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1 Abstract

When trying to solve linear, time-invariant electrical networks, in many cases numerical

methods are insufficient on their own and a more general, combinatorial approach is needed

to check the singularity of the given network before they can be applied. This is especially

true in case of large networks where the models are more likely to be inaccurate, and these

singularities can lead to incorrect results.

In the past, several authors gave necessary and sufficient conditions of unique

solvability, mainly using matroid theory which offers polynomial algorithms for checking

these conditions. To obtain such conditions, some sort of generality of the parameters in

the describing equations of the network had to be assumed, but these assumptions were

formulated in different ways, leading to different, non-equivalent results.

The purpose of this paper is to highlight the role of the genericity assumption in

these statements, and the difference between the weaker and the stronger cases. I would

also like to further discuss its properties, the effect this assumption has on the system of

describing equations, and how it can alter the rank of a matrix.

The last part, presented in Section 4, is a new result contained in a paper that we

submitted for publication.
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2 Multiports, and related subjects

To describe what the genericity assumption means in electrical network theory, the intro-

duction of some concepts from the field of mathematics and electrical network theory is

needed.

Throughout the paper we use standard matroid notation. ⊕ denotes the direct

sum, ∗ denotes the dual of a matroid, / denotes contraction and ∨ denotes the union of

matroids. For further matrodial concepts, the reader is referred to [1] and [2].

2.1 Matrix description of a multiport

In electrical network theory, devices are often modelled as n-ports. An n-port – or multiport

if the number n has no significance – is an abstract network element, with n pairs of

terminals (see Figure 1) and k linearly independent equations describing the voltages and

currents of these ports. These equations can be written in the form Au+Bi = 0 with u and

i being vectors of height n, representing the voltages and currents of each port, respectively,

and A and B being k × n real matrices. It is important to note, however, that while these

matrices uniquely determine the n-port by describing the relationships between u and i,

the converse is not true, one n-port has several different matrix descriptions. The rank of

an n-port can be defined as follows: r = r(A|B). This matrix is often denoted by M. If

the equation n = r holds true, we call the n-port ordinary.

This representation allows the use of combinatorial tools in the analysis of these

devices. However, it should only be used in cases where we care only about the properties

of the device which are reflected by the relations of the port currents and voltages since we

do not have any information about how the ports are actually connected inside the device.

Also, since we considered the network equations to be homogeneous – essentially short

circuiting any voltage sources, and open-circuiting any current sources inside the device –
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Figure 1: A 4-port

this approach is only suitable for making general statements about the solvability of the

network.

2.2 The interconnection of multiports, and unique solvability

Multiports can be interconnected along a network graph, an example of this is presented in

Figure 2. In this section we suppose that the multiports to be interconneted were ordinary.

Figure 2: Two 2-ports and three resistances interconnected to form a network, and the

graph of the interconnection

The resulting system of equations will contain the original describing equations

of the multiports and the Kirchhoff equations. The Kirchhoff equations can be written in
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the form Cu = 0;Qi = 0, where C,Q are the circuit and cut set matrices of the graph of

the interconnection, respectively. Note, that when formulating the equations this way the

direction of these voltages and currents would play an important role if we wanted to cal-

culate their exact values, however, since we only examine the solvability of the network the

direction of these edges is unimportant. The original describing equations of the multiports

to be interconnected can be gathered in a matrix A, where this matrix is block-diagonal

and each block contains the describing equations of one of the original multiports.

