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Rövid összefoglaló

A génkifejeződés pro�lok vizsgálata fontos eszköze az orvosi kockázatfelmérési, diagnoszti-
kai és prognosztikai alkalmazásoknak (Alon et al., 1999; Bhattacharjee et al., 2001; Sotiriou
et al., 2003). Az új generációs szekvenálási technológiák elterjedése a közelmúltban növekvő
érdeklődéshez vezetett a génkifejeződés adatok prediktív osztályozása iránt.

Egy beteg génkifejeződés pro�lja több ezer gén kifejeződési értékét tartalmazhatja, ezért
a génkifejeződési példányok sokdimenziós euklideszi tér vektoraiként ábrázolhatóak. Az
ilyen nagy dimenziószámú terekben az osztályozóknak a „dimenzionalitás átka” néven
ismert jelenségekkel kell megküzdeniük.

Az „átok” egyik legjelentősebb eleme a csomósodás (hubness), mely számos kutatás tárgyát
képezte az utóbbi időben. A csomósodás a nagy intrinzikus dimenziójú adathalmazokban
�gyelhető meg csomók megjelenésének formájában (Radovanovic et al., 2010a). Csomók alatt
olyan példányokat értünk, melyek meglepően sok más példányhoz hasonlítanak. Az adott
alkalmazási területen a példányok a betegek génkifejeződési pro�ljait jelentik, hasonlóságuk
távolságfüggvények, például az euklideszi távolságuk segítségével mérhető.

A csomósodás gyakran rossz csomókmegjelenésével jár, melyek a hozzájuk hasonló példá-
nyoktól eltérő osztályba tartoznak. Az ilyen csomók csökkenthetik a tradicionális osztályozó
algoritmusok pontosságát (Radovanovic et al., 2010a). A csomósodás-alapú (hubness-aware)
osztályozókat úgy tervezték, hogy kihasználják a csomók jelenlétét, így elkerülhető a rossz
csomók káros hatása (Tomasev et al., 2014; Tomasev és Mladenic, 2012).

Dolgozatomban összehasonlítom a leggyakrabban használt tradicionális és csomósodás-
alapú osztályozók viselkedését a génkifejeződés adatokon. A kísérleteket nyilvános adatbá-
zisokon (Alon et al., 1999; Bhattacharjee et al., 2001; Sotiriou et al., 2003), keresztvalidáció és
statisztikai szigni�kancia tesztek segítségével végzem.
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Abstract

Gene expression pro�les were found to be highly relevant for safety assessment, diagnostics
and prognostics applications (Alon et al., 1999; Bhattacharjee et al., 2001; Sotiriou et al., 2003).
Recent advancements in high-throughput sequencing technology lead to increasing interest
in predictive classi�cation models for gene expression data.

A patient’s gene expression pro�le may contain expression values of thousands of genes.
Therefore, gene expression instances are represented as vectors in very high-dimensional
Euclidean space. Classi�cation in such high-dimensional spaces is challenged by a collection
of phenomena known as the curse of dimensionality.

One of the most prominent, recently explored aspect of the ‘curse’ is hubness, which was
found to be related to the intrinsic dimensionality of the data (Radovanovic et al., 2010a).
With hubness we mean the emergence of hubs, instances that are similar to a surprisingly
large number of other instances. In our application, instances are patients’ gene expression
pro�les and similarity may be determined by a distance function, e.g. Euclidean distance.

Hubsmay frequently be bad hubs, which have a di�erent class label than the instances they
are similar to. These hubs may mislead traditional classi�cation methods (Radovanovic et al.,
2010a). However, hubness-aware classi�ers, which were explicitly designed to take advantage
of hubs, are able to mitigate hubness artifacts (Tomasev et al., 2014; Tomasev and Mladenic,
2012).

In my work, I explore the use of various traditional and hubness-aware classi�ers on
gene expression data. The comparisons are performed with cross-validation and signi�cance
testing on publicly available data sets (Alon et al., 1999; Bhattacharjee et al., 2001; Sotiriou
et al., 2003).
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1 Introduction

The central dogma of life describes the information �ow inside cells between biopolymers
(Lesk, 2012):

DNA
transciption
−−−−−−−−→ mRNA

translation
−−−−−−−−→ Protein.

The deoxyribonucleic acid (DNA) is a two-stranded double helix biopolymer consisting
of nitrogen-containing nucleobases guanine (G), adenine (A), thymine (T), cytosine (C)
and a phosphate-deoxyribose backbone. Ribonucleic acid has similar structure, however, it is
single-stranded and contains uracyl (U) instead of thymine and ribose instead of deoxyribose.

Parts of the DNA sequence are transcribed into messenger RNA (mRNA) sequences in a
process regulated by complex mechanisms according to changes in the environment inside
and outside the cell. The mRNA transcriptome eventually �nds its way to a ribosome of the
cell, where it is translated into a polypeptide sequence built from the 21 (in some organisms,
23) amino acids. After various physical and chemical changes of the polypeptide chain, the
end product is a protein.

Proteins are an extremely important class of biomolecules. They perform in virtually all
kinds of functions within a cell: structural proteins are responsible for sti�ness and rigidity,
enzymes catalysemost intracelluar chemical reactions, antibodies bind to and neutralise foreign
substances; proteins also regulate RNA transcription, signal information and transport
substances between cells.

The information required to synthesise is contained in hereditary units of the DNA
called genes. A gene is ‘a locatable region of genomic sequence, corresponding to a unit of
inheritance, which is associated with regulatory regions, transcribed regions, and or other
functional sequence regions’ (Pearson, 2006). Alleles of gene are its variation found in nature.

