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Abstract 

 

As society is driving toward the information age, the telecommunications network, a 
fundamental component of this change, is undergoing rapid and profound changes. Due 
achieve these transformations, novel approaches such as Artificial Intelligence (AI) are 
required. Without the efficient support of the artificial intelligence systems networks would 
not be manageable since the complexity of information technology systems had already 
surpassed the level at which human operators could build and maintain them.  

Artificial intelligence has made significant advances in various fields, including speech 
processing, image classification, and drug discovery. The explosive growth of data advances 
in machine learning (especially Deep Learning). Easy access to powerful computing resources 
compelling this trend. The widespread deployment of edge devices (such as IoT devices) 
generates an unprecedented amount of data, which allows for the development of accurate 
models and various intelligent applications at the network edge. However, that amount of 
data cannot be sent to the cloud for processing, due to the varying channel quality, traffic 
congestion, and privacy concerns, as well as enormous energy consumption.   

Aside from cloud-based solutions, AI on edge devices (Edge AI) offers the benefits of rapid 
response with low latency, high privacy, increased robustness, and better network bandwidth 
utilization.  New use cases for the edge are made possible by 5G. A crucial part of the 3GPP 
5G core network, the User Plane Function (UPF) represents the data plane evolution of the 
Control and User Plane Separation (CUPS) strategy. The edge user plane is essential for 
maintaining company data on-premises and providing reduced latency.   

In real-time applications, AI should be placed in the Edge and tightly integrated with the UPF 
application. Edge computing theory and techniques can significantly bridge the capacity of 
the cloud and the requirement of devices by the network edges. That can accelerate content 
delivery and improve the quality of mobile services.   

In my study, I built experimental Edge Computing systems with different architectures, 
consisting of both tightly and loosely integrated AI solutions. I've done measurements on 
different architectures, investigated the improvement opportunities, and demonstrated the 
operation. The System consists of a traffic generator, an Ericsson UPF application, an AI 
component, and software playing the role of the Edge Application.   

The most crucial part of the architectural structure is the location of the AI module, which 
could be placed in a Service Function as part of the 5G UPF or integrated into the source or 
the end application. The main goal of my investigation was to find the answer to the question: 
How could I achieve the ideal architecture?  
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Kivonat  

Ahogy a társadalom az információs kor felé tart, a telekommunikációs hálózatok, amik 
alapvető elemei ennek a változásnak, gyors és mély változásokon mennek át. Ahhoz, hogy 
elérjék ezt a változást, újszerű megközelítésekre van szükség, mint például a Mesterséges 
Intelligencia (MI). A Mesterséges Intelligencia rendszerek hatékony hozzájárulása nélkül az 
információs technológiai rendszerek nem lehetnének menedzselhetőek, mert komplexitásuk 
már túlmutatott azon a szinten, amit az operátorok fel tudnának építeni és karban tudnának 
tartani.   

A Mesterséges Intelligencia több területen is jelentős változáson ment keresztül, beleértve a 
beszéd feldolgozást, a képfelismerést, a gyógyszerek felfedezését. A megnövekedő adat a 
gépi tanulás (főként a mélytanulás) felé vitt bennünket. Az egyszerű hozzáférés az erős 
számítási erőforrásokhoz szintén erősítette ezt a trendet. A széleskörű edge eszközök 
jelenléte (mint az IoT eszközök) eddigieknél nagyobb adatmennyiséget tettek elérhetővé, ami 
által különböző pontos modelleket tudunk létrehozni az edge hálózatokban. Habár ekkora 
mennyiségű adatot már nem tudunk a felhőbe feldolgozásra küldeni, a különböző csatorna 
minőségek, torlódások és biztonsági megfontolások miatt, mint ahogy a magas 
energiafogyasztás miatt sem.   

A felhő alapú megoldások mellet, a Mesterséges Intelligencia edge eszközökön való 
alkalmazása (Edge AI) előnyként nyújtja a gyors válaszidőt, a kis késleltetést, megnövekedett 
robusztusságot és a jobb hálózati kihasználtságot. Új felhasználási területek váltak elérhetővé 
az 5G megjelenésével. A 3GPP által meghatározott 5G core networknek meghatározó része a 
User Plance Function (UPF) valósítja meg a data plane-t, a kialakult Control and User 
Plane  Separation (CUPS) stratégia során. Valós idejű alkalmazások esetén az MI-nek az 
edgben kell elhelyezkednie szorosan integrálva az UPF alkalmazással. Az Edge Computing 
elmélete és technikái lehetnek azok, amik biztosítják mind a felhő alapú számítástechnika 
kapacitását és az edge hálózaton lévő eszközök igényét is egyaránt. Ez felgyorsíthatja a 
tartalomszolgáltatást és a mobil szolgáltatások minőségét is javíthatja.  

