]||||||||||nnunnn m = : ||| llllllllllll||l||l||l|[

MUEGYETEM 1782

Budapesti Mitiszaki és Gazdasagtudomanyi Egyetem
Villamosmérnoki és Informatikai Kar
Szélessava Hirkozlés és Villamossagtan Tanszék

hvtN © BoscH

Inspecting the robustness of BLE protocol
with fuzz testing

Author: Kepics Janos
Advisor: Dr. Csilling Akos (Robert Bosch Kft.),
Dr. Horvath Balint (HVT)

2022

Contents

1 The need for cybersecurity in wireless protocols

1.1 Cybersecurity attacks in the wild
1.1.1 Nest Thermostat
1.1.2 PhilipsHue
1.1.3 Insulin Pump
1.1.4 Smart Door Locks,
1.1.5 Tesla o
1.1.6 The Jeephack

1.2 Reasons and approaches to vulnerabilities

2 Embedded security evaluation

2.1 Theoretical security analysis
2.1.1 Design analysis oL
2.1.2 Threat and risk analysis 0oL
2.2 Practical security testingo Lo
2.2.1 Functional security testing
2.2.2 Penetration testing Lo
3 Fuzz testing
3.1 Structure
3.1.1 Message generator
3.1.2 Message publisher o000
3.1.3 Target monitor Lo
3.2 Taxonomy of fuzzingo
3.2.1 Based on prior knowledge
3.2.2 Based on fuzzed data generation
3.2.3 Based on data generation intelligence
3.3 Fuzzing embedded systemso
4 Bluetooth Low Energy
4.1 Introduction L
4.2 Host . . . o e
4.3 Controller
4.3.1 Physical layero oo
4.3.2 Link layer
5 Design and implementation
5.1 Motivation and specification
5.2 Stateof theart
5.3 Implementation

10
10
10
10
10
11

12
12
12
13
13
13
14
14
15
16

17
17
18
19
19
19

5.3.1 Message generatoro 25

5.3.2 Message publisher oL 27
5.3.3 Target monitor oL 28
Results of the execution 30
Conclusion and further development 33
7.1 Conclusion 33
7.2 Future development 33
7.2.1 Side-channel analysis during fuzzing 33
7.2.2 Handle statefulness 33

Kivonat

Mindennapjainkban rengeteg Internet of Things (IoT) eszkozzel talalkozunk, beleértve
ebbe a kiilonbféle fitness trackereket, okosgytiriiket, -6rakat. De nem csak fogyasztoi ter-
mékek, hanem sok egészségiigyi eszkoz és autodipari termék is ebbe a kategériaba tartozik,
mint példaul pacemakerek, telefonos kulcs applikaciok és vezeteték nélkiili kommunikaciot
hasznal6 szenzorok.

A legtobb rovid hatotavolsagn, kisfogyasztasa loT eszkéz a BLE (Bluetooth Low Energy)
protokollt hasznalja a kozponti eszkozzel vald6 kommunikiciohoz. Ezen a kapcsolaton beliil
a legtobb esetben nagyon személyes informaciokat oszt meg a késziilék a felhasznélorol.
A BLE protokollnak sok sériilékeny pontjat megtalaltadk mar korabbi kutatasok fuzz
teszteléssel.

Fuzzing (vagy fuzz tesztelés) az egyik legerdteljesebb automatizalt szoftver tesztelési
eljaras.A modszer 1ényege, hogy a tesztelés alatt allo eszkoznek véletlenszertien modosi-
tott, de helyes lizeneteket kiildiink, majd ezek hatasat kiilonbozé eljarasokkal vizsgéljuk.
A teszt célja egy nem vart viselkedés észlelése. A modszer nagy elénye, hogy a vizsga-
land6 rendszer pontos ismerete nélkiil is alkalmazhat6, mert a kimenet helyességét nem
kell ellenérizni.

A TDK dolgozatom keretein beliil egy Bluetooth Low Energy okos fuzzer-t mutatok be.
Dolgozatomban els6ként definidlom a sziikséges elméleti hatteret: A kiilonbozd tipusa
fuzz teszter eszkozoket és a BLE protokoll struktarajat. A kiberbiztonsigi tdmadéasokat
vezetéknélkiili kommunikacié soran és a biztonsagi tesztelést, mint ezeknek a megel6z8
lépését. A bemutatas soran részletesen ismertetem az lizenet generédtort, amely felépiti
a mutalédott {izeneteket, az iizenet publikdlot és a céleszkoz figyelSt, amelyet a tesztelt
eszkOz ébren tartasahoz és allapotanak ellenérzésére implementaltam.

Végiil, de nem utols6 sorban bemutatom az egyes BLE specifikus teszt tipusokat ame-
lyekkel a protokoll sériilékenységét ellenérzom és az elért eredményeket, amelyet IoT es-
zkOz0k tesztelése soran kaptam.

Abstract

Internet of Things (IoT) devices manifest in a variety of forms today, including fitness
trackers, rings, smart watches, but it is not just in the consumer industry. There are
medical-, such as pacemakers and automotive IoT devices, like sensors and smart keys.
Most short range, low power IoT devices use the BLE (Bluetooth Low Energy) protocol
to communicate with a master device. This communication link can contain very personal
information about the user. Several vulnerabilities exist for BLE and most of them were
found with fuzz testing by researchers.

Fuzzing (or fuzz testing) is considered as one of the most powerful automated software
testing methods. This technique relies on sending malformed messages to the target appli-
cation in order to provoke unexpected behaviour or failures. The simplicity of the method
comes from the fact that the output is not checked, therefore it can be applied without a
detailed understanding of the device under test.

In this TDK paper I present a Bluetooth Low Energy smart fuzzer, developed to test
robustness and security.

First, I define the needed theoretical background for this paper: The different type of
fuzzing tools and the structure of Bluetooth Low Energy protocol. Relevant cybersecu-
rity attacks for wireless communication protocols, and security testing to prevent them.
Second, I present the detailed functionality of my fuzzer with focus on the message gener-
ator, which prepares the mutated message, the message publisher and the target monitor,
implemented to keep alive the connection and to give feedback to the systems.

Finally, I show BLE specific test cases which checks for vulnerability in different areas
of the protocol and the results that were acquired during testing the tool on several IoT
devices.

Chapter 1

The need for cybersecurity in wireless
protocols

To discover cybersecurity and why wireless device developers should pay attention to it
I am going to look at previous real-life examples where cybersecurity vulnerabilities were
exploited. After this chapter the reader should have a general understanding on what
type of attacks and security issues should be expected in a product.

1.1 Cybersecurity attacks in the wild

1.1.1 Nest Thermostat

The Nest Thermostat is a smart device designed to control a central air conditioning
unit, based on heuristic and learned behaviour. Coupled with a Wi-Fi module, the Nest
Thermostat can connect to the user’s home or office network and interface with the Nest
Cloud, thereby allowing for remote control of the unit. It also includes a ZigBee module
for communication with other Nest devices.|1]

Jason Doyle, security researcher, identified a vulnerability in Nest products that involved
sending a custom-crafted value in the Wi-Fi service set identifier (SSID) details via Blue-
tooth to the target device, which would then crash the device and ultimately reboot it.
This would also allow a burglar to break into the house during the duration of the device
reboot (around 90 seconds) without being caught by the Nest security system.|2]

1.1.2 Philips Hue

Philips hue is a personal wireless system which contains wireless LED light bulbs and
a wireless bridge.The sytem can be configured to any of the 16 million colours and any
Android or iOS user can use it.

In August 2013, Nitesh Dhanjani, a security researcher, made a security evaluation on
the Philips hue[3], in which he came up with a novel technique to cause a permanent
blackout by using a replay attack. He discovered this vulnerability after he realized that
the Philips Hue smart devices were only considering the MD5 of the media access control
(MAC) address as the single parameter to validate the authenticity of a message. Since
the attacker can very easily learn the MAC address of the legitimate host, he or she
can craft a malicious packet indicating that it came from the genuine host and with the
command to turn the bulb off. Doing this continuously would allow the attacker to cause
a permanent blackout with the user having no other option than to replace the light bulb.

