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Abstract

Nowadays, the majority of road accidents are caused by errors due to driver fatigue. This
reduces the safety of traditional driving, and also limits the widespread adoption of self-
driving cars. Therefore, the monitoring and early detection of drivers’ drowsiness plays a
key role in the process of driving automation. The development of a robust and reliable
drivers’ drowsiness detector system is currently an open issue in this research field.

Several relevant indicators of fatigue exist, such as information derived from subjective
self-assessment, expert assessment, reaction time and physiological signals (ECG, EEG,
breathing, etc.), all of which at every timestamp can be jointly represented as large feature
vectors in practice. Most likely these feature vectors contain redundancy, which, in addi-
tion to making the task of fitting a machine learning model to the problem challenging,
decreases the problem’s perspicuity and also the subsequent testability and development of
the system. Thus, dimensionality reduction plays a vital role when talking about practical
application.

The goal of my work is to design and implement a robust feature selection algorithm that
can be later utilized as a building block in a system development of a drowsiness detector
by highlighting the most contributing feature subsets. Based on the literature, EEG is
one of the best indicators of fatigue, and, due to the characteristics of the sensor used to
measure it, several features can be obtained from it describing human brain functions [27].
Therefore, I choose to work with this physiological signal. The selected public database
enables the detection of two-state drowsiness, from which I obtain the EEG features used
for drowsiness detection that appear in the literature. The expectation from the feature
selection method is to determine the smallest feature subset with which the detector model
can achieve comparably good performance as with using all features.

To solve this problem, I am designing an embedded feature selection algorithm inspired
by a SOTA solution. It relies on a so-called Feature Prune Layer, that can be placed
in front of the first layer of an arbitrary neural network. Its weights are point-to-point
related to the input features, so each of them is meant to represent the importance of
the corresponding feature. During model training, these weights change depending on the
actual relevance of the input, according to the usual process of neural network updates. If
certain conditions are met, the weights are deleted iteratively, until the desired number of
features is reached. The method, therefore, ensures to reveal complex, non-linear relations
between features during the training of the detector network.

The conducted work involves the feature extraction from the physiological data, the goal-
directed modification of the initial SOTA method, and finally, the evaluation of the results.
The achieved results are evaluated according to the performance of the models trained on
the original and reduced feature sets and the credibility of the selected features based on
the literature.
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Chapter 1

Introduction

Several factors might be the cause of driver drowsiness, including sleep deprivation, physi-
cal exhaustion, medication side-effects and monotony. The last one is even more significant
in the case of automated driving, where, due to the lack of active involvement, the driver
is prone to become fatigued. At SAE level 2 and SAE level 3 of automated driving, the
driver is out of the loop for prolonged periods, however they are expected to take over
the control in certain scenarios [41]. It might lead to serious consequences if the driver
is not alert and misses this action. Therefore, the ability of detecting drivers’ drowsiness
not only increases the safety of manual driving, but it facilitates the widespread adoption
of automated driving. For such reason, the development of a robust and reliable machine
learning-based driver assistant drowsiness detector system is a currently active, widely
studied research topic.

Nevertheless, for the identification of drivers’ drowsiness, various methods have been pro-
posed using different indicators, such as subjective self-assessment, expert assessment,
reaction time measurements, the percentage of eyelid closure over the pupils (PERC-
LOS) and different physiological signals, like electroencephalograms (EEG) describing
brain function, electrooculograms (EOG) representing eye movements, electrocardiogram
(ECG) representing heart waves, breathing, etc [27]. Unfortunately, in practice, all these
indicators can be described as large feature vectors at every timestamp, which enlarges
the input data’s dimensionality significantly, also it is likely to contain redundancy. When
dealing with machine learning problems, high dimensionality raises various issues, for
example it increases the space and computational complexity, makes the clustering of
similar features challenging, increases the risk of overfitting the machine learning model
[39], moreover, it decreases the perspicuity and the testability of the given system. To
overcome these issues, many dimensionality reduction methods exist, focusing on different
main goals.

The goal of my work is to design and implement a robust feature selection algorithm
that can be later utilized for the development of a drivers’ drowsiness detector. For this
purpose, an adequate data set has to be selected that can model the original problem
well enough. EEG-based features have been proven to be one of the best indicators of
drowsiness as a drowsiness detector model is able to provide accurate predictions when
trained with EEG only without other sources of information [23]. In addition, due to the
characteristics of the sensor used to measure it, large number of features can be obtained
from it, therefore, I work with a data set that contains raw EEG data and is labeled with
two-state drowsiness level values.
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The proposed feature selection method was inspired by a SOTA embedded features selec-
tion algorithm which exploits the neural network updates’ working principle for selecting
the features with the highest predictive power, namely that its weights change depending
on the actual relevance of the input. It relies on a so-called Feature Prune Layer, that
can be placed in front of the first layer of an arbitrary neural network. Its weights are
point-to-point related to the input features, so each of them is meant to represent the
importance of the corresponding feature during the whole training process. The least
important weights are deleted iteratively if certain conditions are met, until the desired
number of features is reached.

The proposed method ensures to reveal complex, non-linear relations between the features
during the training of the detector network and maximizes the amount of drowsiness-
related information extracted from a set of EEG features that was extracted from the raw
signal. As a result, I was able to reduce the feature number by 95 % with a minor deteri-
oration in the model’s accuracy and to produce a more accurate prediction when deleting
80 and 90 % of the initial features. Furthermore, the efficiency of the the proposed method
is also proven by the fact that it outperforms the widely popular Principal Component
Analysis feature selection algorithm.