The Human Genore Project has revealed that there are about 22 5000 genes in the human
genome (International Human Genome Sequencing Consortium, 2004).

Gene expression studies look at the mRNA present in a specimen to determine what genes
are currently used in the cell to synthesise proteins and what are their corresponding alleles.
In microarraymethods, a set of probes are created to capture alleles of interest (Antal et al.,
2014). In contrast, RNA sequencing (RNASeq) methods, becoming increasingly popular doe
to the widespread use of high-througput sequencing methods, can read the bases of the
mRNA directly and hence discover yet unknown alleles.

Gene expression data may be used to categorise subtypes of diseases, e�ects of a treat-
ment and �nd genes participating in speci�c disease a biochemical process (Kaminski and
Friedman, 2002).

While gene expression measurement methods are gradually becoming more available,
microarray andRNASeqmeasurements are still relatively expensive. For example, processing
a sample with an A�ymetrix® Gene Pro�ling Array widely used in clinical research, may
cost $400–$700 including reagents and processing (Science Exchange, 2014).

The costs and the di�culty of recruiting a large number of patients for studies, especially
in the case of rare diseases, means that gene expression studies are usually limited to a
couple hundred specimens. This limitation of sample size combined with the large amount
of genes and alleles makes data mining for gene expression data a ‘small n, large p’ problem
(Aruliah et al., 2006). The large dimensionality of gene expression vectors (‘large p’) give
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2 CHAPTER 1. INTRODUCTION

rise to phenomena known as the ‘curse of dimensionality’ (Bellman, 1957), while the small
number of vectors (‘small n’) means data sets are very sparse.

Machine learning and data mining applications remain to be challanged by the dimen-
sionality and sparsity of gene expression data despite the importance of gene expression
studies in clinical safety assessment, diagnostics and prognostics.

In this work, we explore the e�ects of hubness, a signi�cant aspect of the ‘curse of di-
mensionality’, which is related to the intrinsic dimensionality data sets. After a discussion of
related work in Chapter 2, we study how hubness appears in real-world gene expression
data sets in Chapter 3. Chapter 4 concerns the e�ects of hubness in prediction task based on
gene expression vectors. We conclude our study in Chapter 5.



2 Background

In this Chapter, we describe some data mining and machine learning approaches for gene
expression.

2.1 Machine Learning for Gene Expressions

Machine learning tasks are usually categorised as either unsupervised or supervised.
In unsupervised tasks, only a set of instances X � {xi }

n
i�1 is available for the learning

algorithm. In the domain of gene expression data mining, instances are vectors of gene
expression values, i.e.

xi � (xi ,1 , xi ,2 , . . . , xi ,t , . . . , xi ,p ) ∈ Rp ,

where xi ,t is the expression value of the ith patient and tth gene and p is the total number of
genes considered. The vectors X � {xi } together form the data matrix X.

The unsupervised learning algorithm attemps to analyse the structure of the input data.
For example, in clustering similar instances are grouped into clusters C1 ,C2 , . . . ,Ck by means
of a partition X � C1 q C2 q · · · q C2.

In supervised tasks, data labels are available in addition to the instances, thus, the data set
takes the form D � {(xi , yi )}ni�1 where yi belongs to the set Y of all possible labels. In most
problems, the learning algorithm attempts to construct a predictor M from D . The predictor
attempts to predict the label y∗ of a yet-unseen instance x∗. In regression tasks, the possible
labels are the real numbers, i.e. Y � R. In classi�cation, Y is a �nite set of discrete class labels,
for example Y � {−1, +1}, where −1 means healthy tissue and +1 means cancerous tissue.

For a more comprehensive review, we refer to Antal et al. (2014, Chapter 8) in the context
of gene expression data and Witten et al. (2011) in the context of general machine learning.

2.2 Dimensionality Reduction

Dimensionality reduction methods refer to method which can reduce the p-dimensional
vectors X ⊂ Rp into a more manageable form. The output is a set of lower-dimensional
vectors X ′

⊂ Rq with q � p.
Because a cDNA microarray may be complementary to many thousands of genes, a large

fraction of genes measured may be irrelevant to the disease or biochemical process studied.
Feature selection methods attempt to select the relevant attributes, i.e. genes. This process is
usually supervised, because we are interested in the genes that most likely determine the
class labels.

On the other hand, feature construction methods create whole new representations of X
not limited to the attributes already present. This projection can be done both in a supervised
and unsupervised manner.

2.2.1 Feature Selection

Statistical indicators may be used to select relevant genes, including the t-statistic (Golub
et al., 1999), twoing rule, information gain, gini index, max minority, sum minority and sum

3



4 CHAPTER 2. BACKGROUND

of variances (Murthy, 1998). An implementation of these rules is avaiable in RankGene (Su
et al., 2003) software package.

Gene Ontology (Ashburner et al., 2000) is a dictionary (ontology) for expressing the roles
of genes in biological processes. Under the null hypothesis, genes of a certain biological
function are distributed among the overexpressed genes according to the hypergeometric
distribution. Relevant genes may be selected according to the rejection of this null hypothesis.

Other hypothesis testing based methods for determining signi�cance of genes include
GSEA: Gene Set Enrichment Analysis (Subramanian et al., 2005) and SAM: Signi�cance
Analysis of Microarrays (Tusher et al., 2001).

2.2.2 Feature Construction

Principal Component Analysis (PCA) Principal Component Analysis is an unsupervised
dimensionality reduction method that constructs and orthonormal system of principal axes
{u1 , u2 , . . . up }. Each principal axis corresponds to a linear combination of features (genes).