A dolgozatomban kísérleti Edge Computing rendszereket építettem, melyek közé tartoznak 
egyaránt szorosan és lazábban integrált MI megoldások. Mérésekkel végeztem a különböző 
architektúrákon, megvizsgáltam a fejlesztési lehetőségeket, és demonstráltam a működést. A 
rendszer tartalmaz egy forgalom generátort, az Ericsson UPF funkcióját, egy MI komponenst 
és egy szoftver helyettesíti az Edge alkalmazás funkcióját.   

A legjelentősebb része az architektúrának az az MI modul elhelyezkedése a rendszerben, ez a 
modul elhelyezkedhet az 5G UPF-ben mint egy Service Function, vagy csatolható a forráshoz 
vagy a végponthoz is. A fő kérdés, amit meg szerettem volna válaszolni az az, hogy: Hogyan 
tudom elérni az ideális architektúrát.   
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1. Introduction  

A new revolution is taking place in communication technologies. 5G opens a world of 
possibilities for social digitalization and industrial connectivity. On top of the physical 
infrastructure, the service-oriented end-to-end network slicing architecture in the 5G era may 
meet a diversity of service requirements.  

Cloudification, which entails the transition from traditional hard box network functions to an 
all-on-cloud management plane, is a key feature of the network slicing architecture. The cloud 
refers not only to regional data centers but also to edge-cloud servers located near mobile 
service subscribers. With the rise of the Internet of Things (IoT), more data is generated by 
widely distributed and geographically dispersed mobile and IoT devices, likely more than by 
mega-scale cloud data centers.  

According to Ericsson's prediction, IoT devices will generate 45 percent of the 40-ZB global 
Internet data in 2024. [1] Although these predictions are focused on Massive IoT, the new 
generation of mobile technologies also provides many opportunities for the industrial sector. 
One word may summarize the Industry 4.0 revolution: connectivity. With the proliferation of 
the Industrial Internet of Things (IIoT), cloud, and big data, connectivity will permit intelligent 
production. Smart devices can collect information such as indoor and outdoor location, status 
information, client usage patterns, and so forth. They are capable of not just gathering 
knowledge but also sharing it with their intended peers. This will aid in the development of 
efficient production processes in production environments, as well as scheduled preventative 
maintenance on machines.  

Another advantage is detecting faults in the production chain as soon as feasible, which is 
critical for lowering production and maintenance costs. Sector 4.0 also focuses on solving 
optimization problems in the industry by utilizing data-driven services via smart devices, like 
Automated Guided Vehicles (AGVs), also known as an Autonomous Mobile Robots (AMRs) 
which are evolved into the key component of organized modern intralogistics. [2] They are 
portable robots, they use radio waves, vision cameras, magnets, or lasers to navigate along 
defined long lines or cables on the floor. To avoid obstacles, accidents, and injuries, they 
employ sensors like Light Detection and Ranging (Lidar) and cameras. Complex job sharing, 
data-driven decision making, and remote access to machinery are all possible with Industry 
4.0 and IIoT. Because of the massive interconnectedness of things and their ability to collect 
and share data, security is a crucial necessity for IIoT and Industry 4.0 concepts.   

Artificial Intelligence (AI) and Machine Learning (ML) products were used more widely in 
Industry 4.0 as big data and data streaming technologies improved. AI and machine learning 
applications are gaining traction in fields such as health, education, defense, security, and 
industry. Many tech giants are putting billions of dollars towards AI goods like self-driving 
cars. Pedestrian identification, collision detection, and other computer vision-based self-
driving algorithms are being developed by Google, NVIDIA, and others.   
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Another question is where the AI should be installed and where the calculations should be 
performed. Edge networking is a complex and dynamic computing architecture aimed at 
bringing cloud resources closer to end-users, enhancing responsiveness, and lowering 
backhaul traffic. Decentralizing data centers and utilizing smart devices and network 
gateways to perform services on behalf of cloud computing are two strategies to create an 
edge computing network.  

In my paper, I combine most of the technologies mentioned above to develop a solution for 
AI implementation in 5G edge networks.  

2. Technological background  

The technological background section is separated into three areas; the first part is an 
introduction to the 5G architecture's principles, highlighting the Mobile Network Gateway 
Function and the goal I aimed to accomplish.  Then describe what Edge- and Distributed AI is, 
the main idea of my work based on these concepts. Lastly, the new approach to the artificial 
intelligence layer, and actual trends, where the state of the art nowadays.   