Philips Hue uses a technology called ZigBee to exchange data between the devices while
keeping resource consumption to a minimum. The same attack that was possible on the
device using Wi-Fi packets would also be applicable to ZigBee. In the case of ZigBee,
all an attacker would need to do is simply capture the ZigBee packets for a legitimate
request, and simply replay it to perform the same action at a later point in time and take
over the device.[4]

1.1.3 Insulin Pump

A security researcher named Jay Radcliffe identified [5] that some medical devices, specifi-
cally insulin pumps, could be suffering from a replay-based attack vulnerability. Radcliffe,
a Type 1 diabetic himself, set out to research one of the most popular insulin pumps on
the market, the OneTouch Ping insulin pump system by Animas, a subsidiary of Johnson
Johnson. During the analysis, he found that the insulin pump used cleartext messages to
communicate, which made it extremely simple for anyone to capture the communication,
modify the dosage of insulin to be delivered, and retransmit the packet. When he tried
out the attack on the OneTouch Ping insulin pump, it worked flawlessly, with there being
no way of knowing the amount of insulin that was being delivered during the attack.[4]

1.1.4 Smart Door Locks

Security researchers Anthony Rose and Ben Ramsey of the security firm Merculite gave a
presentation titled “Picking Bluetooth Low Energy Locks from a Quarter Mile Away” at
DEF CON 24 [6] in which they disclosed vulnerabilities in several smart door lock prod-
ucts, including Quicklock Padlock, iBluLock Padlock, Plantraco Phantomlock, Ceomate
Bluetooth Smart Doorlock, Elecycle EL797 and EL797G Smart Padlock, Vians Bluetooth
Smart DoorlockOkidokey Smart Doorlock, Poly-Control Danalock Doorlock, Mesh Mo-
tion Bitlock Padlock, and Lagute Sciener Smart Doorlock.

The vulnerabilities discovered by Rose and Ramsey were of varying types including trans-
mission of the password in clear text, susceptibility to replay-based attacks, reversing
mobile applications to identify sensitive information, fuzzing, and device spoofing. For
instance, during the process of resetting the password, Quicklock Padlock sends a Blue-
tooth low energy (BLE) packet containing the opcode, old password, and new password.
Because even normal authentication happens over clear text communication, an attacker
can then use the password to set up a new password for the door lock that would render
the device useless for the original owner. The only way to reset it would be to remove the
device’s battery after opening the enclosure. In another device, the Danalock Doorlock,
one can reverse engineer the mobile application to identify the encryption method and
find the hard-coded encryption key (“thisisthesecret”) being used. [4]

Figure 1.1: From left to right: Nest Thermostat|7|, Philis Hue[8], OneTouch Ping|9]|, OK-
LOK Smart Lock[10]

1.1.5 Tesla

Tesla Model 3 and Model Y employ a Bluetooth Low Energy (BLE) based passive entry
system. This system allows users with an authorized mobile device or key fob within a
short range of the vehicle to unlock and operate the vehicle, with no user interaction re-
quired on the mobile device or key fob. This system infers proximity of the mobile device
or key fob based on signal strength (RSSI) and latency measurements of cryptographic
challenge-response operations conducted over BLE.

NCC Group has developed a tool for conducting a new type of BLE relay attack op-
erating at the link layer, for which added latency is within the range of normal GATT
response timing variation, and which is capable of relaying encrypted link layer commu-
nications. This approach can circumvent the existing relay attack mitigations of latency
bounding or link layer encryption, and bypass localization defences commonly used against
relay attacks that use signal amplification. As the latency added by this relay attack is
within the bounds accepted by the Model 3 (and likely Model Y) passive entry system, it
can be used to unlock and drive these vehicles while the authorized mobile device or key
fob is out of range.[11]

1.1.6 The Jeep hack

Last, but not least I have to reference probably one of the most popular IoT and auto-
motive hack of all time: The Jeep Hack.

Two security researchers, Dr. Charlie Miller and Chris Valasek, demonstrated in 2015
how they could remotely take over and control a Jeep using vulnerabilities in Chrysler’s
Uconnect system, resulting in Chrysler having to recall 1.4 million vehicles.|[13]

The complete hack took advantage of many different vulnerabilities, including extensive
efforts in reverse engineering various individual binaries and protocols. One of the first
vulnerabilities that made the attack possible was the Uconnect software, which allowed
anyone to remotely connect to it over a cellular connection. NavTrailService was found
to have an execute method that allowed the researchers to run arbitrary code on the de-
vice. Once arbitrary command execution was gained, it was possible to perform a lateral
movement and send CAN messages taking control of the various elements of the vehicle,
such as the steering wheel, brakes, headlights, and so on.|[4]

1.2 Reasons and approaches to vulnerabilities

As you can see there are several protocols, which offer similar services and frameworks.
[0T is a huge, growing industry on its own, but also by its nature it is connected to other
industries like the medical- and the automotive field, therefore a lot of companies would
like a piece from the IoT pie. These protocols include: Bluetooth, Bluetooth Low Energy,
Wi-Fi, ZigBee, ZWave, LoRa etc. There is not one company which has monopoly over
the market, thus there is competition, which drives innovation. However, most of these
protocols are not mature enough to have good security.

From my search for different cybersecurity attacks I mostly encountered these four meth-
ods:

e Eavesdropping: As the name suggests, eavesdropping refers to a third party device
listening in on the data that’s being exchanged between two paired devices.[14] To
an extent every attack includes an eavesdropping phase.

e Man in the Middle/Relay/Replay Attacks: Man in the middle attacks involve a
third party device impersonating a legitimate device, tricking two legitimate devices
into believing that they’re connected to each other, when in reality, the legitimate
devices are connected to the impersonator. This sort of an attack enables the
attacker /impersonator to access all the data that is being exchanged between the
devices and, also to manipulate the data by deleting it or changing it, before it
reaches the respective device.[14](such as 1.1.2, 1.1.3, 1.1.5)

e Denial of Service: Since most wireless devices these days work on inbuilt battery
packs, these devices run the risk of being exposed to Denial of Service Attacks
(DoS). DoS attacks expose a system to the possibility of frequent crashes leading to
a complete exhaustion of its battery.[14] (such as 1.1.1, 1.1.2)

Chapter 2

Embedded security evaluation

As discussed in Chapter 1, modern devices can be open to various security risks. By
applying in-depth security evaluation, potential security weaknesses can be identified and
countered before an attacker can exploit this weakness in the field and cause real finan-
cial or even personal damages. The earlier such a security evaluation is done within the
development cycle, the less costly and time-consuming it is to identify and close security
weaknesses. 2.1. figure from [15] shows a tree diagram on the categories of the possible
techniques. Security evaluation can be done in theory as well as in practice (this can be
segmented even further).

Embedded Security Evaluation
[

Theoretical Security Analysis Practical Security Testing
— Threats and Risks Analysis Functional Testing
L1 Design Analysis Penetration Testing

Vulnerahility Scanning

Fuzz Testing

Exfiltration and Explaitation

Figure 2.1: Overview of embedded security evaluation

2.1 Theoretical security analysis

Theoretical security evaluation can (and should) be done during virtually all steps of the
development cycle. Depending on the level of scrutiny and the documents available, we
differentiate between a more high-level design analysis and an in-depth threat and risk
analysis. If the documentation is insufficient or contains third-party components, then
the risk assessment won’t give the full picture. Theoretical security evaluation fails to
find implementation flaws or deviations from the specification in the implementation.

