max(hiveExecT ime,impalaExecT ime)
min(hiveExecT ime,impalaExecT ime)

Using this variable, I was able to identify the rows that differ significantly in execution
times. Figure 5.3 shows the original ratio of the queries. We can see that some of them
have a huge difference in runtime, causing the y-axis in the plot to cover a wide interval.
Figure 5.4 represents the filtered dataset, where I dropped the rows with a ratio greater
than 25 (red dots in Figure 5.3). This way, I kept 90% of the rows, which caused a great
improvement in our classification models. In the future, when real queries (not random)
will run through QuDi, and we have enough samples of queries with a bigger ratio in
execution times, I will have to investigate these separately. However, for now, I will let
the machine learning model recognize patterns in the majority of the queries.
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Figure 5.3: Ratios without filtering

Figure 5.4: Ratios after filtering

In the upcoming sections, I present the iterative work on the machine learning models.
First, I created several without any feature elimination, measured how they perform,
and selected the best suited for the task. After that, I tried several feature elimination
techniques and retrained the model, checking if we can identify improvements. This part
focuses only on the simplified classification: predict if a query is short- or long-running.
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5.2 Measuring the performance of a model [13]

Identifying how the different classification algorithms perform is a must to select the best
model for the task. This section presents the metrics and the sampling method I used
during the model creation.

5.2.1 Jaccard index (accuracy)

This metric is the easiest to interpret. Given two arrays, X and Y

J(X,Y ) = |X∩Y |
|X∪Y |

Assume that X is an array of the actual values of the target variable, and Y is an array of
the predicted values. In this case, the Jaccard Index is the rate of the correctly classified
rows. This score can be a poor metric if there are no positive values for some classes so,
besides this value, other metrics are needed to get a clear picture of the models.

5.2.2 ROC-AUC [11]

One of the most commonly used evaluation metrics in binary classification is the AUC
score. Before presenting the ROC curve and AUC score, the concept of confusion matrix
must be understood.

The confusion matrix is also an evaluation metric used in binary classification. It is usually
represented in the following table format:

Figure 5.5: Confusion matrix

• TP: We predicted positive correctly
• FP: We predicted positive, but it was false
• TN: We predicted negative correctly
• FN: We predicted negative, but it was true

The ROC curve uses the following terms based on the confusion matrix:

TPR: how much we predicted correctly out of the positive classes
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TPR = recall = TP
TP+FN

FPR: how much we predicted correctly out of the negative classes

FPR = FP
TN+FP

The ROC (Receiver Operating Characteristic) combines the FPR and TPR into one plot
where TPR is on the y-axis, and FPR is on the x-axis. It first computes the TPR and
FPR metrics with many different classification thresholds and then plots them on a graph
(see, for example, Figure 5.6).

The AUC (Area Under Curve) is the area under the ROC curve. This score shows how
much a model can distinguish between classes. High AUC means that the model is better
at predicting positive values as positives and negatives as negatives. The perfect model
has an AUC score of 1, and a random prediction would have an AUC score of 0.5.

5.2.3 F1 score

Defining the F1 score requires another metric that is based on the confusion matrix.

Precision or Positive Predictive Value (PPV): shows the percentage of relevant results.

PPV = precision = TP
TP+FP

The F1 score is a weighted average of precision and recall. A higher F1 score means that
our model performs better.

F1 = 2 · precision·recall
precision+recall

5.2.4 Cross Validation

The previously mentioned metrics are not useful on their own. We need a way to validate
our model. I decided to use cross-validation (CV) to estimate how the different models
would perform on an unknown dataset in practice. Different cross-validation methods
exist: train-test split, KFold etc.. In this research, I used the train-test split method,
where we randomly split our dataset into training and test sets. We train our models in
the training dataset and use the test set to validate the performance. The split ratio that
I used is 70:30, where 70% is the training dataset. As a metric for cross-validation, I used
the three previously discussed methods: accuracy, AUC, and F1 score.

5.3 Creating classifiers

I tried many different classifiers to find what fits best to the problem of classifying SQL
queries as long or short-running. In this section, I present only those that performed
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the best or are needed to understand the concept of a more complex algorithm. First,
I start with shortly introducing the algorithm, continuing with the evaluation of each
model. This part is not intended to describe the models in detail, it only gives a high-level
overview to the reader. At the end of the section, I summarize the models and choose the
best-performing for future improvements.