If our network graph has e edges, then the solvability problem has 2e unknown

quantities (i.e. the voltages and currents of these edges) and 2e equations. The original

multiports were ordinary, so A has e rows. Since the network graph is connected r(C) =

e− v + 1 and r(Q) = v − 1 (where v is the number of vertices in the network graph). The

network equation can be written in the form:

N

u
i

 = 0

where

N =


C 0

0 Q

A



is a 2e×2e matrix. This network is uniquely solvable if and only if r(N) = 2e. To check this

condition, numerical methods are insufficient, since in the case of a very large N, round-off

errors may lead to wrong results, therefore a combinatorial approach is more adequate.
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2.3 Term rank

Let us consider a matrix M with n columns and k rows. The term rank of M is the

maximum number of nonzero entries, not two in the same column or row, and is denoted by

rt(M). The determinant of a square submatrix with dimensions n× n is the signed sum of

the expansion members, which can be written in the form a1k1a2k2 ...ankn , where k1, k2, ..., kn

is a permutation of the numbers 1, 2, ..., n. If r(M) = k, there must be a k × k submatrix

M0 with det(M0) 6= 0. Since det(M0) is the sum of the expansion members at least one of

them must be nonzero, so there have to be k nonzero entries which are all in different rows

and columns. For that reason, one can observe that

rt(M) ≥ r(M) for every matrix M.

Equality in general cannot hold true. Consider the matrix C =
[
a b
c d

]
, where a, b, c and d

are nonzero entries. Clearly, rt(C) = 2, however, if the equation ad = bc holds, r(C) = 1,

because the nonzero expansion members cancel out each other. This can only occur if there

is some algebraic dependence between the entries of the matrix.

2.4 Algebraic dependence

Let us consider two fields L and K, where K ⊂ L. If x ∈ L−K, then K(x) is the field K

extended by x. If y1, y2 are further elements of L−K, then y1 ∈ K(x) and y2 /∈ K(x) are

both possible.

For example, let L = R (that is the field of real numbers) and its subfield K = Q

(the field of rationals). Then in the case of x =
√

2,
√

8 ∈ K(x), but
√

3 /∈ K(x). The first

statement is trivial since
√

8 = 2
√

2, so
√

8 must be contained in every field containing Q

and
√

2. The smallest field containing Q and
√

2 is the field of numbers in the form a+b
√

2,

where a, b ∈ Q. To prove, that
√

3 is not in this field, we must show that it does not arise in
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this form. If we add two numbers in the form a+ b
√

2 the result will clearly be in the same

form. This is obviously also true in the case of subtraction and multiplication. Division

is also possible if at least one of a and b is nonzero since (a + b
√

2)−1 = a−b
√
2

a2−2b2 . Let us

assume that
√

3 = a+ b
√

2. Clearly, a and b must be nonzero for this to be possible. Then

3 = a2 + 2b2 + 2ab
√

2, hence
√

2 = 3+a2+2b2

2ab , contradicting the irrationality of
√

2 (recall

that a, b ∈ Q). Therefore
√

3 can not be in the field K(x).

In this case we extended Q with a number which is algebraic over it, which means

there is a nonidentically zero polynomial with coefficients from Q that has
√

2 among its

roots. Nonalgebraic numbers are transcendental over Q. If we consider Q extended by a

transcendental number, for example π, we obtain a very different field from Q(
√

2). Q(π)

has to contain all numbers in the form (
k∑

i=0
aiπ

i)/(
l∑

i=0
ajπ

j), where k, l ∈ N, every ai, bj ∈ Q,

and at least one of the bj ’s is nonzero. This is due to π being transcendental over Q, hence

none of its powers can arise as a lower degree polynomial of π as they can in the case of
√

2.

We can now formulate the definition of algebraic independency. Two elements

x, y ∈ L are algebraically independent over K if x is transcendental over K(y) and y is tran-

scendental over K(x). Generally, the elements x1, x2, ... ∈ L are algebraically independent

over K if any one of them is transcendental over the smallest field containing K and all the

other xi’s. This also means that the elements x1, x2, ... are algebraically independent over

K if and only if they do not satisfy any nonidentically zero polynomial with coefficients

from K.

Recall, that the term rank and the rank of a matrix M were not the same, since

cancellations can occur among the entries of M. However, if K ⊂ L, and the nonzero entries

of M are from L −K and are algebraically independent over K, then r(M) = rt(M). [1]

[3]

8



3 The genericity assumption

The solvability of active linear networks is one of the main problems in electrical network

theory. Since the results of Kirchhoff authors gave various necessary and sufficient conditions

for the unique solvability of differrent classes of devices, but most of those conditions were

only necessary but not sufficient unless the generality of some parameters were assumed.