In this paper the reader can first find a literature overview (Chapter 2) about the basics
of working with EEG signals and how they can be utilized for drowsiness detection, the
high dimensionality-related problems in the field of machine learning and basics of feature
selection methods. This is followed by a brief introduction of the SOTA embedded feature
selection method that primarily inspired my work. After that, I define the problem to
be solved and briefly introduce the proposed method’s architecture in Chapter 3. In
Chapter 4, we can find detailed description about the goal-directed modification of the
initial SOTA method in order to make it suitable for solving the defined problem. Finally,
in Chapter 5, I present the achieved results and evaluate them in terms of the performance
of the models trained on the original feature set and on reduced feature sets produced by
traditional feature selection algorithms and by our method, and the credibility of the
selected features based on the literature.
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Chapter 2

Literature Overview

2.1 Driver Drowsiness Detection

The field of drivers’ drowsiness detection have been actively studied in the past decades
and several solutions have been proposed. Drowsiness detection methods are commonly
grouped into the following categories based on the source of the data used for the detection:
1) behaviour-based
2) vehicle-based
3) physiological signal-based
4) hybrid methods.
The non-invasive behavior-based methods measure fatigue levels using parameters like
eye closure ratio, eye blinking, head position, facial expressions and yawning. From these
parameters behavioral features are extracted with the help of cameras and computer vision
techniques. One of the most frequently used metric in this category is the Percentage of
Eye Closures (PERCLOS) which is the ratio of eye closure over a period. Vehicle-based
methods aim to detect fatigue from the different states of the vehicle, such as lane changing
patterns, speed variability, steering wheel angle, etc. To collect these type of data, the
employment of various sensors is required on the vehicle’s different parts. Physiological
signal-based approaches detect drowsiness based on the subjects’ physiological condition,
such as heart rate, brain changes, respiration, body temperature, etc. In order to measure
these invasive biological parameters electrodes need to be places on the subjects’ body
[38].

The classification method determines the resolution of the detection: threshold-based and
binary classification methods distinguish between drowsy and alert stages, while multi-
class classification methods can predict several levels of fatigue. Multi-class classifiers are
more suitable for estimating the severity of drowsiness, hence they can detect the drowsi-
ness in its early stage and provide early warning. Unlike the aforementioned methods
that predict discrete labels, regression methods can estimate continuous variables. The
most widely used decision making models are radial basis function (RBF), support vector
machine (SVM), artificial neural network (ANN), fuzzy interference (FI), linear discrimi-
nant analysis (LDA), receiver support vector regression (SVR), multiple linear regression
(MLR), self-organizing neural fuzzy inference network (SONFIN), etc. [27].

In the case of supervised machine learning based decision making models, ground truth
is used to label the training data; to determine the true drowsiness value of the events.
Having a reliable ground truth is crucial as its reliability and precision directly implies
the same characteristics of the decision making model. Ground truth can be obtained
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by subjects’ self-assessment, expert rating, reaction time and physiological signals [27].
In many studies, EEG has been reported to be the most reliable indicator of drowsiness
as it directly describes the drivers’ physical state [6][22]. However, its main drawback is
that it requires sensors to be attached to the drivers’ body, which may obstruct them. In
addition, EEG signals might vary based on the subjects’ age, gender, physical state, etc
[35].

All things considered, several aspects has to be taken into account when developing a
drowsiness detector system. Usually, the data acquisition is cumbersome and expensive
as it requires either an environment simulator or a vehicle equipped with all the necessary
pricey sensors. In addition, most of the measures used for producing ground truth data are
highly subject-dependent. These factors altogether make the development of an effective,
reliable drivers’ drowsiness detector extremely challenging.

2.2 Electroencephalogram (EEG) Features

2.2.1 Measuring EEG Signals

Electroencephalograpy measures the electrical activities of different brain regions using
surface electrodes placed on the scalp. Elecroencephalogram (EEG) is a graphic display
of potential differences between two sites of the brain recorded over time [21]. EEG can
be used to diagnose several medical conditions, such as epilepsy, Parkinson’s Disease,
autism, anxiety, sleep disorders and insomnia an many more. Moreover, different fields of
research have also utilized it, namely brain-computer interfaces, biometrics, neuroscience
and clinical applications, neuromarketing [45].

The International Federation of Clinical Neurophysiology standardized the electrode place-
ment into the so-called 10-20 system. This system requires the use of at least 21 electrodes
and enables the measurements to be proportional to the size and shape of the skull, pro-
vides an adequate coverage of the entire head and expresses the electrode designations
in terms of brain areas. The designations consist of a letter which refers to the region
of the brain (F: frontal, C: central, T: temporal,P: posterior, and O: occipital) and from
a number which differentiates between left and right homologous regions - odd numbers
indicate the left, even numbers indicate the right hemisphere, while "z" designation refers
to the midline - in such way, that lower numbers reflect positions closer to the midline
(Figure 2.2) [24].

Figure 2.1: Raw EEG signals recorded on various electrodes.
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Figure 2.2: The ten-twenty electrode system of the International
Federation [24].

2.2.2 EEG Feature Extraction

A wide range of features can be extracted from a raw EEG data (Figure 2.1) describing
its characteristics which are used in different applications, however, in this paper, I only
focus on features relevant to drowsiness detection. Based on [46] these can be categorized
into the following groups: time-domain (mean, median, variance, skewness, number of
zero-crossing, etc), frequency-domain, nonlinear, entropies, undirected spt., directed spt.,
complex networks, of which FFT-based features are the most commonly used in drivers’
drowsiness detector systems (most popularly using 1 min time windows to extract the
features) [27]. The Power Spectral Density (PSD) of the signal plays a vital role in calcu-
lating the frequency-domain features. It can be obtained with the Fast Fourier Transform
algorithm (FFT) [34]), Welch’s method [48] or Thompson multitaper method. Besiedes
the widely favoured Fourier Transform, the signal can be transformed from time-domain to
the frequency domain using wavelet decomposition [3] or matching pursuit decomposition
[11] as well. While Fourier Transform decomposes the signal into sinusoids, in the case of
wavelet decomposition, the decomposition is done by an underlying mother wavelet func-
tion. According to [46] the most frequently used frequency-domain features in all fields
of EEG analysis are the relative powers of the most commonly used frequency bands,
namely: delta (δ, 0.5–4 Hz), theta (θ, 4–8 Hz), alpha (α, 8–12 Hz), beta (β, 12–30 Hz),
and gamma (γ, >30 Hz). However, different ratios between these bands also appear in
EEG signal analysis: θ+α

β , α
β , θ+α

α+β , θ
β , θ

θ+α , α
θ+α , θ+α

θ+β [4][32].