The principal axes are selected such that projection to the �rst q principal axes maximises
the variance of projected data X ′. The projected vectors x′i ∈ X ′ are calculated from the
corresponding original vectors xi ∈ X as follows:

x
′

i � (uT
1 xi , u

T
2 xi , . . . , u

T
p xi ) ∈ Rq . (2.1)

Let
x̄ �

1
n

∑
x∈X

x (2.2)

denote the data set mean and

S �
1
N

∑
x∈X

(x − x̄)T (x − x̄) (2.3)

denote the data set covariancematrix. The principal axes are the eigenvectors {ui } of S, sorted
in decreasing order by the eigenvalues λi (Bishop, 2006, Chapter 12). Therefore, to obtain a
q-dimensional representation of X , we �nd the q larges eigenvalues of S and project the
instance vectors to the corresponding eigenvectors.

Eigengenes The Eigengene method of gene expression feature construction (Alter et al.,
2000) relies on Singular Value Decomposition (SVD) of the data matrix. The data matrix X is
decomposed into a product of smaller matrices

X � UΣVT ,

where Σ is a q × q orthogonal matrix, i.e. ΣT � Σ−1.
The left-singular vectors of X, which are the columns of U, correspond to q-many ‘ei-

genarrays’ and the right-singular vectors of X, which are the columns of V , correspond
to q-many eigengenes. V contains the calculated expression levels of eigengenes in the
instances of original data set X , while U contains the expression levels of the genes of the
original data set in the eigenarrays. The ‘eigenexpression’ matrix Σ connects the eigengenes
and the eigenarrays.

2.3 Classi�cation

In classi�cation problems, the classi�er M aims to maximize the classi�cation accuracy

a(M) � P(M(x∗) � y∗), (2.4)

that is, the probabilty of correctly predicting a class label.
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Figure 2.1 Classi�cation for gene expression data..

To approximate the true accuracy a(M), the labeled data set D is partitioned into disjoint
a Dtrain training set and Dtest testing set. The learning algorithm only has access to the
training set when in construct the classi�er M. The accuracy may be approximated as

â(M) �
|{(xi , yi ) ∈ Dtest : M(xi ) � yi }|

|Dtest |
. (2.5)

Figure 2.1 illustrates classi�cation with training and testing sets for gene expression data.

K-Nearest Neighbours (k-NN) The k-nearest neighbour classi�er (k-NN) is a popular clas-
si�cation method were the class label of an instance x∗ is predicted according to majority
vote by its k nearest neighbour from the training set Dtrain. The similarity measured by some
distance function d(·, ·). Distance measures are discussed in detail in Section 3.1.

A crucial aspect of nearest neighbour classi�cation is its interpretability. The prediction
output is decided only by the k nearest neighbours of x∗. These few vectors and the cor-
responding patients can be inspected by a human expert and further conclusions may be
drawn.

Support VectorMachines (SVM) Support Vector Machines employ projections of the data
to very high-dimensional spaces and attempt to linearily separate the classes in data with a
maximum-margin hyperplane, which is as far from the points as possible. In practice, dual
representations are used, and the projections are realised by a kernel function K(xi , x j ).

Support Vector Machines can be successfully applied to gene expression data (W. Lin
and Chen, 2013; Mukherjee, 2003). For a detailed overview of SVMs and other sparse kernel
machines, we refer to Bishop (2006, Chapter 7).





3 Hubness in Gene Expression Data

Gene expression data sets contain expression values of thousands of genes. This means
instances in gene expression data sets are represented by vectors in very high dimensional
Euclidean space.

For example, the Breast Cancer data set (Sotiriou et al., 2003) contains 7650 features
measured by cDNA microarray chips. Therefore, instances of the Breast Cancer data set are
vectors in R7650, i.e. the space of 7650-dimensional vectors.

Data sets with such high dimensionality give rise to a collection of phenomena known as
the curse of dimensionality. A prominent aspect of the ‘curse’ is hubness (Radovanovic et al.,
2010a). Hubness is the emergence of hubs in the data set, instances which are similar to a
surprisingly large number of other instances.

3.0.1 Scale-Free Netorks

The terminology hub comes from Albert et al. (1999) in the context of scale-free network
analysis.

Scale-free networks are random graphs whose vertex degrees are distributed according to
a power law,

P(out-deg x � n) ∝ n−γ.
Scale-free networks include

– the World Wide Web with hyperlinks between sites as edges,
– the Internet with network connections as edges,
– movie actor and scientist collaboration graphs,
– celluar chemical reaction networks
– and ecological networks.

In these graphs, there are a few vertices with suprising large number of adjacent edges.
These vertices, located in the thick ‘tails’ of the power law distribution, are hubs of scale-free
networks.

In the rest of this Chapter, we will consider networks created from gene expression data
sets according to the similarity of gene expression pro�les.

3.1 Distance Metrics

To determine similarity of instances in gene expression data, we consider four widely used
distance measures, Euclidean, Manhattan, maximum and cosine distance.

The Euclidean andManhattan distances are special cases of the `r or Minkowski distance:

De�nition 3.1 The `r orMinkowski distance (r > 0) of two gene expression vectors is calculated
as

dr (xi , x j ) � ‖xi − x j ‖r �

(∑
t

|xi ,t − x j,t |
r
) 1/r

, (3.1)

where xi and x j are the gene expression pro�les of the ith and jth patiens, and xi ,t is the expression
value of the ith patient and tth gene.