The aim of this section is to highlight the importance of this genericity assumption by

presenting the different results which led to its precise formulation.

In this section the active linear networks are considered as the interconnection of

ordinary n-ports as described in Section 2.2. First, two models are presented for the unique

solvability problem of these networks. These models were created based on the models

of different authors with the goal to unify their results and highlight the not so obvious

differences between them. [4]

3.1 The first model

This is the method of [5, 6, 7] slightly modified and extended by [8]. It is also equivalent

to [9].

Let G1 = (U1, V1,W1) be a bipartite graph, with vertex set U1 ∪ V1, and edge set

W1. Let U1 = {1, 2, ..., e} and V1 = {u1, u2, ...ue, i1, i2, ..., ie} = Eu ∪Ei, where the edge set

E of the network graph G is imagined in 2 copies Eu and Ei corresponding to the currents

and the voltages of the ports. Each edge of W1 connects one vertex from U1 with one vertex

from V1 in the following way. A vertex from V1 is connected to i ∈ U1 if in the matrix A in

the column corresponding to the vertex from V1 the i-th element is nonzero. We also define

two matroids. Let the first one, M′1, be the free matroid over the set U1. Furthermore

M′′1 = (Eu,M(G))⊕ (Ei,M∗(G))
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where M(G) is the cycle matroid of the network graph G.

3.2 The second model

This model is very similar to the first one. It is a straightforward modification of the method

presented in [10, 11] It also represents this interconnection with a bipartite graph and two

matroids, however, there are some key differences.

Let G2 = (U2, V2,W2) be a bipartite graph, with vertex set U2 ∪ V2, and edge

set W2. Let U2 and V2 be two disjoint copies of Eu ∪ Ei. Each edge of W2 connects one

vertex from U2 with the corresponding one from V2. M′2 is defined over the underlying set

S = Eu ∪ Ei in a way that a subset X ⊆ S is independent if and only if the columns of

matrix A (defined in 2.2) corresponding to the elements of X are linearly independent. M′′2
is exactly the same as it is in the first model, that is:

M′′1 = (Eu,M(G))⊕ (Ei,M∗(G)).

3.3 Unique solvability in these models

In both models, the authors gave the same condition. The network has a unique solution if

and only if (in the ith model) the graph Gi and the matroidsM′i,M′′i gave and independent

matching containing e edges. A subset Xi ⊆ Wi is called an independent matching if the

following four conditions are all met:

1. Different edges of Xi are incident to different vertices of Ui.

2. The vertices in Ui incident to edges of Xi form an independent set in the matroidM′i.

3. Different edges of Xi are incident to different vertices of Vi.

4. The vertices in Vi incident to edges of Xi form an independent set in the matroidM′′i .
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The existence of such matching can be checked in polynomial time using the ma-

troid partition algorithm [12].

The necessity and sufficiency of the above condition will be discussed further in

the following sections.

3.4 Two examples

Consider the transformer with the ratio of k terminated on one end with an open circuit

and a short circuit on the other. Then the matrix A will look like this:

A =

−k 1 0 0

0 0 1 k



and the graph of the interconnection is shown on Figure 3a. We expect to find a maximal

independent matching in both models since this network is uniquely solvable. The bipartite

graph of the first model is shown on 3b. In this model the edges (1, u2) and (2, i1) form an

independent matching since edge 1 is cut-set free and edge 2 is circuit free in G.

2
1

(a)

1

2

u1

u2

i1

i2

(b)

u2u1 i2i1

(c)

Figure 3: First example

In the second model the matroid M′2 is the cycle matroid of the graph in Figure 3c. The
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edges of G2 corresponding to u2 and i1 form and independent matching since edge 1 is

cutset-free and edge 2 is circuit-free in G and they are also independent in M′2.