2.3 Feature Selection (FS)

2.3.1 Dimensionality Reduction in ML

In today’s digital era tremendous amount of data is generated in every second with high
dimensional features which are ubiquitous in various data science fields. When applying
data mining and machine learning models on high dimensional data, the Curse of Dimen-
sionality (COD) phenomenon is likely to occur: the volume of the space increases together
with the dimensionality, causing the data to become sparse [15] - this usually means the
features having zero values. A model trained with sparse data is prone to learn the noise,
it cannot generalize, well which leads to overfitting and performance degradation on un-
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seen data [28]. Besides, high dimensional data enhances the computational burden and
decreases the perspicuity and the testability of the given problem.

To alleviate the aforementioned obstacles, many dimensionality reduction techniques have
been introduced so far. During the dimensionality reduction process, the features that are
redundant and not relevant to the task are omitted, yielding a more compact, more easily
interpretable representation of the target concept with the most relevant features [2]. Di-
mensionality reduction is commonly categorized into two main groups: feature extraction
(FE) and feature selection (FS). Feature extraction compresses the high dimensional fea-
ture set into a smaller one by constructing a new, lower dimensional feature space, usually
by applying linear or nonlinear projection of the original set. It is preferred in applications
where only the raw data is available which is not interpretable for a learning algorithm.
However, in this case, the problem of further analysis arises, as we cannot retain the physi-
cal meaning of the new features. Feature selection, on the other hand, means the selection
of a subset of relevant features from the initial set, keeping the physical meanings of the
original features [28].

2.3.2 Feature Selection Categories Based on Selection Strategy

Feature selection is one of the most commonly used dimensionality reduction methods.
Its general working principal consists of four main steps: generation of a feature subset,
evaluation of the feature subset, checking the termination condition, result validation [29].
Feature selection methods can be categorized based on different perspectives. In terms
of the availability of the labels in the training data set, feature selection methods can be
divided into supervised (labels are available), unsupervised (labels are not available) and
semi-supervised methods [28]. Aligned with the original problem statement, supervised
solution was preferred in this study. Another categorization type relies on the selection
strategy and distinguishes three main methods: filter, wrapper, embedded [30].

Figure 2.3: Flowchart of the feature selection process in different
FS categories: Filter, Wrapper, Embedded [10].
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2.3.2.1 Filter Methods

Filter methods utilize the data’s intrinsic properties to assess feature importance. They
calculate a score for each feature using different evaluation criteria which can be both
univariate (examining each feature individually) and multivariate (multiple features are
examined together in a batch). The features are then ranked according to these scores
and a specified number of them with the lowest scores are filtered out, resulting the most
predictive subset of features. In the case of filter methods, the selection is performed before
the model training, therefore, the FS is considered as a pre-processing step. Among its
most significant character traits, its independence from any learning algorithm should be
mentioned, which makes filter methods usually faster than others, but raises the risk that
the selected features may not be optimal for the given algorithm [28][30].

Several evaluation criteria exist for separating the features which approach the problem
form different perspectives. The first option is to examine feature discriminative ability
and select features such that within-class distance [17] is as small as possible while between-
class distance [17] is as large as possible [31], meaning that features that strongly represent
the given class and differ the most from features in other classes are selected into the
subset. Some popular algorithms based on the aforementioned principle are the Fisher
Score [12] and the Linear Discriminant Feature Selection [44] algorithms. Another idea is
to exploit correlation measures, either to remove redundant features which can be applied
in case of unsupervised learning as well, or to select the most similar - highly correlating
- features to the target variable if labels are provided. For the first scenaio, Principal
Component Analysis (PCA) is a widely used method which will be further discussed in this
paper in Section 2.4.1. For the latter scenario, various statistical measures can be used,
including Pearson’s correlation coefficient (linear), ANOVA correlation coeff. (linear),
Sperman’s rank coefficient (nonlinear), Kendall’s rank coeff. (nonlinear), Chi-Squared
test and mutual information. Their applicability for a given problem depends on the data
variable types.

2.3.2.2 Wrapper Methods

In contrast to the filter methods, in the case or wrapper FS methods, the learning algorithm
has to be defined, in fact, wrappers exploit their black box nature to score subsets of
features according to their importance and predictive power. Wrappers work iteratively,
repeating the following steps until a stopping criteria is satisfied: they generate a subset
from the initial features which are then evaluated with the help of the predefined learning
algorithm [28]. The stopping criteria is usually defined as the combination of the desired
number of selected features and the highest possible learning performance achieved when
training the model with this subset.

Besides the learning algorithm and the stopping criteria, the space search strategy also has
to be selected. Sequential search methods (also called hill-climbing or steepest ascent) are
search strategies that use greedy techniques to examine features sequentially. They either
start from the initial set of features and eliminate them one by one (sequential backward
selection (SBS)) or start with an empty set and add features one by one (sequential forward
selection (SFS)). One shortcoming of this method is that it can only guarantee local
optimality. Genetic algorithms add some randomness to the search procedure, hence help
to overcome the local optimum problem [1][30]. Other feature subset selection algorithms
are the best-first search, branch-and-bound search, etc. [33][1].
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Unfortunately, it is perceptible that in terms of speed, wrapper methods are not so efficient,
due to the huge search space - 2N where N is the number of features [30] -, which is even
more problematic when dealing with very large sets of features. While some criticize this
property of theirs and blame it for wrappers’ rare application in practice [28], others claim
that choosing an efficient search strategy can alleviate this obstacle [14].

2.3.2.3 Embedded

The embedded feature selection method is a trade-off between filter method’s high speed
but low accuracy and wrapper method’s high accuracy, but expensive computational re-
quirements. According to its descriptive name, in the case of embedded methods, the fea-
ture selection is integrated into the selected machine learning model’s training procedure;
the best feature subset is produced during the training of the chosen learning algorithm.
Therefore, the performance of the model highly depends on the selected features. It has
the merits of interacting with the model, but due to the lack of iterative feature subset
evaluation, it is significantly more efficient than wrapper methods [28]. Similar to the
wrappers, embedded methods are also not confined to supervised feature selection and
can be applied for unsupervised feature selection [30].

The most widely used embedded methods are the regularization methods which aim to
minimize fitting errors in order to fit the model to the feature set. To do so, they force
feature coefficients to be as small as possible simultaneously [28]. Some popular example
for the regularization approach are the LASSO, RIDGE and Elastic Nets. An embedded
feature selection can also be done by any kind of tree-based algorithm, such as Decision
Tree, RandomForest, ExtraTree, etc [40].