7



8 CHAPTER 3. HUBNESS IN GENE EXPRESSION DATA

De�nition 3.2 Euclidean distance is the `2-distance of two vectors,

d2(xi , x j ) � ‖xi − x j ‖2 �

√∑
t

(xi ,t − x j,t )2. (3.2)

De�nition 3.3 Manhattan distance is the `1-distance of two vectors,

d1(xi , x j ) � ‖x1 − x j ‖1 �
∑

t

|xi ,t − x j,t |. (3.3)

De�nition 3.4 Maximum or supremum distance of two vector, often denoted as their `∞ distance,
is the maximum of their componentwise absolute di�erences,

d∞(xi , x j ) � max
t

� |xi ,t − x j,t |. (3.4)

De�nition 3.5 Cosine similarity is the cosine of the angle between two vectors xi and x j ,

cos θi , j �
xi · x j

‖xi ‖2‖x j ‖2
�

∑
t xi ,t x j,t√∑

t x2
i ,t ·

√∑
t x2

j,t

. (3.5)

Cosine distance is de�ned to be small if two instances a similar, thus, it can be used with
distance-based algorithms such as k-nearest neighbours. It has the form

dcos(xi , x j ) � 1 − cos θi , j . (3.6)

Note that the cosine distance is not a proper metric, because the triangle equality

dcos(x1 , x2) ≤ dcos(x1 , x3) + dcos(x2 , x3)

may not always be satis�ed. The classi�cation algorithms used in the work do not require
the distance metric to satisfy the metric axioms, therefore, cosine distance may be employed
without modi�cation.

3.2 Nearest Neighbour Graph

We can construct the directed k-nearest neighbour graph G � (V, ~E) of a data setX according
to a distance function d(·, ·) as follows:

1. The vertices of the nearest neighbour graph are instances of the data set V � X . In
our application, this means G has a vertex for each patient’s gene expression pro�le.

2. G contains the directed edge x → x′ between instances x , x′ ∈ X if and only if x is
among the k nearest neighbours of x′ according to the distance d(·, ·).

In this Section, we will focus on the case where d(·, ·) is one of Euclidean, Manhattan,
maximum an cosine distances.

The k-nearest neighbour graph plays an important role in instance selection (Buza et al.,
2011) and semi-supervied classi�cation (Marussy and Buza, 2013) problems.

An important property of vertices in V is their out-degree, which is the number of their
outgoing edges. This is the number of other instances for which they may in�uence the
prediction output of a k-nearest neighbour classi�er.

We call the out-degree of some vertex x ∈ V of the k-nearest neighbour graph its k-
occurrence score Nk (x). Alternatively, the following de�nition may be used:
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n c d dmle

Breast Cancer 95 2 7650 25.95
Breast Cancer 2000 2 95 2000 19.62
Colon Cancer 62 2 2000 13.22
Lung Cancer 203 5 12600 19.30
Lung Cancer 2000 203 2 2000 16.79

Table 3.1 Number of instances (n), number of classes (c), number of genes (d) and intrinsic
dimensionality (dmle) in the data sets we used for hubness measurements.

De�nition 3.6 (adapted from Tomasev et al. (2014)) Let Nk (x′) ⊂ X denote the k nearest
neighbours of x′ according to a chosen distance metric d(·, ·). The k-occurrence score of an instance
x, denoted by Nk (x), is number of other instances which have x among their k nearest neighbours
neighbours

Nk (x) � |{x′ ∈ X : x ∈ Nk (x′) ∧ x , x
′
}|. (3.7)

Hubs in the nearest neighbour graph have large out-degree, therefore, they have surpris-
ingly high Nk .

3.2.1 Nearest Neighbour Graphs in High Dimensions

As the dimensionality of data sets and the number of instances goes to in�nity, nearest-
neighbour graphs in synthethic data become similar to scale-free networks, that is, there is
and emergence of hubs (Radovanovic, 2011). Therefore, hubness in as aspect of the ‘curse of
dimensionality’.

With Euclidean distances, behaviour is caused the asymptotic behaviour of the noncentral
χ-distribution (Radovanovic et al., 2010a), which is related to the concentration of distances phe-
nomenon (Aggarwal et al., 2001). For cosine distances, analogous results exist (Nanopoulos
et al., 2009).

In reald world data sets, the emergence of hubness depends on the intrinsic dimensionality
of the data set instead of its embedding dimensionality Radovanovic et al. (2010b). Therefore,
hubness is and aspect of the ‘curse of intrinsic dimensionality’.

Intrinsic dimensionality refers to the dimensionality of the data set regardless of its
embedding. For example, a data set consisting of a 2-dimensional plane represented as
d-dimensional vectors with d > 2 still has intrinsic dimensionality of 2.

3.2.2 Degree Distributions in Gene Expression Data

To illustrate hubness in gene expression data sets, we plot the degree distributions of the
k � 5 nearest neighbour graphs of three gene expression data sets and two derived data sets,
which are summarised in Table 3.1.

The intrinsic dimensionality of the data sets were estimated with a maximum likelihood
estimator based on the Poisson distribution (Levina and Bickel, 2004). We used the same
number of neighbours (k � 5) for estimation of intrinsic dimensionality that was used for
the calculation of hubness indicators.

– The Breast Cancer data set (Sotiriou et al., 2003) contains expression values for 7650
genes of 95 breast cancer specimens. 32 of these specimens were estrogen receptor
negative (ER–), while 63 were ER+.
The original data set published by Sotiriou et al. contains 4 expression vectors for 4
additional specimens, for which the the ligand-binding assays and immunohistochem-
istry method of determining ER status gave condtradictory results. We removed these
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vectors from the data set, so evaluations are only performed on the instances with
disambigous class label assignment.