2.1.1 Design analysis

e Goals: Establish the soundness of the system architecture, find out systematic flaws.
Inspecting potential attack vectors like weak cryptography algorithms or bad inter-
actions of different protocols.

e Advantage: Only theoretical description of the system is needed.

e Disadvantage: The depth of the analysis varies on the provided system level.

2.1.2 Threat and risk analysis

e Goal: Categorise the identified vulnerabilities further and prioritise detected flaws
according to their impact on the system.

e Steps: Possible attack vectors are identified, the difficulty of this attack is rated
based on required time, needed expertise, equipment and necessary access level.
Evaluate potential damage of the attack.

2.2 Practical security testing

Practical security testing, of course, can only be conducted on an implementation of the
target system, for instance with a first prototype. Practical security testing contrary
to theoretical security analysis can detect implementation errors that could be exploited
by an outside attacker but also unspecified functionality and deviations from the spec-
ifications. Therefore, a thorough practical security test helps to establish trust in the
soundness of the implementation. Furthermore, this type of test helps to estimate the
actual difficulty of an attack against the target system.

However, practical security testing cannot give any claim on completeness against secu-
rity attacks. Depending on the time and resources it is possible to miss larger systematic
flaws.

2.2.1 Functional security testing

e Tests all security-related functions inside the test system for correct behaviour and
robustness. Similar to general functional testing but with focus on security func-
tionality.

e (Goals: can find implementation errors, deviations from the specification, but espe-
cially unspecified functionality can’t be tested. All of these errors might result in a
potential security weakness.

10

2.2.2 Penetration testing

Consists of at least three steps:

e Vulnerability scanning: tests the system for already known common security vulner-
abilities, for instance, known security exploits or configurations with known weak-
nesses.

e Fuzz testing: Tries to find new vulnerabilities of an implementation by sending sys-
tematically malformed input to the target system to check for unknown, potentially
security-critical system behaviour.

e Exfiltration and exploitation: To test the security of the whole system. During this
step, a “smart human tester”, i.e. a skilled individual with profound expertise in
the areas of I'T security, electronic engineering, computer science, and automotive
systems, tries to exploit all the vulnerabilities which were identified in the earlier
steps in a sophisticated way based on many years of “hacking experience” with the
goal to change the behaviour of the target system.

11

Chapter 3

Fuzz testing

Fuzzing or, fuzz-testing, is the method that finds vulnerabilities and bugs by inserting
randomly crafted inputs into a target, named SUT (System Under Test). These specially
crafted inputs trigger unexpected behaviour in the SUT, and let us find bugs, such as
faulty memory violations, assertion violations, incorrect null handling, deadlocks, infinite
loops, undefined behaviours, or incorrect managements of other resources.|17|

Fuzzing is the most efficient security testing method as it can be semi- and fully automated,
therefore it can be performed at large scale and unattended.

3.1 Structure

To achieve an modular system the process of fuzzing should be divided into three stages|15],
depending on the complexity of our fuzzing strategy there can be more phases.

Message Message

Generator Publisher

Figure 3.1: Structure of fuzz testing

3.1.1 Message generator

In this stage the fuzzer creates invalid messages which will be sent to the target. This is
the most critical stage of fuzzing: the performance of our search therefore the quality of
our fuzzing correlates to a great extent with the message generator. However, this stage
stands mostly independent of the system under test (SUT) consequently it can be placed
into other fuzzers with relative ease.

First a pseudo-random seed is created, then the fuzzer uses the seed to create the fuzzed
data, which gets sent out. Afterwards, the process is repeated.

12

3.1.2 Message publisher

The goal of this stage is to send the previously generated data to the SUT by using
the SUT specific media. In contrast to the message generator, the message publisher is
developed specially for that media (protocol), but its function is the easiest to define:
send out messages.

3.1.3 Target monitor

In this phase the behaviour of the SUT is monitored in order to detect unexpected outputs
or crashes that could be related to triggered vulnerabilities. This involves feedback from
the target upon which to base the judgement whether the SUT was able to cope with the
input.

Possible feedback could be to send requests to the target to check it’s responsiveness, send
valid input after the malicious ones to test for correct behaviour etc.

Once a bad response is found, it is the target monitors job to narrow down the possible
inputs which could cause it. Checking for fault is also a function of this stage.

Advanced functionalities can make the fuzzing quality better. For example it can involve
providing feedback for the message generator and tracing the progress in the test code
coverage (if provided).

3.2 Taxonomy of fuzzing

The classification [17| should be done according to each of the predefined stages and
should answer the following questions:

e How much prior knowledge does the stage have of the SUT?
e What is the fuzzed data generation approach?

e What is the extent for the data generation intelligence?

Taxonomy ‘

Prior knowledge ‘ Data Generation Intelligence ‘

Fuzzed Data Generation ‘

Black-box testing ‘ Random ‘ Smart ‘

White-hox testing ‘ Mutation-based ‘ Dumb ‘

Gray-hox testing ‘ Generation-based ‘

Figure 3.2: Taxonomy of fuzzing

13

3.2.1 Based on prior knowledge

This criteria considers the prior knowledge available regarding the SUT, based on this,
the fuzzing techniques can be divided into three main categories.

Black-box testing

The fuzzer has no prior knowledge of the SUT. (It hasn’t got access to the source code or
the internal logic.)

The main advantage of black-box testing is that it can be applied against virtually any
target. However, the performance of black-box testing is low and usually it can’t find
complex vulnerabilities.

White-box testing

Contrary to black-box testing in this case source code and the internal knowledge is known
by the fuzzer for every part of the SUT.

The main advantage is that it provides complete code coverage. Though as good as it
sounds this approach is much more complex than black-box testing, therefore developing
this method is much harder. In addition, code access is required, which is not available
in most products as they usually contain third-party software.

Gray-box

This solution offers the best of both words as in gray-box testing has partial access to the
internal logic of the SUT. Its execution logic is similar to that of black-box fuzzers, but it
can leverage some limited information (often gathered through measurements) about the
SUT to improve fuzzing performance and coverage.

Nowadays, gray-box testing is the most widespread method, as it does not require full
source-code access but it is able to infer information that makes it more efficient than
black-box testing.

3.2.2 Based on fuzzed data generation

As I already said the message generator phase is the most crucial phase in determining
fuzzing performance. Based on the fuzzed data generation approach the fuzzer can be
categorised.

Random

This is the base standard for every fuzzer. The system does not take formatting the
random data in any shape or form to the target’s needs into consideration, it generates
random data of random length. This is the easiest setup in challenging input validation but
restricted in terms of its potential to penetrate protocols with complex message structure.

14

Mutation-based

This approach generates the new inputs from the previously generated test cases.

The first time an initial seed is created, which will be slightly altered recursively. One
alteration is called a mutation. It is a key decision to decide how to perform the mutation,
which will influence the performance of fuzzing. If a blind approach is chosen with no
feedback the mutation won’t take advantage of the previous states of the target which
could be used to steer the mutation. There are different strategies for input mutation and
improving mutation performance is an active research field [18], [19], [20], [21].

For this generation strategy, it is not necessary to know the specifications of the input
data or protocol. It is still relatively easy to setup and can provide more efficiency than
full randomness, but many messages will fail for protocols with checksum or other hard
checks.

Generation-based

As a first look this approach seems the same as mutation-based fuzzing, because it is a
subclass of it, where the message generator uses a set of specifications on the SUT inputs
(the message generator output) to generate new fuzzed test data. In contrast to the
mutation-based generation, it is necessary to know the syntax of the SUT inputs, including
their format and used protocol. so, a first phase called preparation gets introduced to the
fuzzing structure. This approach takes advantage in having access to the specification of
the tested protocol and/or valid data collection is possible from the target.

The function of the message fields is known which provide a more in depth look at the
protocol, thus more complex protocols can be implemented with dependencies such as
check sums supplying an outwardly verified message.

However, with complexity come challenges, consequently implementing generation-based
fuzzing is much harder than its counterpart. The preparation phase can be very time
consuming, automation is hard to achieve.