2.4 Feature Selection Methods Used In This Paper

In this section, next to the state-of-the-art feature selection method that inspired my work
in the first place, I am going to introduce the widely popular PCA algorithm that was used
as baseline in this paper in order to evaluate the performance of the proposed method.

2.4.1 Principal Component Analysis (PCA)

As mentioned previously, Principal Component Analysis (PCA) is a widely used - due to
its easy application and non-parametric property - dimensionality reduction method that
relies on linear algebra techniques. It projects the original, high-dimensional data into new
dimensions in order to re-express it and explore hidden qualities. In a mathematical sense,
the goal is to find the most meaningful basis by performing basis change transformations
[42].

To better understand its working principle, imagine the data as an m × n matrix (X),
where m denotes the number of variables (features) and n is the number of data points or
samples. The first step of the PCA is to examine the correlation between the variables:
to understand how the different variables vary from the mean with respect to each other.
This is done by computing the the covariance matrix (Xcov = XT X). The next step is
to find the principal components. Principal components are uncorrelated, new variables
constructed as linear combinations of the initial variables in such a way, that the infor-
mation they contain is compressed into the first components. Geometrically, principal
components express the directions of the data where the amount of variance is maximal.
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Figure 2.4: The first principal component is the direction along
the pink line: the dispersion of the data points is the
largest along that line (first graph). Along other direc-
tions (second graph), the dispersion of the data points
is smaller [18].

As demonstrated in Figure 2.4, the first principal component is the direction along the
pink line, as the dispersion of the data points is the largest along that line. In practice,
finding these directions is achieved by determining the eigenvectors and eigenvalues of the
covariance matrix. The eigenvectors indicate the the directions of the axes where there is
the most variance (principal components), while eigenvalues describe the amount of vari-
ance in each principal component. The ranking of the eigenvectors gives corresponding
eigenvectors - hence the principal components - in order of significance. After that, we
keep as many eigenvectors as the desired number of final features (P ). The final step is
to transform the original data set onto the axes represented by the principal components,
which is done by a matrix multiplication: Xnew = PXT [19][42].

2.4.2 Stepwise Weight Pruning Algorithm (SWPA)

SWPA is a novel embedded feature selection method proposed by [20]. Its main idea is
to incorporate a so-called drop-in layer into a neural network architecture and prune its
weights iteratively until the most important ones are left. Weight pruning refers to the
process of removing parameters from an existing, accurate network. The method exploits
the neural network updates’ working principle, namely that its weights change depending
on the actual relevance of the input. If the drop-in layer (W ∈ R1×d where d is the
number of input elements) is the first layer in the network, and its weights are initialized
to ones, the output of this layer O = {w1x1, ..., wdxd} will be the multiplication of the
corresponding input elements. Hence, if we set a weight wi to 0 in the drop-in layer, that
directly means that we removed input element xi. Algorithm 1 summarizes the method’s
working principle.

The SWPA has been tested with 3 different data sets:
1) Smartphone Dataset for Human Activity Recognition (HAR) which contains different
smartphone sensor data (e.g. accelerometer, gyroscope, etc.) recorded while subjects were
performing basic activities like walking, lying, etc.
2) ISOLET which is a speech dataset containing recordings of subject pronouncing each
letter of the alphabet
3) MNIST handwritten digits from 0-9 dataset which consist of 28× 28 gray-scale centered
images.
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Algorithm 1 Original Stepwise Weight Pruning Algorithm (SWPA) [20].
Input: training data X ∈ Rn×d, training labels Y , base network fθ(.), Drop-in Layer W , Step Counter n ∈ Z⩾1.
Selection factor f ∈ [0, 1]
for count in 1, ..., n + 1 do

O = {w1x1, ..., wdxd}
if count > 1 then

k ← (1−f)∗d
n

Sort the weights W of the Drop-in Layer based on their absolute value.
Set the least k of them to 0.

end if
Train the base network on O

end for
Take the features corresponding to the top f fraction of the weights in W based on their absolute value and train
them on the base network.

Figure 2.5: Modified network with the drop-in layer [20].

For the experiments they use a 3 layer feedforward neural network with a reduction factor
of 2 which is trained for 20000 epochs if there is no degradation of the performance on
any continuous set of 2000 epochs. The most important variables in the SWPA are:
1) the Step Counter (n): the features that have to be deleted in order to reach the desired
number are removed in equal-sized groups in n steps.
2) the Selection Factor (f) which defines what percent of the initial feature number should
be selected into the final subset. According to the paper, these variables are set to the
following values: n = 4, f = 0.1.

To evaluate the achieved results, besides the random assignment, they use the Permutation
Feature Importance (PFI) as a baseline with the number of random permutations of 10
which is an importance attribution technique commonly used for random forests. SWPA
outperforms both the random assignment and the PFI on all datasets when the 10% of
the original number of features are selected: for example on the MNIST dataset it yielded
0.941 accuracy, while using PFI the achieved accuracy was 0.893 and with random selection
0.714. With these results SWPA has proved itself to be a simple, yet efficient embedded
feature selection method which is easy to apply in various tasks as the drop-in layer can
be incorporated into any meural network architecture [20].
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Chapter 3

Problem Statement

The goal of my work is to design and implement a robust feature selection algorithm that
can be later utilized during the development of a drivers’ drowsiness detector. According
to the outstanding results achieved by SWPA introrduced in Subsection 2.4.2, its easy
applicability and embedded property, I have found it to be a satisfactory choice for the basis
of the designed FS method. However, the paper stays vague about the implementation
of the drop-in layer. Although the description states clearly that the feature scoring
depends on the weights in the drop-in layer which is the first layer of the used neural
network architecture - therefore its weights change according to the importance of the
input elements -, by observing Algorithm 1, the drop-in layer seems to be left out of the
parameter update, as they always retrain the base network on its output [20].

Figure 3.1: Flowchart of the proposed feature selection algorithm.

