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Abstract

The Internet of Things, or IoT in short, refers to connecting millions of embedded devices
to the Internet. Most of these devices have resource constraints, which often results in sub
par security. However, cyber attacks against these systems may often lead to substantial
physical damage or monetary loss in these applications. Therefore, one of the biggest
challenges today, which hinders the adoption of IoT technologies in certain areas, is the
lack of security guarantees.

In typical application environments, IoT devices are not directly connected to the Internet,
but they are using gateway devices. Gateways usually have more resources and they may
be physically better protected, so they can perform security functions to protect themselves
and the IoT devices that they serve. Therefore, placing IoT devices behind gateways and
protecting the gateways from cyber attacks seems to be the best approach to increase the
security of IoT systems.

In this paper, we propose a set of security mechanisms, which together form a security
architecture for IoT gateways. Our solution is heavily based on a Trusted Execution En-
vironment (TEE), which provides an isolated execution space that we can better trust
for behaving correctly and protecting sensitive secrets during computations than does the
main firmware/OS itself. Such a TEE could be provided by a security co-processor to which
sensitive operations can be delegated, but this approach is often too expensive in practice.
That is why we choose a more cost efficient solution: a software based TEE, with some
hardware support such as ARM’s TrustZone technology. In particular, we use OP-TEE,
an open source TEE implementation.

In our paper, we provide solutions for securing the boot and update processes and apply
various OS hardening techniques. Leveraging OP-TEE, we improve trustworthiness by
using run-time integrity monitoring and remote attestation of the device state. Finally we
create a way to use secrets securely stored in OP-TEE for remote access.
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Kivonat

Az Internet of Things, röviden IoT, lényegében több millió beágyazott eszköz internethez
való csatlakoztatását foglalja magába. A legtöbb ilyen eszköz korlátozott erőforrásokkal
rendelkezik, ami gyakran átlagon aluli biztonságot eredményez. Azonban az ilyen rend-
szerek elleni kibertámadások gyakran jelentős fizikai, vagy pénzügyi károkat okozhatnak.
Ezért napjaink egyik legnagyobb kihívása, ami hátráltatja az IoT technológia elterjedését
bizonyos területeken, a biztonsági garanciák hiánya.

A tipikus alkalmazási környezetükben, az IoT eszközök nem közvetlenül kapcsolódnak az
internethez, hanem egy átjárón keresztül. Ezen átjárók általában több erőforrással rendel-
keznek és fizikailag is jobban védhetőek, így elláthatnak biztonsági funkciókat saját maguk
és az általuk kiszolgált IoT eszközök számára. Ebből kifolyólag, ezen rendszerek biztonsá-
gának növeléséhez a legjobb hozzáállásnak az tűnik, ha az IoT eszközöket átjárók mögé
helyezzük, és magát az átjárót védjük meg kibertámadások ellen.

Ebben a dolgozatban olyan biztonsági mechanizmusokat javaslunk, melyek együttesen egy
biztonsági architektúrát alkotnak IoT átjárók számára. Megoldásunk erősen támaszkodik
egy Trusted Execution Environment (TEE) alkalmazására az átjárón, mely elkülönített
végrehajtási környezetet biztosít, amiben jobban meg lehet bízni, hogy helyesen működik
és megvédi a titkainkat, mint a fő firmware vagy operációs rendszer. Egy ilyen környezetet
biztosíthat egy dedikált biztonsági processzor aminek delegálhatunk érzékeny feladatokat,
viszont ez a megközelítés a gyakorlatban sok esetben túl költséges. Ezért mi egy költ-
séghatékonyabb, szoftver alapú TEE-t választottunk, mely az ARM TrustZone hardveres
technológiára támaszkodik. A megoldásaink az OP-TEE nyílt forráskódú TEE implenetá-
ciót használják.

Dolgozatunkban, megoldást nyújtunk a rendszerindítási és -frissítési folyamat biztonságos-
sá tételére, illetve alkalmazunk különböző hardening technikákat. Az OP-TEE használatá-
val növeljük a bizalmat az eszköz állapotában futásidejű integritás ellenőrzéssel és ennek
távoli igazolhatóságával. Továbbá módot adunk rá, hogy az OP-TEE-ban biztonságosan
tárolt titkokat távoli elérésre használjuk.
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Chapter 1

Introduction

Moore’s law [30] – a prediction that the number of transistors on a single silicon die
doubles around every 2 years – has been holding for more than 50 years. Combining this
steady increase in computing power and shrinking size with decreasing price resulted in
small computers that can be embedded in many everyday items, such as fridges, weather
measurement stations, home thermostats, cars, coffee makers, yoga mattresses, lightbulbs,
doorbells, etc. Moreover, as internet access became cheaper and widely accessible, these
embedded computers are now connected to the Internet, to enable remote operation and
monitoring, as well as to allow embedded devices to perform networked based transactions
like shopping or uploading data in the cloud. The resulting ecosystem has come to be called
the Internet of Things or IoT for short, and the devices that belong to this ecosystem are
called IoT devices or “smart” devices.

However, besides the advantages that Internet connection can bring, a new attack sur-
face for adversaries is created, which can expose devices that were before unreachable for
attackers. The impact of attacks on smart medical devices, connected vehicles or smart
factories is high, potentially leading to significant monetary loss, or even danger to human
life. On the other hand, as a result of the history of IoT, low price remains one of the main
objectives, and when costs need to be saved in a product, security is usually one of the first
aspects that suffers. It is also very hard for the average consumer to evaluate the security
of a device, so there is no monetary incentive for investing a lot of money into producing a
very secure product until a huge cyber incident happens. This has lead to IoT devices on
the market having terrible security: default passwords in realeased devices [25], and many
incidents, like the gigantic DDoS attack on major web based services by the Mirai botnet
that is built from compromised IoT devices [2].

In this work, we address the current insecurity of the Internet of Things, and we propose a
set of security mechanisms that together form a security arcitecture applicable to embedded
IoT devices. We believe that making embedded computing platforms secure results in
increased overall security of the entire IoT ecosystem. More specifically, in this work, we
address the following problems:
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• Secure boot: The first step of securing an embedded device is securing its boot
process. It must be ensured that after a reset, the device boots into a known and
secure state. This can be achieved by digitally signing the software components loaded
during the boot process, and enforcing each stage to verify the digital signature on
the next stage before it is loaded and executed. If the verification fails, the boot
process should be halted, ensuring that compromised devices are excluded from the
system.

• Secure firmware update: Devices may have software vulnerabilities that could be
exploited to compromise them. The immediate response to a run-time compromise
could be rebooting the device, as secure boot would bring it back to a known good
state. However, in the long run, the vulnerability that made the compromise possible
should also be eliminated, otherwise the device can be compromised again and again
by exploiting the same vulnerability. Eliminating vulnerabilities is solved usually
by patching or updating the entire fixed firmware/operating system. Both require
a secured software update process, which must also be fail-safe, meaning that if an
update goes wrong and results in the device not being able to function properly, it
should automatically be reverted to the latest stable version, at least temporarily.
At the same time, however, version rollback must be prevented, to stop an attacker
from loading a previous, vulnerable version of the software/firmware/OS.

• Security hardened firmware/operating system: Beyond secure boot and soft-
ware/firmware/OS update, in order to improve the security and reduce the attack
surface even more, the firmware/OS running on the device should be hardened. Hard-
ening is about disabling or restricting unused/unnecessary services and enabling or
upgrading available protection mechanisms that are optional and not used by default.
These are disabled by default, because they can slow down the system and/or can
cause incompatibilities. Hardening reduces the attack surface and makes the system
more resistant to typical known attacks.

• Integrity monitoring and remote attestation: Despite hardening, the device
may still have vulnerabilities that could be exploited at run-time. Secure boot would
bring the device back to a known good state temporarily, and secure software up-
dates could be used to eliminate the vulnerabilities, but a prerequisite for both is
to detect that the device has been compromised in the first place. Thus, periodi-
cal integrity verification of the system is useful and can identify possible run-time
compromises, malicious components, failures, misconfigurations, break-in attempts,
or any other anomaly that may be an indication of compromise. In general, the in-
tegrity verification of the running firmware/OS should be performed by a system
component located in a so called Trusted Execution Environment, rather than in
the firmware/OS itself, since the latter may have already been compromised, making
the integrity verification result unreliable. Having the integrity verification mecha-
nism executed with a trusted environment ensures that it cannot be defeated even
if the firmware/OS of the devices is compromised. Fortunately, modern embedded
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processors, such as ARM, support the establishment of such a Trusted Execution
Environment. In addition, while integrity monitoring is useful to detect changes in
the device’s state, remote attestation can be used to assess the integrity of the device
from a remote location. This technique is especially convenient for monitoring the
integrity of small connected devices on a large scale, because it can be automated
and it does not require physical proximity to the device.

• Secure communications: Embedded IoT devices should be able to communicate
securely with their owner or operator. This is needed not only for data transmission
but also for providing secure remote access to the device for configuration and man-
agement purposes. Secure communications can be implemented with cryptographic
mechanisms. However, long-term secret passwords or private keys needed for au-
thenticating the device to the owner/operator when setting up a secure communica-
tion session should not appear in memory accessible to the potentially compromised
firmware/OS. This means that such secret keys must be stored in secure storage and
the cryptographic operations that use them should be implemented by trusted ap-
plications executed in the same Trusted Execution Envrinment where the integrity
monitoring and remote attestation components are running.

The above described problems represent a number of challenges when one tries to solve
them on resource constrained IoT devices. For instance, implementing secure boot requires
some hardware root of trust that provides a trusted implementation of an initial boot
loader and secure storage of a public key with which the initial boot loader can verify the
digital signature of the next stage software compnent. A hardware root of trust is typically
some tamper resistant module that can withstand physical attacks and that can serve as a
root of trust for other security functions as well. Such physically protected elements may
not be available on cheap IoT devices or even if they are available, they provide limited
functionality and protection. So we must make minimal assumptions about the availability
and functionality of any hardware root of trust that we use in our design.

Let’s take secure firmware update as the next example for challenges. The update process
must be fail-safe, which requires a capability to detect faulty updates, including the detec-
tion of a system hang and some sort of checking whether the updated firmware is working
correctly or not, and a mechanism to roll back the device to a previous working firmware
version when the update does not work. At the same time, we must prevent version roll-
back attacks, where attackers force a device to roll back to a previous, insecure firmware
version.

Security hardening also comes with challenges. In practice, hardening includes the modifi-
cation of various build and run-time settings. However, increasing the level of security and
reducing the attack surface typically results in a noticeable performance drop, and maybe
even loss of some functionality.

Integrity monitoing and remote attestation are also hard problems. Integrity monitoring
itself is far from being trivial, even if it is executed in a Trusted Execution Environment.
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First, the application, running in the trusted environment, must have complete access to
the OS or firmware memory. This can be challenging, since the two execution environments
probably use different memory management tables, so memory addresses from the OS must
be translated, to become usable in the trusted environment. The integrity monitoring
application may extract the list of the currently running processes to use with a whitelist,
or it can calculate a hash value for processes to detect possibly malicious modification of
their binaries. For these procedures, we must correctly interpret and use the same data
structures the OS uses, which are highly dependent on the OS kernel version. In addtion,
implementing remote attestation techniques can be challenging, because many security
criteria have to be met, and a secure protocol has to be implemented.

Finally, protecting cryptographic keys and operation has its own difficulties too. There are
multiple scenarios where delegating cryptographic operations to a Trusted Execution En-
vironment is advantageous, such as encrypted communication, disk encryption and remote
access to the device. Therefore, it is useful to use a uniform API to make this functional-
ity available to multiple purposes. There exist standard cryptographic APIs for this, such
as the PKCS#11 API, which is a widely used standard that many client applications al-
ready support. However, PKCS#11 is a rather large specification, so one may only want
to implement a subset of it, and this subset must be carefully chosen.

The rest of the paper is organized in the following manner: In Section 2, we explore the
literature of the state of the art in Trusted Execution Environments and the various prob-
lems outlined in the above sections. In Section 3, we introduce the design of our proposed
security components. In Section 4, we expand on the details of our implementation of
these components. In Section 5, we evaluate our results, and finally, in Section 6, we give
a summary of our work and some possible future improvements.
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Chapter 2

Related work

Below, we introduce technologies and research findings that are relevant to our work.

2.1 Secure Boot

To have a basic understanding of securing the boot process in an embedded environment,
a timesys blog post [6] summarizes its key concepts, and lists various useful tools to im-
plement it.

Looking up the available methods, we found, that the Chromium OS project developed a
great one [20]. As a matter of fact they also designed and implemented or helped some of
the tools, commonly used in a secure boot process. Their solutions are well documented,
and reading their related design documents [37, 39, 38, 40] was a good start in the making
of our solution.

2.2 Secure Firmware Update

There are different ways of making a secure firmware update process in an embedded
environment, and a timesys blog post [7] helps to clarify its main aspects.

Just like the secure boot process, understanding the secure firmware update process in the
Chromium OS project [36] was also a good start in the making of our solution.

2.3 Integrity monitoring

Approaching kernel integrity monitoring using tools that are not isolated from the operating
system they are protecting, should not be considered a secure technique. The compromise
of the kernel could lead to the compromise of the monitoring tools. In the recent years,
mainly two types of approaches appeared—hardware based and hypervisor based solutions.
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An example of the hypervisor based approach is HIMA (Hypervisor-Based Integrity Mea-
surement Agent) [3]. HIMA advocates two key requirements for integrity measurement—
strong isolation between the monitored system and the monitoring tool, and Time Of Check
To Time Of Use (TOCTTOU) consistency between the measured and executed versions
of the target (so the attacker can not modify a program after measurement but before
execution). It performs integrity monitoring of Virtual Machines (VM) running on top
of a hypervisor, and ensures the previous capabilities. The first capability is satisfied by
memory protection—stopping attackers from modifying the monitoring tool or its results.
For the second, the monitoring tool responds to events happening in the memory of the
VMs—ensuring that measurements are up-to-date.

The problem with hypervisor based approaches is that the hypervisors are complex, and
exposed to software vulnerabilities which can be exploited to break the isolation.1 Also,
virtualization processor extensions are not available on all platforms.

Hardware based solutions (e.g., [45, 5]) mostly use trusted execution environments such
as ARM TrustZone2, AMD SVM [13], or Intel TXT [23]. Alternatively, they could be
based on a separate hardware component (e.g., security co-processor or other SoC), as
seen in [33, 29]. One usual shortcoming of hardware based solutions is that they lack event
driven monitoring capabilities, therefore the previously mentioned problem of TOCTTOU
affects them. Also, they usually lack control over Normal World kernel functions, e.g., the
NW kernel having full control over memory management can cause rootkits to remain
undetected from integrity monitoring.

The two following examples of the hardware based approach solves the previous short-
comings: TZ-RKP (TrustZone-based Real-time Kernel Protection) and SPROBES [4, 18].
They were developed in parallel, with the aim to enforce kernel code integrity using ARM
TrustZone technology. In TZ-RKP, the integrity monitoring software is running in Secure
World, and novel methods are used to deprive the Normal World kernel from using privi-
leged system functions. Thus, assuring that attackers can not bypass the monitoring tools,
modify or inject kernel binaries, or modify the system memory layout. It can intercept
critical operations and analyze their security impact. It is used in phones and tablets.
SPROBES present an instrumentation mechanism backed by TrustZone which can trans-
parently break on any Normal World instruction and give control to Secure World event
handlers. It also identifies enforceable invariant that can restrict rootkits from removing
SPROBE calls.

2.4 Remote attestation

Remote attestation is a challenging problem on low-end embedded devices, because ex-
isting techniques often require secure hardware components such as TPMs [44] or secure

1http://www.cvedetails.com/vendor/252/Vmware.html
https://www.cvedetails.com/vendor/6276/XEN.html (links last visited on 2018–10–23)

2https://developer.arm.com/technologies/trustzone (last visited on 2018–10–23)
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coprocessors [43]. Several principles are crucial for attestation architectures, and while an
ideal attestation architecture would satisfy all of them, many constraints have to be met
in a real world application, which is why it is hard to create a universal implementation
[9]. Several low-end ARM devices offer the TrustZone Trusted Computing technology, but
this technology doesn’t include an existing hardware-based attestation mechanism [32]
which is why it is not directly suitable to provide a remote attestation architecture. Purely
software-based attestation techniques often fail to provide the necessary security level, so
the development of a mixed hardware-software solution is advised [17].

2.5 Keystore APIs and TEE based keystores

The idea to implement a keystore in the TEE is not new. Android has the Android Keystore
[10], which is accessible through the KeyChain API and the Android Keystore provider. If
the manufacturer of the phone provides a driver that enables it it to use a TEE, it will do
so, otherwise it defaults to a software implementation. Other examples of APIs that allow
operations on stored keys and offer protection for them can be found in cryptographic
tokens such as smart cards and hardware security modules (HSM). Namely, [8] mentions
two such: the PKCS#11 [31] and the IBM CCA (Common Cryptographic Architecture).
PKCS#11 is a widely used interface for all kinds of cryptographic tokens and IBM CCA is
primarily used by banks, with IBM cryptoprocessors providing the interface. [8] constructs
a provably secure cryptographic interface and creates an emulation of this security policy
by restricting the PKCS#11 interface.
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Chapter 3

Design

3.1 Used Components

3.1.1 ARM TrustZone

“The ARM TrustZone technology provides system-wide hardware isolation for trusted soft-
ware.”1 It aims to enable the construction of a trusted execution environment, where the
integrity and confidentiality of assets can be protected from attackers. The separation of
the two environments—Secure World (SW)2 for the security subsystem, and Normal World
(NW)3 for every other system component—is achieved by partitioning the SoC’s resources.
This is enforced via hardware logic on the system bus, disabling the Normal World from
accessing the assets residing in–, and resources dedicated to Secure World [1]. A high
level overview example of the hardware isolation between the two worlds can be seen on
figure 3.1.

3.1.2 GPD TEE Specification

Devices offer a Rich Execution Environment (REE) which brings flexibility and capability,
but leaves the device vulnerable to a number of security threats. The Trusted Execution
Environment (TEE) is designed to reside alongside the REE and provide a safe area of the
device to protect its assets and execute trusted code.

The highest level of the TEE is an environment which meets the following criteria:

• All code executing inside the TEE must have been authenticated.
1https://developer.arm.com/technologies/trustzone (last visited on 2018–10–23)
2Also called Trusted Execution Environment
3Also called Rich Execution Environment
4https://www.timesys.com/security/trusted-software-development-op-tee/ (last visited on

2018–10–23)
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Figure 3.1. Hardware overview example of ARM TrustZone Security4

• The integrity of the TEE assets and the confidentiality of the contents of TEE data
has to be assured through isolation, cryptography and other security mechanisms.
This includes keys which are used by the cryptographic primitives.

• TEE has to resist known remote and local software attacks, and a set of external
hardware attacks.

• Code and other assets have to be protected from unauthorized tracing and control
through debug and test features.

The GPD TEE Internal Core API contains a Cryptographic Operations API [22], that
provides an interface to perform cryptographic operations with the help of the TEE. De-
pending on the actual TEE and its configuration, the algorithms may be implemented in
software or backed by hardware as well. However, as long as the given TEE follows the
standard we can be sure that the API calls do what they are specified to do and the data
and keys can’t be accessed from the Normal World. These properties would make this
interface ideal for our use case, however this API is only exposed to Secure World, and
also not as widely used in client applications as PKCS#11 for instance.

3.1.3 OP-TEE

There are a numerous TEE implementations, but it was still hard to find one that fits
our needs. One of the reasons is that many of the TEEs are closed source, and developing
applications for them is either impossible, or requires signing NDAs. It is also reasonable
to limit our scope to TEEs that are compatible with ARM chips, because IoT devices
are mostly based on such SoCs. As a consequence we will rely on TrustZone technology.
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[41] places TEEs based on TrustZone technology into two groups: industrial and academic
TEEs. We wanted our solutions to be usable in real world devices, so we chose an industrial
TEE. Some of the industrial TEEs mentioned in [41]:

• QSEE

• Trustonic

• Securi-TEE

• SierraTEE

• OP-TEE

• Nvidia TLK

Out of these, closed source options were instantly discarded, since they don’t allow modi-
fication of the system, that may be needed. From the remaining TEEs we chose OP-TEE,
as it seemed to be the easiest to access - it is available on GitHub - and had the most
active development. It supports a wide range of devices.