– The Colon Cancer data set contains (Alon et al., 1999) 62 colon tissue sample instances,
40 of which were cancerous.
Out of the more than 6500 genes measures, the data set contains the expression values
for only the 2000 with highes minimal expression value. In other words, the the genes
were sorted descending according to

xmin,t � min
i

xi ,t

and only the top 2000 were preserved.

– The Lung Cancer data set (Bhattacharjee et al., 2001) contains 203 specimens with
12600 genes. There are 139 adenocarcinomas, 21 squamous cell lung carcinomas, 20
pulmonary carcionoids and 6 small-cell carcinoma cases among the specimens in
addition to 17 normal lung samples.

– In order to distinguish the artifacts in the data sets which are caused by pre-processing,
we applied the same pre-processing step to the Breast Cancer and Lung Cancer data
sets that Alon et al. used for the Colon Cancer data set. The results are the Breast Cancer
2000 and Lung Cancer 2000 data sets with the 2000 most expressed genes from the
respective data sets.

On the Breast Cancer data set, Euclidean and Manhattan distances exhibit similar k-
occurrence score distributions (Figure 3.1). Over 40% of the instances are ‘anti-hubs’ with
N5 � 0 or 1. There are a few instances with k-occurrence scores up to 31 in the tail of the
distribution which are hubs. Maximum and cosine distances have comparable number of
hubs, albeit a smaller fraction of the data set are anti-hubs.

The pre-processing in the Breast Cancer 2000 data set does not impact hubs considerably.
However, it has reduced the number of anti-hubs for Euclidean and Manhattan distances,
which became not much greater than that of maximum and cosine distances.

In Table 3.1 we can see that while the pre-processing removed 74% of the attributes, the
intrinsic dimensionality was decreased only by 24%. This explains why is the change in the
shape of the curves relatively small.

The distributions for the Colon Cancer data set are very noisy (Figure 3.2), probably
because of the relatively small size (62 instances) of the data set. We can still observe some
hubs with N5 ≥ 10 in the tails of the distributions.

The k-occurrence score distributions of the Lung Cancer data are extremely skewed and
similar to the distributions of the Breast Cancer data set (Figure 3.3).

The removal of 84% of attributes resulted in a mere 13% decrease of intrinsic dimension-
ality and left the general shape of the distributions intact. However, there was an increase in
the number of anti-hubs for Euclidean and Manhattan distances.

3.3 Measurement of Hubness

Radovanovic et al. (2010a) suggested the skewness (standardised third moment) of the distri-
bution of k-occurences as an indicator of hubness,

SNk �
E
[
(Nk (x) − µNk )3

]
σ3Nk

, (3.8)

where µNk and σNk are themean and standard deviation of the distribution of Nk , respectively.
When the skewnessSNk is positive, the distribution is right-tailed. The tail of a highly skewed
k-occurence distribution contains instances with hubness values much larger than the mean.
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Figure 3.1 Distribution of k-occurrence scores in the Breast Cancer data sets with Euclidean,
Manhattan, maximum and cosine distances and k � 5.
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Figure 3.2 Distribution of k-occurrence scores in the Colon Cancer data set with Euclidean,
Manhattan, maximum and cosine distances and k � 5.

Another two indicators, k-anti-hub occurrence and k-hub occurrence, were proposed by
Schnitzer and Flexer (2014):

De�nition 3.7 The k-anti-hub occurrence score (Ak
occ) of a dataset X is the fraction of instances

with zero k-occurrence score, i.e.

Ak
occ �

|{x : x ∈ X ∧ Nk (x) � 0}|
|X |

. (3.9)

De�nition 3.8 The k-hub occurrence score (Hk
occ) of a dataset X is normalised sum of the k-

occurrence scores of instances with k-occurrence at least 2k, i.e.

Hk
occ �

1
k |X |

∑
x∈X

Nk (x)≥2k

Nk (x). (3.10)

Ak
occ and Hk

occ were found to bemore stable indicators of hubness in the context of distance
function selection that the skewness SNk .

3.3.1 Bad Hubness

Bad hubness is the tendency of hubs to have di�erent class labels than the instances they are
nearest neighbour of. This phenomenon may mislead classi�ers and degrade classi�cation
accuracy (Radovanovic et al., 2010b).

To study the relationship between hubs and class labels in labeled data setD � {(xi , yi )}ni�1,
we use class-conditional k-occurrence socres:

De�nition 3.9 (adapted from Tomasev et al. (2014)) Let Nk ,y (x′) ⊆ Nk (x′) denote the sub-
setset of other instances that have x among their k nearest neighbours and belong to the class y, i.e.

Nk ,y (x) � {xi : (xi , yi ) ∈ D ∧ xi ∈ Nk (x) ∧ yi � y}. (3.11)
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Figure 3.3 Distribution of k-occurrence scores in the Lung Cancer data sets with Euclidean,
Manhattan, maximum and cosine distances and k � 5.
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The class-conditional k-occurrence score Nk ,y (x) of an instance x is the size of number of instances
of class y that have x among their k nearest neighbours, i.e.

Nk ,y (x) � |{x′ ∈ D : y(x′) � y}|. (3.12)

The k-occurrence score of x may be decomposed as a sum of class-conditional scores,

Nk (x) �
∑
y∈Y

Nk ,y (x).