For this reason I rethink the idea proposed by [20] and complete it with additional prop-
erties in order to make it better suitable for the introduced problem. The flowchart of the
final algorithm can be seen in Figure 3.1. This solution also strives to exploit the neu-
ral network updates’ working principle, hence, I implement a layer similar to the drop-in
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layer, called Feature Prune Layer (FPL) which is has the same size as the number of input
features as is point-to-point related to them. The network is then trained until any of the
FS selection stopping criteria is fulfilled. The FPL remains the part of the network for the
whole training process and a pruning step is performed on it if any of the feature prune
criteria is fulfilled. The pruning consist of removing the k weights from the FPL with the
lowest magnitudes, where k is defined as in the case of SWPA. The feature selection part
is followed by the feature subset evaluation, when the base network - without the FPL
- is retrained from scratch with the selected feature subset. These two main parts are
altogether considered as the proposed feature selection algorithm, and the performance is
deduced from the accuracy achieved in the feature subset evaluation part.

Summarily, the proposed algorithm’s task is to select the defined number of best predictive
features from a set of EEG based features which are feasible for driver drowsiness detection
according to the literature. To find the best setup of the algorithm, several tests have
been performed examining the impact of the different hyperparameters. In the following
chapter I am going to detail the aforementioned goal-directed modification of the SWPA,
the feature pruning and feature selection stopping criteria, the hyperparameters in the
model and the motive for their selection.
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Chapter 4

Proposed Work

4.1 Data Preparation

4.1.1 Multi-Channel EEG Recordings Dataset

In this study the [8] public data set (processed) is used which is a processed version of
[7] (original). The original data set contains multi-channel EEG recordings that were
recorded during a sustained-attention driving task with the help of 27 subjects (aged
between 22-28). During a 90-minute experiment, conducted in a VR driving environment
with a dynamic driving simulator, the subjects were asked to keep the car in the center
of the lane and respond quickly to the randomly introduced lane-departure events. These
perturbations made the car drift to the left or to the right side of the lane (deviation
onset). For obtaining the drowsiness level of the driver, in addition to the deviation onset,
response onset (the subject steering the wheel in case of a departure event) and response
offset (the car arriving back to its original position) occurring times have been recorded.
These indicators of the drivers’ promptness are instantaneous measures of the drowsiness
level that can be calculated using the method described in [47]. The EEG signals were
collected with the help of a wired EEG cap (Figure 4.1) with 32 Ag/AgCl electrodes (of
which 2 were used as reference) based on a modified international 10-20 system [7].

Figure 4.1: The layout of the electrodes in the EEG cap used for
the experiments in [7].
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The writers of paper [9] have produced the processed, balanced version of the original,
pre-processed data set where the EEG data was digitalized at 500 Hz, an 1-Hz high-pass
and 50-Hz low-pass filter was applied on it, followed by artefact rejection. They
down-sample the EEG signals to 128 Hz, then extract equal-long, 3-second samples.
Each sample was labeled with a 2-satate drowsiness level - drowsy or alert - using the
aforementioned [47] method. The writers have devoted special effort to create a compact,
balanced dataset, containing the most representative samples from different subjects, by
carrying out the following steps:
1) they have discarded sessions where the number of samples from either class is less than
50
2) in case of multiple sessions belonging to the same subject, they have chosen the one
with the most balanced class distribution
3) from each session they have selected alert samples with the shortest- and drowsy
samples with the longest response time.

Step 1) and 3) ensures the balancedness of the classes, while step 2) results a balanced
data from different subjects, hence, it is not likely that the classifier will be prone to
favor the prediction of a specific subject. The final data set contains 2022 3 second long,
pre-processed EEG samples collected from 11 different subjects [9].

4.1.2 EEG Feature Extraction

The chosen data set introduced Section 4.1.1 contains 3 second long time-domain EEG
signals, referred as segments. In order to convert these signals into an interpretable format
for any classification algorithm, we have to extract features that comprehensively describe
the data set. Therefore, for every segment the commonly used frequency-domain EEG
features introduced in Section 2.2.2 are determined:

α-PSD, β-PSD, θ-PSD, θ+α
β , α

β , θ+α
α+β , θ

β , θ
θ+α , α

θ+α , θ+α
θ+β

The Power Spectral Density (PSD) is calculated with the help of the Welch’s method [43],
using a window size of 3 seconds. These aforementioned features are obtained from the
signals measured individually on every electrode found on the EEG cap used to record
the signals Figure 4.1. In addition, the calculated values are averaged over the frontal,
the temporal and all the electrodes, as - according to the literature - some EEG frequency
bands are more active on the frontal or on the temporal part of the brain Namely, these
electrode positions are [7]:

Fp1, Fp2, F7, F3, Fz, F4, F8, FT7, FC3, FCZ, FC4, FT8, T3, C3, Cz, C4, T4, TP7,
CP3, CPz, CP4, TP8, A1, T5, P3, PZ, P4, T6, A2, O1, Oz, O2, frontal, temporal, all

These calculations (Figure 4.2) have resulted a 330 element feature vector for each 3 s
long EEG segment Figure 4.3. This feature set serves as the input for the designed feature
selection algorithm, which aims to select the desired number of them with the highest
predictive power. For the development phase, the data set has been split into train and
test sets in 70 - 30 % ratio, while ensuring that the labels stay balanced by not letting the
difference between the number of drowsy and alert labels to be greater than 20.
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Figure 4.2: The process of feature extraction from time-domain
EEG segments.

Figure 4.3: The structure of the generated EEG data set.

4.2 Used Metrics

In order to introduce the design and planning process of the proposed solution, it is
crucial to keep the final goal in mind which includes the awareness of the desired outcome
measured with the chosen metrics. With the intention of making the following sections
easily readable, in this subsection, I introduce the the two main metrics used in this paper.

Mean Average Precision (mAP) [%]: As far as classifiers are concerned, mAP is
one of the most important indicators of their performance. It is defined as the average
precision calculated separately for each individual class, averaged over all the classes.
Ideally, this value is determined separately for the training set during the training of the
classifier and for a different test set during the validation which is carried out after each
specified number of iterations (epochs).