2.1. Mobile Network Gateway Function  
 

Without a foundational understanding of the 5G architecture, it is impossible to comprehend 
the mobile network's gateway function and its purpose.  Such a gateway application is a User 
Plane Function (UPF), Figure 2.1-1 shows the main components of the 5G core network, that 
is the architecture since 3rd Generation Partnership Project (3GPP) REL-15. [3] User 
Equipment (UE), for example a mobile phone, maintains the connection with Radio Access 
Network (RAN), data flows from RAN to UPF, which is functioning as a router, and from UPF 
the data flows to Data Network (DN). The flow of data from RAN to DN is the User Plane 
connectivity. Each instance of this connection is called in 5G as Protocol Data Unit (PDU) 
Session, they are unique to the device. Within the PDU Session, Quality of Service (QoS) is 
achieved by creating separate QoS Flows which are uniquely identified with QoS Flow ID.  [4] 

That is controlled by the Control Plane (CP), in that, Access and Mobility Management 
Function is responsible for maintaining the radio connection, Session Management Function 
(SMF) for interacting with the decoupled data plane, creating updating, and removing 
Protocol Data Unit (PDU) sessions and managing session context with the User Plane Function 
(UPF). Unified Data Management (UDM) has a huge database, which stores UICC card data 
and service policies.    

In our case, the most important is UPF, it has several interfaces (N3, N4, N6), and N9 is to 
cascade UPFs together if needed. In N3 flows the data, radio packets encapsulated with GTP-
U protocol, N6 forward it towards to internet, N4 maintain the connection with the control 
plane. When more UPF are required, they can be chained with the N9 interface. For example, 
in 5G, there is no separation between Packet Network Data Gateway (PGW), which handles 
all IP packet-based functions (Deep Packet Inspection, UE IP address allocation, etc.),  and 
Serving Gateway (SGW), which is in charge of packet forwarding and routing, downlink packet 
buffering, etc.  as there is in 4G. Hence chaining more UPF could be the solution.  
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Service Function Chaining (SFC), also known as Network Service Chaining, is a method that 
makes use of the capabilities offered by Software Defined Networks (SDN) to create 
composed network services, which are a connected and ordered sequence of Service 
Functions (SF) that must be applied to a particular packet and/or flow that has been 
previously classified. L2-7 firewalls, Deep Packet Inspection (DPI), video optimizers, load 
balancing servers, and Network Address Translation (NAT), among others, are some examples 
of SFs. From the perspective of the network operator, SFC provides tenants and network users 
with collections or suites of network services with various criteria and features that can be 
dynamically and automatically deployed on demand into the multi-tenant infrastructure. 
Albeit Service Chaining originally has not developed for our use-case, it has the ability for 
chaining the solution, hence chained services like Artificial Intelligence Module apparently 
should be implemented in the N6 interface.  

 

Figure 2.1-1 UPF in 5G network 

 

In real-time systems, Artificial Intelligence implementation on the Edge could be beneficial, in 
our case the exact environment is the Edge UPF. In that case we can not only assist the other 
services running there in swiftly evaluating our data, but we can also have a direct impact on 
the mobile network.   
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Figure 2.1-2 Traditional implementation of AI 

Consider the following scenario. An Autonomous Guided Vehicle (AGV) with a 5G private 
network connection operates in a factory. The robot control program controls it from an 
edge-cloud located on the production site. In the factory, a radio network works, with signals 
received by a UPF and communicated to the robot controller. The UPF and the robot 
controller are both hosted on a local cloud.  

A camera is installed on the AGV. This video stream is also sent to the edge, where it is 
processed by artificial intelligence, most likely on a mobile network. The goal is to properly 
process the camera so that the AGV can operate safely and without causing any accidents.  

This AI must be part of the robot controller application in the traditional solution (Figure 
2.1-2). This, however, has significant disadvantages. For example, the ominous camera is now 
only suited for this one function, and its replacement with one from another manufacturer 
could be difficult or to modify it to the right - for example, with HW acceleration - according 
to the AI module. Furthermore, if the AGV and the camera are handled by different firms, 
complications will occur.  

I propose a new architecture setup to enable AI at the network edge in an efficient way as 
shown in Figure 2.1-3. The UPF, acting as a router, could segregate the control and camera 
signals from the AGV and send the former to the robot controller. A stand-alone service, 
which is the AI, receives the signal from the camera and delivers functionality. It provides an 
API that the robot controller can find, connect to, and use to acquire the desired outcome 
from the AGV's operation.  