3.2.3 Based on data generation intelligence

The intelligence is related to its ability to generate new input data taking into account
the feedback it receives after an execution of a test. The feedback helps to improve the
new input generation, as it can be used to decide which part of the test case should be
modified, and how to modify it. Based on the previous statement the intelligence of the
fuzzer is determined by the target monitor.

Smart fuzzers

Smart fuzzers consider the behaviour of the SUT during the fuzzing process. By first
defining a correct behaviour then inspecting how the fuzzed data affected this behaviour
(e.g. crashes) and taking the gathered information into account during the next message
generation.

In general smart fuzzers are more efficient in detecting vulnerabilities.

15

Dumb fuzzers

Dumb fuzzers do not consider feedback from the previous executions as input for new
data generation. As they do not have to receive feedback, analyse it, and act based on
it, dumb fuzzers are faster test executors than their smart counterparts, but less effective
when considering vulnerability search.

3.3 Fuzzing embedded systems

One common thing between the devices mentioned in Chapter 1 is that they are embed-
ded systems.

Embedded system fuzzing|16] carries it’s own unique challenges. It tends to happen
that vulnerabilities discovered by fuzzing will be caused by implementation flaws in the
firmware as most of the time developers use open-source components in firmware devel-
opment without any update timeline. The nature of this development sacrifices security
to launch the product as soon as possible. To accentuate this problem, patching vulner-
abilities after product launch is a hard process which can involve recalling of hundreds
of products in the automotive field. The IoT field usually doesn’t carry out recalling of
products so if the IoT device is not connected to a reliable network then remote patching
is impossible, it is hence crucial to discover such vulnerabilities in the development cycle
and fix them before an attacker does.

To design an effective and efficient fuzzing method for embedded systems, several chal-
lenges must be overcome.

e Lack of a feedback mechanism: Without access to firmware, it is nearly impossible to
obtain the internal execution of functions. Consequently, we need creative solutions
to obtain feedback from a device to optimize the data generation process.

e Diverse message formats: There is not a general protocol which is used, so the
solution should be able to infer the format from a raw message or the specific
protocol must be implemented in the message generator.

e Randomness in responses: The response messages may contain random elements,
such as timestamps or tokens. Such randomness results in different responses for
the same message, which could diminish the effectiveness of fuzzing if these fields
are not interpreted correctly during the message generation.

16

Chapter 4

Bluetooth Low Energy

4.1 Introduction

For this project I worked on implementing fuzzing the Bluetooth Low Energy protocol so
in this chapter I would like to give an overview on the protocols usage and the stack(4.1).
BLE has a more than 400 page long documentation|22] so I will try to highlight project
specific information.

Under the umbrella of Bluetooth we can actually refer to two different protocols: Blue-
tooth Classic and Bluetooth Low Energy (a.k.a. BLE). Table 4.1 shows the differences
between Classic and BLE. There is a significant difference in application throughput: BLE
is only capable of 0.27 Mbps whereases classic can achieve 2.1 Mbps. However, BLE com-
munication consumes much less power (0.1-0.5W) than Classic (1W), thus IoT devices
use this over Classic as they are powered by a coin cell battery most of the time.

| Specification \ Bluctooth Classic | Bluetooth Low Energy (BLE) |
Range 100 m Greater than 100 m
Data Rate 1-3 Mbps 1-2 Mbps
Application Throughput 0.7-2.1 Mbps 0.27 Mbps
Frequency 2.4 GHz 2.4 GHz
Robustness Adaptive fast frequency 24-bit CRC, 32-bit
hopping, FEC, fast ASK Message Integrity Check
Latency 100 ms 6 ms
Time lag 100 ms 3 ms
Voice capable Yes No
Network Topology Star Star
Power Consumption 1W 0.01-0.5 W

Table 4.1: Bluetooth Classic and BLE

4.1. figure shows the BLE protocol stack. The stack can be separated into three
segments application layer, host and controller. A BLE application programmer mainly
interacts with the application layer and some of the Host layers to define functions to the
service they provide. IC manufacturers implement the link layer and physical layer that
is why it is called the controller section.

17

Application layer

Generic Access Generic Attribute

Profile (GAP) Protocol (GATT)
Security Manager | Attribute Protocol Host
(SMP) (ATT)
Logical Link Control & Adaptation
Protocol (L2CAP)
Link Layer (LL)
Controller

Physical Layer (PHY)

Figure 4.1: BLE stack

Most of the project is done on the lower layers of the protocol (especially link layer),
but to provide a more complete outlook on the BLE protocol I would like to give a brief
overview on the other layers as well before deep diving into the controller section.

4.2 Host

e HCI: It provides communication between controller and host through standard
interface types. This HCI layer can be implemented either using API or by interfaces
such as UART/SPI/USB. Standard HCI commands and events are defined in the
bluetooth specifications. [23]

e ATT: This layer allows BLE device to expose certain pieces of data or attributes.|23]

e GATT: This layer is service framework which specifies sub-procedures to use ATT.
Data communications between two BLE devices are handled through these sub-
procedures. The applications and/or profiles will use GATT directly. [23]

e GAP: This layer directly interfaces with application layer and/or profiles on it. It
handles device discovery and connection related services for BLE device. It also
takes care of initiation of security features. 23]

e SMP: This layer provides methods for device pairing and key distributions. It offers
services to other protocol stack layers in order to securely connect and exchange data
between BLE devices. [23]

e L2CAP: This layer offers data encapsulation services to upper layers. This allows
logical end to end data communication.|23|

18

4.3 Controller

4.3.1 Physical layer
BLE operates in the ISM (Industrial Scientific Medical) band, uses FSK modulation and
frequency hopping.

fearrier = 2402 4+ k - 2M H z where k = 0....39

In FSK modulation the information correlates with the deviation from the carrier fre-
quency. Binary 1 represented by a positive-, 0 by negative frequency deviation. If the
data rate is 1Mbps the deviation should be higher then 185kHz, for 2Mbps 370kHz.

Frequency hopping means that after ever package a new carrier frequency is chosen
based on a predefined algorithm. The used channels collection is called channel map.

4.3.2 Link layer

The link layer sits directly above the physical layer, responsible for advertising, scanning,
and creating/maintaining connections.

Link layer state graph

The best way to define link layer responsibilities is by a state graph (4.2). A device can’t
operate in different states simultaneously.
The description of states:

e Stand by: In this state messages can’t be transmitted or received by the device.
It can be entered by any state.

e Advertising: In this state the pheripheral device sends out advertisement packets
to be noticed by other devices, thus the device in this state is called advertiser.

e Scanning: In this state the devices searches for packets which are sent by the
advertiser, thus the device in this state is called scanner.

e Initiator: In this state the device listens for advertisement packets from predefined
devices, thus the device is called an initiator.

e Synchronization: In this state the device listens for periodic specialised advertise-
ment packets from a predefined device.

e Connection: This state can only be entered by an initiator or an advertiser. To
get into this state the initiator must respond to the advertiser with a connection
request.

From that point onwards:
— The initiator becomes the master.

— The advertiser becomes the slave.

19

Scanning Synchronization

Advertising Standby Initiating

Figure 4.2: Link layer state graph

Link layer messages exchange

Based on the previous accounts the build-up of a connection in link layer is stateful and
deterministic to an end.

Figure 4.3 shows this process in a block diagram. The precondition of this diagram is
that the central(C) device would like to connect to the peripheral(P) device, so first it
becomes a scanner and ideally finds the advertisement packets from the peripheral acting
as an advertiser. Once the scanner finds the advertiser it goes into initiator state and
sends out a scan request directly to the found advertiser, which will respond with a scan
response. After receiving the scan response, the initiator sends a connection request to
the advertiser, thus the peripheral becomes the slave and the central the master in the
newly created connection. Finally, the last makeable steps staying only in link layer is
sending out connection parameter changing requests, this can be sent from either of the
devices.