Overfitting [%]: The difference between the train and test mAP refer to the generaliza-
tion ability of the classifier. If the test mAP is lower than the train mAP, it implies the
so-called overfitting phenomenon: the classifier is unable to perform well on unseen data.
Here, I simply define the overfitting metric as the signed difference between the train and
test mAP values. Therefore, the aim is to achieve as small overfitting value as possible.
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4.3 Development Of The Feature Selection Method

4.3.1 Iterative Feature Pruning

Similarly to the SWPA (2.4.2), the feature scoring method of the proposed embedded FS
method algorithm also relies on the neural network updates’ working principle. A so-
called Feature Prune Layer (FPL) is attached to the front of the classifier network (base
network), which has the same size as the number of input features and is point-to-point
related to them. Consequently, during the training, its weights change according to the
importance of the input features, hence, deleting a weight from the FPL means the removal
of the corresponding feature from the original feature set.

If a predefined feature pruning criterion (see Section 4.3.2) gets fulfilled, a subset of the
remaining weights in the FPL will be deleted. The amount of the deleted weights in a
pruning step is defined as follows:

Ndeleted_weights = f ∗ d

n
(4.1)

where d corresponds to the remaining number of features in the FPL, n is a counter of the
pruning steps and f ∈ [0.1, 0.4] is a constant that directly contributes to the amount of
removed weights in a given step. Choosing a higher f results a coarser pruning strategy.
Nevertheless, the use of n prompts that the further we move with the training the more
gentle the weight pruning gets. The feature scoring and the iterative feature pruning
process is demonstrated by Figure 4.4.

Figure 4.4: A few steps of the iterative feature pruning process.
The vertical axis shows the corresponding scores for
each feature. As we move forward with the training,
the scores change according to the feature importance.
At a given pruning step, the k number of features
with the smallest magnitude is deleted, until only the
desired number of features remain.
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4.3.2 Feature Pruning Criteria

A pruning step is performed on the FPL if any of the following feature pruning criteria is
fulfilled:
1) The test mAP (mAP ) reaches a predefined value (final_mAP )
2) The predefined number of epochs is reached (max_epochs)
3) The overfitting reaches a pedefined level (max_overfitting)

Commonly, when a neural network model is pruned, its performance slightly drops and
it needs a few iterations of training to regain its earlier accuracy. Depending on the
coarseness of the weight pruning defined by Equation 4.1 and the given training phase, the
degradation of the accuracy varies in the different scenarios. For example, if Ndeleted_weights

is a large number, a significant amount of the weights is going to be deleted from the FPL
even in the first pruning step, which is likely to cause a heavier accuracy degradation
than if it was pruned with a smaller Ndeleted_weights. In addition, the longer we train the
network, the more confident it gets, meanwhile, the pruned amounts will decrease due to
their inverse relationship with the step counter. Because of this, it is not ideal to train the
network for the same number of epochs between each feature pruning step, as it may need
dissimilar amount of iterations to regain its accuracy. As discussed previously, the test
mAP is one of the best indicators of a network’s performance, hence, I use it to determine
the appropriate moment of the next pruning step. According to the first feature pruning
criteriom, the next pruning step can be performed if the network’s accuracy reaches the
predefined final_mAP after the last reduction.

It is possible that the network will never be able to reach the desired final_mAP after
a certain point. In order to prevent the training from getting stuck in an infinite loop,
according to the second criterion, a feature pruning step may also be carried out if the
network has been trained for a predefined maximum number of epochs (max_epochs) since
the previous one. Lastly, a pruning step also takes place if none of the aforementioned
criteria is fulfilled, but the overfitting reaches the max_overfitting threshold. This is
likely to happen if Ndeleted_weights is too small, and the pruning is performed in a slower
pace than the network’s regeneration ability. A summary of the selected values for the
previously discussed thresholds can be found in Table 4.1.

Table 4.1: Thresholds for the feature pruning criteria.

final_mAP max_epochs max_overfitting

[0.65, 0.95] 20 0.05

4.3.3 Algorithm Structure

The embedded nature of the proposed FS algorithm is due to the fact that the feature
selection process is carried out during the training of the classifier network, while continu-
ously performing the feature pruning introduced in the previous subsections. The training
may be terminated if any of the following feature selection stopping criteria is fulfilled:
1) The desired number (des_feat_num) of features are left in the feature set which is
the ideal case
2) The network was trained for a maximum number of epochs (max_epochs_final). This
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ensures that the training will not get stuck in an infinite loop if the desired number of
features cannot be reached with the selected hyperparameters.

After the termination, the final subset of selected features is evaluated on the base classifier
network - the same architecture but without the Feature Prune Layer. This is considered as
the end of the feature selection process and the final results are the ones achieved with this
step: the performance of the base classifier with the selected feature subset (newset_mAP ,
newset_overfitting). The whole process of the feature selection is demonstrated by
Algorithm 2.

Algorithm 2 Proposed Feature Selection Algorithm.
Input: original EEG feature set [1×k]
network ← initialize ▷ FPL to ones, rest randomly
n← 0 ▷ pruning step counter
epochs← 0 ▷ epochs between two pruning steps
epochs_final← 0 ▷ all epochs during training
mAP ← 0, overfitting ← 0
while (k > des_feat_num) OR (epochs_final < max_epochs_final) do

if (mAP ≥ final_mA) OR (epochs ≥ max_epochs) OR (overfitting ≥ max_overfitting) then
k, n =← perform weight pruning on the FPL
epochs ← 0

end if
mAP, epochs, epochs_final← train()

end while
newset_mAP,newset_overfitting← take the new k-sized feature subset and train the base network on it from
scratch

4.3.4 Hyperparameter Selection

While reading the previous subsections, it was perceptible that during the FS process
some of the defined thresholds were handled as variables. The changing of these variables
strongly influences the outcome of the FS algorithm: the composition of the final feature
subset. While we might have an assumption about how the changing of these variables
individually affect the outcome, the problem gets more complex if we combine them.
Moreover, due to the neural networks’ black box nature, they act as hyperparameters
and it is impossible to define their value consequently. The proposed FS method has two
hyperparameters:
1) f ∈ [0.1, 0.5] parameter which directly contributes to the amount of removed weights in
a given step. Choosing a higher f results a coarser pruning strategy. (Equation 4.1)
2) final_mAP ∈ [0.65, 0.95] which is on of the feature pruning criteria (see Section 4.3.2).

In order to determine the best selection of these hyperparameters for the FS method, I
have conducted several experiments testing their different values introduced by Algorithm
3.