It is possible that the same signal stream is transmitted by several such AI services, each of 
which wants to process it, or that the stream is terminated by an application. For instance, by 
merging the data from several cameras to create a free-viewpoint video first, it would enable 
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the AI to pinpoint not just the incidence but also the exact location of the fault in the case of 
an issue. Before it can be used on a SCADA system, the result is released in English and then 
translated into Spanish by a third A.I. This necessitates the chaining ability of the processing 
entities.  

 

Figure 2.1-3 Architecture of planned Edge AI solution 

  

The UPF application, can detect each data stream independently and route it to the proper 
service if necessary. If the data stream returns to the UPF after processing, the UPF can 
determine which service should be chained next until the data reaches its destination. As next 
topic I introduce edge- and distributed AI, since that is the main idea of my application. 

2.2. Edge- and distributed AI  

From the beginning of computer science, one of the main goals has been Artificial Intelligence 
(AI). Indeed, it is arguable that computer science's ultimate goal is to replicate, if not 
outperform, human intelligence.   

The algorithms and models used are frequently executed in remote or local data centers 
(inference and/or training phases). While some intelligence is common in locally executed 
applications, many are limited to very specific functions and rely on proprietary models built 
into the application. [5] 



Utilizing AI in 5G Edge Networks | Marton Aron Horvath 

10 
 

 

Figure 2.2-1 From centralized to decentralized AI deployments 

As Figure 2.2-1 shows, AI could be implemented in different architectures. The most common 
solution is the centralized version, where everything is calculated in the cloud. In the 
decentralized architecture, the central control component gets kept, but some of the 
calculations happened on the edge. The distributed solution is peer-to-peer, the central unit 
is omitted here, and there is no dedicated node, they work cooperatively, and are organized 
by ad hoc methods like Intelligent Transport Systems.  

The most obvious use case when we need to distribute the intelligence of the application is 
Internet of Thing (IoT). The IoT is a vision of a society in which every digital device may provide 
information that can be consumed locally and globally. When IoT started to emerge, experts 
predicted that in 2020, the Internet of Things will have connected more than 50 billion 
devices, so trends started to prepare for that huge number of nodes. [6] Although the 
numbers did not accomplish the predictions, the amount of IoT devices is tremendous and it 
constantly growing. They will generate vast data with characteristics such as increased size, 
velocity, modes, data quality, and heterogeneity. Meanwhile, 5G network evolution is 
becoming a major driving force for IoT growth. 5G is predicted to have more coverage, better 
throughput, lower latency, and huge capacity connection density [7], paving the path for 
billions of sensors to be connected over the Internet. Additionally, various prospective 
approaches and technologies, like as millimeter-wave (mmWave), massive multiple-input 
multiple-output (MIMO), and machine-to-machine (M2M) communications, have been 
proposed to help 5G networks adapt to IoT.   

As a result, homogeneous and heterogeneous sensor networks [8] can connect enormous 
sensing equipment and contribute significantly to the provision of enhanced and intelligent 
services for humans. Data is intended to be saved or recorded for analysis, there will be a 
massive amount of data that needs to be processed automatically. As a result, machines, 
rather than humans, will interact with other machines to deliver services, develop added 
value, and operate based on data-analytics outcomes. Optimization, prediction, anomaly 
detection, and other functions are included in the processing of machine-generated data. [8] 
[9] 

Why distribute intelligence processing a legitimate question?  
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It's reasonable to presume that distribution is advantageous in specific situations, such as 
local-data-centric solutions, scenarios requiring the usage of online learning, and settings with 
limited connectivity. However, it might be claimed that centralized data collection and 
processing systems may be applied to practically any situation.  

 

Figure 2.2-2 Scale the number of replicas in Kubernetes 

 

Data centers and cloud infrastructures appear to have an almost limitless ability to expand 
their capabilities, for Example, the Horizontal Pod Autoscaler (HPA) is a tool that Kubernetes 
employs to monitor resource consumption and scale the number of replicas automatically 
(Figure 2.2-2).  Although that adaptable scalability could result in an exponentially increasing 
power consumption, which is unfeasible. 

Even though, in a world where everything that benefits from a connection will be connected, 
one would wonder if centralized processing of such a massive volume of data is feasible. 
Would processing this data be desirable or permissible within regulatory systems, even if it 
were possible? Is centralization still practical when scalability and enormous availability needs 
grow?  