20

Yes

Scan req(C)

Mo

i

Connection req(C)

v

New parameter req(B)

Mo

Pairing(B)

v

GATT services(B)

Figure 4.3: Link Layer message exchange diagram

Uncoded packet format

Uncoded packets don’t contain any encryption. Most of the time IoT devices don’t have
encryption enabled as it makes for a more difficult process in exchanging data (e.g., a key

must be exchanged). 4.4. figure shows the format of an uncoded packet.

LSB MSB
Preamble |Access Address PDU CRC [Const Tone Extension,

|

1 or 2 hytes 4 bytes 2-258 bytes| 3 bytes 16-160 ps |

Figure 4.4: Uncoded packet

21

The packet in Link Layer can be separated into four segments (not including padding):

Preamble: It is used to synchronize frequency and time between the transmitter
and receiver. For 1Mbps it is 1 byte, 2Mbps 2bytes.

Access Address (AA): As mentioned in the beginning of the section BLE uses a
limited number of carrier frequencies (40). Therefore, packet collision from two
or more devices in the vicinity of each other could easily happen. Which is why
an access address is sent out at the beginning of the packet to distinguish connec-
tions. The default value is 10001110100010011011111011010110b (0x8E89BEDG),
for advertisement packets usually it stays default.

PDU: 2-258 bytes. Contains the "useful" data.

CRC: 3 bytes. Calculated from the PDU with a polinom to validate the message.

22

Chapter 5

Design and implementation

5.1 Motivation and specification

To propose a solution for the project the expectations of our tool should be defined. This
tool will be used commercially by Bosch for security testing of devices without know-
ing much about them (only MAC address is known), thus the fuzzer should be black-
box(3.2.1).

Previously this topic was given to other engineers at the team. They could fuzz host layer
messages as written in Chapter 4 these are the layers which are easily accessible by devel-
opers, but they could not send out link layer messages directly. This was not sufficient,
as link layer messages don’t get much attention by application developers. Section 4.3.2
disclosed the link layer message exchange during a connection build-up. Figure 5.1 shows
that these messages can’t be secured because the pairing process starts after setting up
the connection parameters, that is the reason why most DoS (1.2) vulnerabilities for BLE
use link layer messages, so the tool should focus on Link Layer messages of course
with capability to expand it to other layers.

[Connection req(C) |

New parameter req(B) |

'a No o
Pairing(B)
‘GATT services(B)‘)

Figure 5.1: Link layer security

The length of BLE specification should already suggest the message generation ap-
proach. BLE has a finite set of message types in each layer. Other than GATT messages,
the use of these messages don’t differ from device to device that much. Therefore the most
appropriate choice for message generation is the generation-based (3.2.2) approach.
Finally, the easiest choice to make is the intelligence of our fuzzer as described in Section
3.2.3 smart fuzzers are more efficient than their counterparts.

5.2 State of the art

During my research I encountered three major state of the art solutions for BLE fuzzing:
Defensics by Synopsys|24|, Sweyntooth by Matheus Garbelini[25] and Andrea Pferscher’s
tool|27].

Defensics is a comprehensive, versatile, automated black-box fuzzer that enables or-
ganisations to efficiently and effectively discover and remediate security weaknesses in
software.|24]

Sweyntooth framework runs in a central device and tests a BLE device when the latter
gets connected to the central as a peripheral. it incorporates a state machine model of the
suite of BLE protocols and monitors the peripheral’s state through its responses. With
the state machine and current state of the central, the framework either sends malformed
packets or normal packets at a wrong time, or both, to the peripheral and awaits an
expected response.|25] The framework is not open-source, but proof-of-concept scripts|26|
are available for the discovered vulnerabilities.

Andrea’s tool provides a learning-based fuzzing framework for Bluetooth Low Energy
(BLE) devices. The framework consists of two components. The first component is the
learning component which learns the behavioural models of BLE devices. The second
component is the stateful fuzzer which fuzz tests the BLE devices based on the previously
learned model.[27] The framework is open-source but can’t be used commercially.

For the project to make sense I must ask the question: why do I need to implement
BLE fuzzing myself if there are working open-source examples?

e As stated, the only commercial tool out of the three is Defensics. As this tool would
be used for security testing in the real world the license to these tools should be
acquired which would be costly in our case.

e Integrating an already existing complex software to the test framework of the lab-
oratory is not possible, or only with too much effort which is not acceptable due to
financial reasons.

e Last but definitely not least, these problems already occurred as my tool is de-
veloped on top of an already working framework, which is a black-box, smart,
mutation-based fuzzer for automotive networks by Daniel Lakatos|28|. His solu-
tion was created with modularity in mind so that the individual components of the
software can be changed anytime. As the fuzzing engine is a separate component
as well, it will be always possible to use an existing solution for data manipulation.

24

5.3 Implementation

2‘:1";:22::1“5 » nRF52 Ké_eopg Rive &
Dongle
scapy Health check

Figure 5.2: BLE fuzzing structure

A fuzzer has three main stages (3.1): message generator,- publisher and target monitor.

5.3.1 Message generator

As the working framework [28] was developed with modularity in mind, it was relatively
easy to expand it, however [28| was only used for automotive wired protocols which have
a much simpler approach to data exchange (no handshake, states), thus mutation based
message generation was used by it, so one big part of the development was implementing
a generation-based message generation approach which was aware of the BLE states.

To be able to achieve this the valid format of each message must be precisely defined in
the software. This is done by an abstract message structure, where a message is built from
multiple individually accessible fields. With this design, the fuzzing engine can abstract
the messages to byte strings and do its job independently from the protocol format. a
field has various parameters which affect the fuzzing logic and hereby make sure that the
malformed messages look as valid as possible.

The most important parameters are “fuzzable” and “variable length”, which indicate
whether a field should be fuzzed at all, and if yes, is the engine allowed to modify its
length or not. The type of these fields is not binary, but a float value which ranges from
0.0 to 1.0 and represents a weight for probability. [28|

The message domain I set was of the link layer messages represented in the Figure 5.3.
As you can see the message domain has already been extended to L2ZCAP and ATT layer
messages as they are also connection parameter changing messages.

The message types have their own unique message fields, so every message structure
had to be implemented by hand. An example can be seen in the following code snippet:

Listing 5.1: Code snippet of a message type definition

class BTLE_LL_CONNECTION UPDATE_IND(Protocol):

def _ _init_ _ (self ,
name — "BTLE_LIL, CONNECTION UPDATE_IND" ,
header = BLE_LLHeader() ,
UBTLE DATA

RFU = BitField (value = "000", fuzzable = 0.0, variable_length = 0.0, name = "RFU"),

MD = BitField (value = "0",fuzzable = 0.0,variable length = 0.0,name = "MD"),

SN = BitField (value = "0",fuzzable = 0.0,variable length = 0.0,name = "SN"),

NESN = BitField (value = "0011",fuzzable = 0.0,variable length = 0.0,name = "NESN"),

LLID = BitField (value = "0011",fuzzable = 0.0,variable_length = 0.0,name = "LLID"),

Length = BitField (value = "00100001",fuzzable = 0.0,variable_length = 0.0,name = "Length"),

#BTLE _CTRL

opcode = BitField(value = "0",fuzzable = 0.0,variable_length = 0.0,name = "opcode"),

#CHANNEL _MAP_IND

win_size = BitField (value = bin(0)[2:], fuzzable = 0.0, variable_length = 0.0, name = "win_size"),

win_offset = BitField (value = bin(0)[2:], fuzzable = 0.0, variable_ length = 0.0, name = "win_offset"),

interval = BitField (value = bin(6)[2:], fuzzable = 0.0, variable_length = 0.0, name = "interval"),

latency = BitField (value = bin(0)[2:], fuzzable = 0.0, variable_ length = 0.0, name = "latency"),

timeout = BitField(value = bin(50)[2:], fuzzable = 0.0, variable_ length = 0.0, name = "timeout"),

instant = BitField (value = bin(6)[2:], fuzzable = 0.0, variable length = 0.0, name = "instant"),
):

super (BTLE _LL CONNECTION UPDATE IND, self). init _ (header, name)

25

\—_.| LL_SCAN_REQ |
/ LL_CONNECT_REQ |
BTLE_LL_LENGTH_REQ
- LL_CHANNEL_MAP_IND
|Connect|on req(C)
T LL_CONNECTTION_PARAM_REQ
New parameter req(B) LL_CONNECTION_UPDATE_IND

— LL_MIN_USED_CHANNELS_IND
Yes LL_PHY_REQ

hange more?