Another option would be using a separation kernel that is mathematically proven to cor-
rectly separate different running processes. An example of this is the seL4 microkernel [26].
However the drawback of this aproach is that this limits adoption, since in our experience
there aren’t as many programs written for these microkernels and there are fewer people
who would have the knowledge to create applications in such an environment.

“OP-TEE is an open source project which contains a full implementation to make up a
complete Trusted Execution Environment. The project has roots in a proprietary solution,
initially created by ST-Ericsson and then owned and maintained by STMicroelectronics. In
2014, Linaro started working with STMicroelectronics to transform the proprietary TEE
solution into an open source TEE solution instead. In September 2015, the ownership was
transferred to Linaro. Today it is one of the key security projects in Linaro, with several
of Linaro’s members supporting and using it.”5

OP-TEE consists of two main components, the OP-TEE Kernel6 and the OP-TEE Client
API7. There are several platforms which are supported by default. OP-TEE implements
the interfaces defined by the GPD TEE Specification.

3.1.4 Linux

In our design, the Linux operating system plays a main role. Numerous IoT devices are
running some variant of the Linux kernel (e.g., SOHO wireless routers). In OP-TEE, the

5https://www.op-tee.org/about/ (last visited: 2018-10-22)
6https://github.com/OP-TEE/optee_os (last visited: 2018-10-22)
7https://github.com/OP-TEE/optee_client (last visited: 2018-10-22)
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only supported Normal World operating system is Linux, because the required NW software
and kernel modules are only implemented for it. Therefore, the proposed secured gateway
also uses Linux.

Our design also includes a Linux kernel module which is required for the normal operation
of the integrity monitoring algorithms. This topic is discussed in section 4.5.8. A kernel
module is a compiled object file which can be used to extend the functionality of the kernel,
solving the general extensibility and modularity problems of monolithic kernels. They can
be loaded and unloaded upon demand, at run time [42].

3.2 Secure Boot

The principle is rather simple here, as the process relies on the well known method of
establishing a chain of trust. To be able to build up a chain of trust, an element, that is
considered as the root of trust, is needed. Because the boot loader must be verified first,
the root of trust must be a hardware component, dedicated to do that, as after powering
on the device, the first software to run is the boot loader. In a chain of trust the stages are
digitally signed, so the hardware root of trust must store the public signature verification
key of the boot loader in a physically write-protected memory (for example, a one-time
programmable memory, written during manufacturing), to only allow such a boot loader
to run, that is signed with the matching private key.

With the boot loader verified, the process must carry on to the next stage, which contains
the systems software components. The components are loaded and executed by the boot
loader, so such a boot loader must be chosen, that is capable of verifying all of those
components with their public signature verification key. The public key must be stored in
the boot loader itself, so only such components are allowed to be loaded and executed, that
are signed with the private key of the same key pair.

The operating system is one of the above mentioned system components, so it is already
verified by the time it is running. But if it uses any other component, not verified by the
boot loader (for example, a file system), it must verify that by itself. In such a case, the
operating system must have the ability to verify those components, like the boot loader
verifies the other system components. And with any further extra component, the secure
boot process can be extended in the same manner.

If the verification of any given stage fails, the boot process must be halted, as it is the
essence of the secure boot process. Even if the operating system is already running, but the
verification of a subsequent stage, which is still part of the secure boot process, fails, the
process must be halted. Whether there is a fallback system, or the device is intentionally
inoperable in case of the failure, is use case dependent. Generally the easiest and maybe
most secure approach is to render the device intentionally inoperable in case of a failure,
however fallback mechanisms are discussed later in the secure firmware update process.
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Figure 3.2. Flowchart about the secure boot process

With a chain of trust like this, the boot process is not only secure, but also modular,
meaning that by possessing the right keys, the stages can be changed or updated without
the need to modify the hardware. Having such a modular and secure boot process also
provides a great base for a secure firmware update process.

3.3 Secure Firmware Update

A secure firmware update, that is also fail-safe, and prevents version rollback, is a complex
process. So as with any complex problem, the best way to deal with, is to tear it down to
simple parts. One of the parts is restarting the device with the updated firmware, therefore
the previously described secure boot process provides a great base in the solution of that
part. Obviously it must be completed with fault detection and fallback mechanisms, to be
fail-safe, and with proper versioning, to prevent rollback attacks. As well as with a part,
that is responsible for managing the updates.

There are two key components in a fail-safe firmware update process, the fault detection
mechanisms, which are part of the live system, and the fallback mechanism, which ensures
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that the device is operable, even after a faulty update. More precisely fault detection
mechanisms must include the use of a watchdog, to detect a system hang, and some sort of
a system self-test, to check whether the updated firmware is working correctly, or not. The
system self-test must check every essential component needed for the correct operation of
the device. And the fallback mechanism must provide at least one way to automatically
downgrade the system to a previous working firmware, in case of a faulty update, be it
a system hang or an error in the self-test or a verification failure during the secure boot
process.

The fallback mechanism however, has to prevent version rollback attacks with the help
of secure versioning. To achieve this, first of all, the version of the firmware must be
bound cryptographically to the firmware, meaning that in an update, the version number is
digitally signed together with the firmware. Furthermore, logs must be kept of the installed
versions, and they must be checked during the secure boot process, so only a conforming
firmware can be booted. According to the logs and to the version of the firmware, strict
rules must be followed when booting a given firmware. If the version of the given firmware
is higher than the highest previously logged version, meaning that it is an update, it can be
booted. Else, if the version of the given firmware is equal to the previously logged version,
meaning that it is the current up to date firmware, and its self-test was successful, it can
be booted. And, if the version of the given firmware is lower than the previously logged
version, meaning that it is a fallback, and the self-test of the updated firmware failed or
there was a system hang with the updated firmware, it can be booted. In compliance with
the above mentioned, the logs must include the version numbers and the self-test results
of the booted firmwares.

The logs must also be checked by the update-manager, in order to download conforming
firmwares only. In general, this means higher and not failed versions only, to prevent wast-
ing resources on not conforming firmwares. Although there can be one exceptional case,
when the update failed because of a verification failure, possibly caused by an acciden-
tally damaged download instead of a faulty firmware. In this particular situation the given
update could be tried again until a limited number of tries, which constraint is there to
prevent wasting resources if the failure has an other source instead. Obviously the logs
must have support for the described exception.

As might be expected by now, logs are parts of the core of the secure firmware update
process, and must be kept secure. Because if any of them is damaged or missing, the device
must not boot with any normal firmware automatically.

3.4 Security hardened firmware/operating system

In general a firmware/operating system is optimized for performance, perhaps for com-
patibility. In contrast, hardening focuses on optimizing the firmware/operating system for
security.
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In order to achieve a security hardened firmware/operating system numerous default set-
tings have to be changed. Although it is most likely, that not every hardening option can be
used for a given firmware/operating system, since some of them might conflict with other
parts of the given firmware/operating system. Clearly, those, which cause required features
to fail or to malfunction, cannot be selected, alternatively the feature-set has to be altered,
though in most cases it is not an available option. Generally the hardening settings demand
more resources compared to the default ones, so this can also be a constraint, especially
in an embedded environment. All in all, when hardening a firmware/operating system the
goal is to reach an acceptable trade-off between features, security and performance.

3.5 Remote Attestation and Integrity Monitoring

In this section we describe the design of our remote attestation and integrity monitoring
implementation. Here we aim to show the architecture and high level operation of the
created system along with the features of each component.

In general, the integrity verification of the running Linux system should be performed
by an other system component than the OS itself, since it may be already compromised,
making the result unreliable. This other system component must be running on the same
or higher privilege level than the Linux kernel to ensure that Linux user mode applications
do not interfere with the monitoring processes. The privilege level must be high enough to
enable the integrity monitoring application to access the memory area of the Linux kernel
and user mode applications. In our implementation these requirements are satisfied by a
Trusted Application running in Secure World and by extending the OP-TEE kernel with
functionalities that provide access to the entire OS memory for our TA.

3.5.1 Integrity Monitoring Techniques

The integrity verification code may perform a variety of anomaly detection functions on
the Normal World, including the Linux kernel and user mode applications. For example
the code might try to identify potentially malicious system components, running processes,
suspicious network connections and activity. Shellcode and shared library injection could
also be detected by looking for suspicious protection bits belonging to the memory regions
of a process, as described in [27].

In our implementation the integrity monitoring consists of two techniques. First, the list of
currently running processes can be extracted from the Normal World. This list can contain
various meta information about the processes, for example their name, process identifier
(PID), process start time stamp or the user identifier (UID) of the user who started the
given process. This list then can be sent to the remote client requesting the monitoring
task and the client can compare the list to a whitelist. Depending on the Normal World
software ecosystem if the creation of a nearly complete whitelist is possible this method
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could potentially detect malicious running processes. For example on a strict and closed
system with limited number of known and trusted running processes, the listed processes
which are not on the whitelist could be indicators of system compromise — although false
positives have to be taken into account and handled correctly.

The second technique is to calculate hash values for the processes in memory. In our
solution the hash is calculated for the code segment of the processes, where the compiled
machine code resides. This enables the detection of malicious code injections into trusted
or whitelisted or otherwise know processes. The replacement, modification or other form
of tampering with program code in binaries stored on the system is also detectable. The
remote client receiving the calculated hash value could have a database of known processes
and their respective precalculated code segment hashes. Using this database the previous
detection methods should be applicable, since any kind of modification in the code segment
of the binaries causes the calculated hash values to differ from the precalculated hash values.

In the previous techniques a remote client is assumed, but the methods could also work
with a local client, for example another Trusted Application.

3.5.2 Secure World Pseudo Trusted Application

In OP-TEE a normal Trusted Application can only access its own memory region. This
separation and access control is the same concept as virtual memory in any operating
system for example in Linux. For integrity monitoring tasks we need access to the Normal
World memory from the Secure World. The GDP TEE specification and OP-TEE does not
specify an API we could use to read from or perform any operation on NWmemory content.
Our solution is a Pseudo Trusted Application (PTA) which is in essence an extension for
OP-TEE kernel—much like kernel modules in Linux—exposing the functions mentioned
before. PTAs are running on the same privilege level as OP-TEE kernel, which is necessary
to access the complete physical memory.

Physical memory addresses are used in the PTA to remain platform and implementation
independent as much as possible. Therefore the caller first must translate NW (kernel and
process) virtual addresses to physical ones. Using this API makes access to NW mem-
ory possible to normal TAs, possibly eliminating the need to rewrite those applications
as PTAs. Writing large business applications which might contain many features as PTAs
might not be recommended because of the following reasons. First, since they run with
kernel privileges, any exploitable vulnerability in them might have a greater impact com-
pared to normal TA vulnerabilities. Second, their development and maintenance might be
more difficult, since they are compiled as part of the OP-TEE kernel, so making changes
in them requires the replacement of the running kernel (either in emulated environments
or on the physical development hardware).

There are two features implemented in our solution. First, the caller can request reading
from a memory range by specifying physical addresses. The other is calculation of hashes for
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memory ranges. Here the caller can request a singe hash for every given range or multiple
separate hash for those ranges. The requested operation is performed and the result is
passed back to the caller.

3.5.3 Secure World Trusted Application

The Secure World Trusted Application (TA) provides remote attestation and integrity
monitoring services to Normal World clients. It processes the requests from the Server
Application in NW and passes back the results. First, the TA verifies the authenticity and
integrity of the requests using cryptographic signatures and only continues processing if
the verification is successful. Next, the requested monitoring task is executed on the NW
system. There are two types of monitoring tasks in our implementation, as mentioned in
Section 3.5.1. The monitoring result is then cryptographically signed and the TA generates
and sends the response using the result and signature.

The Trusted Application can not directly access the memory area of Linux or Normal
World applications, however this level of access is required by the monitoring algorithms.
The Pseudo Trusted Application is used for accessing and calculating hashes of the Normal
World memory. Every time the TA reads or accesses the NW memory by any means it
sends the PTA the address range or ranges for the required operation. The PTA executes
the received operation and sends back the result to the TA.

The PTA operates on physical memory addresses, so the translation of NW virtual ad-
dresses must take place in the TA. There can be many memory management methods on
different architectures, platforms, and CPU models, therefore the translation functions are
highly platform dependent. Aside from that, the two monitoring algorithms shown here,
mostly depend on the used kernel version, because kernel data structures can frequently
change during kernel development. We created dwarfparse8 for this very reason, however,
it can only help with the structure definitions, but not with the algorithms using those
structures.

The TA also includes a basic asymmetric cryptographic key pair provisioning solution.
This provisioning solves the problem of installing the key pairs on the device storage se-
curely, since hard coding them in the source code or storing them without any protection
should be considered a bad practice. The keys are used in the remote attestation protocol
for the verification and creation of signatures, i.e., the public key of the remote client and
the private-public key pair of the device itself. The secure storage of the keys are of high
importance, since they assure the integrity and authenticity of the incoming attestation
requests and the outgoing responses (which contain the actual state of the device). The
Normal World must not be able to modify or tamper with these keys without the Secure
World at least noticing. We use the GPD Trusted Storage specification, which is imple-
mented in OP-TEE. This implementation uses the NW storage to store objects encrypted

8See section 4.5.9
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and integrity protected, therefore missing or modified keys are not used.9

3.5.4 Remote Attestation

Remote attestation is a method by which a device can authenticate its state to a remote
host (client). This enables the client to determine the level of trust in the integrity of the
device and its running configuration.

Attestation is performed in the TEE which ensures that the state of the device can be
always reliably determined. The attestation protocol uses public key cryptography to verify
the authenticity and the integrity of the messages. The public and private keys can be stored
in the TEE Secure Storage, where it is protected from the REE.

Device 

(B)

REE app

Shared 
memory

Request(VER, FNAME, [ARGS], N, SIGNATURE)

Response(VER, RES, N, SIGNATURE)

TEE app

Bpriv

       Bpub 

       Apub
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(A)

Apriv 

     Apub 

     Bpub

Figure 3.3. Remote attestation architecture

Protocol overview

The following steps are performed during an attestation session:

1. The client sends a digitally signed attestation request to the remote device.

2. The device verifies the request and performs the requested attestation method.

3. The device creates a digitally signed response and sends it to the client.

4. The client verifies the response.

Attestation techniques

Various attestation methods can be performed, which can include listing running processes,
measuring the integrity of the executables loaded into the memory, and checking hardware
and software configuration.

9https://github.com/OP-TEE/optee_os/blob/master/documentation/secure_storage.md (last vis-
ited 2018–10–21)
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We implemented two methods, firstly getting the list of the running processes by inspecting
the Linux kernel data structures from the TEE, secondly checking the integrity of a running
process, by calculating a checksum of the process’ code segment which is loaded into the
memory. These two methods allow us to create a simple attestation technique by using a
white-list to detect unwanted or modified programs on the device.

3.6 Secure Communication

3.6.1 PKCS#11

PKCS#11 was originally one of the Public Key Cryptography Standards, that are a set of
standards created by RSA Laboratories, but in 2013, further development has been turned
over to the OASIS PKCS 11 Technical Committee10. PKCS#11, also referred to as Cryp-
toki, is a general purpose API for accessing devices capable of storing cryptographic keys
and executing cryptographic operations [31]. Some examples of such devices are smartcard
security tokens, hardware authentication tokens (e.g., Yubikey) and cryptographic hard-
ware security modules (HSMs). PKCS#11 is widely used in the industry, and as a result,
a lot of applications support it, including, but not limited to OpenSSL11, OpenSSH12,
Mozilla Firefox and Mozilla Thunderbird through Mozilla NSS13, OpenDNSSEC14. There
are also several tools that provide a user interface to manipulate tokens (e.g.: generate,
import, export keys, encrypt or decrypt data), for example the pkcs11-tool that is part of
the OpenSC project15. It is important to note, that a device may only support a subset
of the mechanisms defined in the standard and it would be still compliant, so some tokens
may not work with all of these applications, depending on what API calls they support.

3.6.2 Relevant security guarantees

In the PKCS#11 terminology a token is the device that stores the cryptographic keys,
certificates, data, etc. The data that is stored on the token is organized into objects (e.g.,
a private key object) and can be accessed through handles, that can be likened to the
pointers we use in programming. A slot is what we can access a token through (e.g., a
smartcard reader). Certain objects can only be used if the client logs in to the token, by
providing a PIN. Regardless of whether a user is logged in, if an object has the sensitive
flag set, it shall not be revealed off the token, so for example it can’t be viewed with

10https://www.oasis-open.org/news/pr/oasis-enhances-popular-public-key-cryptography-standard-pkcs-11-for-mobile-and-cloud
(last visited 2018. 10. 21.)

11https://developers.yubico.com/YubiHSM2/Usage_Guides/OpenSSL_with_pkcs11_engine.html
(last visited 2018. 10. 21.)

12https://github.com/OpenSC/OpenSC/wiki/OpenSSH-and-smart-cards-PKCS%2311 (last visited 2018.
10. 21.)

13https://developer.mozilla.org/en-US/docs/Mozilla/Projects/NSS/PKCS11/Module_
Installation (last visited 2018. 10. 21.)

14https://www.opendnssec.org/softhsm/ (last visited 2018. 10. 21.)
15https://github.com/OpenSC/OpenSC/wiki (last visited 2018. 10. 22.)
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the C_GetAttributeValue mechanism, but it may be exportable if wrapped with another
key. If an object has the unexportable flag set it shall not be exportable at all, and the
unexportable flag shall not be modifyable either. These guarantees have to hold, even if
the token connected to a slot in a malicious machine. [31]

3.6.3 Example usage

Usually the client applications access the PKCS#11 API through shared objects, or dy-
namically linked libraries based on the operating system. For example, if someone wants
to use her smartcard to authenticate to a server with OpenSSH, she would have to find the
shared object that is able to communicate with her smartcard. The manufacturer should
provide this, or the OpenSC project could be a good place to start looking. Once she has
the shared object it can be specified with the -I command line flag. Internally OpenSSH
includes the pkcs11.h header, and calls the functions declared in it. When we specify the
shared object, it dynamically links the actual hardware specific implementation for the
exact card we want to use.

3.6.4 Soft tokens

It is not necessary for the token to be implemeted as a hardware component, it can also be
implemented completely in software. Of course this way the security guarantees can’t be
enforced, but it is useful for developing and testing applications. These were also helpful
for us as reference implementations while writing code for this project. First, SoftHSM16,
which is developed as part of the OpenDNSSEC project. OpenDNSSEC uses the PKCS#11
API to handle and store its cryptographic keys. The purpose of SoftHSM is to allow
OpenDNSSEC to be used if the user can’t afford, or simply doesn’t want to use a hardware
token. Another example of a soft token is part of the openCryptoki project17, and its
supposed to be used for testing.

3.6.5 SKS

Secure Key Storage (SKS) is a proposal18 by Etienne Carrière for a token that is imple-
mented as an OP-TEE TA, and accessible through the PKCS#11 API. It is currently under
development, when we first started working with it, it only supported AES mechanisms,
at the time of writing there is also partial support for RSA and EC mechanisms. The
project consists of three parts: the TA implementation of the token, the shared object that
provides access to the token from normal world and the regression tests that are integrated

16https://www.opendnssec.org/softhsm/ (last visited 2018. 10. 21.)
17https://github.com/opencryptoki/opencryptoki (last visited 2018. 10. 21.)
18http://connect.linaro.org.s3.amazonaws.com/hkg18/presentations/hkg18-402.pdf (last visited

2018. 10. 22.)
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with the OP-TEE xtest test suite. The project can be found on GitHub under the user
etienne-lms in the sks branches of the forks of OP-TEE repositories.

When there is a PKCS#11 call, the SKS shared object converts the constants from the
PKCS#11 values to the ones used by SKS internally and serializes the data, so it can be
passed through the OP-TEE TA call interface. In the TA, the data is deserialized, and
the requested operations are executed. Most of the time the PKCS#11 mechanisms can
be easily translated into GPD TEE Core API calls, so the TA heavily relies on these calls.

The regression tests are based on the tests for the OP-TEE Internal Core API cryptographic
methods. These are implemented through a test TA that basically just forwards the calls
to the OP-TEE kernel and returns the results. For the SKS tests these calls are not called
through the test TA, but SKS. There are also functionalities in SKS— for example C_Login
— that cannot be tested this way, these have their own tests too.