However, one thing is still not clarified: what do we consider as a slow query? It is a
fully workload-dependent question. To get a model that can classify correctly, we need
enough positive (in our case, slow means positive) samples. Thus, I decided to label the
slowest 30% of our queries as slow. In the collected dataset, this resulted in every query
executed for more than 8 seconds to be slow. As a simplification, I only considered one of
the execution times of a query: execution time on Hive.

5.3.1 K-Nearest Neighbour (KNN)

This algorithm assumes that similar things are close to each other. It first calculates the
distance (in case of numeric variables most commonly Euclidean Distance) of each object
and defines the k nearest ones. The class of a given object will be the most frequent class
among its neighbors. In this example, I used five as a value for k.

Executing the evaluation method for each metrics, I got the following results using the
KNN algorithm:

Figure 5.6: ROC curve of the KNN model

Accuracy AUC F1
0.835396 0.812717 0.737993
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5.3.2 Bernoulli Bayes [12]

To understand the Bernoulli Bayes model, first we need the basic concept of the Naive
Bayes algorithm. This model is based on the Bayes’ theorem. Given a target variable y

and the feature variables X = (x1, x2, ..., xn)

P (y | X) = P (y)P (X|y)
P (X)

Here, given a that (x1, x2, ..., xn) occured we can find the probability of y occured (y = 1).
If we substitute into X and apply the probability chain rule

P (y | x1, . . . , xn) = P (y)P (x1|y)P (x2|y)...P (xn|y)
P (x1)P (x2)...P (xn)

Based on our training dataset, we can substitute every variable on the right side. Now we
have the probability for all possible (in our case 1 or 0) y if (x1, x2, ..., xn) occured. We
just have to get the value with the maximum probability and assign the object to that
class.

The Bernoulli Bayes model implements the Naive Bayes model, with a restriction that
each feature is a binary variable. This requires the samples to be in binary format. In
our case, this requirement is not met, so before applying this algorithm, the model will
binarize the input. Let us see how this model performs with our dataset.

Figure 5.7: ROC curve of the Bernoulli Bayes model

Accuracy AUC F1
0.851466 0.862649 0.779389

5.3.3 Decision Tree

A Decision Tree classifier predicts the target variable based on simple rules. These rules
are deduced from the feature variables in the dataset. This type of model can be visualized,
and people can easily understand and interpret it.
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The main steps of the algorithm: Select an attribute that splits the records. This attribute
will be a decision node that breaks the dataset into smaller subsets. Continue with building
the tree by repeating this process recursively until either the chosen condition does not
split the records further or there is no more remaining attribute, or there are no more
instances to split.

Figure 5.8: ROC curve of the Decision Tree model

Accuracy AUC F1
0.824864 0.788915 0.709625

As we can see, this simple Decision Tree model does not perform as well as the previous
ones. However, many more complex algorithms use Decision Trees inside, so understanding
the concept behind them is necessary.

5.3.4 Random Forest

The Random Forest is an ensemble algorithm, meaning that it uses multiple algorithms
to obtain a better performance. To be more specific, Random Forest is a bagging method,
so every model in the ensemble is trained with a random training dataset and votes with
equal weight. This model contains a large number of individual decision trees that are
choosing a class individually and independently for the sample. The class with the most
votes will be the prediction of the model.
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Figure 5.9: ROC curve of the Random Forest model

Accuracy AUC F1
0.864061 0.839039 0.774908

5.3.5 Gradient Boost [3]

Boosting is also an ensemble technique but opposed to bagging, the models inside are made
sequentially, improving the previous model by correcting its error. The basic concept of
the algorithm:

1. The algorithm fits a model to the data (in our case Decision Tree)
2. Calculates the classification error (how good the current model is at classifying slow

queries)
3. Fit a new model to the error as the target variable
4. Create a new model where we add the predicted errors to our original model
5. Repeat step 2-4 until our model is not overfitting: we can check it by cross-validation

Figure 5.10: ROC curve of the Gradient Boost model
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Accuracy AUC F1
0.878610 0.863896 0.807982

5.3.6 Summary

This section presented the top 5 performing classification algorithms I used. Now it is time
to select the best model. The metrics that I used are depending on how we split our data
to train and test sets. Thus, I repeated the model training and prediction several times to
get a clearer picture of the performances. The following table contains the means of each
metrics collected for 30 different train-test split. Means are rarely enough to represent a
dataset, so the boxplot intends to describe the different classification models accurately.

model auc accuracy f1
KNN 0.815070 0.836808 0.740039
BNB 0.866732 0.856352 0.786683
DT 0.794773 0.829642 0.711240
RF 0.832578 0.862324 0.770319
GBDT 0.867305 0.882302 0.809130