LL_VERSION_IND

e i h LL_FEATURE_REQ
Pairing(B) - =
L2CAP_CONNECTION_PARAM_REQ
[GATT services(B)] | ATT_EXCHANGE_MTU_REQ

Figure 5.3: Message domain

The fields have default parameters assigned to them and 5.4. figure explains one message
mutation in an illustrative manner. This will alter one field at a time.

RFU MD SN NESN LLID opcode Max_rx_bytes | Max_tx_bytes Length
P=02 P=02 P=0.1 P=02 P=02 P=01 P=0.2 P=0.2 P=01

1st stage: [Scanireq IConnjeq ILengthirqu [Exc_Mtu_req]
Choose msg P=02 P=02 P=01 P=0.2

2nd stage: RxAdd TxAdd PDUType | Length WinOffset | Interval Timeout WinSize SCA
Choose bitfield P=0.2 P=0.2 P=0.1 P =02 P=02 P=0.1 P=0.2 P=0.2 P=0.1
3rd stage: Invert_RND_bit | Chg_value_to_|[Chg_value || Chg_value |Chs_len_to | CHG_len&value_ ‘

Choose bitfield RND _to_MAX || _to_MIN _RND L to_RND

method

Figure 5.4: Example of message generation

As for now there are only stand-alone fields of messages, thus they have to be as-
sembled and wrapped into an uncoded link layer message format(4.3.2). Messages are
assembled and sent using Scapy[29], which is a packet manipulation toolkit written in
Python. The malformed data is wrapped into a BLE format created by the Scapy library.

26

5.3.2 Message publisher

The malformed message is created and waiting to be sent out to the SUT by the mes-
sage publisher(3.1.2). Finding an appropriate tool was hard to find for this job as the
fuzzing tool was developed in Python and in most cases BLE development kits can’t send
out link layer messages directly. My first approach was to develop the controller layers
from the ground up with a Software Defined Radio[30]. However, after a while it became
apparent that this was a big undertaking as BLE uses frequency hopping which needed
to be implemented on the SDR in order to achieve the connection, however the device
had limitations in its speed of changing frequencies and synchronizing to it quickly enough.

Figure 5.5: PlutoSDR|[31]

The next approach involved searching for similar BLE fuzzing platforms and their
solutions to this problem. The Sweyntooth and Andrea’s project used the same nRF5240
Dongle with custom firmware open-sourced by the Sweyntooth project, so I decided to
use this as a platform for my message publisher.

SF
3

Figure 5.6: nRF5240 Dongle [32]

27

5.3.3 Target monitor

Finally, the last phase target monitor (3.1.3) needs to be added. As already mentioned in
Section 3.3. embedded systems lack feedback, the situation evolves even worse for wireless
systems. Based on the target there are two type of test setups:

e Powered by a coin-cell battery without the ability to prop open the casing of the
device (e.g. smartlock with steel casing)

nRF52 Dongle O)D (((o SUT

Figure 5.7: 1st type of setup

PC

[y
h 4

— Health check: To decide whether the system under test has been affected by
the provided input or not.

% Cyclic message exchange check: During a connection the Slave and the
Master device must exchange DATA type messages with empty PDU pe-
riodically. It’s function is to listen for these type of messages. The period
of the method’s frequency can be modified.

— Keep Alive: Loss of the connection to a connection timeout should be prevented
with some methods.

x SCAN REQ, CONNECTION REQ periodically: Sends out a sequence of
not-fuzzed SCAN REQ and CONNECT IND messages. The period of the
method’s frequency can be modified.

e Access to the PCB so the device can be powered through an external power supply
(e.g. iTAG).

Programable |
Power Supply |

Y
r

PC . /NRF52 Dongle o))) (((o SUT

Figure 5.8: 2nd type of setup

— Health check: To decide whether the system under test has been affected by
the provided input or not.

x Cyclic message exchange check

* Power consumption monitor: Monitor current consumption, through which
its able to detect SUT reboot.

28

— Keep Alive: Loss of the connection to a connection timeout should be prevented
with some methods.
x SCAN REQ, CONNECTION REQ periodically

x Hard reset control: DoS can only be fixed though a hard reset, so for fault
reproduction purposes it is vital to connect our device to a programmable
power supply.

29

Chapter 6

Results of the execution

This section of the paper describes the effectiveness of the fuzzing tool on three IoT de-
vices using BLE for communicational purposes. (As these are not Bosch specific products
the name of these devices can be stated: OKLOK Smart Lock, iTAG, Smart Lightbulb.)

Figure 6.1: Systems under test: OKLOK Smart Lock, Philips Hue, iTAG

For the smart lock and the Lightbulb I used the first type of test setup (5.7), this setup
has the advantage that the SUT doesn’t need any preparation, but fault reproduction and
automation is hardly possible as the tester manually has to take the battery out to cause
a hard reset. The iTAG used the second (5.8), thus the iTAG PCB needed to have wires
attached to the VCC and the GND so it can be powered through a programmable power
supply. This was a way more powerful setup as the fuzzing process could run on its own
without any interference by the tester. However, as the PCB is exposed man maid fault
can occur.

In order to be able to fuzz the given BLE address of the SUT need to be discovered
with a BLE sniffer (6.2). Alternative method would be discovering it with a Bluetooth
capable phone, however I reviewed the fuzzed connection with the BLE sniffer during the
connection.

During fuzzing, the received and sent out messages by the message publisher get logged
in txt format as shown in Figure 6.3.

30

Figure 6.2: BLE sniffers: Ubertooth Project|33], nRF52 DK|34]

Tﬂeget] Resetting DUT.
[Init] Executing initializer function.
*Enit] The DUT is initialized.
Test Step| Setting initial seed to 4436?514;‘4-124?125?1?3941839919?356%39?16@.]

[Info] Block started.

Test Step] Resetting seed to 73994178451488568859194648677.
FIT25t Step] Chosen message: BTLE_LL_LENGTH_REQ.
[Test Step] Running iteration mo. 1.

[Fuzzing] Using: bitfield_change_wvalue_and_length_to_random.
[Fuzzing] Modifying MD wvalue

[Fuzzing] from @

\[Fuzzing] to 1.

[Test Step] Running iteration mo. 2.

[Test Step] Modifying previous message.
[Fuzzing] Using: bitfield invert random_bit.
[Fuzzing] Modifying SN wvalue

[Fuzzing] from @

[Fuzzing] to 1.

[Test Step] Running iteration no. 3.

[Test Step] Modifying previous message.
[Fuzzing] Using: bitfield_invert_random_bit.
[Fuzzing] Modifying MD wvalue

[Fuzzing] from 1

[Fuzzing] to a.

[Test Step] Running iteration no. 4.

[Test Step] Modifying previous message.
[Fuzzing] Using: bitfield invert_random_bit.
[Fuzzing] Modifying max_tx_bytes wvalue
[Fuzzing] from E@808808

[Fuzzing] to a1eae808 .,

Figure 6.3: File logger

As seen in Figure 6.3 the fuzzer first resets the DUT if is in the 2nd type of setup and
executes an initializer function which can be seen in the 6.1. code snippet. This function
sets up a connection with the SUT.