3.6.6 Architecture

Building on the above described components, we can build a system, where cryptographic
keys are strongly protected. The TrustZone technology provides two separated execution
environments that can only communicate through well defined interfaces. The lower priv-
iliged environment, called the Rich Execution Environment (REE) or Normal World can
house a conventional operating system (i.e. Linux) and the higher priviliged one, called
Trusted Execution Environment (TEE) or Secure World, holds a trusted operating system,
in our case OP-TEE. Inside OP-TEE, we have the SKS, utilizing the separation between
the two worlds and store cryptographic keys in OP-TEE’s secure storage and provide the
PKCS#11 interface to Normal World. Using the PKCS#11 API we can use the keys stored
in SKS by any client application that supports the interface, while that application can
never directly access the key itself. Even in a scenario, where a Linux application with root
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priviliges is compromised and it can recover the PIN for the SKS token (e.g.. by replacing
the shared object with a malicous implementation, that reveals the PIN), the attacker can
only use the keys stored on it, but not recover and steal them.

In this paper, we choose OpenSSH as the client application. This allows us to copy files with
scp, connect to a server and run scripts, or even provide a remote shell with ssh reverse
tunneling (the reverse tunneling is necessary, because the -I option is only available in
client mode). OpenSSH is also a nice choice, because it is easy to set up compared to a
VPN and can be easily tested by calling ssh root@localhost.
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Chapter 4

Implementation

4.1 Environment

4.1.1 Raspberry Pi 3 Model B

The above discussed design plans were implemented on the Raspberry Pi 3 Model B. This
platform was chosen, due to its widespread use and to the large software development
community it has. It is also important, that it has the Broadcom BCM2837 System on a
Chip (ARMv8) in it, which supports the ARM TrustZone technology. Unfortunately the
hardware is poorly documented, and it misses a lot of security functions. As a result some
of the implementations are only proof of concept.

4.1.2 QEMU

QEMU1 (Quick EMUlator) is a machine emulator, it can emulate a target system and run
unmodified operating system and programs designed for it, regardless of the host system’s
CPU architecture and operating system. QEMU can be run on all the major operating
systems (i.e., Linux, Windows, Mac OS). In our case, using QEMU came with multiple
advantages. The first and obvious one is that this eliminates the need to have access to
hardware for development. Other than that, the development process is also faster and
more convenient this way: the whole project can be built by issuing one make command,
no need to flash SD Cards, or be near a physical device at all. Opening the two different
consoles (to Normal and Secure World) is as easy as creating two screen sessions.

4.1.3 U-Boot

Das U-Boot or The Universal Boot Loader [14] is an open source boot loader for many
different architectures, and it is mostly used in embedded devices. U-Boot operates on a

1https://www.qemu.org/ (last visited 2018. 10. 22.)
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quite low-level and provides a low-level interface through its commands, yet this makes it
suitable for plenty of devices. Its settings are stored in environment variables, and it has
a shell command interpreter. These enable scripting, therefore any custom boot program
can be created conveniently.

U-Boot verified boot

U-Boot 2013.07 introduces a feature allowing for the verification of a kernel
and other images. This can be used to implement a form of secure boot which
we will call "verified boot" [. . . ]. U-Boot’s new verified boot feature provides a
mechanism for verifying images while still allowing them to be field-upgraded.
It fits in seamlessly with the existing image loading infrastructure in U-Boot.
[19]

4.1.4 Build System

repo

Repo2 is a repository management tool originally built for managing the Google AOSP
project. It allows collecting the necessary code from multiple git repositories by specifying
them in a manifest file. Multiple manifest files can be provided for different configurations:
for example in OP-TEE there are different manifests for the different target architectures.
It doesn’t replace git, rather its goal is to make working with source code organized into
numerous git repositories easier.

For OP-TEE, the manifests are stored on github, in the OP-TEE/manifest.git repository.
We used the default.xml to create a basis for developing SKS. Following the instruction in
the OP-TEE/build.git repository, we could easily produce a working Linux plus OP-TEE
system running in QEMU. Of course, this system didn’t have the SKS and some other
tools that we needed yet.

Buildroot

Buildroot3 is a tool that aims to make cross compilation and building custom Linux systems
for embedded devices easier. It is basically a collection of makefile scripts and can be
configured through various interfaces, e.g., menuconfig, just like the Linux kernel. As an
output, buildroot produces a whole root filesystem, ready to be flashed onto the device and
used. There is no package manager in the system created, so updating a single program is
only possible by updating the whole system. There are many packages available in buildroot
that can be included in the build, by simply selecting them in menuconfig, however it is

2https://github.com/aosp-mirror/tools_repo (last visited 2018. 10. 22.)
3https://buildroot.org/ (last visited 2018. 10. 22.)
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also possible to create external packages, if something is needed that is not already part
of buildroot. This is done by creating two new files: first, the Config.in file describes
how the package looks in menuconfig and what other packages it depends on and the
package_name.mk file describes how to acquire the source and build it. There some other
files that can be included (e.g.: patchname.patch, package_name.hash), but these two are
essential.

Recently, OP-TEE has started to integrate its build process into buildroot, so adding the
SKS and other needed tools had to be done through buildroot. We added the client and
test part of sks, by simply replacing the source of optee_client and optee_test with the sks
branch of the GitHub user etienne_lms. The SKS TA was added as an external buildroot
package. OpenSSH was already part of buildroot, but the OpenSC pkcs11-tool had to be
added as and external package as well.

Raspberry Pi

In our environment for developing every solution other than SKS, Buildroot is used as a
build system for the Raspberry Pi 3. We integrated the building of Linux kernel, U-Boot
boot loader, various software packages and the creation of SD Card images. The device and
component configuration files (e.g., configuration for the kernel and U-Boot) can be easily
deployed with Buildroot. We also used the packages provided by the OP-TEE community—
packages for the OP-TEE kernel, tests and client running in Linux. We created packages for
our Trusted Application, remote attestation server application and our auxiliary software.
Some necessary patches were applied for existing Buildroot packages, to be able to use
their latest releases.

4.2 Secure Boot

The first stage in a secure boot process is the hardware root of trust, but as already
mentioned, the Raspberry Pi platform misses a lot of security functions, including the
hardware root of trust. Therefore, in this proof of concept implementation no hardware
root of trust is used, and U-Boot is considered trusted, thus becoming the root of trust.

U-Boot supports booting a Flattened Image Tree (FIT). The U-Boot documentation says
the following about FIT images:

It is a flattened device tree (FDT) in a particular format, with images contained
within. FIT supports hashing of images so that these hashes can be checked
on loading. This protects against corruption of the image. However it does not
prevent the substitution of one image for another. The signature feature allows
the hash to be signed with a private key such that it can be verified using a
public key later. Provided that the private key is kept secret and the public
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key is stored in a non-volatile place, any image can be verified in this way. The
public key can be stored in U-Boot’s CONFIG_OF_CONTROL device tree
in a standard place. Then when a FIT is loaded it can be verified using that
public key. Multiple keys and multiple signatures are supported. [16, 15]

For the hashing of images SHA-1, and for the signing 2048-bit RSA key pairs are supported.

In order to verify the next stage in the chain of trust, the signing 2048-bit RSA key pair
has to be generated. OpenSSL can be used to create this key pair. U-Boot verifies the
next stage with FIT image verification and is hard-coded to only load FIT images that are
signed with the correct key.

In this implementation the FIT image builds up from the Linux kernel with an initial
RAM file system, the flattened device tree and OP-TEE. All of the nodes are hashed with
SHA-1, and the whole configuration is signed with the generated RSA private key. This
method ensures, that the whole FIT image is signed, and none of its parts can be modified
without breaking the signature.

The RSA public key is included in U-Boot’s control device tree, so U-Boot can verify the
image during boot. Then U-Boot is configured and built with that control device tree in a
way, that it only boots FIT images that are signed with the included RSA public key.

Provided that OP-TEE and Linux are booted the next step is the verification of the root file
system, which is done by dm-verity. The following is a quote from dm-verity documentation.

Device-mapper is infrastructure in the Linux kernel that provides a generic way
to create virtual layers of block devices.

Device-mapper verity target provides read-only transparent integrity checking
of block devices using kernel crypto API.

[. . . ]

The dm-verity was designed and developed by Chrome OS authors for verified
boot implementation. [12]

The hash of the root file system can be created by veritysetup (a tool for dm-verity). MD5,
SHA-1, SHA-256 and SHA-512 are supported, and the default is SHA-256. Then the hash
is placed into the initial RAM file system, that is linked into the Linux kernel, as a result
it is protected by the signature on the FIT image.

With the help of veritysetup the operating system hashes the root file system and compares
the result with the hash in the initial RAM file system, and only switches from the initial
RAM file system to the root file system and continues to run, if the two hashes are identical.
This functionality is implemented in the init scripts.

Since the root file system is read-only, write-enabled file systems have to be mounted
in order to store persistent application/user data. The verification of such mounts is the
responsibility of the respecting applications.
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4.3 Secure Firmware Update

Depending on the use cases, there are different approaches to the implementation of a
secure firmware update. One aspect might be whether the complete firmware on the device
is updated — meaning that the update is atomic — or the individual components of the
firmware can be updated separately. One other aspect might be whether there can be more
than one version of the firmware on the device at the same time, so it can easily be reverted
to the previous working version in case of a faulty update, or strictly only one version at
any given time, so it is more difficult to revert but easier to manage. One different aspect
might be whether the main operating system updates the firmware, or there is a dedicated
simplified operating system to manage the updates, which case is more complex but also
more secure. One additional aspect might be whether there is a fallback operating system
and/or an interactive boot loader, in case of a faulty update with no way to revert it, or
not, and in this given scenario the device is intentionally inoperable. The above mentioned
aspects are independent from each other, and so they can be freely combined to achieve
the desired use cases.

A significant decision is, whether to update the complete firmware on the device, so the
update itself is atomic, or to provide the possibility to update the individual components of
the firmware separately. From here on, the complete and atomic firmware update process is
discussed, because it suits an embedded device better. Such an update must be well tested,
therefore it will be more stable and secure. In most cases there is no need for individual
component update, which is more complex, further reinforcing our decision.

In case of an update there can be two different versions of the firmware on the device at
the same time — the newer, updated, but not yet tested one, and the older, stable one. In
this way, the device can easily be reverted in case of a faulty update. Once the update is
tested however, it becomes the stable version, and no other version is allowed to be on the
device until another update. This is a good trade-off between easy reversibility and easy
manageability with rollback-protection.

In this proof of concept implementation the main operating system updates the firmware
with the use of different partitions. Another method could be using a dedicated simplified
operating system, which manages the updates.

In this given model there is no additional fallback operating system and no interactive
boot loader. Though it is constructed in a way, that any of them can easily be added.

The so far described firmware format is enhanced with versioning. The previously imple-
mented FIT image is extended with a new version node, that adds the version-number
of the firmware to the image, so that it is also signed together with the firmware. The
version-number of the firmware is in binary format and two bytes long for the major and
minor version-numbers. The version-number is also placed both into the initial RAM file
system and into the root file system, therefore only the matching root file system can be
loaded with the firmware, as the operating system checks the version-number as well.
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The format of the boot-log file is defined as follows. An entry starts with three fixed bytes,
all in binary format, because of the low-level operation of U-Boot. The first two bytes
are there for the major and minor version-numbers of the firmware, and the third byte
is the result of its self-test. When the third byte is 0x00 it indicates that everything is
OK with that version, anything else indicates an error. 0x01 in particular means that the
verification of the integrity of root file system failed, so the integrity of the given version is
broken. After the first three fixed bytes the entry can freely be expanded. Newer entries are
prepended to the boot-log, because in U-Boot it is much easier to read from the beginning
of a file than from the end of it.

With scripts, stored in the environment variables of U-Boot, a modular boot program is
implemented, which works as described below. It tries to load the updated firmware, then
checks the boot-log and the watchdog as described in Section 3.3, then tries to boot it
according to the rules of verified boot. If there is no updated firmware or any of those
steps fails, it continues with the stable firmware. It tries to load the stable firmware, then
checks whether the verification of the updated firmware failed, or not. If it did, it adds an
indicating parameter to the boot-arguments then continues, else it just continues. Then
checks the boot-log as described in Section 3.3, then tries to boot it according to the rules
of verified boot. Again if there is no stable firmware or there was a failure, it prints a
message, saying that the device is bricked, and resets the device.

As everything is implemented modularly in the above detailed boot program, it is relatively
easy to extend it with a fallback firmware at the end of the chain, or with an interactive
boot loader, as the latter can be enabled with the help of an environment variable.

The rest of the secure firmware update process is implemented in the operating system, by
extending the init scripts already implemented in the secure boot process. First of all, if
the verification of the root file system fails, the boot-log is written accordingly (error-code
0x01) before the reboot, so that U-Boot can know that the integrity of the given firmware
is broken. If the verification of the root file system was successful and the operating system
switched to it and performed other necessary initializations, the kernel command line —
that can be specified with the boot-arguments — is checked for the indicating parameter of
an integrity failed update firmware. On the condition that it is there, the update firmware
is deleted and logged in a way, that the update-manager knows about the integrity failure
of that specific firmware. After this, or if the indicating parameter is not there, the self-test
is executed. As an example the xtest test suite of OP-TEE is used as self-test. In the event
that the self-test fails, the boot-log is written accordingly (with the failures matching error-
code) and the device is rebooted. Else the boot-log is written with code 0x00, meaning that
everything is OK with the current firmware. If there is, any different firmware is deleted
and its version-number logged, so that the update-manager never tries to download it in
the future. Then the update-manager is started, and the device starts its normal operation.

The update-manager periodically checks for updates, and only downloads such firmwares,
which conform to the logs. In case of a conforming update the update-manager downloads
it, and schedules a reboot.
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4.4 Security hardened firmware/operating system

As a matter of fact numerous hardening features already exist in Linux based systems,
along with a project, that aims to gather, improve and build them into the official Linux
kernel. That project is called the Kernel Self Protection Project, and it has the following
Mission Statement.

This project starts with the premise that kernel bugs have a very long lifetime,
and that the kernel must be designed in ways to protect against these flaws. We
must think of security beyond fixing bugs. As a community, we already find and
fix individual bugs [. . . ]. Those efforts are important and on-going, but if we
want to protect our billion Android phones, our cars, the International Space
Station, and everything else running Linux, we must get proactive defensive
technologies built into the upstream Linux kernel. We need the kernel to fail
safely, instead of just running safely.

These kinds of protections have existed for years [. . . ]. For various social,
cultural, and technical reasons, they have not made their way into the up-
stream kernel, and this project seeks to change that. Our focus is on kernel
self-protection, rather than kernel-supported userspace protections. The goal is
to eliminate classes of bugs and eliminate methods of exploitation. [34]

The Kernel Self Protection Project has a recommended settings page [35] about various
kernel build CONFIGs and run-time settings, such as kernel command line options and
sysctls. The contents of that page is the base of this hardening implementation.

The kernel build CONFIGs can be added to Buildroots configuration, in order to build a
hardened kernel. The kernel command line options can be added to the boot-arguments in
U-Boot, in order to boot with hardening options enabled. And the sysctls can be set by
the init scripts in run time.

In the first approach the incompatible ones were excluded, in particular those, that are
meant for different architectures, those, that are not supported by the implemented system,
for example by U-Boot, and those, that would break dependencies. Then it was followed
by a series of tests to exclude ones, that caused errors in the live system. At the end of
the process a security hardened operating system was achieved, while still supporting the
desired features.

4.5 Remote Attestation and Integrity Monitoring

In this section we present the implementation details for our approach to Remote Attes-
tation and Integrity Monitoring on the Raspberry Pi 3 Model B embedded device. The
system components are shown similar to Section 3.5, only on a lower abstraction level, and
with more details.
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4.5.1 Secure World Trusted Application

In the following sections, we describe the various problems and challenges that have arisen
during the development of the Trusted Application—and also the solutions we realized.
We present these mostly focusing on their impact on integrity monitoring and remote
attestation.

The remote attestation and integrity monitoring functionalities are implemented in one TA,
since we did not find a solution in OP-TEE, mature enough, to satisfy our requirements
of inter process communication between Trusted Applications using shared memory.4

Requirements

The auxiliary system components we created (shown in Section 3.5), are required for the
proper functioning of the TA. As described in Section 4.1.4, we created a Buildroot environ-
ment with many tasks automated—including building the following required applications—
however the satisfaction of other requirements do require manual configuration (e.g., con-
figuring memory mappings in OP-TEE kernel).

First, the Pseudo Trusted Application is required to access the NW Linux memory from
the TA. The PTA must be built into OP-TEE kernel, and the target memory regions (that
we want to access) must be mapped in the Memory Management Unit of OP-TEE. The
details of the configuration is described within section 4.5.2.

Second, after accessing the memory, we have to interpret the contents of it. To achieve
that, we need the exact definitions of the data structures Linux stores there, i.e., the C
header files matching the running kernel version. These header files contain many type and
structure definitions, for example the task_struct structure. The task_struct represents
a running process in the NWmemory and contains many process related information, e.g., a
pointer to the Virtual Memory Area (VMA) linked list of the process. These data structures
are discussed later in Section 4.5.1. These header files can be obtained by running the
dwarfparse auxiliary script on a dummy kernel module compiled for the used Linux kernel.
In our implementation a single C header is generated from the dwarf debug information
of the compiled module, containing every type definition and structure needed to access
the NW memory properly. We also created a Buildroot package for running the script,
generating the header file, and sharing it with the TA package in Buildroot, so it can be
used when compiling the TA. See section 4.5.9 about the script details.

Third, the demand paging functionality of modern Linux kernels must be dealt with.
Demand paging means that the binary of a running process is not completely loaded into
RAM when the kernel starts the process. Then, during execution of the application, when
the program flow reaches an area of the code segment of the binary that is not loaded, a
page fault happens. The kernel then loads the page corresponding to the faulty address

4https://github.com/OP-TEE/optee_os/issues/1068 (last visited on 2018–10–21)
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into memory. This behavior has significant performance benefits, but it is undesirable when
hashing the code segment of a larger binary. The main problem is that causing NW page
faults from the SW is not easily achievable, since the two worlds use different memory
management data structures and methods. Also, the SW is not able to request services
from the NW, since this functionality is not implemented in OP-TEE.5 In our solution a
NW Linux kernel module (mod-pslist) is used to cause page faults for the code segment
of each running process, essentially force loading the binaries into memory, so later the TA
can access those pages without problems. The NW Server Application calls this module
each time a hashing request is received from the remote client.6 We also created a Buildroot
package for the kernel module, and the module should be loaded at system boot time. This
is implemented in the Buildroot root overlay with System V style initialization scripts.

NW-SW Interface

The interface that the TA provides, is quite flexible and does not restrict the usable proto-
cols between the NW Server Application and the remote client. For example, one could use
simple sockets or gRPC with TLS or other Machine to machine protocols for the Server
Application – remote client communication. In our implementation we choose gRPC. For
more details see section 4.5.2. The only coupling or restriction between the TA and the
remote client might be that the signing and verification cryptographic algorithms used
must match on both communicating sides, however this originates from the requirement
that the integrity and authenticity of the requests and responses between the two parties
must be assured.

We use shared memory between the NW and SW for the data transfer, since this is the
technique OP-TEE implements and uses for NW-SW communication.7 The NW Server
Application provides the input and output buffers for the operation, by registering or allo-
cating shared memory.8 The interface supports three different commands. Each command
has a command identifier (command id), that is a simple integer number, defined in a
shared header file accessible for both the TA in Secure World and the Server Application
in Normal World. The Server Application sends this id to the TA, specifying the requested
operation, as described in the GPD Specification [21]. Along with the id, an operation
argument format is also specified in the GPD standard. There are four usable arguments,
which can be (but are not limited to) simple integers or fixed size buffers whose structure
we can define [21, 22].

We specified the arguments the following way. Two arguments correspond to the request
5https://github.com/OP-TEE/optee_os/issues/2333 (last visited on 2018–10–19)
6An alternative solution could be to calculate and send hashes for every page separately. This way if

one of the pages is not loaded or swapped out, the code segment still could be partially checked.
7https://github.com/OP-TEE/optee_os/blob/master/documentation/optee_design.md#

7-shared-memory (last visited 2018–10–22)
8Registering shared memory (SHM) means, that an already existing memory buffer (located either on

the heap, stack, or defined as global) is used as SHM buffer, whilst when allocating shared memory, a new
memory area is allocated in the registered SHM region of the RAM
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and two to the response. The first GPD argument of the request contains the metadata for
the requested integrity monitoring operation. This includes the signature of the request, the
number of elements in the second GPD argument buffer, the version of the communication
protocol in use, and a nonce9 value. For the exact definition of the metadata structure see
Listing 4.1.