Figure 5.11: Model performance plot

We can identify that the two most accurate models are the Bernoulli Naive Bayes and
the Gradient Boost Decision Tree models. They perform similarly in the AUC score.
However, inspecting the other metrics, we can see that in terms of accuracy and f1 score,
the Gradient Boosting could reach a higher value. Based on the metrics, I decided to
continue using the Gradient Boosting Decision Tree algorithm since it seems the best fit
for predicting short and long-running queries.
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5.4 Feature elimination technices

The Gradient Boost Decision Tree model proved to be the best performing in all the
metrics. Our dataset has many features; however, most probably, not all of them have
an impact on the output variable. These irrelevant features can make our model less
accurate and can cause overfitting, so selecting a subset of relevant features can improve
our classifier. In the data science world, different feature selection techniques exist. In this
section, I describe the best performing and show how it impacts the accuracy of predicting
short and long-running queries.

5.4.1 Recursive feature elimination - RFE

Recursive feature elimination requires the number of features as an input. It fits the given
model and removes the weakest feature recursively until we reach the specified number of
features. The first question that comes to mind: what is the weakest feature? It depends
on the model. The Gradient Boosting Decision Tree in the XGBoost package uses the
F-score metric that sums up how many times a feature is split on. I experimented with
keeping a different number of features.

Figure 5.12: Recursive Feature Elimination

The graph illustrates how changing the number of features in the input of the RFE al-
gorithm affects the AUC score. We can see that the model performed the best with 20
features, resulted in a 0.8884 AUC score. Increasing the number of features up to 20 does
not improve the model instead, making it more complicated and even less accurate. It is
worth looking into the importance of each selected feature.
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5.4.2 Permutation Importances [6]

After selecting the best features using RFE, I wanted to find out what features have the
most impact on our prediction. To accomplish this, I used a different approach, called
Permutation Importance.

It first gets the trained model and selects a single column in it. The algorithm shuffles the
values in the selected columns and tries to make a prediction using the changed dataset.
Using the new predictions and the true classes, it calculates the loss that the shuffling
caused compared to the original model. This performance loss will measure the importance
of a feature.

For a better understanding, let us examine the following simplified example:

Figure 5.13: Permutation Importance Example

The chosen column is the max_totalsize, which is the size of the biggest table in the query
in bytes. The algorithm shuffles the values in the max_totalsize, and the other features
remain untouched. Then the given GBDT model will be used to predict if the query is slow
or fast. The performance of the model is calculated (e.g. using AUC score) and compared
to the performance of the original model (without shuffling max_totalsize). The loss will
be the difference between these two values. Since max_totalsize is an important feature,
the loss will be high, so this feature is important in our model => the feature importance
of max_totalsize will be high.

The following bar chart shows the feature importances (weights) of the 20 features selected
by the RFE algorithm.
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Figure 5.14: Permutation Feature Importances

We can see features with 0 or negative permutation importance scores. A negative score
means that after shuffling, the model gave a more accurate prediction. Zero permutation
importance means that it does not matter if we shuffle these features or not; the accuracy
remains the same. Considering these, we can easily remove the features with 0 or less im-
portance value without any decrease in accuracy. Dropping tok_select, max_rawdatasize,
max_partitions did not influence our model, we got the same AUC score with 17 features
as with 20.

5.5 Understanding the model

Besides improving the AUC score of our model, having less feature also benefits in inter-
preting it. Visualization is not an option since the decision trees are deep and challenging
to understand manually. However, the domain is well known, so looking into the previous
feature importance plot helps us understand what causes a query to be slow.

The most important feature is the totalsize. Both the maximum and average of the table
total sizes in a query highly increase the execution time in Hive. The number of rows and
files also correlates significantly with the execution time. As expected, the number of joins
and aggregate functions affect runtime. Nothing surprising so far. However, the number of
subqueries does not seem to influence the execution time. This does not illustrate reality.
However, it can be explained easily: our machine learning model is as good as our data.
Since the collection of execution times is difficult, restricting the number of subqueries was
necessary to prevent the generation of too complex queries resulting in a huge execution
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time and less data to be collected in a given period. This results that there is not enough
sample that has multiple subqueries inside.

To sum it up, we can predict if a query will run for a short or long time with high
accuracy, without compiling it. We only need to inspect the query using the parser of
Hive and getting some metadata from Hive MetaStore. However, is it useful to predict
this in milliseconds? The evaluation chapter will answer this, but first, I will try to fit a
model to our original question: run our query on Hive or Impala?