31

Listing 6.1: Initiazing function

def func ():
scan for device
TE.SendBLE (BTLE() / BTLE_ADV() / BTLE_SCAN_REQ(

ScanA=DUTParams. Scan__addr,
AdvA=DUTParams. Adv_addr))

scan_time start = time.time ()
#rx data
Connection = False

while Connection is False:

data = TE.RxBLE()
pkt = BTLE(data)

if data and (BTLE_SCAN_RSP in pkt or BTLE ADV in pkt) and pkt.AdvA = DUTParams.Adv_addr.lower ():
DUTParams. Scan _time_delta = time.time() — scan_time_start + 1
DUTParams. RxAdd = pkt.TxAdd

print (DUTParams.Adv_addr.upper () + ’:_.’ + pkt.summary ()[7:] + ’_Detected’)

Send conmection request to advertiser

conn_request = BTLE() / BTLE ADV(RxAdd=DUTParams.RxAdd, TxAdd=0) / BTLE CONNECT_ REQ(
Init A=DUTParams. Scan_addr, - -
AdvA=DUTParams . Adviaﬁdr s
AA=DUTParams. access _addr, # Access address (any)
crc_init=0x179a9c, # CRC init (any)

win_size=2, # 2.5 of windows size (anchor connection window size)
win_offset=1, # 1.25ms windows offset (anchor connection point)
interval=16, # 20ms connection interval

latency =0, # Slave latency (any)

timeout=50, # Supervision timeout, 500ms (any)
chM=0x1FFFFFFFFF, # Any

hop=5, # Hop increment (any)

SCA=0, # Clock tolerance

)

TE.SendBLE (conn _request)

Connection = True

print (DUTParams. Adv_addr.upper () + ’:_’ + pkt.summary ()[7:] + ’'_Connected’)

Out of the three SUT two of them crashed and one deadlocked.

e Crash: Vulnerabilities in this category can remotely crash a device by triggering hard
faults. This happens due to some incorrect code behaviour or memory corruption,
e.g., when a buffer overflow on BLE reception buffer occurs. When a device crash
occurs, they usually restart. However, such a restart capability depends on whether
a correct hard fault handling mechanism was implemented in the product that uses
the vulnerable BLE SoC. [25]

Deadlock: Deadlocks are vulnerabilities that affect the availability of the BLE con-
nection without necessarily causing a hard fault or memory corruption. Usually
they occur due to some improper synchronisation between user code and the SDK
firmware distributed by the SoC vendor, leaving the user code being stuck at some
point. Crashes originating from hard faults, if not properly handled, can become a
deadlock if the device is not automatically restarted. In most cases, when a dead-
lock occurs, the user is required to manually power off and power on the device to
re-establish proper BLE communication.|25]

As the internal behavior of the system was completely hidden from us, I could not

determine the root cause of the failure.

32

Chapter 7

Conclusion and further development

7.1 Conclusion

Chapter 1 shows that wireless devices can be hacked and it is important to find and fix
as many vulnerabilities as possible before releasing the product. This project shows that
fuzzing is a very effective security testing method and that it is easy to corrupt a device
with only slight alterations from a proper message format which should be considered as
a success. Some case studies are presented in Chapter 6, which were susceptible to DoS
type attacks.

7.2 Future development

7.2.1 Side-channel analysis during fuzzing

3.3., 3.2.3. sections propose an intriguing behaviour: embedded device fuzzing lacks
feedback, however providing feedback to fuzzed data generation makes the fuzzing tool
more effective.

For now, the approach that caught my eyes would involve inspecting power consumption.
Power side-channel analysis, inspects how much power certain operations consume on
certain inputs. Different operations require different amount of energy so measuring the
power consumption can reveal the internal operations, which lead to the theory that
checking power consumption in each fuzzing cycle would also provide unique and not just
general (i.e.: power up/-down) information.

Also considering that the communication uses radio frequency signals, electromagnetic
side-channel analysis (examining not the power consumption, but the electromagnetic
radiation) could also prove useful.

7.2.2 Handle statefulness

A great improvement of the software would be the ability to handle the behaviour of
stateful protocols. This is called stateful fuzzing. With this technique, the fuzzing may
reach areas of code only executed at a later stage in a protocol run, therefore increasing
the probability of failures.

33

For instance, in the context of BLE, trivially the pairing process starts after a con-
nection is established, so the fuzzer should be awear of this. I already considered the
statefulness of BLE in section 4.3.2, for now I only implemented an initialising function
(6.1) as link layer fuzzing was the main objective.

34

Acknowledgement

I would like to express my gratitude to my two advisors: Dr. Csilling Akos, who guided
me throughout this project, Dr. Horvath Bélint, who helped internally at the university.
I would also like to thank Saulaiman Mera and Lakatos Daniel both of whom supported
me and offered deep insight.

35

Bibliography

[1] Grant Hernandez, Orlando Arias, Daniel Buentello, Yier Jin: Smart Nest Thermostat:
A Smart Spy in Your Home

[2] Estes, A.C. This Nest Security Flaw is Remarkably Dumb. Available online: https:
//gizmodo.com/this-nest-security-flaw-is-remarkably-dumb-1793524264
(accessed on 21.10.2022.).

[3] Nitesh Dhanjani: Hacking Lightbulbs: Suecurity Evaluation of the Philips Hue Per-
sonal Wireless Lighting System

[4] Aditya Gupta: The IoT Hacker’s Handbook A Practical Guide to Hacking the Internet
of Things

[5] Jay Radcliffe: Medical Devices for Fun and Insulin: Breaking the Human SCADA
system available online https://paper.bobylive.com/Meeting_Papers/BlackHat/
USA-2011/BH_US_11_Radcliffe_Hacking_Medical_Devices_Slides.pdf (accessed
on 30.10.2022.)

[6] Anthony Rose, Ben Ramsey: Picking Bluetooth Low Energy Locks from a Quar-
ter Mile Away. Available online: https://av.tib.eu/media/36217 (accessed on
24.10.2022.)

[7] https://uk.pcmag.com/smart-thermostats/129928/nest-thermostat (accessed
on 30.10.2022.)

[8] https://www.lampenwelt.de/philips-hue-white-color-ambiance\
-6-5w-e27-2er-set.html (accessed on 30.10.2022.)

[9] https://www.diabetesnet.com/diabetes-technology/insulin-pumps/
older-pumps/onetouch-ping/ (accessed on 30.10.2022.)

[10] https://de.manuals.plus/oklok/fb50-bluetooth-and-fingerprint-lock-manual

(accessed on 30.10.2022.)

[11] Sultan Khan: Technical Advisory — Tesla BLE Phone-as-a-Key Passive Entry
Vulnerable to Relay Attacks. Available online:
https://research.nccgroup.com/2022/05/15/technical-advisory-tesla-ble\

-phone-as-a-key-passive-entry-vulnerable-to-relay-attacks/ (accessed on
24.10.2022.)