The second GPD argument of the request is the parameters for the integrity monitoring
operation, simply serialized as an array of zero terminated strings. For example, when
calculating process hashes the process can be specified here (the number of strings in
this buffer is included in the first GPD argument as mentioned before). We choose this
serialization method because it is simple but could be powerful enough for many kind of
different parameter formats, and is similar to how command line arguments are passed to
the main function in C and C++ (buf_num being argc, the buffer itself being argv).

The third GPD argument (first for the response) consists of the same structure definition
like the first GPD argument, since the format of the requests and responses are quite
similar (both are signed, have the same signature length, and the nonce and version must
be present in both). It also contains the signature of the response, and the number of
strings serialized in the fourth GDP argument.

The fourth GPD argument (second for the response) is the result buffer of the integrity
monitoring algorithms. In our implementation this could be either the list of running
processes, or one or more hash values for the memory of the requested process. The number
of serialized strings can be found in the response metadata as mentioned before.

A more formal description of the arguments above can be found in Listing 4.2. The
MEMREF_INPUT and MEMREF_OUTPUT declarations matches the GPD specification [22].
MEMREF_INPUT is a memory reference buffer and is considered input only, from the point
of view of the TA. MEMREF_OUTPUT is a memory reference buffer and is considered output
only, from the point of view of the TA.

#define RA_SIGNATURE_SIZE 256
struct ra_cmd_meta {

uint8_t sign[RA_SIGNATURE_SIZE ];
uint32_t version;
uint64_t nonce;
size_t buf_num;

};

Listing 4.1. Metadata structure for operation

GPD TEE param #0: MEMREF_INPUT
.buffer: [ struct ra_cmd_meta ] metadata for the request
.size: [ size_t ] should be sizeof(struct ra_cmd_meta)

GPD TEE param #1: MEMREF_INPUT

9The nonce is a random 64-bit integer value generated by the remote client and sent with the request.
The TA includes it in the response to prove that the response corresponds to the request.
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.buffer: [ uint8_t [] ] request arguments: zero terminated strings serialized

.size: [ size_t ] size of the argument buffer
GPD TEE param #2: MEMREF_OUTPUT

.buffer: [ struct ra_cmd_meta ] metadata for the response

.size: [ size_t ] should be sizeof(struct ra_cmd_meta)
GPD TEE param #3: MEMREF_OUTPUT

.buffer: [ uint8_t [] ] operation results: zero terminated strings serialized

.size: [ size_t ] size of the result buffer - number of bytes written by
the TA operation

Listing 4.2. Formalized shared argument definitions

The interface exposes three commands: first, to get the list of the running processes of the
NW Linux the corresponding command id is RA_CMD_GET_PSLIST. Input arguments are not
required, the input buffer should be NULL. For each running process a zero terminated
string is serialized into the output buffer. One such string contains the full file system
path where the given process is located. This is preferable to the process name, for the
reasoning behind this see section 4.5.1. The running kernel threads are not returned, since
those do not have a file system path value. Also, their code segment is part of the kernel
code segment, therefore would not make a good candidate to be input arguments for the
process hashing command. The command itself also has a return value, which is a flag
indicating the state of the operation. There are return values that are common to each
integrity monitoring command, these can be found in Table 4.1.

TEE_ERROR_BAD_PARAMETERS The provided parameters does not match the specifi-
cation.

TEE_ERROR_SIGNATURE_INVALID The provided signature in the request metadata is in-
valid.

TEE_ERROR_ITEM_NOT_FOUND Path not found in the VMAs of a process while iterat-
ing over the process list of the NW Linux.

TEE_ERROR_OUT_OF_MEMORY Heap memory allocation failed in OP-TEE.
TEE_SUCCESS The requested operation successfully completed.

Table 4.1. Return values common to integrity monitoring commands

Second, to get the hashes of the code segments of the processes running from the provided
path, the command id is RA_CMD_GET_PSHASH. Since an application can be started multiple
times, the command returns a hash of the code segment of each process running from the
binary specified in the parameters. If the returned hashes are not the same, the binary or
the code segment of a process was modified between different executions of the application,
which could be an indication of system compromise. Other than the return codes specified
in Table 4.1, this command could return the error code: TEE_ERROR_GENERIC, meaning the
currently hashed task does not have a memory descriptor structure (i.e., is a kernel thread)
or its code segment is not completely mapped in RAM. Kernel threads, by definition, does
not have mm_struct structures:

Kernel threads do not have a process address space and therefore do not have an
associated memory descriptor. Thus, the mm field of a kernel thread’s process

42



descriptor is NULL. This is the definition of a kernel thread—processes that
have no user context. [28]

To be able to hash the code segment of larger binaries a NW kernel module is used for
force loading them into memory. For details see section 4.5.8.

The last command is used for key provisioning (as mentioned in Section 3.5.3), the com-
mand id is RA_CMD_KEY_PROVISIONING. This command saves an RSA key pair (of the
device) and a public key (of the remote client) into Secure Storage. The saved keys are
later used for signing and verifying the incoming requests and outgoing responses. The im-
plementation uses a C source file which contains a key pair (consisting of modulus, private
and public exponent) and a public key (only modulus and public exponent). This source
file must be only compiled and linked into the resulting TA when key provisioning/man-
agement is required, therefore the resulting TA binary only contains the keys when it is
compiled in provisioning mode, not during normal operation. For details see section 4.5.1.

Using the PTA

Every time access is needed to the Linux data structures located in NW memory e.g.,
when dereferencing a pointer to NW memory location, that data is loaded using the PTA.
This must be done with explicit function calls, because user TAs can not access arbitrary
memory locations. The same memory separation and protection principles are applied to
user TAs in SW as Linux processes in NW. In the TA, in-memory buffers must be used to
hold the copies of NW Linux data structures to avoid repeatedly calling the API functions
of the PTA. Since a few of these structures can be rather large (>1 kB) (e.g., task_struct
structure), and since the stack of a TA is quite limited (usually few kilobytes) they can’t be
stored on the stack. Although the supervised stack size of the Trusted Applications can be
configured at build time10, the available Secure Memory11 is often also limited on embedded
devices, it is more feasible to use the heap to store the buffers. Alternatively, they could be
defined as global variables, however, we found that this approach might lead to unexpected
behavior when multiple incoming requests are received, and the resulting problems might
be hard to debug, therefore we suggest using dynamic memory allocation on the heap.
Also, since the PTA works with physical addresses, every pointer containing NW virtual
addresses must be translated first in the Trusted Application, which is discussed in the
following section.

10https://github.com/OP-TEE/optee_os/blob/master/documentation/optee_design.md#
malloc-pool (last visited on 2018–10–22)

11https://github.com/OP-TEE/optee_os/blob/master/documentation/optee_design.md#
secure-memory
https://github.com/OP-TEE/optee_os/blob/master/documentation/porting_guidelines.md#
8-memory-firewalls--tzasc (links last visited on 2018–10–22)
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Using process paths in monitoring

In the current integrity monitoring implementation, paths are chosen to identify a process,
since paths are globally unique in the Linux file system, and can not be easily altered by
the process itself in run time, unlike the name of the process. A process can change its run
time name quite easily. For example, a C program can modify the argv[0] input parameter
in its main function which contains the process name. The modified name appears in
NW Linux system monitoring programs like top. The process can do this, because the
argv[0] parameter is located in its own address space, which it has write access to. On
the other hand, the file system path to the process binary is stored in kernel memory
which is protected from user land processes. Therefore, making the path feasible to use
to (partially) identify the running processes. The path combined with the process PID
and process command line parameters can be used with more fine-grained whitelisting and
identification procedures if required. In the current implementation only the path is used.
Multiple processes can have the same path, e.g., a process makes a fork of itself and the
same binary is used for the children process, or starting a program two or more times
in succession, in which case the paths are the same, but the PIDs is guaranteed to be
different. However, PIDs can be unreliable to exactly identify processes in the long run,
since the default maximum PID number is 32768, and if this limit is reached, Linux starts
to reuse previous PIDs.12 The proc section of the Linux Programmer’s Manual contains
the following:

/proc/sys/kernel/pid_max (since Linux 2.5.34)

This file specifies the value at which PIDs wrap around (i.e., the value in this
file is one greater than the maximum PID). PIDs greater than this value are
not allocated; thus, the value in this file also acts as a system-wide limit on the
total number of processes and threads. The default value for this file, 32768,
results in the same range of PIDs as on earlier kernels. On 32-bit platforms,
32768 is the maximum value for pid_max. On 64-bit systems, pid_max can be
set to any value up to 222 (PID_MAX_LIMIT, approximately 4 million).

Linux data structures, macros, and definitions

In this section we briefly explain the most important Linux kernel data structures that we
used. A more lengthy description can be found in [27] (p. 603 – 307) and in [28] (p. 85 –
113).

Linux processes are represented by task_struct structures in kernel memory.13 An in-
stance of this structure is around 3 KB in our environment14, and it contains a lot of

12 http://man7.org/linux/man-pages/man5/proc.5.html (last visited on 2018–10–19)
13https://elixir.bootlin.com/linux/v4.6.3/source/include/linux/sched.h#L1394 (last visited

2018–10–20)
14Measured in our environment — 64-bit kernel, version 4.6.3
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information about the particular running process. These structures are stored in the kernel
memory cache (kmem_cache) — part of the kernel memory. The key points of the structure
are the following:

• pid_t pid; Contains the PID of the process

• struct list_head children; Holds a circular, double linked list with the children
of the given process.

• struct list_head sibling; Holds a linkage to the parent’s children.

• char comm[16]; Contains the name of the process. If a kernel process’ name ends
with a / character followed by a number then the number indicates which processor
core the thread is running on. (Note: this is not used in our integrity monitoring
algorithms, because of the reasons discussed in Section 4.5.1)

Each task_struct structure contains a link to its first child, which is linked to the sibling
field of the child. The last task_struct sibling of the structure in this chain is linked back
to the parent’s children field, which is shown in the following example:

prev

next

prev

next

prev

task_struct init_task task_struct init task_struct kthreadd

init_task.children init.sibling kthreadd.sibling

next

Figure 4.6. Linux task_struct linkage example

Figure 4.6 shows a circular, doubly linked list with three data nodes. The traversal of the
list starts at the init_task node on the left, which is the head of the linked list data
structure. The other nodes are reachable using the next and prev sibling pointers, and the
circularity of the list is assured by the first and last nodes having pointers to each other
(on the example init_task and kthreadd).

The previous list structure is a great example of general linked lists in the kernel. These
definitions can be found in include/linux/list.h kernel source file. The list_head struc-
ture can be used to store lists. There are many macros and functions defined in the kernel
to operate on lists. For example, we heavily relied on the list_entry macro (defined in
include/linux/list.h), which is in fact an alias of the container_of macro (defined
in include/linux/kernel.h). The comment for this macro states the following: “cast a
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member of a structure out to the containing structure”.15 We used this to iterate over the
list elements.

In Linux, the address space of the processes are described with the mm_struct structure.
This structure is called the memory descriptor, and contains every information about
the process address space. It is defined in linux/mm_types.h. Among many things, it
contains the start and end addresses of the various sections of the process virtual memory
space, corresponding to the sections in the ELF binary backing the process. We used the
start_code and end_code members of the structure, in particular, because those contain
the start and end virtual address of the process code section. The vm_area_struct *mmap

pointer is also interesting, because it points to the VMA list of the process, which is a list
of all the memory areas in this address space.

Virtual Memory Areas, represented as vm_area_struct structures, describe a “single mem-
ory area over a contiguous interval in a given address space”, according to [28]. They can
be backed by various objects, e.g., physical memory pages or files, like executable binaries
and loadable libraries. The VMAs are important to us, because they can be used to get the
file system path to the process binary, and also the path of the shared libraries the process
uses. We use the vm_start and vm_end members—which describe the lowest and highest
virtual addresses corresponding to the virtual memory area—and the *vm_file pointer,
which identifies the file mapped to the area. Also, there are VMA flags (vm_flags)—read,
write, and execute specifically—which can be used by integrity monitoring algorithms to
detect suspicious protection bits which may indicate shellcode or shard library injection,
as can be seen in [27], however our implementation does not use them.

The mm_struct also provides access to the page tables used by the kernel. Virtual memory
addresses are used by applications, but they must be converted to their physical counter-
parts, which are used by the processor. This process and the translation of kernel virtual
addresses are described in the next section.

In the Linux virtual file system (VFS), dentry means the following:

VFS treats directories as a type of file. In the path /bin/vi, both bin and vi

are files—bin being the special directory file and vi being a regular file. [. . . ]

A dentry is a specific component in a path. Using the previous example, / ,
bin , and vi are all dentry objects. The first two are directories and the last
is a regular file. This is an important point: Dentry objects are all components
in a path, including files. Resolving a path and walking its components is a
nontrivial exercise, time-consuming and heavy on string operations, which are
expensive to execute and cumbersome to code. The dentry object makes the
whole process easier. [28]

15A brief documentation can be found here too: https://www.kernel.org/doc/htmldocs/kernel-api/
API-list-entry.html (last visited on 2018–10–20)
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Address translation

NW virtual addresses can not be directly accessed from the TAs since NW and SW use
different memory management page tables. These addresses must be translated to physical
ones. In our environment, kernel address space layout randomization (KASLR) is not used
in the Linux kernel running on the Raspberry Pi 3 with 64–bit Linux kernel, because
our verified boot process (along with OP-TEE) does not support this feature, making the
translation of kernel virtual addresses significantly easier.

The translation for Linux kernel virtual addresses is quite simple but also architecture
and platform dependent. On 32–bit systems, kernel memory is mapped linearly in the
lower memory areas (lowmem), but non-contiguously for higher addresses (highmem).16

The need for this separation arises from the fact that on 32–bit devices, only 232 bits of
memory is addressable. While Physical Address Extension aims to solve this problem, it
might not be supported on every embedded device. Our implementation should work on 32–
bit kernels, since it uses kernel memory structures which are located in the linearly mapped
region [28]. On 64-bit systems the complete kernel memory is linearly mapped, there is no
lowmem/highmem separation, because the available address space is significantly larger,
making the before mentioned separation unnecessary. This translation is implemented as
a macro called __virt_to_phys in the kernel source code, as seen in Listing 4.3.17

1 #define __virt_to_phys(x) ({ \
2 phys_addr_t __x = (phys_addr_t)(x); \
3 __x & BIT(VA_BITS - 1) ? (__x & ~PAGE_OFFSET) + PHYS_OFFSET : \
4 (__x - kimage_voffset); })

Listing 4.3. Macro for translating kernel virtual addresses to physical addresses

This macro first checks the type of the kernel virtual address and it calculates the offsets
accordingly. We implemented the same macro in the Secure World TA to handle kernel
address translation. The challenge in the implementation was that we had to re-implement
the complete chain of other Linux kernel macros and definitions that this macro uses. The
PAGE_OFFSET value is dependent on the load address of the kernel while booting. This
value can change if the load address changes, so recalculation might needed if the address
defined in the FIT ITS file for U-Boot changes. The Linux kernel solves this problem on
some platforms by patching itself at run time, calculating the offset on every boot when
built with CONFIG_ARM_PATCH_PHYS_VIRT=y.18 Recalculation of the offset can be done e.g.,
with using a known virtual – physical address pair, or with a kernel module reading the

16 https://elinux.org/images/b/b0/Introduction_to_Memory_Management_in_Linux.pdf
https://users.nccs.gov/~fwang2/linux/lk_addressing.txt
http://thinkiii.blogspot.hu/2014/02/arm64-linux-kernel-virtual-address-space.html
(each link last visited on 2018–10–19)

17https://elixir.bootlin.com/linux/v4.6.3/source/arch/arm64/include/asm/memory.h#L89 (last
visited on 2018–10–19)

18 https://stackoverflow.com/questions/16909655 (last visited on 2018–10–19)
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offset directly from Linux. During development we tested and used both approach. As
mentioned before, KASLR is not used in our environment, so the previous simple macro
is enough for the address calculations.

The translation for per process virtual addresses is more complicated than for kernel virtual
addresses, since paging is used in the memory management of processes [11]. The page
table structures used in Linux memory management must be walked manually from the
Secure World TA. This is highly architecture and platform dependent, since page tables
can contain different number of levels, different masks and bit field widths must be used to
calculate the offsets for each level. Modern Linux kernels generally use a 4 level page table
(in software), but the platform dependent implementations differ.19 For example when
the architecture uses 2 level hardware page tables, the 2 non-existent levels are “fixed up”
when Linux translates addresses. This essentially means that the functions—corresponding
to the tables of those levels—are simply returning the values of the previous levels, they
are transparently left out.20 Solutions similar to this can be found in the kernel at multiple
places. They aim to enable the writing of more generic algorithms and code. Another
example is the generic linked list representation in the kernel, where macros are used to
calculate the addresses of the neighbor node pointers, which by default does not point to
the next node of the list, but to another generic node pointer type located and defined
inside the structures of the nodes. A visual example and description of this can be seen in
Figure 4.6. More information about kernel programming can be found in [11].

We used the kernel memory management source code to implement the page walk in
the TA. Using the mm_struct structure belonging to a process we can translate a virtual
address from the address space of the process to a physical memory location. To obtain
the mm_struct, we traverse the linked list of the running processes (starting from the
init_task symbol, representing the list head), until the task_struct corresponding to
our process is reached. The task_struct contains a pointer to the mm_struct, which is
needed because each process has their own virtual memory, and this structure describes
that area, as mentioned in Section 4.5.1. The first level is called Page Global Directory
(PGD). It is defined in the mm_struct as a pointer, and contains the physical memory
address of the second level, page upper directory (PUD), which then contains a pointer to
the third level, page middle directory (PMD), and which contains a pointer to the fourth
level, page table entry (PTE). Using the lowest bits of the address as offset into the page
itself, the final physical address can be calculated. This segmentation of the address can
be seen in Figure 4.7 21

19 The kernel uses four level page tables since 2005 (version 2.6.10): https://lwn.net/Articles/117749/
Five level page tables were introduced in 2017 (version 4.11-rc2), although currently there is no hardware
supporting five levels: https://lwn.net/Articles/717293/

20 https://manybutfinite.com/post/how-the-kernel-manages-your-memory/ (last visited on 2018–
10–19)

21 The masks, offsets, and indexes are defined in the Linux kernel source code (mostly in
arch/arm/include/asm/page.h and arch/arm/include/asm/pgtable.h ).
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Figure 4.7. Virtual Address

Traversing the process linked list

Traversing the list of running processes is important for our integrity monitoring proce-
dures. This is a circular doubly linked list of task_struct structures, representing a tree
data structure, as mentioned in Section 4.5.1. The virtual address of the head of the list
can be found in the system.map file, generated when building the Linux kernel, or can
be obtained dynamically from /proc/kallsyms on the running system. The name of the
symbol is init_task. In our implementation, it is stored as a C define in a header file,
however, since it can change with every build of the kernel, it should be updated manually
(or automatically during building). The algorithm is a simple recursive DFS tree traversal.
The next and previous pointers can not be accessed directly (pointees are in NW mem-
ory), so the PTA must be called on each access. A callback function is called on every
task_struct item in the tree (making the algorithm generic). The callback function has
two arguments: the current level in the tree and a void pointer representing the context or
payload for the function. In most cases the payload should contain a pointer to the current
task and a pointer to a structure representing the current attestation request and response.
The list_entry function is a macro used in the Linux kernel to help the generic traversal
of data structures, as shown in section 4.5.1.

Getting path to the binary of a process

Each process has a list of Virtual Memory Area (VMA) structures representing the distinct
regions of its address space, as described in section 4.5.1. The algorithm in our implemen-
tation, simply walks the VMA list of a process (mm.mmap) until it reaches the first VMA
corresponding to the start of the code segment. We can be sure that the file belonging
to the code section area, actually contains the code being executed. The algorithm then
extracts the path to the file backing the VMA—the process binary file in the file system.
A helper function is implemented to get the path in the correct canonical order.22 Since
the directory entry (dentry) belonging to the file is the last part of the canonical path,

22We defined a constant to limit the path length, since a completely reliable limit for the full path of
a file does not exist in Linux: http://insanecoding.blogspot.com/2007/11/pathmax-simply-isnt.html
(last visited on 2018–10–22)
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recursion can be used to get the full path in correct order (the filename and directory entry
are parts of a linked list with pointers to the parent directory entry).