For the second example change the network graph to the one shown on Figure

4, short circuiting both terminals of the transformer and leave A the same. This network

is obviously singular, so there should be no independent matching containing 2e edges in

either model. In the first model the graph G1 stays the same, but now u1 or u2 cannot

be in an independent matching, since they are not circuit-free in G, therefore, because the

bipartite graph is the same, no independent matching exists.

21

Figure 4: The network graph of the second example

In the second model u1 and u2 cannot be in an an independent matching due to

the same reasons (recall, that M′′1 and M′′2 are identical), but i1 and i2 form a circuit in

M′2, so there is no maximal independent matching in this model either.

3.5 The necessity of the condition

In both models the existence of a maximal independent matching containing e edges is

a necessary condition of unique solvability. The proof of this statement along with the

descriptions of the models can be found in [4], but is also presented here with a bit more

explanation.

Let us assume that our network is uniquely solvable. This means that det(N) 6= 0.

Let us consider one of the nonzero members of the Laplace expansion of this determinant.

Recall, that N was a 2e× 2e matrix with the first e columns corresponding to the voltages

and the second e columns corresponding to the currents of the ports. Then, this nonzero

expansion member arises as the product of the determinants of the shaded submatrices of
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N as shown in Figure 5. Let us denote these submatrices with C ′, Q′ and A′, respectively.

Since det(N) 6= 0, Q′ has to represent a maximal circuit-free subgraph (i.e. a tree since G

is connected) of the network graph G and C ′ must represent the remaining edges (i.e. a

cotree of G). Also, the columns of A′ must be linearly independent. Hence, by definition, the

voltages and currents corresponding to the columns of A′ are independent in the matroid

M′2. Also, the columns of A′ which correspond to voltages represent a tree (since C ′

represented a cotree) and the columns corresponding to currents represent a cotree (since

Q′ represented a tree) in the network graphG. Therefore these columns are also independent

inM′′2. Thus, the columns of A′ correspond to an independent matching containing e edges

in the second model proving that this is a necessary condition of unique solvability.

Figure 5: An expansion member det(N) after rearrangement of the columns

Now expand the determinant of A′ to be the sum of the products of nonzero entries.

Pick one of the nonzero members of this expansion. This expansion member corresponds to

e different entries in A′, not two in the same column or row, and those edges correspond to

edges of the bipartite graph G1. These vertices in U1 incident to these edges are obviously

independent in M′1 since it was the free matroid over U1. The vertices of V1 incident to

these edges are the ones which the columns of the matrix A′ correspond to. These are

independent in M′′1 due to the exact same reason they were independent in M′′2, so these
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edges of the graph G1 form an independent matching containing e edges in the first model.

Therefore the necessity of the above condition is also proven in this case.

3.6 The insufficiency of the condition

In the previous section we saw that the existence of an independent matching containing

e edges means in both models that there is a nonzero member in the expansion of det(N),

that is rt(N) = 2e. However, as discussed in Section 2.3, this does not necessarily mean

that r(N) = 2e, since cancellations can occur. Hence the existence of an independent

matching containing e edges is not a sufficient condition of unique solvability as shown by

the following example.

Consider the network of Figure 6. It is obviously singular since

N =


1 −1 0 0

0 0 1 1

0 1 R 0

1 0 0 −R

.

However, the condition is satisfied in both models. In the first model, the edges (1, u1)

and (2, i1) of graph G1 form an independent matching. In the second model, the edges

corresponding to u1 and i1 also form a maximal independent matching.

Figure 6: A gyrator with its ports in parallel

In this example, the parameters of the device were canceled out by the entries of

the matrices C and Q. To make the above condition sufficient, we need to somehow prevent
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these cancellations from occurring. Let us assume that all of the paramaters of the devices

to be interconnected are algebraically independent transcendentals over the field which the

entries of C and Q are selected from. If we add this assumption, the parameters cannot

cancel out each other. This assumption is called the genericity assumption in electrical net-

work theory. Now with this addition, we can formulate a necessary and sufficient condition

for the unique solvability of a network.

If the genericity assumption holds, the existence of a maximal independent match-

ing containing e edges is also sufficient for the unique solvability of the network in both

models.