[12] Dr. Charlie Miller,Chris Valasek: Remote Exploitation of an Unaltered Passenger
Vehicle

36

https://gizmodo.com/this-nest- security-flaw-is-remarkably-dumb-1793524264
https://gizmodo.com/this-nest- security-flaw-is-remarkably-dumb-1793524264
https://paper.bobylive.com/Meeting_Papers/BlackHat/USA-2011/BH_US_11_Radcliffe_Hacking_Medical_Devices_Slides.pdf
https://paper.bobylive.com/Meeting_Papers/BlackHat/USA-2011/BH_US_11_Radcliffe_Hacking_Medical_Devices_Slides.pdf
https://av.tib.eu/media/36217
https://uk.pcmag.com/smart-thermostats/129928/nest-thermostat
https://www.lampenwelt.de/philips-hue-white-color-ambiance\-6-5w-e27-2er-set.html
https://www.lampenwelt.de/philips-hue-white-color-ambiance\-6-5w-e27-2er-set.html
https://www.diabetesnet.com/diabetes-technology/insulin-pumps/older-pumps/onetouch-ping/
https://www.diabetesnet.com/diabetes-technology/insulin-pumps/older-pumps/onetouch-ping/
https://de.manuals.plus/oklok/fb50-bluetooth-and-fingerprint-lock-manual
https://research.nccgroup.com/2022/05/15/technical-advisory-tesla-ble\-phone-as-a-key-passive-entry-vulnerable-to-relay-attacks/
https://research.nccgroup.com/2022/05/15/technical-advisory-tesla-ble\-phone-as-a-key-passive-entry-vulnerable-to-relay-attacks/

[13] Dr. Charlie Miller,Chris Valasek: Remote Exploitation of an Unaltered Passenger
Vehicle

[14] Vaibhav — Bedi: The Practical Guide to Hacking Bluetooth
Low Energy. Available online: https://blog.attify.com/
the-practical-guide-to-hacking-bluetooth-low-energy/ (accessed on
24.10.2022.)

[15] Stephanie Bayer, Alexander Ptok: Don’t Fuss about Fuzzing: Fuzzing Controllers in
Vehicular Networks

[16] Xiaotao Feng, Ruoxi Sun, Xiaogang Zhu: Snipuzz: Black-box Fuzzing of IoT
Firmware via Message Snippet Inference

[17] Maialen Eceiza , Jose Luis Flores , and Mikel Iturbe: Fuzzing the Internet of Things:
A Review on the Techniques and Challenges for Efficient Vulnerability Discovery in
Embedded Systems

[18] V. J. M. Manes et al., “Fuzzing: Art, science, and engineering,” Nov. 2018.

[19] B. Zhao, J. Li, and C. Zhang, “Fuzzing: A survey,” Cybersecurity, vol. 1, p. 6, Jun.
2018.

[20] G. J. Saavedra, K. N. Rodhouse, D. M. Dunlavy, and P. W. Kegelmeyer, “A review
of machine learning applications in fuzzing,” Jul. 2019.

[21] B. Liu, L. Shi, Z. Cai, and M. Li, “Software vulnerability discovery techniques: A
survey,” in Proc. 4th Int. Conf. Multimedia Security, Nov. 2012, pp. 152-156.

[22] Bluetooth Core Specification v5.1 Vol. 6

[23| https://www.rfwireless-world.com/Terminology/
BLE-Protocol-Stack-Architecture.html (accessed on 30.10.2022.)

[24] https://www.synopsys.com/software-integrity/security-testing/
fuzz-testing.html (accessed on 30.10.2022.)

[25] Matheus E. Garbelini : SweynTooth: Unleashing Mayhem over Bluetooth Low En-
ergy

[26] https://github.com/Matheus-Garbelini/sweyntooth_bluetooth_low_energy_
attacks (accessed on 30.10.2022.)

[27] https://git.ist.tugraz.at/apferscher/ble-fuzzing

[28] Lakatos Déaniel: Security ~ Testing of Vehicle Controllers. Avail-
able online: https://diplomaterv.vik.bme.hu/hu/Theses/
Jarmuipari-vezerlok-biztonsagi-tesztelese (accessed on 30.10.2022.)

[29] https://scapy.readthedocs.io/en/latest/ (accessed on 30.10.2022.)

[30] Kepics Janos: A Bluetooth Low Energy (BLE) protokoll sériilékenységének vizsgéalata
a fizikai rétegben (6nallo laboratérium 1)

[31] https://www.analog.com/en/design-center/evaluation-hardware-and-software/
evaluation-boards-kits/adalm-pluto.html (accessed on 30.10.2022.)

37

https://blog.attify.com/the-practical-guide-to-hacking-bluetooth-low-energy/
https://blog.attify.com/the-practical-guide-to-hacking-bluetooth-low-energy/
https://www.rfwireless-world.com/Terminology/BLE-Protocol-Stack-Architecture.html
https://www.rfwireless-world.com/Terminology/BLE-Protocol-Stack-Architecture.html
https://www.synopsys.com/software-integrity/security-testing/fuzz-testing.html
https://www.synopsys.com/software-integrity/security-testing/fuzz-testing.html
https://github.com/Matheus-Garbelini/sweyntooth_bluetooth_low_energy_attacks
https://github.com/Matheus-Garbelini/sweyntooth_bluetooth_low_energy_attacks
https://git.ist.tugraz.at/apferscher/ble-fuzzing
https://diplomaterv.vik.bme.hu/hu/Theses/Jarmuipari-vezerlok-biztonsagi-tesztelese
https://diplomaterv.vik.bme.hu/hu/Theses/Jarmuipari-vezerlok-biztonsagi-tesztelese
https://scapy.readthedocs.io/en/latest/
https://www.analog.com/en/design-center/evaluation-hardware-and-software/evaluation-boards-kits/adalm-pluto.html
https://www.analog.com/en/design-center/evaluation-hardware-and-software/evaluation-boards-kits/adalm-pluto.html

[32] https://www.nordicsemi.com/Products/Development-hardware/
nrf52840-dongle (accessed on 30.10.2022.)

[33] https://greatscottgadgets.com/ubertoothone/ (accessed on 30.10.2022.)

[34] nRF52 DKDevelopment kit for Bluetooth LE, Bluetooth mesh, ANT and 2.4 GHz
applications datasheet reachable from https://www.nordicsemi.com/Products/
Development-hardware/nrf52-dk (accessed on 30.10.2022.)

38

https://www.nordicsemi.com/Products/Development-hardware/nrf52840-dongle
https://www.nordicsemi.com/Products/Development-hardware/nrf52840-dongle
https://greatscottgadgets.com/ubertoothone/
https://www.nordicsemi.com/Products/Development-hardware/nrf52-dk
https://www.nordicsemi.com/Products/Development-hardware/nrf52-dk

List of Figures

1.1

2.1

3.1
3.2

4.1
4.2
4.3
4.4

5.1
5.2
5.3
5.4
2.9
2.6
2.7
5.8

6.1
6.2
6.3

From left to right: Nest Thermostat|7], Philis Hue[8], OneTouch Ping[9],

OKLOK Smart Lock[10] 7
Overview of embedded security evaluation 9
Structure of fuzz testingo 12
Taxonomy of fuzzing 13
BLE stack 18
Link layer state graph oo 20
Link Layer message exchange diagram 21
Uncoded packet 21
Link layer security 23
BLE fuzzing structure oo 25
Message domain Lo 26
Example of message generation 26
PlutoSDR[31] o o 27
nRF5240 Dongle [32] 27
Ist typeof setup 28
2nd type of setup 28
Systems under test: OKLOK Smart Lock, Philips Hue, iTAG 30
BLE sniffers: Ubertooth Project|33], nRF52 DK|[34] 31
File logger 31

39

List of Tables

4.1 Bluetooth Classic and BLE

40

	The need for cybersecurity in wireless protocols
	Cybersecurity attacks in the wild
	Nest Thermostat
	Philips Hue
	Insulin Pump
	Smart Door Locks
	Tesla
	The Jeep hack

	Reasons and approaches to vulnerabilities

	Embedded security evaluation
	Theoretical security analysis
	Design analysis
	Threat and risk analysis

	Practical security testing
	Functional security testing
	Penetration testing

	Fuzz testing
	Structure
	Message generator
	Message publisher
	Target monitor

	Taxonomy of fuzzing
	Based on prior knowledge
	Based on fuzzed data generation
	Based on data generation intelligence

	Fuzzing embedded systems

	Bluetooth Low Energy
	Introduction
	Host
	Controller
	Physical layer
	Link layer

	Design and implementation
	Motivation and specification
	State of the art
	Implementation
	Message generator
	Message publisher
	Target monitor

	Results of the execution
	Conclusion and further development
	Conclusion
	Future development
	Side-channel analysis during fuzzing
	Handle statefulness