Getting the process list

The list of running processes can be obtained by traversing the process list, and collecting
the paths from the process VMAs. This algorithm simply uses the list traversal and path
accessing algorithms, introduced in section 4.5.1. In the current implementation, only the
path is collected, however with simple modifications more information can be gathered
for each process, e.g., PID, UID, GID, time of start, process state (running, terminated,
waiting, etc.), and other stats usually shown by NW Linux system monitoring tools like
top or htop. The callback of our process traversal algorithm gets the path of the current
task and writes it into the shared memory output buffer. Since the number of running
tasks and the path length for each task is unknown beforehand, in the current implemen-
tation the buffer is written until the size specified in the GPD parameter size is reached,
and if the traversal was not completed, the procedure stops and returns an error code
(TEE_ERROR_SHORT_BUFFER). The NW Server Application then can decide if it allocates a
larger buffer and repeats the request or returns an error to the remote client. The payload
to the traversal algorithm consists of pointers to a task_struct and to a path buffer,
helper pointers to use with serializing the paths into the buffer, and a pointer to the struc-
ture representing the attestation request and response. The task_struct and path buffer
is allocated on the heap and reused for each process, since even the heap could be quite
limited in OP-TEE.23 Also, OP-TEE uses bget generic heap allocator (written in 1972),
which can fragment the heap when allocating and freeing large chunks of memory.24

Calculating hash for the code segment of a process

The hash of the code segment of processes can be used to verify that the process running
from the given path has not been replaced, modified or tampered with. On the remote
client side, a list of known hashes can be maintained and used to check against the hashes
of the running processes. This way the integrity of critical applications can be monitored,
and the remote client can be sure that the code running on the system can be trusted. The
maximum path length of a binary specified in the request, is limited, to avoid potential
overflows in the monitoring algorithms, and the request can contain only one path with this
length. The list of hashes is obtained by traversing the process list, selecting the tasks whose
binary paths match the path set in the request, calculating hashes for their code sections,
and storing the results in the response buffer. If the response result buffer is not large
enough to hold the hash of the process currently iterated, TEE_ERROR_SHORT_BUFFER error

23https://github.com/OP-TEE/optee_os/issues/947#issuecomment-235893257 (last visited on 2018–
10–20)

24https://github.com/OP-TEE/optee_os/issues/2395#issuecomment-397400065 (last visited on
2018–10–20)
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code is returned to the caller (NW Server Application). For the given process, its SHA256
hash is calculated. Memory is allocated on the heap for the mm_struct of the process, and
for an array containing the addresses of the pages where the code segment is located. The
number of pages to hash is calculated using the following equation, where page_count is
the number of pages, end_code and start_code are virtual addresses corresponding to the
start and end of the code segment, and PAGE_SIZE is the size of physical pages used by
the kernel (usually 4 KB when huge pages are not used):

page_count =
end_code − start_code

PAGE_SIZE
+ 1

The current page length also needs to be calculated, because the data might not fill the
entire page (PAGE_SIZE bytes), and only the actually used range needs to be hashed. This
is done by checking if the end address of the code segment is inside the current page, as
shown in listing 4.4, and also while iterating over the pages (shown in listing 4.5)

1 uint32_t start_address = mm ->start_code;
2 uint32_t end_address = mm ->end_code;
3 <snip >
4 if (( start_address & ~( PAGE_SIZE - 1)) + PAGE_SIZE > end_address)
5 page_len = end_address - start_address;
6 else
7 page_len = PAGE_SIZE - (start_address & (PAGE_SIZE - 1));

Listing 4.4. Calculating page length

1 uint32_t start_address = mm ->start_code;
2 uint32_t end_address = mm ->end_code;
3 <snip >
4 for (size_t i = 0; i < page_count; ++i) {
5 <snip >
6 start_address += page_len;
7 if (start_address + PAGE_SIZE > end_address)
8 page_len = (end_address - start_address);
9 else

10 page_len = PAGE_SIZE;
11 }

Listing 4.5. Iterating over the pages

The calculated digest is converted to a hexadecimal, zero terminated string representation
and returned in the hash buffer, which was provided in the payload. 25

25The complete code section of the given process must be present (loaded) in memory for this feature
to work. For more details about the problem and solution see section 4.5.8.
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Key provisioning

A simple key provisioning mode is available in the TA, as mentioned in section 3.5.3. The
RSA key pair of the device and the public key of the remote client is located a C source
file. The values are currently hard coded and the file only gets compiled if the TA is built
with provisioning mode enabled (recommended only during development). To enable or
disable the mode the following line can be included in the TA build makefile:
srcs -y += provision.c

This assures that the keys are not present in the binaries during normal operation in any
form. The name of the stored RSA key pair and public key objects stored in Secure Storage
are defined the following:

1 #define RA_STORAGE_KEYPAIR_NAME "ra_keypair"
2 #define RA_STORAGE_ATTESTER_PUBKEY_NAME "ra_attester_pubkey"

OP-TEE uses the strings above to find an object in Secure Storage, since objects are pro-
tected by and stored in a hash tree (implemented as a binary tree).26 The algorithm first
tries to open the object with the given name, if it does not exist, a transient object is
created in memory and initialized with the given modulus, public and/or private expo-
nent (depending on which object is being saved). The transient object is then saved as a
persistent object, and is written to the Normal World file system.

Request verification and response signing

Every incoming request is verified as the start of the TA command invocation step. The
request is not processed if the verification fails. For the verification, an SHA256 hash of the
request is calculated using the version, monitoring operation name, arguments, and nonce.
Then the digest and the signature are passed to the signature checking algorithm, which
uses the keys in Secure Storage to verify the given signature. Signing is done the same way.
The SHA256 hash of the response is calculated: version, results, nonce. Then the digest is
signed with the private key of the device from Secure Storage.

4.5.2 Secure World Pseudo Trusted Application

The Secure World Pseudo Trusted Application provides access and services to the Normal
World Linux memory for Trusted Applications in OP-TEE. It is implemented as a Pseudo
TA to have sufficient privileges to access otherwise inaccessible physical memory locations.
The exposed interface is TA ↔ TA only, meaning that the PTA is not callable from the
Normal World, to avoid breaching the security measures between NW applications, set up
by the Linux kernel (i.e., unrelated applications can not access the memory areas of each
other).

26https://github.com/OP-TEE/optee_os/blob/master/documentation/secure_storage.md (last vis-
ited 2018–10–21)
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Physical memory addresses are used in the API to remain platform and implementation
independent as much as possible, otherwise the address translation functionalities would
have to be implemented in the PTA. This would make it necessary to re-implement them
in different environments, breaking the portability of the PTA, also it would result in more
complex code running with kernel privileges, which should be avoided. Therefore, the
caller first must translate NW (kernel and process) virtual addresses to physical ones. This
translation process often depends on the used platform, architecture, Linux Kernel version,
etc., as described in section 4.5.1. Using this API makes access to NW memory possible to
user TAs, eliminating the possible need to rewrite those applications as PTAs (which are
usually harder to maintain as consequence of the reasons detailed in section 3.5.2).

The PTA exposes the following features: reading from physical memory address ranges;
hashing of physical memory address ranges with SHA256 algorithm—calculating a single
hash for one or more address range and calculating separate hashes for every given address
range.

In OP-TEE there are mechanisms in place that prevent the TAs from accessing the memory
area of other TAs, OP-TEE kernel, and other areas including NW memory. Those are the
reasons, only pseudo TAs can access NW memory. The following manual preparation and
configuration is necessary for the proper functioning of the PTA.

Memory mappings

OP-TEE uses separate virtual memory translation tables from the NW Linux kernel. To
access the physical memory, the corresponding address ranges must be configured in OP-
TEE. This configuration procedure is called memory mapping. The mappings depend on
the particular use cases, for example one can map the entire physical memory to have access
to everything, or if only the kernel memory area is needed one should only map that range.
It might be a good practice to have only the needed ranges mapped, because OP-TEE
has limited number of translation tables, and that limit might be reached when mapping
large areas. We reached this limit when we tried to map the complete kernel memory, like
in listing 4.6, we set the MAX_XLAT_TABLES constant to 100 (from 5) in core_mmu_lpae.h,
because with lower values, OP-TEE kernel panics in the memory mapping functions. We
found that core_mmu_entry_to_finer_grained function tries to make the tables “finer
grained” (likely trying to create more small L1 tables), but can not, since it reaches the
defined maximum translation table limit. Thus, setting the limit higher solves the problem.

The default OP-TEE mappings are defined in the core/arch/arm/plat-*/ platform spe-
cific folders. For example, add the lines from listing 4.6 to core/arch/arm/plat-rpi3/main.c
in order to register a new physical memory mapping:

1 #define MAP_KERNEL_START 0x00001000
2 #define MAP_KERNEL_SIZE (128 * 1024 * 1024)
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3 #define MAP_KERNEL_RAM_START 0x0a000000
4 #define MAP_KERNEL_RAM_SIZE (848 * 1024 * 1024)
5

6 register_phys_mem_ul(MEM_AREA_RAM_NSEC , MAP_KERNEL_START , MAP_KERNEL_SIZE←↩
);

7 register_phys_mem_ul(MEM_AREA_RAM_NSEC , MAP_KERNEL_RAM_START , ←↩
MAP_KERNEL_RAM_SIZE);

Listing 4.6. Registering a memory region in OP-TEE

The registered memory ranges must be PAGE_SIZE (4096 byte) aligned (same as CORE_MMU_DEVICE_SIZE
constant in OP-TEE).27 The ROUNDUP macro can be used to ensure this. In the example
listing 4.6, the mapping consists of an 128MB area of the entire kernel memory (where
the init_task symbol and the other task_structs are located), and an 848MB area used
by the user land programs. This mapping covers most memory locations that Linux uses,
except the memory mapped IO devices at high memory addresses (e.g., watchdog, UART,
etc.), which are mapped in OP-TEE by default.28

27https://github.com/OP-TEE/optee_os/issues/1343#issuecomment-282841451 (last visited on
2018–10–21)

28https://github.com/OP-TEE/optee_os/blob/ee595e950f5be1ace3e831261c22a0e99f959046/core/
arch/arm/plat-rpi3/main.c#L41 (last visited on 2018–10–21)
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0x4000_0000 DRAM0_SIZE
+--------------------------------+
| Device Base | UART: 0x3f215040
| | WDT : 0x3f100000
|0 x3f00_0000 |
+--------------------------------+
| NW RAM |
| | ~860 MB usable RAM probably
|0 x0a00_0000 or 0x0a40_0000 |

^ +--------------------------------+
| | ??? |

Secure RAM | | | 12 MB or 8 MB
32 MB | |0 x0980_0000 | unused secure RAM?

or 28 MB | +--------------------------------+
| | TA RAM |
| | 16 MB |
| |0 x0880_0000 CFG_TA_RAM_START |

^ | +--------------------------------+
| | | OP-TEE Core RAM |

OP-TEE RAM | | | | BL32
4 MB | | |0 x0842_0000 CFG_TEE_LOAD_ADDR |

| | +--------------------------------+
| | | ARM TF |
| | | 128 KB | BL31
| | |0 x0840_0000 TZDRAM_BASE | == CFG_TEE_RAM_START
v v +--------------------------------+

| NS SHM |
| 4 MB | Non -secure shared memory
|0 x0800_0000 CFG_SHMEM_START |

^ +--------------------------------+
| | Linux DTB |

Linux kernel RAM | | |
127.5 MB | |0 x0170_0000 |

| +--------------------------------+
| | Linux kernel |
| | +----------------------------+ |
| | | BL30 MCU FW | | BL30: early tmp buffer for
| | | 1 MB | | MCU firmware , parsed by BL32
| | |0 x0100_0000 | |
| | +----------------------------+ |
| |0 x0008_0000 |
v +--------------------------------+

| U-Boot | Stubs + U-Boot ,
| | U-Boot self -relocates
|0 x0000_0000 DRAM0_BASE | to high memory
+--------------------------------+

Listing 4.7. Raspberry Pi 3 Model B Memory Map

Listing 4.7 shows the different memory regions of the Raspberry Pi 3 Model B in our
environment. The different addresses are gathered from various source code, configuration,
and documentation files of the Linux kernel, OP-TEE, and ARM Trusted Firmware. Every
constant name on the map is from OP-TEE platform_config.h. The most important
sections are described below:

NS SHM Non-secure shared memory, used for communication between the NW and SW
applications. It is non-secure by definition, because the NW allocates this memory
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area, and has complete access to it. In OP-TEE the default configuration is 4MB.

ARM TF The ARM Trusted Firmware binary is located at this area, it is responsible for
the context switching of the processor between Normal and Secure operation modes.
This memory area is accessible by Secure World only.

OP-TEE Core RAM The kernel memory area of OP-TEE kernel. Secure, accessible by
Secure World only.

TA RAM Memory area for the Trusted Applications. Secure, accessible by Secure World
only.

NW RAM Memory area for the Linux user applications. Non-secure, accessible by both
worlds.

Device Base Memory mapped IO devices are located here (e.g., watchdog, UART, etc.).
Non-secure, accessible by both worlds.

Linux kernel The kernel memory area belonging to Linux kernel. Non-secure, accessible
by both worlds.

Some inconsistencies can be found in the different files, these are indicated with the keyword
“or” on listing 4.7. ARM TF platform specific configuration constants and OP-TEE config-
uration constants slightly differ: ARM TF defines the secure RAM 28 MB (DRAM_SEC_SIZE)
in size, while OP-TEE defines it as 32 MB (TZDRAM_SIZE).29 Also, there is 8 or 12 MB
unused secure RAM according to the definitions in the configuration files.

Building into OP-TEE Core

Pseudo TAs are built into the OP-TEE kernel. To build a PTA, the source code of the
Trusted Application must be in the OP-TEE kernel directory tree, and a target for it
must be added to the OP-TEE build system. To achieve this, PTAs can be placed in the
core/arch/arm/plat-*/ platform specific folders or in core/arch/arm/pta/ alongside the
default OP-TEE PTAs. For example, we created a symbolic link to one of the previous
locations for the PTA source folder. To add a build target, we added the following line to
sub.mk in the chosen folder:
srcs -y += nw_memory_api/nw_memory_api.c

29https://github.com/linaro-swg/arm-trusted-firmware/blob/1da4e15529a32fa244f5e3effc9a90549beb1a26/
plat/rpi3/rpi3_def.h#L55 and https://github.com/OP-TEE/optee_os/blob/
c21bf051b0191b5ee81eb138994b7f3a3d579a1a/core/arch/arm/plat-rpi3/platform_config.h#L74
respectively for the two configuration constants (each link last visited on 2018–10–21)
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Security considerations, trade-offs

The feature set of the PTA is intended to be minimal in order to keep the possible attack
surface of the API minimal, since the PTA runs at the same privilege level as the OP-TEE
kernel. As mentioned before, only TA ↔ TA interface is provided, thus restricting the
possible users of the API to other Trusted Applications, to prevent the NW from using it
directly to read arbitrary (possibly SW) memory.

Also, it is possible to use the API to read from the private memory of other TAs. This is
an inherent property of it being implemented as a Pseudo TA (OP-TEE kernel can access
the complete secure memory, therefore PTAs compiled into to it, can too). Proper access
control and address range checking should be introduced to minimize the impact of this.

One could whitelist the users of the API, with a predefined set of TA UUIDs hard coded
into the PTA (or possibly loaded from Secure Storage). This way only TAs with whitelisted
UUIDs can use the services exposed by the PTA. This could be useful if not every TA can
be trusted on the system (i.e., third party ones).

As another possible solution, since TAs can have different flags that can be set at build
time and can be checked at run time, these flags could be used for less restrictive access
control to the API. Adding a new user of the API could be done when building the given
TA and setting a flag, whilst with whitelisting, if the whitelist is built into the PTA it is
necessary to fully rebuild the OP-TEE kernel image or if the whitelist is stored in Secure
Storage, the Secure Storage objects must be manipulated.

To limit the accessible physical address range to safe ones (e.g., only Linux kernel memory),
checks could be run at every memory access to determine the conformity of the given
range and only complete requests with conform ranges. These techniques could introduce
a considerable overhead, since the API is called quite frequently in our implementation
(e.g., when dereferencing a NW pointer ). Note: In the current implementation, neither
whitelisting, nor the conformity checks mentioned above are used, as the project is intended
as a proof of concept solution.

Interrupts

Since frequent calls are expected for this API, the execution time and performance of
each function is quite important. During the execution of every TA function, foreign and
native interruptions can occur.30 Native interrupts (i.e., secure interrupts from the Secure
World) are handled by OP-TEE. Foreign interrupts (i.e., not secure interrupts from the NW
Linux) are not handled by OP-TEE, just simply passed to the Normal World for handling,
therefore they cause context switches. Context switching is not desired during the memory
accessing or hash calculating operations, because it can cause unnecessary overhead. To

30https://github.com/OP-TEE/optee_os/blob/master/documentation/interrupt_handling.md (last
visited 2018–10–21)
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reduce the possible latency, every interrupt is disabled during the execution of the API
functions. Another reason for this, is that otherwise, the memory of a measured program
may change while it is being hashed, resulting in unreliable or straight up manipulated
results.

Interface, commands

As mentioned before, the PTA provides two functionality types, namely reading from the
physical memory and calculating hashes for physical memory regions. Before usage, the
physical addresses must be converted to OP-TEE virtual addresses. This can be done
by the phys_to_virt function provided by OP-TEE memory management code. In our
implementation, only the start and end of the address range is checked for existing memory
mappings, and the range should be contiguously mapped, otherwise TEE_ERROR_BAD_STATE
is returned. More extensive checking of the memory mappings could introduce undesired
overhead.

The memory reading command is NW_MEMORY_API_READ_MEM. The implementation consists
of a simple memcpy function call, which copies bytes from the physical memory address
specified in the first GPD argument (value.a), into the buffer given in the second GPD
parameter (memref), and the number of copied bytes are exactly the size of the given buffer
(this range is [value.a, value.a+memref.size]). The function can be found in listing 4.8.

1 static TEE_Result read_mem(uint32_t param_types ,
2 TEE_Param params[TEE_NUM_PARAMS ])
3 {
4 void *nw_mem_addr;
5 <snip >
6 nw_mem_addr = P2V((void *) params [0]. value.a);
7 <snip >
8 memcpy ((void *) params [1]. memref.buffer , nw_mem_addr ,
9 params [1]. memref.size);

10

11 return TEE_SUCCESS;
12 }

Listing 4.8. Reading from NW memory with the PTA

The hash calculating commands use the underlying crypto_hash_* interface, which is
backed by the LibTomCrypt cryptography library.31 The first memory hash calculating
command is NW_MEMORY_API_HASH_MEM. It calculates a single SHA256 hash of multiple NW
memory ranges defined in the input buffer (first GPD argument) and copies the digest
into the output buffer (second GPD argument). The second hash calculating command
is NW_MEMORY_API_HASH_MEM_MULTI. It calculates separate SHA256 hashes for each NW

31https://github.com/OP-TEE/optee_os/blob/master/documentation/crypto.md (last visited on
2018–10–22)
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memory range specified in the first GPD parameter, and serializes the hashes (as zero
terminated strings) into the output buffer (second GPD argument).

4.5.3 Attestation session

An attestation session is a request-response message exchange session, where the client
sends a request message to the device which attests its state in a response message. The
simplest solution is to use a client-server architecture, where the device acts as the server,
and clients can connect to request attestation from the device. The protocol is based on
an open-source Remote Procedure Call library called gRPC32 which is maintained by
Google, and it is available for numerous programming languages. We chose this library
because it allows us to create a quick and convenient implementation of the protocol, and
it also provides an SSL/TLS communication layer33 to prevent man-in-the-middle attacks.
The gRPC library uses Protocol Buffers34 which is a language-independent extensible data
serialization mechanism. The message and service definitions are listed as Protocol Buffers
v3 definitions. We use this format for communication between the client and the server
application. We convert these messages to our custom format on both the server and the
client side, because it allows us to verify the message signature more easily.

Client

Device

TEE

TA

OP-TEE,
PTA

REE

Server
app

Running 
processes

gRPC
Shared 
memory

Mem
API

Kernel 
module

Sysfs
interface

Linux 
kernel

Figure 4.8. Remote attestation architecture

4.5.4 Protocol messages

The request and response messages are digitally signed, therefore we need to assemble
a byte array from the request and response fields to calculate a cryptographic hash as

32https://grpc.io (last visited: 2018-10-22)
33https://grpc.io/docs/guides/auth.html#supported-auth-mechanisms (last visited: 2018-10-22)
34https://developers.google.com/protocol-buffers/ (last visited: 2018-10-22)
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the input of the signing primitive. We created a simple and extensible structure for this
purpose for both the request and the response messages. The definitions of these structures
are listed below.