5.6 Predicting where to run a query

The data preparation task for predicting if a query will run faster on Hive or Impala was
almost the same as predicting if a query will be long- or short-running. But instead of
removing queries that differ highly in execution time in Hive and Impala, I keep them
since these contain useful information for the prediction.

The Gradient Boosting Decision Tree as a classifier proved to be the best performing in
this scenario, as well. The following graph shows the result of recursive feature elimination
with a different number of features.

Figure 5.15: Recursive Feature Elimination results

As shown, we can reach an AUC score of 0.78 using the best 14 features. Although this
looks promising, I looked into how much we gain if we route the queries to the predicted
execution engine. The amount of seconds we would win with the routing is comparable
with the increase of complexity if we introduce a new layer. What could be the explanation
for this?
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Even though we can predict where a query will run faster with acceptable accuracy, many
of them are running for only milliseconds. The randomness of the queries causes that
many of them do not have a resultset; hence, an optimization algorithm in Hive or Impala
can recognize and return immediately.

Our machine learning model is as good as the data that we used for training it. While
randomly generated queries are enough to recognize patterns when a query is slow, it
is not enough for a more sophisticated classification. To create a meaningful model, I
need meaningful queries. I will introduce a solution in the final Future Work chapter
that we can use to overcome this issue and have data and queries that simulate a real
environment. The rest of the evaluation chapter focuses on the scheduling of the queries
based on prediction given by QuDi. The result accomplished with random queries proved
that the model could recognize patterns for the given random use-case, so continuing with
a real-world example can also be beneficial.
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Chapter 6

Evaluation

We have a model that can classify if a query is slow- or long-running in milliseconds without
compiling it. However, is it beneficial in a real industrial environment? In this chapter,
I simulated a workload, where I used a Shortest Job First (SJF) scheduling algorithm
based on the prediction given by the model. Followed by examining QuDi in the aspect
of scalability and robustness.

6.1 Scheduling queries

6.1.1 Problem with current scheduling

Currently, both execution engine only supports First Come First Served (FIFO) scheduling
algorithm. That means that the query that came first will execute first. In many scenarios,
this results in a huge waiting and response time. Scheduling queries according to their
execution time would result in an improvement of the throughput of our data warehouse
system.

To understand the issue, consider the following example:

The number of concurrent queries in our system is set to 2. What if the following five
queries come in this order having only milliseconds of delay between them. The unit these
queries run can be anything between seconds to hours; this depends on the workload.

• Q1: query running for 6 unit
• Q2: query running for 7 unit
• Q3: query running for 2 unit
• Q4: query running for 1 unit
• Q5: query running for 1 unit
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Let us say that queries below an execution time of 3 units are short queries. This means
Q3, Q4, and Q5 are considered short. What happens currently if these queries hit Hive
or Impala?

Figure 6.1: Result with FIFO scheduling

The above Gantt-chart represents the queries, showing the waiting time with red, and
the runtime with green. Since these queries arrived around the same time and the delay
between them is negligible to the execution time, we can consider them arriving in the 0th
unit. The first two queries can run concurrently, while the last arriving three will wait for
execution in the queue.

Calculating the waiting time (WT) for the queries:

WT (Q1) = 0,WT (Q2) = 0,WT (Q3) = 6,WT (Q4) = 7,WT (Q5) = 8

The Total Waiting Time:

TWT =

5∑
i=1

WT (Qi) = 21

The short queries had to wait for a long time to start executing. In a real scenario, these
queries can be analytic queries, that were launched by data scientists, while the long-
running ones can be daily reporting queries started automatically. Our users will wait for
their simple, short queries to execute, but first, the reporting has to be done, causing a
significant loss in productivity. Most of the time, it is expensive to increase the number of
concurrent queries, since it requires a linear scaling of our resources. Increasing it without
improving the hardware underneath can cause our data warehouse to crash. However, we
could schedule the queries using a Shortest Job First (SJF) scheduler. The below chart
shows the result of this scheduling.
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Figure 6.2: Result with SJF scheduling

WT (Q1) = 1,WT (Q2) = 3,WT (Q3) = 1,WT (Q4) = 0,WT (Q5) = 0

TWT =

5∑
i=1

WT (Qi) = 5

The gain in Total Waiting Time is 16 units, and we could increase the throughput of our
system easily: e.g. in 1 unit, we could execute two queries with SJF, while the throughput
with using FIFO scheduling was 0.