The most interesing hubness-related parameter for quantifying bad hubness is the bad
k-occurrence score BNk (x), which is the number of other instances x′which have x among their
k nearest neighbours but belong to a di�erent class than x. This quantity can be calculated as

BNk (x) � Nk (x) − Nk ,y(x) (x). (3.13)

To capture the bad hubness in thewhole data set, we use the normalised total bad hubness
proposed by Radovanovic et al. (2010b):

De�nition 3.10 The normalised total bad hubness T̃BN k in a labeled data set D is the sum of
bad k-occurrence scores divided by the sum of all k-occurrences,

T̃BN k �

∑
x∈D BNk (x)∑
x∈D Nk (x)

. (3.14)

Each instance x
′ has exactly k other instances {xi}ki�1 with x

′
∈ Nk (x), since these {xi }

instances are the k nearest neighbours of x′ by the de�nition of Nk (x). Therefore, the sum∑
x∈D Nk (x) � k |D | and T̃BN k may be written as

T̃BN k �
1

k |D |

∑
x∈D

BNk (x). (3.15)

3.3.2 Measurements in Gene Expression Data Sets

We calculated the skewness of 5-occurrences SNk , the 5-anti-hub occurrence score A5
occ,

the k-hub occurrence score H5
occ and the normalised total bad hubness T̃BN5 of the Breast

Cancer, Breast Cancer 2000 and Colon Cancer data sets. Table 3.2 displays the results for
Euclidean, Manhattan, maximum and cosine distances.

To study the e�ects of dimensionality reduction, we have extracted the �rst 20 principal
compoments of the data sets with the stats R package (R Core Team, 2014) and calculate the
hubness indicators for the low-dimensional representations, too. The number of principal
components was selected to be approximately equal to the intrinsic dimensionality dmle of
the data sets (Table 3.1).

With the original representation, the distributions of k-occurrence scores is highly skewed
in all data sets with all distance functions, as we have seen in Section . Surprisingly, the
multi-class Lung Cancer data set

The extraction of principal components greatly decreases the indicators of hubness SNk

andA5
occ, while slightly decreases H5

occ. However, the total bad hubness T̃BN k remains similar
to the original representation’s values. This agrees with previous result the dimensionaly
reduction cannot mitigate bad hubness (Radovanovic, 2011), unless the number of resulting
dimensions is less than the intrinsic dimensionality of the data set. However, such aggressive
dimensionality reduction leads to signi�cant loss of information.
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Originial Representation 20 Principal Components

SN5 A5
occ H5

occ T̃BN5 SN5 A5
occ H5

occ T̃BN5

Breast Cancer
Euclidean 1.889 0.263 0.646 0.246 1.334 0.084 0.406 0.206
Manhattan 2.028 0.242 0.629 0.267 1.281 0.105 0.385 0.240
Maximum 1.768 0.147 0.332 0.263 0.858 0.116 0.371 0.183

Cosine 2.101 0.147 0.476 0.238 0.503 0.032 0.152 0.227
Breast Cancer 2000

Euclidean 2.105 0.137 0.552 0.225 1.174 0.842 0.339 0.223
Manhattan 2.194 0.158 0.600 0.259 1.296 0.105 0.406 0.248
Maximum 0.850 0.116 0.272 0.373 1.041 0.632 0.250 0.234

Cosine 2.270 0.105 0.474 0.270 0.471 0.021 0.160 0.257
Colon Cancer

Euclidean 0.859 0.113 0.239 0.316 0.998 0.097 0.268 0.306
Manhattan 0.783 0.113 0.235 0.316 0.866 0.065 0.320 0.310
Maximum 1.220 0.145 0.442 0.374 0.929 0.065 0.210 0.330

Cosine 1.419 0.065 0.332 0.345 1.227 0.065 0.252 0.335
Lung Cancer

Euclidean 1.665 0.148 0.339 0.096 0.862 0.054 0.286 0.096
Manhattan 1.908 0.142 0.503 0.106 1.051 0.049 0.261 0.096
Maximum 1.778 0.099 0.376 0.193 0.985 0.034 0.193 0.111

Cosine 1.499 0.128 0.371 0.100 0.541 0.034 0.201 0.117
Lung Cancer 2000

Euclidean 1.387 0.192 0.448 0.115 0.984 0.069 0.347 0.107
Manhattan 1.948 0.212 0.467 0.103 1.063 0.059 0.342 0.112
Maximum 1.167 0.103 0.395 0.197 1.092 0.044 0.299 0.130

Cosine 1.285 0.192 0.425 0.110 0.488 0.025 0.141 0.126

Table 3.2 Hubness measurements in the considered data sets with the original gene expres-
sion vector representations and with the �rst 20 principal components extracted.





4 Hubness-aware Gene Expression

Classi�cation

In the previous Chapter, we demonstrated the prominent presence of hubs and bad hubs
in gene expression data sets. Because hubness, especially bad hubness can signi�cantly
deteriorate classi�cation accuracy, we expect classi�cation algorithms which were designed
with hubness in mind to outperform standard algorithms.

In this Chapter, we report the �ndings of our empirical evaluation of stadard and hubness-
aware classi�ers on gene expression data.

4.1 Hubness-aware Classi�ers

Hubness-aware classi�ers are modi�cations of the nearest-neighbour classi�cation paradigm
that operate under the assumption of hubness. They were designed to take advantage of the
presence of hubness either explicitly or implicitly and mitigate the bad hubness artifacts.
They outperform standard classi�ers in various domains such as text and image (Tomasev
and Mladenic, 2012) and time-series classi�cation (Tomasev et al., 2014).

In this Section, we present the hubness-aware classi�ers and evaluate their performance
on gene expression data sets by comparing them to state-of-the-art classi�ers as baseline.