Request message

The request message consists of the following five fields:

• ver: version of the request (32-bit unsigned integer)
The protocol version is a required field which is a number. If a message format of the
protocol is changed, this number should indicate the changes.

• fname: the name of the attestation method (character array)
This field specifies the attestation method which will be executed by the Trusted
Application. This is required because the Trusted Application should ensure the
correct method was called from the Normal World application.

• args: optional arguments (character array)
If there are any arguments which should be passed to the attestation method this
field should be used. If the method doesn’t require any arguments, the field should
be an empty string.

• n: randomly generated nonce (64-bit unsigned integer)
The nonce is generated to ensure the response is a valid reply for the request. This
is a randomly generated number which is large enough to be able to avoid possible
collisions.

• signature: digitally signed request message digest (character array)
This is the digital signature of the message. It is a byte array encoded in a string,
where each character represents a hexadecimal number.

ver fname args n signature

Figure 4.9. Request message fields

syntax = "proto3 ";
package attestation;

message ProcessListRequest {
uint32 version = 1;
uint64 challenge = 2;
string signature = 3;

}
message ProcessHashRequest {

uint32 version = 1;
string process_path = 2;
uint64 challenge = 3;
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string signature = 4;
}

Listing 4.9. gRPC request message prototypes

Response message

The response message consists of the following four fields:

• ver: version of the response (32-bit unsigned integer)
The protocol version is a required field which is a number. If a message format of the
protocol is changed, this number should indicate the changes.

• res: attestation results (character array)
This is the result of the attestation method represented as a null terminated string.

• n: nonce generated by the client (64-bit unsigned integer)
The nonce is generated to ensure the response is a valid reply for the request. This
should have the same value as the value in the request message.

• signature: digitally signed response message digest (character array)
This is the digital signature of the message. It is a byte array encoded in a string,
where each character represents a hexadecimal number.

ver res n signature

Figure 4.10. Response message fields

syntax = "proto3 ";
package attestation;

message ProcessListReply {
uint32 version = 1;
repeated string process_path = 2;
uint64 challenge = 3;
string signature = 4;

}
message ProcessHashReply {

uint32 version = 1;
repeated string process_hash = 2;
uint64 challenge = 3;
string signature = 4;

}

Listing 4.10. gRPC response message prototypes
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4.5.5 Message signature

The messages are digitally signed with the private keys. We calculate the SHA256 digest
of the message which is then signed with the private key with a probabilistic signature
scheme called RSASSA-PSS35. The message can be authenticated with the public key on
the other side of the communication channel. This signature scheme is implemented in
the OP-TEE API so it is easy to use for creating signatures in the Secure World. On the
client side we use the pycrypto library which has built-in support for RSASSA-PSS. The
signature creation and verification methods are the following:

Sign(digest,privkey): PKCS#1-PSS signature function

• digest: message digest calculated with a cryptographic hash function

• privkey: RSA private key

Verify(signature,digest,pubkey): PKCS#1-PSS verification function

• signature: PSS signature created by using an RSA private key

• digest: message digest calculated with a cryptographic hash function

• pubkey: RSA public key

4.5.6 Attestation client

The client is implemented in Python using the grpcio36 and pycrypto37 libraries. The
client can be configured with the following command line parameters:

• –host <host>: hostname or IP address of the server (default: localhost)

• –port <port>: the server port (default: 4433)

• <command>: the command to run (can be pslist for process list query, or pshash for
process hash query)

• [param [param ...]]: optional parameters (for process hash query, the process
paths)

Two commands are available, the first is called pslist, which fetches a list of the binaries
which are loaded on the server operating system. This command has no parameters and it
receives a list containing the full paths of the loaded binaries.

35https://tools.ietf.org/html/rfc3447#page-29 (last visited: 2018-10-22)
36https://pypi.org/project/grpcio/ (last visited: 2018-10-22)
37https://pypi.org/project/pycrypto/ (last visited: 2018-10-22)
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The second command is pshash which requires a list of full file paths. The server searches
the process list for matching binaries and calculates the checksum of the code segment for
each target it founds. The response contains a list of these checksums. Multiple paths can
be specified in which case the client sends a single request to the server for each path.
The client can compare the process’ checksums to a list of previously calculated hashes.
This can be done by adding a new entry to the process_db.csv file with the calculated
SHA256 hash and the process path. If multiple checksums exist for a given path, the script
tries to match it to every instance. The script shows a warning if no matches exist, or if
the process path is not found in the database.

hash ,path
472c[..]e5bc ,/usr/sbin/sshd
373f[..]5154 ,/ bin/busybox
9a21 [..]7bdb ,/usr/bin/attest_server
1d87 [..]d4bf ,/usr/sbin/tee -supplicant

Listing 4.11. process_db.csv with shortened hashes

4.5.7 Attestation server

The server app is implemented by using the gRPC C++ library to communicate with
the client, and the OP-TEE library for communicating with the Secure World side. gRPC
supports communication over SSL/TLS which ensures a secure communication channel
is used. By default, both the server and the client validate each other’s certificate us-
ing a common root certificate. The server functionality is implemented in a class called
AttestationServer. This class is a child of the RemoteAttestation::Service class which
is auto-generated using the protoc38 C++ code generator and the .proto file.

syntax = "proto3 ";
package attestation;

service RemoteAttestation {
rpc ProcessList(ProcessListRequest) returns (ProcessListReply) {}
rpc ProcessHash(ProcessHashRequest) returns (ProcessHashReply) {}

}

Listing 4.12. gRPC service definitions

The source code is written in C++ and CMake is used to build the output binary. The only
project dependecies are the gRPC, protobuf and the OP-TEE client libraries. CMake
provides an easy way to build the sources, and it allows us to easily integrate the server
application into Buildroot as a package. The compiled binary is called attest_server.
The protobuf sources are automatically compiled with protoc, the sources are inside the
protos folder.

38https://github.com/protocolbuffers/protobuf (last visited: 2018-10-22)
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The server uses a secure TLS channel for communication, for which it needs a private key
and a server certificate. The server certificate is signed by a root CA whose certificate
can be shared between the client and the server. We automated the certificate and key
generation by using the OpenSSL binary and a bash script.
#!/ bin/sh
openssl genrsa -out root -key.pem 2048
openssl req -x509 -new -nodes -key root -key.pem -sha256 -days 365 \

-out root -crt.pem -config root.cnf
openssl genrsa -out server -key.pem 2048
openssl req -new -out server.csr -key server -key.pem -config server.cnf -sha256
openssl x509 -sha256 -req -in server.csr -CA root -crt.pem -CAkey root -key.pem \

-CAcreateserial -extensions san -extfile server.cnf -days 365 \
-out server -crt.pem

openssl genrsa -out client -key.pem 2048
openssl req -new -out client.csr -key client -key.pem -config client.cnf -sha256
openssl x509 -sha256 -req -in client.csr -CA root -crt.pem -CAkey root -key.pem \

-CAcreateserial -days 365 -out client -crt.pem

Listing 4.13. OpenSSL certificate and key generation script

Implemented methods

• int do_pagefault()
This function opens the sysfs interface of the helper Linux kernel module, and writes
a command to instruct it to load the process binaries into memory. This ensures
that during the checksum calculation, the memory segments of every process can be
hashed. The return value is 0 on no error.

• Status ProcessList(context, request, reply)
This is the callback function of the ProcessList gRPC service. This function receives
a ProcessListRequest and forwards it to the TA through the shared memory API.
The matching TA function ID is RA_CMD_GET_PSLIST. This command receives no
arguments and it sends back a stream of strings containing the process binary paths
as part of the ProcessListReply.

• Status ProcessHash(context, request, reply)
This is the callback function of the ProcessHash gRPC service. The function receives
a ProcessHashRequest and forwards it to the TA through the shared memory API.
The matching TA function ID is RA_CMD_GET_PROC_HASH. The command receives a
single argument containing the full path of the requested binary, and it sends back
a stream of strings containing the checksums of the found processes as part of the
ProcessHashReply.

• TEEC_Result InvokeTee(cmd_id, req_meta, res_meta, out, args, argsize)
This function registers a previously allocated memory segment for the shared memory
API, and sends the given request (req_meta) with the given command (cmd_id).
The results are stored in the res_meta parameter. If the command needs input argu-
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ments it can be specified in the args array which has to be argsize long. The return
value is TEEC_SUCCESS on no error.

• int GetCredentials(ssl_opts)
The function tries to load the required keys and certificates into the ssl_opts object.
The client certificate requirements can be set with the ssl_opts.client_certificate_request

field.

4.5.8 Linux kernel module

Our kernel module provides a sysfs39 interface to ensure the tasks’ code segments are
loaded into the memory. This is needed for calculating the checksums of the code segments,
because Linux uses demand paging which is not configurable. The sysfs interface is under
the /sys/kernel/pslist node. Currently only one interface function is implemented which
is called all. The interface can be triggered by writing arbitrary data into this node (e.g.
echo 1 >> /sys/kernel/pslist/all). The interface provides no output and it does not
process any user input data. The kernel module should compile with any version of Linux
between 4.6.3–4.12.8 (the module was tested only with these two versions).

The pagefault_task_range function

The function gets an address as a parameter and tries to map count bytes into the memory
of the specified task. This is achieved by calling the get_user_pages_remote function
without specifying a destination pointer. In this case the kernel ensures the pages are
loaded into memory, and page table of the memory range does not contain zero pages. The
address should be a virtual address in the context of the task’s memory.

1 long pagefault_task_range(struct task_struct *task ,
2 unsigned long start_address , size_t count)
3 {
4 size_t page_count;
5 long user_pages;
6 #if LINUX_VERSION_CODE >= KERNEL_VERSION (4, 9, 0)
7 int lock = 1;
8 #endif
9 if (!task || !count)

10 return -EINVAL;
11 page_count = (count / PAGE_SIZE) + 1;
12 #if LINUX_VERSION_CODE < KERNEL_VERSION (4, 9, 0)
13 user_pages = get_user_pages_remote(task , task ->mm, start_address ,
14 page_count , 0, 1, NULL , NULL);
15 #else
16 user_pages = get_user_pages_remote(task , task ->mm, start_address ,

39https://www.kernel.org/doc/Documentation/filesystems/sysfs.txt (last visited: 2018-10-22)

65

https://www.kernel.org/doc/Documentation/filesystems/sysfs.txt


17 page_count , 0, NULL , NULL , &lock);
18 #endif
19 if (IS_ERR_VALUE(user_pages))
20 return user_pages;
21 if (page_count != user_pages)
22 return -EFAULT;
23 return 0;
24 }

Listing 4.14. pagefault_task_range function

The pagefault_pslist function

This function iterates through the task_struct list which has its entry point as the task
parameter and ensures that the code segment of every task is loaded into the memory by
calling the pagefault_task_range function for each task it founds. If multiple errors occur
during the iterations, only the last error code is returned.

1 long pagefault_pslist(struct task_struct *task)
2 {
3 struct list_head *list;
4 struct list_head *head;
5 struct task_struct *child;
6 struct mm_struct *mm;
7 long res = 0;
8 long tmp_res;
9 if (!task)

10 return -EINVAL;
11 mm = task ->mm;
12 head = &(task ->children);
13 for (list = head ->next; list != head; list = list ->next) {
14 child = list_entry(list , struct task_struct , sibling);
15 tmp_res = pagefault_pslist(child);
16 if (IS_ERR_VALUE(tmp_res))
17 res = tmp_res;
18 }
19 if (!mm)
20 return res;
21 tmp_res = pagefault_task_range(task , mm->start_code ,
22 mm->end_code - mm->start_code);
23 if (IS_ERR_VALUE(tmp_res))
24 res = tmp_res;
25 return res;
26 }

Listing 4.15. pagefault_pslist function
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4.5.9 Generating kernel structures

Several data structures on Linux are platform and configuration dependent and they can
change from one kernel version to another. This means that memory forensics tools must
deal with every compiled kernel differently. Our tool provides an easy way to generate a C
header file with the needed structures, which can be used to extract usable data from the
memory directly. Volatility framework40 does parse kernel structures, but it is not fitting
for our purpose because it cannot generate a C header from the parsed structures.

The common thing that both our tool and Volatility does is it extracts DWARF41 debug
information from a compiled binary42 which has the necessary data structures. This binary
can be either compiled on the target, or it can be compiled as a dummy kernel module for
example in Buildroot.

Our python script is based on the open-source pyelftools43 package with some modifica-
tions to support our target platform (ARM). The script is called dwarfparse.py44, which
shows a help text if the -h command line argument is given.

Script documentation

The script needs an input file which is an ELF binary (in our example it is a dummy
kernel module which includes the needed kernel headers). The script can either output
the header to the standard output or it can generate C header files if the -o parameter
is supplemented. This parameter expects a directory path where the header files will be
written to. If the -s parameter is supplemented, the script will not generate the headers,
it will only parse the debug data and print out statistics about it.

The output files are named cu_<xx>.h and cu_<xx>.json for every compilation unit45 it
founds in the debug information. The .h files are the C headers, and the .json files are
generated as a more readable debug info format.

4.6 Secure Communication

In this section, we will introduce our improvements on the SKS proposal, by going over
the various problems we have encountered while trying to use it with OpenSSH.

40https://github.com/volatilityfoundation/volatility (last visited: 2018-10-22)
41https://en.wikipedia.org/wiki/DWARF (last visited: 2018-10-22)
42https://github.com/volatilityfoundation/volatility/wiki/Linux#creating-vtypes (last vis-

ited: 2018-10-22)
43https://github.com/eliben/pyelftools(last visited: 2018-10-22)
44https://github.com/realmoriss/dwarfparse (last visited: 2018-10-22)
45https://www.cs.auckland.ac.nz/references/unix/digital/AQTLTBTE/DOCU_015.HTM (last visited:

2018-10-22)
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4.6.1 Finding missing functions with pkcs11-tool and SSH

As mentioned in Section 3.6.1, the PKCS#11 standard is rather big, so often only parts of it
are implemented. This is even more true for SKS, since it is still heavily under development.
Because of this, we decided to enumerate the necessary additions, by trying to use ssh with
SKS and checking where it would fail. Then implement or fix the specific functionality
that caused the error and try again. This way we did not have to understand the whole
codebase at once, or delve into the OpenSSH implementation either, rather we were able
to gradually build up knowledge about these things as certain issues came up. As most
of the API calls were already implemented in SKS, there were only a few cases where we
had to implement a function from the ground up. In most of the cases, we only had to
improve on already existing functions that were not working correctly in some situations.
Of course, we collaborated with Etienne while working on this project, and contributed
these additions and improvements to the project on GitHub. It might be worthy of mention
here, that while we described the above process specifically with SKS in mind, our plans
would have been the same, even if SKS did not exist. We would have patched a soft token,
to print what PKCS#11 API calls are made while we use ssh and select a subset of the
API to implement based on that. Doing this would have been likely harder to implement,
so it is great that we had an already existing project to build on.

Specifically, we inserted the following line into the beginning of the handling function of
each of the API calls, to easily get a sense of what is happening in the background when
we give a terminal command:

1 printf("Function %s Entered\n", __func__);

Listing 4.16. Print name of function that was called

where __func__ is an implicitly declared identifier in C that expands to a cstring that has
the name of the current function inside. A similar print can be placed at the end of the
function to see when the function exits.

The following sections are the issues we encountered with this technique, roughly in chrono-
logical order. In each section, we detail the problem encountered and any relevant parts of
the standard, then explain the solution we implemented for it.

4.6.2 Fixing the function list

One of the first problems manifested right at the beginning, when we started to explore the
SKS soft token. The pkcs11-tool provides commands to get information about the devices
that can be used with PKCS#11. The command that had problems was --list-slots.
Here is the output that it generated, slightly edited for clarity:
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# pkcs11 -tool --module /lib/liboptee_cryptoki.so -L
Function C_GetFunctionList Entered
Function C_GetFunctionList End
Function C_Initialize Entered
Function C_Initialize End
Function C_GetSlotList Entered
Function C_GetSlotList End
Function C_GetSlotList Entered
Function C_GetSlotList End

Available slots:
Slot 0 (0x0):

Function C_GetSlotInfo Entered
Function C_GetSlotInfo End

OP-TEE SKS TA
Function C_InitToken Entered
Function C_InitToken End

C_GetTokenInfo () failed: rv = CKR_HOST_MEMORY
Slot 1 (0x1):

Function C_GetSlotInfo Entered
Function C_GetSlotInfo End

OP-TEE SKS TA
Function C_InitToken Entered
Function C_InitToken End

C_GetTokenInfo () failed: rv = CKR_HOST_MEMORY
Slot 2 (0x2):

Function C_GetSlotInfo Entered
Function C_GetSlotInfo End

OP-TEE SKS TA
Function C_InitToken Entered
Function C_InitToken End

C_GetTokenInfo () failed: rv = CKR_HOST_MEMORY
Function C_Finalize Entered
Function C_Finalize End

Listing 4.17. PKCS#11 functions called when listing slots

Based on the output, it seemed that for some reason, the pkcs11-tool thinks that it is
calling the C_GetTokenInfo, but in reality the C_InitToken function is getting called.
The reason for this error is rooted in the way the client applications acquire the function
pointers to the PCKS#11 API, with the C_GetFunctionListmethod. This method returns
a pointer to a CK_FUNCTION_LIST structure, which in turn contains function pointers to
all the PKCS#11 API methods that the library has—even the unimplemented ones have
to have stubs. According to the standard, this is inteded to be used in a way, so that
applications can use shared PKCS#11 libraries easier and faster and to enable using more
than one PKCS#11 library at once. In our case, some of the function pointers in the
CK_FUNCTION_LIST structure were registered in the wrong order, which caused the pkcs11-
tool to mix up the calls. The reason that this issue did not surface in the regression tests
is probably that the same, out of order structure was used in the tests as well, meaning
it could work together with the faulty SKS implementation, since they were wrong in the
same way. Correcting the order of the functions in the structure corrected this behaviour.
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4.6.3 Determining required buffer size

This problem came up while we were trying to gather information about the SKS soft
token with the pkcs11-tool as well. When trying to list the available slots or mechanisms
(C_GetSlotList and C_GetMechanismList), the program displayed the following error:

error: PKCS11 function C_GetSlotList(NULL) failed:
rv = CKR_BUFFER_TOO_SMALL (0x150)

Aborting.

Listing 4.18. Output of pkcs11-tool when listing slots

After investigating a bit, we found that the pkcs11-tool was calling the respective API
functions with a buffer pointer of NULL and zero length. According to the standard, this
is done, in order to determine what size the buffer needs to be, in order for the result of
the request to fit in it. The token should return with CKR_OK and set the buffer length for
the necessary value. SKS already sets the length to the correct value, the only mistake was
the wrong return value. We modified the logic, so that it returns with CKR_OK if the buffer
pointer is NULL and which resolved the problem.

4.6.4 Key type inference in C_GenerateKeyPair

After exploring the soft token, the first step toward using for authentication with ssh is
generating a new key to use on the token. We chose to use an RSA key, because we already
had a little preliminary experience with RSA and it was also supported to some extent in
SKS. We used the pkcs11-tool with the following command to generate a 2048 bit RSA
key with pkcs11-tool:

pkcs11 -tool --module /usr/lib/libsks.so --label testtoken \
--login --pin 12341234 --keypairgen --label testkey \
--key -type rsa :2048

Listing 4.19. Generate RSA key pair with pkcs11-tool

However, the command resulted in pkcs11-tool displaying an error, stating that the C_GenerateKeyPair
returned with CKR_TEMPLATE_INCOMPLETE. After some investigation, we found that the rea-
son for this is that pkcs11-tool is not setting the CK_KEY_TYPE parameter for the call. This
is because the standard states that it is not necessary to set this parameter, since it is
implicit in the key generation mechanism, that is set with the CK_MECHANISM parameter.
The reason for the error, is that this inference was not implemented in SKS.

Originally, we wanted to imlement the inference in the TA, however this was not possible,
because the checks that determine whether an API call is well formed (i.e., in our case if
it has every necessary parameter) are among the very first to run when the TA is called,
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and by the time we could insert the missing parameter, the call would already be rejected.
Thus, we had to implement this in the shared library in Normal World.