3.7 Different types of genericity

So far the first and the second model behaved identically. Consider the following example,

also found in [4]. A network is given by the following description:

N =


1 0 0 0

0 1 0 0

−1 0 1 2

0 −1 2 4

.

It is really easy to see that r(N) = 3, therefore this network is singular. However, in the

first model the edges (1, i1) and (2, i2) form a maximal independent matching since 1 and

2 are independent in the free matroid M′1 and the network graph consists of two loops as

indicated by the first two rows of N, so i1 and i2 are independent in M′′1. Now, rearrange

the equations in the following form:
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N =


1 0 0 0

0 1 0 0

−2 1 0 0

0 −1 2 4

.

This matrix clearly represents the same network (recall that a multiport can have several

different matrix descriptions) since the equations were obtained by multiplying the third

row by 2 and subtracting the fourth row from the third. Now the graph G1 is shown on

Figure 7.

1

2

u1

u2

i1

i2

Figure 7: The graph G1 of the example

The network graph is the same – two loops – which means the edges of an independent

matching cannot be incident to u1 or u2, therefore no independent matching exists. Note,

that in the second model there was no independent matching in either cases. Actually, the

second model is the same regardless of the actual matrix description, it is only influenced by

the linear dependencies of the columns which must be the same in all the matrices describing

a particular network.

In the previous section we saw that, if we consider the describing parameters of the

multiports to be interconnected as algebraically independent transcendentals over the field

which the entries of C and Q are selected from (which means that all algebraic relations

are forbidden both within the matrices of single multiports and among the matrices of
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different multiports), then the existence of a maximal independent matching is a necessary

and sufficient condition for the unique solvability of the network.

This assumption is often referred to as the strong genericity assumption [6], and it

is fairly realistic, because these entries represent physical parameters and due to technologi-

cal constraints a predetermined algebraic relation between them is highly unlikely. However,

there are multiple problems with it. The first one is that it is too restrictive. It forbids the

inclusion of important devices such as ideal transformers or gyrators since their parameters

(transfer ratio, gyration resistance) arise in two equations each. The second problem is that

it refers to the actual matrix description of the multiports. Since it is possible to construct

different matrix descriptions of the same devices so that this assumption holds in one, but

not in the other, we may exclude solvable networks if they are given with particular matri-

ces. Note, that since the first model also depends on the actual matrix description as shown

in the previous example, it needs this assumption for the above condition to be sufficient

for unique solvability.

These difficulties can be avoided by using the weak genericity assumption [10],

which states that among the nonzero entries of the multiport matrices the only possible

algebraic relations are the ones reflected by the structure of the matroid M modeling the

multiports (M(S, F ) is the matroid modeling a multiport, S is the set of the columns of

the matrix M and X ⊆ S is in F if the columns of are linearly independent in M). This

means that certain relations within the matrices of a single multiport are allowed while

other algebraic relations between the matrices of different multiports are still forbidden.

This assumption does not depend on the actual descriptions of those multiports, as all of

the describing matrices of a particular multiport have the same linear dependencies among

their columns, hence the assumption allows exactly the same algebraic relations in every

case. If we add this assumption to our condition and use the second model the condition

becomes sufficient.
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3.8 Genericity in statics

In statics, a 2- or 3-dimensional bar and joint framework F can be described with a graph

G(F ). The points of G correspond to the joints of F and two points are adjacent in G if

there is a rod in F between the corresponding joints. Sometimes the rigidity of this network

can be determined from this graph alone, but other times it depends on the length of the

rods as well. For that reason, a more precise description is needed. A framework can be

described with the equation Au = 0. A is a e × kv matrix, where e is the number of

edges in G (that is the number of bars in F ), k is the dimension of the space in which F is

considered and v is the number of vertices in G (that is the number of joints in F ). This

matrix contains the relative position of each joint, therefore determining the length of the

rods, and the vector u contains the velocities of each joint. For further information on this

description, the reader is referred to [1], in this present paper it is enough to understand

that A holds all information needed to determine the rigidity of the framework it describes.