Query scheduling is a fundamental problem in data warehouse systems. Hence many
algorithms were developed until now (etc. Distribution-Based Query Scheduling [4]). The
efficient utilization of our computing resources can save millions of dollars to customers
with a large data warehouse system. The ideal would be to know the actual runtime
for every query in advance of its execution. However, estimating the execution time of
queries is a difficult problem, as query running time is a complex function of the query
itself, the data that it operates on, and the environment in which it executes. However,
simply knowing that the query will be short- or long-running can result in a significant
improvement in waiting and average query completion time. Fortunately, I have a model
that can predict with 90% of accuracy that a given query will be short or long-running.

6.1.2 Scheduling queries using the prediction

In the following simulation, I selected ten random queries from the dataset collected by
QuDi and used Apache Hive to simulate a concurrent workload, with the number of allowed
concurrent queries set to 2. First, I ran the queries serially to identify the response time
individually.
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Query Response time (ms)
Q1 27020
Q2 7608
Q3 6266
Q4 6200
Q5 6460
Q6 6200
Q7 22463
Q8 30042
Q9 40988
Q10 16435

Table 6.1: Response times of the queries if ran individually

We can identify a couple of long queries: Q9, Q8, Q7, Q1. Examine the worst scenario,
when these queries start executing in ascending order of their execution time. I ran
this simulation through QuDi and measured the response times of each query using the
environment mentioned above (2 concurrent queries allowed in Hive). After that, I used
the previously built prediction model to decide whether a query is short- or long-running.
Using this prediction, I sorted the queries in the following way: run the short queries first,
in any order, and then run the long-running ones last. The following chart presents the
response time for each query.

Figure 6.3: Response times in milliseconds using different schedul-
ing
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In this diagram, we can see the gain for every query individually. For example, looking
at query 2, we can identify that the response time without scheduling is six times longer
than with using the prediction and schedule based on that. However, it is hard to identify
the overall result based on this diagram.

Figure 6.4: Overall response times in milliseconds using different
scheduling

Figure 6.4 shows the total response time for the 10 queries. Even in this simple workload,
the total response time decreased with 320 seconds (35%), which is notable. Looking
at the throughput of our system: without scheduling, Hive could run 5 queries in 100
seconds. Using the prediction based SJF scheduling, Hive could execute 8 queries in 100
ms. This means 60% increase in throughput for the sample workload. Even though for
some queries QuDi predicted incorrectly, we can say that the overall result is promising
using the prediction. I ran several other workloads, including random scheduling of the
queries, but in all cases, we could observe a significant improvement in overall response
time and throughput.

In a real workload, the simulated scenario can happen easily. However, what about
the starvation of long-running queries? The main drawback of the demonstrated simple
scheduling (SJF) is that, in some cases, long queries could never execute. However, we
can handle this issue quickly. Given that a long query is waiting for a certain amount of
time, we can increase its priority and execute it immediately. Another solution could be
to allocate some bandwidth for only short running queries in Hive: e.g. if we can run 10
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concurrent queries, always keep 2 for fast running ones. The ratio of the two queues can
be configured based on the workload since we can identify how much of our queries are
short- and long-running.

6.2 Scalability

Until now, I did not write about the scalability of QuDi. Since both Hive and Impala are
scalable up to petabytes of data and hundreds of users running concurrent queries, a proxy
layer above them cannot be a bottleneck. I had to keep in mind from the beginning that in
production, QuDi will be used in a heavily concurrent environment, probably running on
a different machine than Hive or Impala. For communicating with clients, I used a thread
pool server, which spawns a worker thread for every connection made to QuDi. However,
creating a new thread for every query is not acceptable, so I used sessions for solving
that. For every user, QuDi will allocate one thread from the pool, creating a session for
that connection. This session will be kept and used for running several queries until the
connection is closed. This will allow QuDi to scale vertically. Horizontal scalability is not
needed since QuDi is not doing any computation that would require huge resources.

We can consider the data collection ran through QuDi a scalability test since it contained
thousands of random queries often run in a parallel manner. QuDi was able to serve
multiple clients concurrently, routing their queries to Hive and Impala. However, in the
future, before putting QuDi in production, more scalability tests and benchmarks are
needed to prove that QuDi does not introduce a performance bottleneck and can scale
with increasing the workload.