In the following overview of hubness-aware classi�ers, we assume that the test set Dtest
is not available to the classi�er at learning time. Thus, the hubness indicator values Nk (x),
Nk ,y (x) and BNk (x) from Chapter 3 are only calculated from the training set Dtrain.

For a more in-depth description of hubness-aware classi�ers including many examples,
we refer to Tomasev and Mladenic (2012) and our recent survey Tomasev et al. (2014).

4.1.1 Hwknn: Hubness Weighted k-Nearest Neighbours

The earliest algorithm for hubness-aware classi�cation was suggested by Radovanovic et al.
(2009). Hwknn modi�es k-nearest neighbour classi�cation by weighting the votes of each
neighbour by

hb (xi ) �
BNk (xi ) − µBNk

σBNk

, (4.1)

where µBNk and σBNk are the mean and standard deviation of BNk , respectively. Intuitively,
less weight is given to instances with high bad hubness scores.

4.1.2 Hfnn: Hubness-based Fuzzy Nearest Neighbour

Hubness-based Fuzzy Nearest Neighbour (Tomasev et al., 2011b) interprets the relative class
hubness

uy (x) �
Nk ,y (x)
Nk (x)

(4.2)

17
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as the fuzzyness of the event that x occurs as one of the neighbours of the point being
classi�ed. The probability of the instance x∗ to belong to class y hence be estimated as

uy (x∗) �
∑

x∈Nk (x∗) uy (x)∑
x∈Nk (x∗)

∑
y′∈Y uy′ (x)

. (4.3)

4.1.3 Hnbnn: Naive Hubness Bayesian k-Nearest Neighbour

Each k-occurrence can be treated as a random event. Hnbnn performs a Naive-Bayesian
inference based on these k events (Tomasev et al., 2011a),

P(y∗ � y |Nk (x∗)) ∝ P(y)
∏

x∈Nk (x∗)

P(x ∈ Nk (x∗) |y). (4.4)

P(y) denotes the probabilty that an instance belongs to class y and may be estimated as

P(y) �
|Dtrain,y |

|Dtrain |
, (4.5)

where Dtrain,y is the set of instances from the training set that belong to class y.
P(x ∈ Nk (x∗) |y) denotes the probability that x appears among the k nearest neighbours

of and instance from class y, therefore, it can be estimated as

P(x ∈ Nk (x∗) |y) �
|Nk ,y (x) |
|Dtrain,y |

. (4.6)

4.1.4 Hiknn: Hubness Information k-Nearest Neighbour

Hubness Information k-Nearest Neighbour uses the self-information I(x) associated with
the event that x appears as a nearest neighbour

I(x) � log 1
P(x ∈ Nk )

P(x ∈ Nk ) ≈
Nk (x)
|Dtrain |

(4.7)

to determine relative and absolute relevance factors of hubs to aid classi�cation (Tomasev
and Mladenic, 2012).

4.2 Evaluation Methods

4.2.1 Data Sets

We conduct the empirical evaluation of the Breast Cancer, Colon Cancer and Lung Cancer
data sets presented in Section 3.3.2 and Table 3.1.

The classi�ers are run on both the original, high dimensional representations of gene
expression vectors and the 20-dimensional representations obtained by Principac Component
Analysis. However, we do not use the derived Breast Cancer 2000 and Lung Cancer 2000
data sets, which were generated merely by discarding attributes.

4.2.2 Baselines

We consider the following baselines in out evaluations:

1. The k-nearest neighbour classi�er (k-NN) with either Euclidean, Manhattan, maximum
and cosine distances,

2. Support Vector Machines (SVMs) with inhomogenous polynomial kernels, i.e.

K(xi , x j ) �
(
x

T
i x j + 1

)d . (4.8)
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4.2.3 Cross-Validation and Hyperparameter Search

We use 10 × 10-fold cross-validation to evaluate the classi�ers, that is, the instances are
randomly split into 10 folds 10 times. Each fold in each split takes the role of the test set Dtest
once, while the union of the remaining splits is the training set Dtrain. This amounts to 100
runs per classi�er per data set.

The classi�er hyperparameters are learned with grid search and inner 10-fold cross-
validation on the traing data only. The train set Dtrain is split into 10 folds and average
classi�cation accuracy is evaluated for each setting of hyperparameters. The �nal classi�er
learns from the whole training set Dtrain with the best performing hyperparameter setting.

The SVM classi�ers’ cost hyperparameter is searched in the range C � 10−5 , 10−4 , . . . , 105.
The exponent of the inhomogenous polynomial kernel d is searched in the range d � 1, 2, 3.
That is, the parameters are grid searched from

(C, d) � (10−5 , 1), (10−5 , 2), (10−5 , 3), (10−4 , 1), . . . , (105 , 3).

For the k-NN and hubness-aware classi�ers, both the distance function and the number
of neighbours k is treated as a hyperparameter. The distance function is selected from
Euclidean, Manhattan, maximum and cosine distances. For k-nearest neighbours, hwknn,
hfnn and nhbnn, the number of neighbours is selected from k � 1, 2, . . . , 10. For hiknn, the
range of k is reduced to k � 4, 5, . . . , 10 in order to avoid singularities in the information
claculation.

4.2.4 Implementation

Due to the extensive hyperparameter search and cross-validation, the experiments took
several days of CPU time in total on a second-generation Intel®CoreTM i7 machine with
8 GB of RAM.

The experimental framework was implemented in a combination of C++ and Java, which
communicate through the JNI Invocation API (Oracle, 2011). The hubness-aware classi�ers
were implented in Java by Krisztián Buza1 and their source code is available on request.