A framework is called rigid if r(A) is 2v − 3 in the 2-dimensional and 3v − 6 in

the 3-dimensional case. This may be intuitive since each joint has 2 or 3 degrees of freedom

respectively and the whole rigid framework has 3 degrees of freedom in the 2-, and 6 in the

3-dimensional space.

Maxwell already knew in 1864 that a 2-dimensional frame requires at least 2v− 3

bars to be rigid [13]. However, to make this condition sufficient a slight modification and

the addition of the genericity assumption (all the coordinates of the joints are algebraically

independent transcendentals over Q) was needed. The applicability of such assumption is

further discussed in [1].

If a planar framework F has v joints and e = 2v−3 rods, a necessary and sufficient

condition for its rigidity is that e′ ≤ 2v′− 3 holds for every subsystem of F having v′ joints

and e′ rods [14]. This condition is only sufficient, if the genericity of the coordinates of

the joints is assumed. This condition cannot be checked in polynomial time. Lovász and
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Yemini presented another condition which can be checked in polynomial time, however it

still requires the coordinates of the joints to be general [15]. This genericity is needed,

because a predetermined algebraic relation between the coordinates can reduce the rank of

A. For example, a framework isomorphic to the Kuratowski graph K3,3 is infinitesimally

rigid, unless the six joints are on a common conic section – this condition means that there

is a quadratic equation among the 12 coordinates of the six points [16].

4 Further properties of the genericity assumption

In this section some more recent results are presented on how the genericity assumption

influences the rank of a matrix [17].

As seen in Section 3, the genericity assumption is often applied to prevent the

decrease of the rank of a matrix due to algebraic relations between parameters. This was

necessary to study the unique solvability of networks (or rigidity of frameworks) without

the need to consider the actual parameters. Knowing this, it is intuitive to assume that

dropping the genericity assumption can only decrease the rank of a matrix since it allows

expansion members from cancelling out each other. However, if we interconnect multiports

to form another multiport we may obtain a surprising result: the rank of this new multiport

can also increase if we drop genericity.

To make this discussion more convenient, the interconnection of multiports will be

described by matroids instead of matrices. The matroid describing the multiport denoted

M(M) is the column space matroid of M as described in Section 3.7. Observe, that this

matroid is the same, regardless of the actual matrix description of the multiport, however

it no longer contains any quantitative information about the currents and voltages of the

ports.

Multiports can be interconnected along a network graph G(E, V ) to form another
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multiport, an example of this is presented in Figure 8. Notice that in this case, as opposed

to the network of Figure 2, we designated some of the points of the resulting network to be

ports of a newly formed multiport.

Figure 8: Two 2-ports interconnected to form a 3-port, and the graph of the

interconnection

The edge set of the interconnection graph is the union of the set EInt of the internal edges

(the edges corresponding to the ports of the original multiport) and the set EExt of the

external edges (the edges corresponding to the ports of the resulting multiport). Since each

port has a voltage and a current, let Eu and Ei denote the set of all the voltages and that

of all the currents, respectively, similar to Sections 3.1 and 3.2. These sets can be further

decomposed as follows: Eu = Eu
Int ∪ Eu

Ext and Ei = Ei
Int ∪ Ei

Ext.

For the sake of easier notation, the matroids M′′1 and M′′2 of Sections 3.1 and 3.2

are denoted by G in this section. That is

G = (Eu,M(G))⊕ (Ei,M∗(G))

Let A′ denote the direct sum of the matroids of the multiports to be interconnected on the

set EInt. Extend A′ with loops on the set EExt to obtain a matroid A. This way both

matroids are defined over the sets Eu ∪ Ei.

If the genericity assumption holds, the matroid of the new multiport is
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M(M) = (G ∨ A)/(Eu
Int ∪ Ei

Int) [1].

If we drop genericity an occurring cancellation usually decreases the rank of the

multiport. However, if this cancellation happens to be in the set Eu
Int ∪ Ei

Int, then – since

the rank of the set to be contracted decreases – the rank of the final multiport can also

increase. This can be illustrated using the network of Carlin an Youla on Figure 9 [18] [19].