In particular, what we decided to do, is scan the API call, before forwarding it to the TA,
and if the CK_KEY_TYPE parameter is not specified in it, try to infer the missing information
and insert it, but leave it as it is, if it is already present. Currently, the only inference is
for the RSA key type, but other inferences can be very easily added, by inserting a new
case in the switch case block that handles this logic.

4.6.5 C_FindObjects*

After generating the key pair we will use with ssh, we need to export the public key, so
we can specify it for the server to accept it. At first we exported the RSA public key with
the pkcs11-tool, but after applying all the changes listed here, it is also possible to use
ssh-keygen to do this, which is also more convenient, because ssh-keygen takes care of the
format conversions. Here is the commands necessary to export with pkcs11-tool:

pkcs11 -tool --module /usr/lib/libsks.so -r --type pubkey \
--label testkey > pub.key

openssl pkey -inform DER -pubin -in pub.key -out pub.pem

Listing 4.20. Extract public key with pkcs11-tool

And directly using ssh-keygen:

ssh -keygen -D /usr/lib/libsks.so -e >> .ssh/authorized_keys

Listing 4.21. Extract public key with ssh-keygen

In order to extract the public key, we first need to acquire a handle for the public key object
inside the token. This can be done with the C_FindObjectsInit, C_FindObjects and
C_FindObjectsFinal calls. The search parameters can be specified in C_FindObjectsInit,
which also initializes the search. With each call to C_FindObjects the client can query one
result of the search. To finish the active search, C_FindObjectsFinal has to be called.

In our case, the client application uses C_FindObjectsInit with no search parameters
supplied, in which case all objects should be matched. This edge case was not correctly
implemented in SKS, which meant that the client application could not find the public
key. After adding code that correctly handled this case, the objects were returned to the
client.

4.6.6 Reading the public key with C_GetAttributeValue

Once they have the handle to the right object, the programs in the previous section need to
extract the value of the public key object. This can be done with the C_GetAttributeValue
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function. This API call was not implemented before in SKS, so we had to build it from
the ground up. When implementing this, there were two main aspects that had to be
considered in order for this function to work correctly.

First, it is very important, that it is impossible to recover any values that are sensitive
or unextractable. To accomplish this, we read the relevant parts of the standard, and also
consulted the SoftHSM source code for a reference implementation, and created a function
in the SKS TA, that decides whether a certain attribute can be disclosed.

The second is more related to our particular circumstances: when passing parameters in
SKS from the Normal World to Secure World, they are serialized, and certain constants are
translated from their respective numerical values in the PCKS#11 standard to the ones
used internally by SKS. This serialization was implemented, however the deserialization
and translation back to Normal World values was not, so it had to be added. We imple-
mented these functionalities based on what their counterparts did, essentially reversing the
serializing algorithm to get the deserializing algorithm.

In order to fully understand how the C_GetAttributeValue function works, a bit more
information about PKCS#11 objects is necessary. In essence every object in PKCS#11
is a collection of attributes, for example CKA_EXTRACTABLE is a boolean attribute, and
defines whether the given object is extractable. Another example is CKA_MODULUS that
holds the modulus N in an RSA public key object. To define it more precisely, the
C_GetAttributeValue function obtains the value of one or more attributes of an object, in
our case the modulus and public exponent attributes. The specification gives an algorithm
to describe how to implement the C_GetAttributeValue function. Using the functionality
described in the previous two paragraphs we implemented this algorithm, and successfully
exported the public key.

4.6.7 Authenticating with OpenSSH

Helping OpenSSH find the private key

Having impelmented all of the above, we can set up an environment where we can actually
start trying to use OpenSSH to establish a connection. We have a private key in our token,
that is unextractable and we have inserted the public counterpart of that key into the
.ssh/.authorized_keys file, so the server will accept it for authentication. For the sake
of simplicity, we tested this on a single host, by connecting to localhost:

ssh root@localhost -I /usr/lib/libsks.so

Listing 4.22. Connect as ssh client using SKS

However, at first, when we gave this command, we were greeted with a password prompt.
This meant, that the ssh server didn’t accept any of the keys that the client offered, so
it defaulted to authentication with a password. After some investigation, it became clear,
that the OpenSSH client could not find the key pair on the SKS soft token. There are two
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reasons for this: the first is related to the login functionality in PKCS#11. It is possible
to log in to a PKCS#11 token by supplying a PIN, and as one would expect, a logged in
user can do some things that an unauthenticated user cannot. One of these differences is,
that when searching for objects with the C_FindObjects* functions, the private key is only
among the results for an autenticated user. However, when we entered the ssh command,
we were not prompted for a PIN number. OpenSSH decides whether it should prompt for
a login PIN for the token, based on a flag in the token called CKFT_LOGIN_REQUIRED. If this
flag is set, it means that the token has functionality that is only available to authenticated
users. This flag was not set for the SKS token; after adding it, OpenSSH correctly prompted
for the PIN and logged in to the token.

The second problem was caused by the method that is used by OpenSSH to identify what
public keys and private keys on the token form key pairs. In PKCS#11, RSA key objects
have an attribute called CKA_ID, that was not set by the C_GenerateKeyPair function in
SKS, because the specification does not require it to be set. However, this is what the
specification does say about CKA_ID:

The CKA_ID attribute is intended as a means of distinguishing multiple
public-key/private-key pairs held by the same subject (whether stored in the
same token or not). (Since the keys are distinguished by subject name as well
as identifier, it is possible that keys for different subjects may have the same
CKA_ID value without introducing any ambiguity.)

It is intended in the interests of interoperability that the subject name and key
identifier for a certificate will be the same as those for the corresponding public
and private keys (though it is not required that all be stored in the same token).
However, Cryptoki does not enforce this association, or even the uniqueness of
the key identifier for a given subject; in particular, an application may leave
the key identifier empty. [31]

Reading this, we assumed that OpenSSH must be trying to use the CKA_ID to pair the
public and private key object, but since the attribute is not set in our generated key pair,
it discards these objects. To correct this, we amended the code in the SKS TA that handled
generating key pairs with a section, that generates a random number and sets it as CKA_ID
for both of the keys that are generated.

The CKM_RSA_PKCS mechanism

An OpenSSH client creates a cryptographic signature with the private key of the user to
authenticate to the server. In PKCS#11 this can be accomplished with the C_SignInit,
C_Sign, C_SignUpdate and C_SignFinal API calls, depending on whether the the sign-
ing is done as single-part or as multi-part, with updates. The scheme that will be used is
specified in the C_SignInit, with a CK_MECHANISM_TYPE type parameter. OpenSSH uses
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the CKM_RSA_PKCS mechanism, which is a multi-purpose mechanism based on the RSA
PKCS#1 standard [24]. Among other things, it supports single-part encryption, decryp-
tion, signatures and verification. From here on, we will be writing about the case when
it is used for signing. The exact scheme that this mechanism is based on is the RSASSA
PKCS#1 v1.5, which in turn uses EMSA PKCS#1 v1.5 encoding. In the PKCS#1 spec-
ification, a rough outline of signing would be the following: hash the data that is to
be signed, then use the paddings defined in the standard to generate the encoded mes-
sage, where the interesting part for us is that the resulted encoded message will con-
tain (with padding) the identifier of the hash algorithm used and the hash itself. Then
apply the necessary cryptographic primitives to the encoded message to get the signa-
ture itself. However, the PKCS#11 specification states, that the CKM_RSA_PKCS mech-
anism only corresponds to the part of PKCS#1 v1.5 that involves RSA and does not
compute a message digest. In accordance with this, it takes a message digest (gener-
ated by the client application) as input, and it does not and can not include the iden-
tifier of the hash algorithm that was used. In SKS, signing and verification with the
CKM_RSA_PKCS mechanism was not implemented, because there is no corresponding func-
tion in the GPD TEE Cryptographic Operations API. There are algorithm identifiers for
signing a message digest with PKCS#1 RSASSA, but those also require a hash algorithm,
since the format of these is TEE_ALG_RSASSA_PKCS1_V1_5_<hash_algorithm>, so for ex-
ample TEE_ALG_RSASSA_PKCS1_V1_5_SHA1 would expect a message digest created by SHA1

and include its algorithm identifier in the signature.

OP-TEE extension TEE_ALG_RSASSA_PKCS1_V1_5

Fortunately, since OP-TEE is open source, it is possible to modify the source code and
extend the API defined in the GPD specification. Behind the internal core API in OP-
TEE, the cryptographic operations are implemented using LibTomCrypt46, an open source
cryptographic library written in C. So the solution is self evident from here: define a new
algorithm identifier in the API and connect it to the right LibTomCrypt function. The
only problem was, that after looking at the source of LibTomCrypt in OP-TEE, it seemed
that there was no option to do this in LibTomCrypt either, since even the LibTomCrypt
API required a hash algorithm to be specified. At the same time, we noticed, that the
timestamps in the LibTomCrypt source that was included in OP-TEE were somewhat
outdated, so we inspected the GitHub repository of LibTomCrypt, where we found that
the newer version does support the same mode of operation that we need. To be exact, they
added a new possible value for the padding parameter in the rsa_sign_hash_ex function,
called LTC_PKCS_1_V1_5_NA1 that allows this. At first, we wanted to update the whole
LibTomCrypt library in OP-TEE to the latest version, but after comparing the differences
between the two versions, we realized that OP-TEE had many minor modifications (e.g.,
for optimization purposes) that would have made the update process very lengthy and
prone to errors, so we opted to only update rsa_sign_hash_ex and rsa_verify_hash_ex

46https://www.libtom.net/LibTomCrypt/ (last visited 2018. 10. 22.)

74

https://www.libtom.net/LibTomCrypt/


functions, while being very careful to keep the minor changes added by the OP-TEE
developers in them. With the updated version of LibTomCrypt, we were able to add the
new algorithm identifier to the Cryptographic Operations API and in turn connect it with
the CKM_RSA_PKCS mechanism. And with that, OpenSSH was finally able to authenticate
and connect to the server.

We created a regression test case for the newly added TEE API method, by modifying test
vectors already used by the OP-TEE test suite (originally from the US NIST Computer
Security Resource Center47). Specifically, we kept the plaintext and key pair of the test
vector and generated the signature with a python script. Then we inserted these values
into their place and added them to the list of test vectors.

As a side note here, the question has arisen in us, whether it makes any sense to even
have such a mechanism as CKM_RSA_PKCS, since if the hash algorithm is not included in the
signature, how would the receiver of the message know how to verify the the message with
the signature, without knowing how to create the right message digest from it. A simple
possibility that gets around this problem, is if both parties in a communication follow a
protocol that specifies what hash function they have to use, so the hash function—although
not explicitly specified in the signature—is known to the receiver. We have also been able
to find some real life examples of cases where this functionality is required. The first one
is mentioned in the commit message of the change48 in which the LTC_PKCS_1_V1_5_NA1

option was added to LibTomCrypt and according to the author, the early versions of
the SSL protocol did not set the hash algorithm identifier in SERVER_EXCHANGE_MESSAGE

messages, hence the feature was added to LibTomCrypt to support the format. The same
feature was requested49 by someone else who was also implementing a PKCS#11 soft token.
The last example is in the pyca/Cryptography python module, where it was requested in
an issue50 on GitHub by a contributor for the TOR project, because it was necessary for
compatibility reasons.

47https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/
digital-signatures#rsavs (last visited 2018. 10. 22.)

48https://github.com/libtom/libtomcrypt/commit/aa4bae5ae9a2 (last visited 2018. 10. 22.)
49https://lists.randombit.net/pipermail/botan-devel/2008-November/000696.html (last visited

2018. 10. 22.)
50https://github.com/pyca/cryptography/issues/3713 (last visited 2018. 10. 22.)
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Chapter 5

Evaluation

5.1 Secure Boot

5.1.1 Basic functioning

The implemented secure boot process was tested to ensure that it works properly and as
described above. The test methodology was to conduct such test cases, which together
cover every possible path with every possible decision in all of the flowcharts and in the
source files.

The first test case checks if there is no firmware image, then U-Boot prints a message,
saying that the device is bricked, and resets it continuously, waiting for a valid image and
preventing interactive mode.

The second test case checks if the signature is broken on the firmware image, then U-
Boot refuses to boot it, and resets the device continuously, waiting for a valid image and
preventing interactive mode.

The third test case checks if the signature is correct on the firmware image, then U-Boot
boots it.

The fourth test case checks if the kernel is booted but there is no root file system, then the
operating system prints a message, saying that the root file system is missing, and reboots.

The fifth test case checks if the kernel is booted but the integrity of the root file system is
broken, then the operating system prints a message, saying that the integrity of the root
file system is broken, and reboots.

The sixth test case checks if the kernel is booted and the integrity of the root file system
is correct, then the operating system switches from the initial RAM file system to the root
file system, and continues to run.

All of the test cases succeeded, meaning that the described secure boot process is correctly
implemented.
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5.1.2 Performance

Security features always have a negative impact on performance. Since both the whole
firmware image and the whole root file system have to be verified, the boot time heavily
depends on their sizes. On the Raspberry Pi 3 Model B with a micro SD HC CLASS 10
card in it and with a minimalist Linux based operating system together with OP-TEE the
following results were experienced. U-Boot boots the firmware image just barely noticeably
slower than the same firmware image without verification. And the verification of the root
file system (hashed with SHA-256) is done under ten seconds.

5.1.3 Security

Given any kind of reliable hardware root of trust, and that the signing private keys are kept
secure, the described secure boot process only boots the device into a known and secure
state, owing to the fact that if the verification of any component fails, the boot process is
halted.

5.1.4 Limitations

As already mentioned before, the Raspberry Pi platform misses a lot of security functions,
including the hardware root of trust, so this proof of concept implementation is cannot be
considered secure without one. Furthermore, by the time of writing, U-Boot only supports
SHA-1 hashing, and 2048-bit RSA signing key pairs, which are not as secure as their other
variants.

5.2 Secure Firmware Update

5.2.1 Basic functioning

The implemented secure firmware update process was also tested to ensure that it works
properly and as described above. The test methodology was the same as by the secure boot
process, to conduct such test cases, which together cover every possible path with every
possible decision in all of the flowcharts and in the source files.

The first test case checks if there is no firmware image, then U-Boot prints a message,
saying that the device is bricked, and resets it continuously, waiting for a valid image and
preventing interactive mode.

The second test case checks if there is no update firmware image, but both the self-test
and the signature are correct on the stable firmware image, then U-Boot boots the stable
firmware image.
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The third test case checks if the version-number is missing from the update firmware
image, but both the self-test and the signature are correct on the stable firmware image,
then U-Boot boots the stable firmware image.

The fourth test case checks if there is no boot-log, then U-Boot prints a message, saying
that the device is bricked, and resets it continuously, waiting for a valid boot-log and
preventing interactive mode.

The fifth test case checks if the self-test, the watchdog and the signature are correct on
the update firmware image, then U-Boot boots the update firmware image.

The sixth test case checks if the self-test is correct, but the watchdog failed on the update
firmware image, but both the self-test and the signature are correct on the stable firmware
image, then U-Boot boots the stable firmware image.

The seventh test case checks if the self-test and the watchdog are correct, but the signature
is broken on the update firmware image, but both the self-test and the signature are
correct on the stable firmware image, then U-Boot adds an indicating parameter to the
boot-arguments and boots the stable firmware image.

The eighth test case checks if the integrity check failed on the root file system of the update
firmware image, but both the self-test and the signature are correct on the stable firmware
image, then U-Boot adds an indicating parameter to the boot-arguments and boots the
stable firmware image.

The ninth test case checks if the self-test failed on the update firmware image, but both
the self-test and the signature are correct on the stable firmware image, then U-Boot boots
the stable firmware image.

The tenth test case checks if the self-test and the watchdog are correct, but later the
signature is broken on the update firmware image, and by that time the stable firmware
image should not exist, then U-Boot prints a message, saying that the device is bricked,
and resets it continuously, waiting for a valid image and preventing interactive mode.

The eleventh test case checks if the kernel is booted but there is no root file system, then
the operating system prints a message, saying that the root file system is missing, writes
the boot-log accordingly, and reboots.

The twelfth test case checks if the kernel is booted but the integrity of the root file system
is broken, then the operating system prints a message, saying that the integrity of the root
file system is broken, writes the boot-log accordingly, and reboots.

The thirteenth test case checks if the kernel is booted and the integrity of the root file
system is correct, but the self-test failed, then the operating system switches from the
initial RAM file system to the root file system, prints a message, saying that the self-test
failed, writes the boot-log accordingly, and reboots.

The fourteenth test case checks if the kernel is booted and both the integrity of the root
file system and the self-test are correct, then the operating system switches from the initial
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RAM file system to the root file system, writes the boot-log accordingly. The operating sys-
tem deletes and logs any different firmware, then starts the update-manager, and continues
to run.

The fifteenth test case checks if the kernel is booted and both the integrity of the root
file system and the self-test are correct, and the indicating parameter of an integrity failed
update firmware is in the kernel command line (including the boot-arguments), then the
operating system switches from the initial RAM file system to the root file system, writes
the boot-log accordingly and deletes the integrity failed update firmware. The operating
system deletes and logs any different firmware, then starts the update-manager, and con-
tinues to run.

All of the test cases succeeded, meaning that the described secure firmware update process
is correctly implemented.

5.2.2 Performance

The secure firmware update process builds on the secure boot process, therefore it is
affected by the same kind of performance decrease, as well as by its own slowing factors.
Again it was tested on the Raspberry Pi 3 Model B with a micro SD HC CLASS 10 card in
it and with a minimalist Linux based operating system together with OP-TEE. In U-Boot
the slowest boot scenario is, when two firmware images have to be checked, but it is still
within a few seconds. The verification of the root file system (again, hashed with SHA-256)
however, takes more time, since it has to be copied from the download place to the active
root file system partition (the firmware image must be copied to the boot partition before
the reboot), with the above setup it takes around a half minute. As mentioned before the
xtest test suite of OP-TEE is used as self-test. And since xtest runs for a few minutes, it
slows down the startup process significantly.

5.2.3 Security

In addition to the secure boot process’ security requirements, the logs must be kept secure
and must have limited write access, in order to achieve the described secure firmware
update process.

5.2.4 Limitations

The limitations are the same as detailed by the secure boot process, because a physical
write protection for the logs can also be derived from a hardware root of trust.
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5.3 Security hardened firmware/operating system

5.3.1 Basic functioning

Since testing was a core part of the implementation process, there was no need to conduct
additional test cases, as the implementation was only considered done, when the whole
system worked as wanted.

5.3.2 Performance

Besides the compatibility problem, the main reason, why most of the security hardening
features are not widely used, is the performance drop they cause. Although to notice their
performance drop, definitive use cases/applications are needed, which are out of the scope
of this project, as this project focuses on securing a general embedded platform.

5.3.3 Security

The reason to use the security hardening features, which are designed and implemented by
experts, is to improve a systems security.

5.3.4 Limitations

The other core part of the implementation process was to exclude those security hardening
features, that are somehow not compatible with other parts of the project.

5.4 Remote Attestation and Integrity Monitoring

We tested the Remote Attestation and Integrity Monitoring algorithms, Trusted Appli-
cation, Server Application, and remote client application throughout their development
process. The tests discussed in this section are mostly using the remote client application
to interact with the Server Application and the TA. In the test environment the Server
Application and the TA are running on the Raspberry Pi 3 Model B embedded device and
the remote client application is located on one of the development computers. These two
devices are connected on a Local Area Network, although our implementation also works
over the Internet. Throughout the shown tests, the host name of the Raspberry Pi 3 is
rpi.
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5.4.1 Basic functioning

The testing methodology for the functional tests—namely for process listing and process
hash calculation—are described below, followed by the conducted tests. We tried to cover
every aspect of the Trusted Application and the client software functionality with our tests.

Process listing is tested, by first listing the running processes in Normal World, on the
Raspberry Pi 3, with the following command:
# ps -o comm ,vsz ,stat | awk ’$2 != 0 && $3 !~ "Z"’

This lists every running process, except kernel threads (and zombie processes—hence the
“!~ "Z"’” argument). Then the list is also generated in Secure World with the TA, by
using the remote attestation client software. Note: ps and awk should be omitted, since
they are running only during the listing.