We use the Libsvm library (Chang and C. Lin, 2011) for Support Vector Classi�cation and
the stats R package (R Core Team, 2014) for Principal Component Analysis.

4.3 Results and Discussion

We report the accuracy of all studied classi�ers on both the Breast Cancer and Colon Cancer
data set averaged over 10 × 10 folds in Table 4.1 and Table 4.2. Statistical signi�cance of
results was evaluated with two-tailed paired di�erence t-test at signi�cance level p < 0.05.

Surprisingly, the hubness-aware classi�cation algorithms were not only less accurate
that Support Vector Machines, they were also signi�cantly outperformed in many cases by
k-nearest neighbour. This result is very interesting, because hubness-aware classi�ers were
designed to avoid the bad hubness artifacts that a�ects nearest-neighbour classi�cation.

Hubness-aware classi�ers performed the worst on the Colon Cancer, which was the
smallest of the studied data sets with only 62 instances. Estimates of hubness in Dtrain ∪Dtest
calculated from only Dtrain may be unreliable in such small data sets.

The small training set can also hurt hyperparameter search. Figure 4.1 displays the values
of the neighbourhood size hyperparameter k of Hwknn selected by inner-cross validation
over 10 × 10-fold cross validation. It is apparent the selection of k is least concentrated in
the Colon Cancer data set. In contrast, for the Lung Cancer data set, which consists of 203
instances, the grid search selected k � 3 in nearly half of the folds.

The supremacy of SVMs in out experiments can be explained by fact that, being a
maximum-margin classi�er and depending on only a small number of support vectors,

1chrisbuza@yahoo.com

mailto:chrisbuza@yahoo.com
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Original Representaion Baseline Hubness-aware

k-NN SVM Hwknn Hfnn Nhbnn Hiknn

Breast Cancer 82.67% 86.67% 83.44% 84.44% 85.00% 80.56%
Signi�cance vs k-NN n/a ◦ – – ◦ –
Signi�cance vs SVM • n/a • • – •

Colon Cancer 74.50% 89.33% 71.67% 67.00% 68.83% 70.83%
Signi�cance vs k-NN n/a ◦ – • • •

Signi�cance vs SVM • n/a • • • •

Lung Cancer 92.55% 93.45% 93.35% 91.80% 80.65% 91.50%
Signi�cance vs k-NN n/a – – – • –
Signi�cance vs SVM – n/a – • • •

Table 4.1 Accuracy of studied classi�ers and the statistical signi�cance of their di�erences.
The best performing classi�er is highlighed in bold. Signi�cantly (p < 0.05) better accuracy
is denoted by ◦, while signi�cantly worse accuracy is denoted by •.

20 Principal Components Baseline Hubness-aware

k-NN SVM Hwknn Hfnn Nhbnn Hiknn

Breast Cancer 84.22% 88.22% 81.44% 82.78% 82.67% 83.44%
Signi�cance vs k-NN n/a,– ◦,◦ •,– –,– –,– –,–
Signi�cance vs SVM •,– n/a,◦ •,• •,• •,• •,•

Colon Cancer 75.33% 79.67% 73.00% 67.33% 65.17% 70.17%
Signi�cance vs k-NN n/a,– ◦,◦ –,– •,• •,• •,•
Signi�cance vs SVM •,• n/a,• •,• •,• •,• •,•

Lung Cancer 91.35% 92.45% 91.60% 90.90% 81.60% 91.20%
Signi�cance vs k-NN n/a,– –,– –,– –,• •,• –,–
Signi�cance vs SVM –,• n/a,– –,• •,• •,• •,•

Table 4.2 Accuracy of studied classi�ers and the statistical signi�cance of their di�erences
after unsupervised extraction of the �rst 20 principal components for the data. The �rst
symbol refers to statistical signi�cance compared to the baseline learned with principal
components extraction, while the second symbol refers to signi�cance compared to the
baseline with the originial gene representation.
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Figure 4.1 Values of the neighbourhood size hyperparameter k learned by Hwknn classi�er.

Support VectorMachines are suitable for classi�cation even in very sparse spaces (Mukherjee,
2003). Moreover, bad hubs can often be good support vectors (Radovanovic et al., 2009),
which makes SVMs even more suitable for gene expression data.





5 Conclusions and Future Work

In this paper, we have studied the emergence of hubness and hubness-aware classi�cation in
three real-world gene expression data sets from cancer research. Our contributions include:

– The measurement of hubness in the studies gene expression data set with Euclidean,
Manhattan, maximum and cosine distances in Chapter 3.
We have demonstrated that hubness occurs with all four distances metrics and is not
an artifact of pre-processing. Additionally, we have shown that bad hubness cannot be
entirely removed by dimensionality reduction via Principal Component Analysis.
More abstractly, we can interpret the results that one should expect a degree of hubness
in any gene expression data set.

– The suprising result in Chapter 4 that, despite the existence of bad hubs in gene
expression data sets, state-of-the-art hubness-aware classi�ers cannot outperform the
simple k-nearest neighbour classi�er.
Support Vector Machine were able to cope with the small size of the data sets much
better than instance-based nearest-neighbour and hubness-aware classi�ers, which
were plagued by unstable hyperparameter estimates.

The current hubness-aware classi�cation algorithm seem to be insu�ciently roboust for
the ‘small n, large p’ challange that gene expression data pose. The development of more
roboust hubness measurements and hubness-aware classi�ers for gene expression data seem
promising and interesing research directions.
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