Figure 9: The circulator network of Carlin and Youla

In the generic case, there are 11 linearly independent equations describing the 10

parameters of the original multiports and the 2 parameters of the new one. The matroid of

the 3-port circulator is isomorphic to the cycle matroid of K4 (that is the complete graph

with 4 vertices), see [4]. The matroids G and A are the cycle matroids of Figure 10a and 10b,

respectively. The union of these is the uniform matroid U11,12, in which all proper subsets

are independent and its graph is the circuit of length 12. Hence, after the contraction of

edges with indexes 1–5 we obtain a length 2 circuit of u6 and i6, which corresponds to a

resistor as expected in the generic case.

(a)

(b)

Figure 10: The graphs of G and A of the example

Now drop genericity and put R1 = 1 and R2 = −1. Now the number of linearly
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independent equations are 10. The column space matroid of the coefficient matrix is different

from G ∨ A this time. Recall, that neither G nor A takes into account the actual entries

of the coefficient matrix since G is obtained from the network graph and A just gathers

the structure of the individual multiports, so they do not change if we add dependencies

between the parameters of different original multiports. This new matroid is graphic again,

see Figure 11 for its representation. If we contract the edges with indices 1–5, we obtain

two loops, corresponding to the norator – a decrease of the final rank, as expected.

Figure 11: The graph of the matroid of the network in the case R1 = 1, R2 = −1

If we put R1 = −1 and R2 = 1, all 11 equations remain linearly independent,

however the matroid of the coefficient matrix changes again. It becomes the direct sum

of a length 8 circuit and 4 bridges corresponding to u5, u6, i5 and i6, so the subgraph of

the edges corresponding to the internal parameters is not circuit-free and after contracting

them, we obtain two bridges, corresponding to the nullator. Due to the subtracted subgraph

containing a circuit, thus having decreased rank, the rank of the resulting 1-port increased.

Consider some other special cases. If R1 +R2 = 0 but R1R2 6= −1, then the rank

of the coefficient matrix is still 11, however, the matroid becomes the direct sum of a length

10 circuit and two bridges corresponding to i5 and i6. After contraction we obtain a loop

representing u6 and a bridge representing i6, which correspond to the matroid of an open

circuit.

If R1 + R2 6= 0 but R1R2 = −1, the number of linearly independent equations

is 11, and the matroid is the same as it was in the previous example, the only difference
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being that the bridges now correspond to u5 and u6. After contraction we obtain a bridge

representing u6 and a loop representing i6, corresponding to the matroid of a closed circuit.

If none of the above relations hold, the matroid can still differ from U11,12. For

example, if R1 = 1 and R2 = 1, the matroid is a circuit of 8 with bridges corresponding to

u2, u4, i2 and i4, however, after contraction we obtain the result of the generic case.

For the complete understanding of these remarks, from an engineering standpoint

it might be instructive to solve the system of 11 equations without using matroid theory

to obtain the relation between the voltage and current of port 6 (i.e. the resistance of the

port) as a function of the values of the resistances terminating port 3 and 4. This way we

obtain the form:

u6 =
R1R2 + 1

R1 +R2
i6

We can plot this resistance value as a surface to visualize the network, see Figure

12. Aside from the generic case, this further illustrates the above results since it is immedi-

ately clear that if R1+R2 = 0, the resistance of this port is infinite, therefore it behaves like

an open circuit, and if R1R2 = −1, the resistance of this port is zero, therefore it behaves

like a closed circuit.

This is in correspondence with the remarks of [19], that nullators and norators are

singular elements, and if some circuit element in the equivalent structure for a nullator or

norator is changed slightly, the terminal performance will no longer be similar to that of

the nullator or norator. It also illustrates that they are very similar to each other and arise

in cases where a network simultaneously behaves like a short circuit and an open circuit.
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Figure 12: The resistance of port 6 as a function of R1 and R2
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