Process hash calculation is tested, by calculating the hash of the code segment of a binary
on the Raspberry Pi 3 with the following commands:
$ size=$(readelf -l out/target/bin/busybox | egrep "LOAD *0 x000000" | awk -Wposix

’{printf ("%d", $5)}’)
$ dd if=out/target/bin/busybox bs=1 count=$size | sha256sum

The code section size of a binary can be acquired using the readelf command. First, we
list the different sections and get the size (FileSiz, the 5th field) for the code section—the
one with offset 0x0 and type LOAD [27]. The offset is zero, since the section—corresponding
to the one specified in the mm_struct by the code_start and code_end fields—is located
at the beginning of the binary, and the section type is loadable, as the kernel loads it.1

Then dd can be used to pipe the code segment into sha256sum to calculate the SHA256
hash. We then compare the digest with the one calculated by the TA in Secure World,
returned by the remote attestation client software.

Getting the process list

The initial process list on the board is the following ( ps and awk omitted):
# ps -o comm ,vsz ,stat | awk ’$2 != 0 && $3 !~ "Z"’
COMMAND VSZ STAT
init 2364 S
syslogd 2364 S
klogd 2364 S
tee -supplicant 1968 S
sshd 4616 S
udhcpc 2364 S
sh 2492 S
attest_server 54m S

This test checks if the process list shows the running processes correctly, by comparing the
initial process list state with the one generated after a new process is started. Getting the
process list with the client program:

1www.skyfree.org/linux/references/ELF_Format.pdf (last visited 2018–10–22)
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$ ./remote -attest -client.py --host rpi pslist
Binary: /usr/sbin/sshd (1 entries)
Binary: /usr/sbin/tee -supplicant (1 entries)
Binary: /usr/bin/attest_server (1 entries)
Binary: /bin/busybox (5 entries)

Starting a new process on the board : nano &

Getting the current process list on the board:
# ps -o comm ,vsz ,stat | awk ’$2 != 0 && $3 !~ "Z"’
...
nano 2076 T

Getting the process list again with the client program:
$ ./remote -attest -client.py --host rpi pslist
...
Binary: /usr/bin/nano (1 entries)

Calculating a process hash

The test checks if the TA correctly calculates the hash for the code segment of BusyBox.
The result is checked with the locally generated hash of the binary. Generating the hash
of the BusyBox binary at the remote client side:
$ size=$(readelf -l out/target/bin/busybox | egrep "LOAD *0 x000000" | awk -Wposix

’{printf ("%d", $5)}’)
$ dd if=../ build/out/target/bin/busybox bs=1 count=$size | sha256sum
...
373 fce300530245c66a25b6ea37fe160f31bd4470248b223829e3db8c9225154 -

Getting the hash with the remote attestation client program:
$ ./remote -attest -client.py --host rpi pshash /bin/busybox
Binary: /bin/busybox , Hash:
373 fce300530245c66a25b6ea37fe160f31bd4470248b223829e3db8c9225154 (5 entries)

Sending invalid request to the TA

The test checks the TA behavior when invalid requests are sent. The buf_num metadata
representing the request argument number is changed to a larger value (50) in the remote
attestation server running on the board. The expectation is that the TA does not process
the request. Sending a hashing request with the remote attestation client program:
$ ./remote -attest -client.py --host rpi pshash /usr/sbin/sshd
status = StatusCode.CANCELLED

The serial output of the TA on the board (error code is TEE_ERROR_BAD_PARAMETERS):
D/TC:0 tee_ta_invoke_command :625 Error: ffff0006 of 4

Too long path in request

The test checks the TA behavior when the process path in the request is longer than
the maximum defined in RA_MAX_PROC_PATH_LEN (512). The expectation is that the TA
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does not process the request. Sending a hashing request with the remote attestation client
program:
$ ./remote -attest -client.py --host rpi pshash $(python2 -c ’print "A"*1024 ’)
status = StatusCode.CANCELLED

The serial output of the TA on the board (error code is TEE_ERROR_BAD_PARAMETERS):
REQ: (ver|fname|args|nonce)
(1| pshash|AAAAA ... AAAA |4770481557905811)
sha256(REQ)
d238badfe0c9c46859263f6dc24adbb60a0988b81d1df14a5de054c0f5934156
D/TC:0 tee_ta_invoke_command :625 Error: ffff0006 of 4

Key Provisioning

The test checks if the TA correctly stores and uses the stored RSA keys. Removing the
already existing keys from Secure Storage on the board:
# rm -rf /data/tee/*

Calling the Key Provisioning function of the TA on the board:
# remote_attestation
...
D/TA: Saving key (ra_keypair) to secure storage ...
D/TA: Saving key (ra_attester_pubkey) to secure storage ...

Requesting process hash with remote attestation client program:
$ ./remote -attest -client.py --host rpi pshash /bin/busybox
Binary: /bin/busybox , Hash: 373

fce300530245c66a25b6ea37fe160f31bd4470248b223829e3db8c9225154 (5 entries)

Unknown process hash/path

This test checks the behavior of the client when an unknown process hash/path is sent
back by the server. The result is checked against the known process hashes/paths listed in
the process_db.csv file. The client shows a warning message if there is no matching entry
in the database:
./remote -attest -client.py --host rpi3 pshash /usr/bin/attest_server

Output:
Warning: Could not find matching digest for /usr/bin/attest_server
Binary: /usr/bin/attest_server , Hash: 3094[..] dee0 (1 entries)

Requesting a process hash for an invalid path

If the client requests a process hash for a program which is not running, the server will
send back an empty list. The output shows an error message for this:
./remote -attest -client.py --host rpi3 pshash /usr/bin/attest_server_wrong
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Output:
Error: Could not find the binary called /usr/bin/attest_server_wrong.

Public keys do not match

The public key of the server is stored on the client side. If the public key does not match
the private key, the response can not be verified. The following test shows this scenario:
./remote -attest -client.py --host imx pshash /bin/busybox

Output:
Error: Signature verification failed.

Multiple hash values for a single binary

An instance of nano is started on the server, then the binary is deleted while the program
is running. Another binary is copied to the same path and it is started too. The server
should send back two different digests and the client should prompt a warning:
./remote -attest -client.py --host imx pshash /usr/bin/nano

Output:
Binary: /usr/bin/nano , Hash: a80a [..]865f (1 entries)
Warning: Could not find matching digest for /usr/bin/nano
Binary: /usr/bin/nano , Hash: 61e4 [..]99 e4 (1 entries)
Warning: Multiple hash values exist for /usr/bin/nano.

5.4.2 Performance

We tested the performance of the Trusted Application, by measuring the time it takes to
assemble the list of running processes and to calculate the hash of a process.

The robustness of the solution was also tested multiple ways. First, as shown in sec-
tion Large number of processes, many processes were started on the board, and their
hash digest and process list was requested. Our TA and Server Application successfully
handled and executed the request, and sent back around 300 hash values and binary paths
in the response.

The other test aimed to simulate multiple incoming requests in a short time frame. When
our implementation relied on global variables to hold large structures (e.g., task_struct),
the TA operation was unreliable, the requests were not processed, the TA exited with panic
messages. After we eliminated the usage of global variables, the TA successfully executed
every request it received. Around 1000 requests was sent with 10 ms delay between each
of them (we used normal shell scripts to send the requests).

We could not perform scalability testing, since we did not have access to a significant
number of Raspberry Pi devices, and since we did not port the TA to QEMU, it was
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not an option to use virtual machines. Otherwise, other possible problems can arise when
dealing with multiple devices. For example, key provisioning must be solved efficiently—
depending on the use case, the key pairs for the devices must be generated and installed
somehow, probably during manufacturing. Also, other type of communication protocols
might be more feasible for large scale deployment, like publish-subscribe or message broker
solutions (e.g., RabbitMQ).2

Large number of processes

The test checks if the TA correctly works with large number of running processes (>= 200).
The only limitation is the shared memory buffer given to the TA (by default 4 KB), it is
increased to 20 KB in the current case. Starting processes on the board:
# for i in $(seq 1 300); do nano & >/dev/null ; done

Getting the process list with the remote attestation client program:
$ ./remote -attest -client.py --host rpi pslist
...
Binary: /usr/bin/nano (300 entries)
...

Getting the hash of nano with the remote attestation client program:
$ ./remote -attest -client.py --host rpi pshash /usr/bin/nano
Binary: /usr/bin/nano , Hash:

a80a2f69b368314b2d3d1cdb1c1e93c011df4afa2f47f9353afaf13adb22865f (300 entries)

5.4.3 Security

The current implementation in OP-TEE, the Trusted Applications and the Secure Storage
objects are stored in the Normal World file system as encrypted files owned by the root
user. Their integrity are checked by OP-TEE kernel each time they are accessed or loaded.3

Should any integrity check fail, OP-TEE does not start the applications or use the stored
objects. Also, we changed the key pair used for signing the TAs (the default is located in
the OP-TEE git repository, and should be used for testing only). We tested if the TA only
uses keys that are not modified, as described in section Basic tampering with stored keys.

The remote attestation protocol is a proof of concept protocol which is not well suited
for practical application. A more robust protocol should be implemented with better key
management, client authentication and a more sophisticated defense against message replay
attacks. The protocol is not proved to be secure so it is important to put more work on
this aspect of the protocol design.

2https://www.rabbitmq.com/ (last visited on 2018–10–22)
3https://github.com/OP-TEE/optee_os/blob/master/documentation/optee_design.md#

normal-or-secure-storage-trusted-applications (last visited on 2018–10–22)
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Basic tampering with stored keys

The test checks the TA behavior when the existing RSA keys in the Secure Storage are
modified (or missing). The expected behavior is that the TA does not perform the requests
sent to it. Modifying the first byte of already existing (and previously tested) keys in Secure
Storage on the board:
# echo -ne \\xFF | dd conv=notrunc bs=1 count =1 of=/data/tee/1
# echo -ne \\xFF | dd conv=notrunc bs=1 count =1 of=/data/tee/2

Requesting process list with remote attestation client program:
$ ./remote -attest -client.py --host rpi pslist
status = StatusCode.CANCELLED

The serial output of the TA on the board:
E/TC:0 syscall_storage_obj_open :301 Object corrupt
D/TA: Key (ra_attester_pubkey) not found in Secure Storage
D/TA: Failed to init RSA op
D/TA: Request verification failed!
D/TC:0 tee_ta_invoke_command :625 Error: f0100001 of 4

5.4.4 Limitations

The OP-TEE documentation, Porting Guidelines4, lists the requirements for making a real
secure platform. Although, OP-TEE developers aim to create solutions usable on a wide
range of devices, on some platform this is not achievable, due to their proprietary nature.

At the time of writing, none of the boards supported by OP-TEE, have publicly available
implementation of real Secure Storage. Encryption keys used in OP-TEE are derived from
a Hardware Unique Key (HUK), which should be unique for each device. The keys for
Secure Storage are derived from the HUK too. However, the device manufacturers do
not make the documentation of how to access the HUK publicly available (under a license
compatible with the license of OP-TEE5), thus in the source code, the functions responsible
for providing the HUK are just stubs, and return a hard coded constant. This potentially
makes Secure Storage objects readable to attackers (with the right NW user privileges),
when these values are not changed. The best solution would be HUKs, that are not even
directly accessible from software.

The memory areas of OP-TEE and the TAs should be accessible only from the Secure
World. Thus, the separation of secure and non-secure memory areas should be config-
ured properly. For example, this can be done using TrustZone Address Space Controller
(TZASC) defined by ARM.6 The documentation, mentioned at the beginning of this sec-
tion, describes TZASC as the following:

4https://github.com/OP-TEE/optee_os/blob/master/documentation/porting_guidelines.md (last
visited on 2018–10–22)

5https://github.com/OP-TEE/optee_os/blob/master/LICENSE (last visited on 2018–10–22)
6http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0431b/index.html (last vis-

ited on 2018–10–22)
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TZASC can be used to configure DDR memory into separate regions in the
physical address space, where each region can have an individual security level
setting. After enabling TZASC, it will perform security checks on transactions
to memory or peripherals.

Unfortunately, on our platform, the Raspberry Pi 3 B, the before mentioned features are
not available.7 A Hardware Unique Key is not accessible (since the documentation of the
Broadcom SoC it uses is not public), and the TZASC is not part of the SoC architecture.
Although, the platform is great for testing and developing Trusted Applications, it should
not be considered secure enough to be used as a gateway in industrial environments. Thus,
making our implementation only a proof of concept, however, the solutions, described in
our paper, can be ported to devices which have mature security capabilities.

5.5 Secure Communication

5.5.1 Basic functioning

In our paper, we have extended the SKS OP-TEE proposal, making it possible to use it
with an OpenSSH client to authenticate and log in to an ssh server. This can be achieved
for example by using the commands mentioned through Section 4.6:
# pkcs11 -tool --module /usr/lib/libsks.so --init -token \

--label testtoken --so-pin 12341234
Using slot 0 with a present token (0x0)
Token successfully initialized

# pkcs11 -tool --module /usr/lib/libsks.so --label testtoken \
--login --so-pin 12341234 --init -pin --pin 12341234

Using slot 0 with a present token (0x0)
User PIN successfully initialized

# pkcs11 -tool --module /usr/lib/libsks.so --label testtoken \
--login --pin 12341234 --keypairgen \
--label testkey --key -type rsa :2048

Using slot 0 with a present token (0x0)
Key pair generated:
Private Key Object; RSA

label: testkey
ID: 01 bebf99
Usage: decrypt , sign , unwrap

Public Key Object; RSA 2048 bits
label: testkey
ID: 01 bebf99
Usage: encrypt , verify , wrap

# ssh -keygen -D /usr/lib/libsks.so -e > .ssh/authorized_keys
# chmod 0600 .ssh/authorized_keys

# ssh root@localhost -I /usr/lib/libsks.so
The authenticity of host ’localhost (127.0.0.1) ’ can ’t be established.

7https://connect.linaro.org/resources/las16/las16-111/ (last visited on 2018–10–22)
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ECDSA key fingerprint is SHA256:KETZVgw2Otax58AKVxy2pWHB/w8mvsywB2EG9nO3iGM.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added ’localhost ’ (ECDSA) to the list of known hosts.
Enter PIN for ’testtoken ’:
# ls /
bin etc lib32 mnt root sys var
data init linuxrc opt run tmp
dev lib media proc sbin usr
# exit
Connection to localhost closed.
#

Listing 5.1. Using SKS with OpenSSH

Alternatively, for the public key extraction pkcs11-tool could also be used. We have also
tested this using the ssh-agent to handle the token:

# ssh -add -s /usr/lib/libsks.so
Enter passphrase for PKCS #11:
Card added: /usr/lib/libsks.so

# ssh root@localhost
# exit
Connection to localhost closed.

Listing 5.2. Using SKS with ssh-agent

5.5.2 Performance

As usual, adding security features creates an overhead and hinders performance. In the
case of SKS, the overhead is the context change between Normal World and Secure World
and the serialization and deserialization required to pass the parameters. However, because
of the nature of the ssh protocol, this overhead is limited to the key generation and the
authentication process [46], since after authentication temporal keys are used for commu-
nication, so it will not affect overall system performance that much. Testing on QEMU, the
time required for authentication was not noticably different: connecting without SKS took
around 1.6 seconds while it took 3 seconds with using SKS, but it’s hard to take an exact
measurement, since the program requires user input. On the other hand, the key generation
takes significantly longer with SKS: it takes around 5 seconds to generate a 2048 bit RSA
key with ssh-keygen, it takes as long as 53 seconds to do the same through the pkcs11-tool
with SKS. This could possibly be because SKS is generating its own randomness, but we
have not done any investigation to find out what takes so long during key generation. The
measurements were taken with the time linux utility.

5.5.3 Security

The security of SKS depends on TrustZone and OP-TEE working correctly, and having
correct configurations for the device that is being used. If all these are right, the secret key
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can never be extracted from the SKS soft token. So even if an adversary takes complete
control over Linux, she can only use it for certain cryptographic operations, but can not
recover it. Of course, the PKCS#11 standard is fairly big, and as mentioned in ??, there
have been vulnerabilities found in it before. So, to further limit the attack surface, one
could evaluate what PKCS#11 functions the client applications used in their system need,
and disable the rest in the SKS TA.

5.5.4 Limitations

SKS is still heavily under development, and not yet merged into the mainline OP-TEE
repository, so it has to be added by hand if we want to use it. Another limitation is, that
we only tested it with OpenSSH and pkcs11-tool, so if someone would want to use a different
application that has PKCS#11 support, she would likely discover some issues, just like we
did. Another limitation, that is a result of using OpenSSH, since in our implementation,
only the private key of the client is protected by SKS, but the fingerprint of the ssh server
is stored in Normal World, so if an adversary were to take over the REE side of the system,
it could modify it and impersonate the ssh server.
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Chapter 6

Conclusion

In this paper, our aim was to create a highly secured IoT gateway considering the possi-
bility that it may even be physically compromised, as a result of its location being likely
unsecurable. Low price was also an objective, in order to raise the likeliness of adoption, so
security co-processors were ruled out. Assuming some kind of physical tamper protection
and building on known hardening techniques, U-Boot’s fit image verification, TrustZone
technology, OP-TEE and the SKS proposal we implemented and demonstrated a proof of
concept system with numerous mechanisms for protection.

The discussed secure boot process builds up a chain of trust, and the solutions applied in it,
like U-Boot’s FIT image verification [16, 15] and dm-verity [12], are based on cryptographic
algorithms, and together ensure that after any reset, the device boots into a known and
secure state.

A secure firmware update was achieved by building on the secure boot process as a base
with added versioning, and by extending that process with fault detection and fallback
mechanisms, which made it also fail-safe, and by developing managing mechanisms, which
support both aspects.

Based on the recommended settings page [35] of the Kernel Self Protection Project [34],
and picking the right options, a security hardened operating system was achieved, while
still supporting the desired features. A security hardened operating system has a reduced
attack surface, and is more resistant to typical known attacks.

With integrity monitoring implemented in a Trusted Execution Environment, the detection
algorithms and their results can be trusted, and possible run-time compromises, failures,
misconfigurations and break-in attempts can be detected. The resulting device state con-
sists of the extracted process list and the calculated cryptographic hash digests of their
code in memory. Using these, we can detect malicious software, whether it be new instal-
lations or modified existing system components. We also presented a basic provisioning
technique for storing asymmetric keys in a TEE based Secure Storage.

For securing communications, we added support to the OP-TEE SKS proposal for OpenSSH,
in order to be able to create secure connections, with the secret key stored in SKS and
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accessed only through the PKCS#11 API. Thus, the secret key is as well protected as if it
was on a hardware token, without the extra cost associated with it.

As future work an implementation utilizing a hardware root of trust on a platform, that
has one, could be done. Which would be a real, working secure boot process. Support and
usage for more secure algorithms in U-Boot would improve the security of the boot process.

An implementation using a hardware root of trust could derive a physical write protection
for the logs besides the benefits for the secure boot process. Also implementations along
the other use cases, described in the implementation, could be done in the future.

The security hardened system could be tested with definitive use cases/applications, in
order to find out whether they are compatible with the system, or the setting have to be
altered.

There are many more interesting integrity monitoring techniques that we can implement in
the Trusted Application. First, the detection of rootkits— both in the Linux kernel and user
mode—could be a great feature to discover persistent malicious software. There are existing
memory forensics concepts and solutions to detect shared library and shellcode injections,
process hollowing, Global Offset Table overwrites, and other techniques used by attackers
to gain a persistent foothold on a system [27]. We could try to utilize and implement
these in the Trusted Execution Environment. Second, by monitoring network connections,
suspicious network activity could be discovered. Third, the process hash calculation in the
Trusted Application is only performed for the code segment of the processes, but the same
principle could be applied to other binary segments whose hash values must not change
during run time or at rest (depending on the type and purpose of the programs). Fourth,
to increase the security of the Pseudo Trusted Application, we could also implement the
access control ideas, discussed in section 4.5.2. Finally, for more flexibility, the PTA and
TA interfaces could be extended to enable the specification of the hash function used for
digest calculations.

As already mentioned, SKS still needs much more development. As a continuation of the
approach in this paper, it would be interesting, to ensure compatibility with a VPN solu-
tion, since that is a functionality that an IoT gateway would be likely to need. Another
aspect that requires further work, is the contribution of this work into mainline OP-TEE.
The OP-TEE API extension in Section 4.6.7 is already being reviewed on GitHub as a pull
request1, and after that is done, it would be nice to help SKS get to the point where it will
be accepted into the mainline OP-TEE repository as well.

1https://github.com/OP-TEE/optee_os/pull/2524 (last visited 2018. 10. 22.)
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