6.3 Robustness

QuDi is working with SQL systems that slightly differ in SQL grammar. However, it is
intended to route the queries according to the predicted optimal engine. But what if the
given query can only run in one of the engines? At the learning phase, QuDi can identify
queries that failed during the execution in one of the engines, and mark those with a
huge execution time on the engine that it is failed. If we have a significant amount of
samples that failed in one engine, the model can identify those in advance so that it could
distribute the query accordingly.

QuDi can also handle erroneous inputs. It is working like a transparent proxy, so the
users cannot identify that a new layer was introduced. If a user sends a syntactically
or semantically incorrect queries, QuDi returns the exact error that the execution engine
gave.

44



6.4 Security

QuDi is working with distributed systems that communicate with Hive MetaStore, Hive,
Impala, and the clients using a network. It is important to work in a secure environment,
as well. To achieve this, I implemented Kerberos authentication methods that Hive and
Impala support to identify the users of our system. QuDi also supports SSL encrypted
connections in order to improve the security of the system.
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Chapter 7

Conclusion

In this paper, I introduced the two most commonly used open-source big data SQL engines
and presented the problem that the users have to face: where to run a query to get the
results as soon as possible? Usually, Hive and Impala are both running on the cluster,
and users need to decide themselves. However, this is extremely difficult since query
execution time is a complex function of the query itself, the data that it operates on,
the environment in which it executes. Until now, there was no existing solution to help
users with this complex problem. With QuDi, my original goal was that using a machine
learning model, predict where a given query will execute faster.

During my research, I built a system that can analyze queries and collects more than 40
different features from them, including query and metadata features. I examined the pos-
sibilities to collect data that can be used for building a machine learning model. I decided
to use random queries to build a prototype model. I found two existing solutions for gen-
erating random queries: SQLSmith and Discrepancy Searcher. I used the latter, generated
thousands of queries, and ran through QuDi, analyzing each query, and measuring their
execution time in both engines.

Having thousands of samples allowed me to start building a model that can predict where
to run a query. However, I decided to start with a simpler task: predict if a query is
short or long-running. This was beneficial in two aspects: the data preparation part of
the machine learning was almost the same as for the original problem, and knowing if a
query will run for a longer time before compilation can be used for scheduling queries in
a heavily concurrent environment.

The data science work started with cleaning the data, dropping the outliers, and elim-
ination features that do not influence the class of a given query. I examined multiple
classifiers and decided to use a Gradient Boosting Decision Tree as the model for predict-
ing if a query is short or long-running. For determining which model to use, I calculated
several metrics that describe how a particular model performs. With the selected model,
I reached an AUC score of 0.89.
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Achieving this result, I continued with the original problem: predict where a query will
execute faster. This classification problem is more complex, and even though I could
achieve an AUC score of 0.77, the gain in execution time is not significant since some of
the queries made the model overfitting and identifying some patterns that do not exist in
reality. The randomness of the queries caused this, so improving the solution will require
to use a real-world workload.

The results with predicting if a query is slow or fast were promising. I did a simulation
where I restricted the number of concurrent queries and ran ten randomly selected at
the same time. I implemented a simple scheduling based on the prediction given by
QuDi: classify the queries if they are slow or fast, and using this, run the faster queries
first. Comparing the overall response times in the worst case (when the queries arrived in
decreasing order of their execution time) and in the scheduled workload, I reached 35%
decrease of overall response time and increased the throughput of Hive with
60% on the simulated workload.

7.1 Future work

In the near future, I planned several improvements. First, to continue with predicting
where a query will run faster, we need a real workload with data and queries. Although
customers will not provide their data, they are eager to publish queries and metadata about
their data helping developers to run scale tests and benchmarks. This includes information
like table schema, how they are partitioned etc.. Tools already exist to generate databases
and tables using their metadata. This will enable us to run queries that are used in the
industry and simulate a real workload.

The great results of a simple scheduling algorithm influenced to continue the research in
this area. I am currently progressing with the implementation of a type of Shortest Query
First scheduler inside QuDi. The following sequence diagram illustrates how it will work.
The users write their queries in their favorite client and send them to Hive or Impala (the
solution can work with both since their interface is identical). QuDi analyzes the query
to get the most important features discussed in the Machine Learning chapter. Using
the model, QuDi will predict if it is short- or long-running and place it in a queue to be
executed. The scheduler will prefer executing short queries first, considering not to starve
the long-running ones. This will improve the throughput of our system and decrease the
overall response time.
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Figure 7.1: Scheduler inside QuDi

At the end of the year, I plan to present the project to both open-source communities:
Impala and Hive. Their acceptance and opinion are important to put QuDi in production
later, make my project open-source and find developers who would help to improve the
system.
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