Algorithm 3 Experiments For Hyperparameter Selection
results← []
for final_mAP in 0.65, ..., 0.95 do

for f in 0.1, ..., 0.5 do
newset_mAP ← select the des_feat_numof number of features from the original set with final_mAP

and f
results.append( newset_mAP , newset_overfitting)

end for
end for
find the best performance in results and take the corresponding hyperparameters
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4.3.5 Feature Prune Layer Realization

In terms of the implementation, the FPL is realized the same way as a linear layer, but
instead of matrix multiplication it computes the Hadamard product between its weights
and the input. When talking about neural network pruning, we can distinguish two main
types based on the structure of the weight removal: structured and unstructured pruning
[5]. In the case of structured pruning entire groups of weights are removed (like channels,
filters or layers), while unstructured pruning corresponds to deleting weights individually
by setting their value to zero. For removing weights from the FPL unstructured pruning
is used. When implementing unstructured pruning in practice, such difficulty arises that
during the parameter update, the zeroed weights in the networks’ layers also get updated
regardless of their current value. To overcome this issue, instead of actually setting the
weights in the layer to zero, I use a mask with which the weights of the FPL are multiplied
in every forward pass. This way, in every pruning step, only the mask gets modified,
therefore there is no need to detach the FPL from the computational graph, which avoids
the decrease of the algorithm’s speed. The illustration of the FPL’s implementation can
be seen in Figure 4.5.

Figure 4.5: Architecture of the network used for feature selection.

4.3.6 Classifier Network

Similarly to the SWPA, I also use a small network with 4 hidden layers for the classifica-
tion. In order to deduce the most beneficial size for these layers, I have trained multiple
networks with different layer sizes on the whole feature set. Each training session ran for 70
epochs, using Adam optimizer, a batch size of 64 and an initial learning rate 0.001. Every
architecture has been tested 4 times and the average of the achieved results is demon-
strated in Table 4.2. The do sign between the layers in the network architectures stands
for the dropout layer which serves as a regularization technique by randomly zeroing out
some elements of the input with probability p using samples from a Bernoulli distribution
[16]. Here, I used probability p = 0.5. The mAP and overfitting are defined the same
way as described in Section 4.2. The avg and std extensions refer to the average and the
standard deviation of the performed tests’ results respectively.
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Table 4.2: Results of predicting the drowsiness labels using different neural network ar-
chitectures.

Name Network Architecture mAPavg overfittingavg mAPstd overfittingstd

arch1 64; 32; 16; 2 0.893 0.029 0.004 0.0015
arch2 64; do; 32; do; 16; do; 2 0.881 0.016 0.0043 0.009
arch3 128; 64; 32; 2 0.907 0.032 0.0042 0.0042
arch4 128; do; 64; do; 32; do; 2 0.899 0.016 0.0015 0.0013

arch5 256; 128; 64; 2 0.926 0.037 0.042 0.004
arch6 256; do; 128; do; 64; do; 2 0.902 0.014 0.004 0.009

Arch4 seems to provide the most stable training as the standard deviation of both metrics
is the smallest in this case. Nevertheless, arch5 achieves the highest mAP, and given
that the rest of the metrics do not vary significantly between the different architectures,
the 256; 128; 64; 2 network architecture is chosen to be used for the further experiments.
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Chapter 5

Results

5.1 Reducing The Feature Subset

The aim of the experiments introduced in this section is to find out to what extent it
is possible to reduce the feature set without a major degradation in the classification
performance. The top 5, 10, and 20 % of the original feature set are examined. For
finding the desired number of features, the proposed FS method is tested with all the
possible hyperparameter settings described in Section 4.3.4. As f varies in the range of
[0.1, 0.4] with a step size of 0.1 and final_mAP varies in [0.6, 0.95] with a step size of
0.05, all their variations resulted 32 test cases for each feature subset size. Each test
case resulted a feature subset, with which the base network was trained 4 times, and the
achieved results have been averaged. Table 5.1 summarizes these results: the 3 bests
performing test cases are shown for each feature subset, compared to the case when the
classifier is trained on the original feature subset.

Table 5.1: Results of different sized feature subsets generated with the proposed FS
method.

All features (330)
mAP overfitting
0.926 0.037

TOP 20 % TOP 10 % TOP 5 %
Results Hyperparameters Results Hyperparameters Results Hyperparameters

mAP overfit. f
final

_mAP mAP overfit. f
final

_mAP mAP overfit. f
final

_mAP
0.953 0.033 0.2 0.95 0.941 0.028 0.2 0.7 0.916 0.01 0.2 0.75
0.948 0.039 0.3 0.95 0.935 0.027 0.2 0.65 0.906 0.022 0.2 0.7
0.946 0.031 0.3 0.9 0.931 0.039 0.2 0.9 0.901 0.016 0.3 0.75
0.916 0.036 0.3 0.75 0.887 0.017 0.4 0.9 0.795 0.002 0.3 0.95

The results indicate that it is possible to reduce the original feature number by 95 % with-
out significant performance degradation: in the best performing test case, the classifier’s
accuracy is 91.6 % accompanied by 1 % overfitting, which is just slightly worse from the
results achieved when training with the entire feature set: 92,6 % mAP and 3.7 % over-
fitting. This proves that the proposed FS algorithm is able to select the most important
features in terms of their contribution to the prediction. Moreover, when reducing the
feature number by 90 % and 80 %, the classifier’s accuracy increases by 1.5 % and 2.7
% respectively. At first thought, this phenomenon might be unexpected, as one would
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think that the loss of information due to the reduction of the input will definitely lead to
a performance degradation. However, in a recent study, it has been proven that - even
linear, correlation-based - feature selection indeed can improve the performance of a clas-
sifier neural network model [37]. This might be possible as feature selection also reduces
the noise in the input data, which helps the model to better generalize.

A general observation is that f has a stronger impact on the outcome than final_mAP.
When training with a very small f , the pruning is performed in such slow steps, that the
desired number of features cannot be reached within the maximum iteration limit. On
the other hand, if its too large, the weights are removed sooner than their value would
stabilize, which leads to an improper selection strategy. Changing the final_mAP does not
evoke significant differences: with the fixed value of f = 0.2, the results of the test cases
remain close to each other even when choosing vastly different values for final_mAP - see
the test cases for choosing the top 10 % of the original features. Nevertheless, f = 0.2 and
final_mAP = 0.75 seems to be an advantageous hyperparameter combination for selecting
the top 10 % of the features, and as we have seen, the changing of the final_mAP does
not have a significant effect on the outcome, further experiments are carried out using this
setting.

5.2 Reproductibility

The EEG cap that provides the data has a quite dense electrode distribution, meaning that
the signals measured on the adjacent electrodes may be similar. Therefore, the original
feature set with PSD values for each electrode is likely to contain redundant information
and many correlating features. Due to the random initialization of the weights in the
classifier network, it can happen that in different runs, among the correlating features,
different ones will be selected into the final subset. This will result slightly different
performances in different runs when the feature selection is performed with the exact same
settings. However, the features themselves might be different, the difference between the
comprehensive descriptive power of the generated feature subsets is negligible. This is
proven by the results in Table 5.2 which shows the performance of the feature selection
algorithm from 4 different sessions, using the same settings in each of them: f = 0.2,
final_mAP = 0.75, des_feat_num = 10 % of the original set. Similarly as before, with
each obtained feature subset, the base network was trained 4 times, and the averaged
results are presented in the table. Even though the feature subsets are not completely
the same (Figure 5.1), the performances achieved in the different sessions are close to one
another.

Table 5.2: Results of 4 different sessions with the same hyperparameter settings: f = 0.2,
final_mAP = 0.75, des_feat_num = 10 %.

experiment mAP overfitting
repr1 0.924 0.036
repr2 0.932 0.025
repr3 0.938 0.025
repr4 0.927 0.027
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Figure 5.1: The selected features in 4 different sessions with the
same hyperparameter settings: f = 0.2, final_mAP =
0.75, des_feat_num = 10 %. Each color corresponds
to a session, thus, features that are represented with
more than one color, were selected into the final subset
multiple times. This implies that these features have
the highest predictive power.

5.3 Comparison To Other FS Methods

To get a thorough view of the proposed method’s efficiency, it is compared to the widely
used PCA feature selection method and also to the random selection. The top 5, 10, and 20
% of the original feature set have been selected using the proposed method, the PCA and a
random selection. In the case of the PCA, the projection was not completed. Instead, the
des_feat_num number of features that mostly contributed to the first principal component
have been selected, and the base network is trained with them. The averaged results form
4 runs are summarized in table Table 5.3. In all three scenarios, the proposed method
outperforms both the random selection and the PCA.

Figure 5.2 shows the chosen features by the proposed method and PCA with their final
scores. The selected features are highly dissimilar in the case of the the FS methods: while
the proposed method mostly selects the sole α, θ, β PSDs, PCA assigns higher scores to
the α

α+θ feature, measured on different electrodes.

The selected features by the proposed FS method also appear in other studies as best
indicators of driver fatigue among other EEG features. In [13] they examined the rela-
tionship between reaction ability, physiological signals and driving fatigue, and concluded
that among the frequency domain features β-PSD has the greatest correlation with the
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Table 5.3: Classification performances when training with the subsets of the TOP 20,
10 and 5 % of the original features generated using different feature selection
methods.

TOP 20 % TOP 10 % TOP 5 %
FS method mAP overfit. mAP overfit. mAP overfit.

random 0.648 0.23 0.539 0.313 0.504 0.327
PCA 0.886 0.034 0.75 0.056 0.673 0.049

proposed 0.94 0.034 0.927 0.027 0.916 0.01

Figure 5.2: Selected TOP 5 % features by the proposed algorithm
(up) and by PCA (bottom).

reaction time based on Grey correlation analysis. This is due to the fact, that β waves
appear in case of excitement or alertness. The experiments carried out in study [26] in
order to detect driving sleep-onset state showed that the effect of the mutual addition
of α, β and θ waves is more satisfactory compared to when these waves are used alone.
Similarly to this conclusion, it can be seen that the proposed method always selects these
α-PSD, β-PSD and θ-PSD based features together into the final subset, regardless of the
different settings or runs Figure 5.1. Lastly, the credibility of the θ-PSD’s presence in the
final subsets is proven by the fact that hight θ activity refers to the microsleep state [36]
which indicates high level drowsiness and sleep-onset state [25].
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Chapter 6

Summary

The stated goal - the development of a feature selection (FS) algorithm that can be later
utilized for the development of a robust and reliable drivers’ drowsiness detector - has been
successfully achieved. Inspired by an idea introduced in a SOTA paper, I have designed
an embedded FS method which exploits the neural networks’ working principle for feature
scoring: the classifier network is supplemented with a so-called Feature Prune Layer (FPL)
that has the same size as the number of input features, is point-to-point related to them
and the magnitude of its weights represent the importance of the corresponding features.
In order to find the desired number of features with the best predictive power, the FPL
was pruned iteratively during the classifiers’ training. As electroencephalogram (EEG)
measures the electrical activities in the brain and has been proven to be one of the best
indicators of drowsiness, I have used this data source in this study. The initial feature set
has been constructed from frequency-based features extracted from a public data set that
contains raw EEG data recorded during sustained-attention driving tasks.

The proposed feature selection algorithm proves its efficiency by the fact that is able to
reduce the original feature set even by 95 % without major degradation in the accuracy:
using the best performing hyperparameter setting, the classifier’s accuracy drops only
by 1 % while the overfitting decreases by 2.7 %. When moderately reducing the initial
feature set, the proposed FS algorithm is able to reduce the noise and extract the vital
information. This is revealed by the results when selecting the top 10 % and top 20 %
of the initial features the classifier’s accuracy increases by 1.5 % and 2.7 % respectively.
The proposed method outperforms the random selection and the widely popular Principal
Component Analysis when reducing the original feature set by 90%: it achieves 38.8 % and
17.7 % higher accuracy respectively. Moreover, the selected features by the proposed FS
method also appear in other studies as best indicators of driver fatigue among other EEG
features, which confirms the solution’s credibility. One drawback of the introduced solution
is caused by the fact that the feature scoring relies on the weights in the classifier network,
hence in its current state, the feature selection is highly sensitive to the network’s random
initialization; the results may slightly vary in different runs. For this reason, the further
plans include discovering the stabilization opportunities for the method. In addition, I
also plan to compare the results to a widely used nonlinear FS method and finally, to
examine its generalization ability over different drowsiness indicator features.
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