Another issue is the lack of AI handling interoperability. Most intelligence that is available for 
one application is not necessarily available for another; this implies that the second 
application's creators will have to create their intelligence from the beginning. There are two 
possible outcomes from this event. Only a few organizations specialize in offering services for 
a single type of application in the first situation. This paradigm is problematic because a small 
number of companies emerge as market leaders, dominating and dictating existing offers 
without considering interoperability. In the second situation, a huge number of disparate, 
different, and fragmented applications essentially perform the same function. Edge- and 
distributed AI have got a bit clarification, hence it provides the basic knowledge for next topic, 
which is the state of the art methodology for the AI layer. 

2.3. New approach of Artificial Intelligence layer  
 

Most applications that now use AI integrate the intelligence as part of the program itself, from 
a software engineering perspective. Alternatively, they may interact with other applications 
to obtain the necessary intelligence services. As a result, AI is a part of the application layer. 
It's appropriate for tightly connected systems and applications with well-defined boundaries 
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that aren't expected to change or be susceptible to a lot of variation. In such systems, the 
actual need for intelligence remains constant throughout time, as does the task and goal. A 
chess-playing program is an example of this type of application. The game's rules and context 
do not change, and the goal remains constant.  

The limits of an integrated intelligence model are obvious in contexts where intelligence 
requirements are constantly changing over fewer functions or poor connection to the 
application architecture, to update the intelligence, the entire program must be updated. The 
simplest solution to this challenge is to detach intelligence from the application layer and 
make it as self-contained as feasible. The intelligence thus becomes a separate stratum that 
provides apps with services in the same manner that other layers and platforms do.  

An application that can detect a nearby dangerous object for a child can be used as an 
example. Object recognition algorithms match the pictures with the location to detect nearby 
dangerous objects. Traditionally, the application uses the device's camera and GPS to take 
pictures, then applies object recognition algorithms to match the pictures with the location 
to detect nearby dangerous objects. If the application is built on top of an intelligence layer, 
the program will ask the intelligence layer to provide notifications when dangerous things are 
discovered in the area, rather than detecting them on its own. The application still must 
decide how to show the information and the level of detail required for the application's 
means, but it is exempt from the object recognition processing element. Figure 2.3-1 depicts 
the two approaches for integrating intelligence with the application layer. 

 

Figure 2.3-1 Comparison of an intelligence-layered device architeture with a legacy intelligence device architecture 
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Another consideration is where the model should be trained. Rather than believing that Edge 
AI (EI) should be the paradigm that fully uses the available data and resources throughout the 
hierarchy of end devices, edge nodes, and cloud data centers to improve the overall 
performance of training and inferencing a Deep Neural Network (DNN) model. This suggests 
that EI does not necessarily imply that the DNN model is fully trained or inferred at the edge, 
but rather that data offloading can be used to coordinate cloud–edge–device coordination. 
EI can be characterized into six stages, as illustrated in Figure 2.3-2, based on the volume and 
length of data dumping. [10] The following is a list of the many degrees of EI and their 
definitions.  

 

 

Figure 2.3-2 Six-level rating for EI  

  

1) Cloud Intelligence: The DNN model is fully trained and inferred in the cloud.  

2) Level 1—Cloud–Edge Conference and Cloud Training: Train the DNN model in the cloud but 
infer the DNN model using edge–cloud collaboration. Data is partially offloaded to the cloud 
in this case due to edge-cloud collaboration.  

3) Level 2—In-Edge Conference and Cloud Training: Train the DNN model in the cloud but 
infer the DNN model locally. The term "in-edge" refers to a model inference that takes place 
at the network's edge, which can be accomplished by offloading data to edge nodes or 
neighboring devices entirely or partially (via Device-to-Device communication).  
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4) Level 3: On-Device Inference and Cloud Training: Train the DNN model on the cloud but 
infer the DNN model locally on the device. The term "on-device" refers to the fact that no 
data will be offloaded.  

5) Level 4—Cloud–Edge Co-training and Inference: Training and inferring the DNN model 
using edge–cloud collaboration.  

6) Level 5—All In-Edge: Training and inferencing the DNN model both in-edge.  

7) Level 6— All On-Device: Training and inferencing the DNN model on-device.  

  

The amount and path length of data offload decreases as the EI level rises. As a result, data 
offloading transmission latency decreases, data privacy is greatly enhanced, and WAN 
bandwidth cost drops. This, however, comes at the expense of greater computational latency 
and energy consumption. This disagreement suggests that there is no universal "best-level" 
EI; rather, the "best-level" EI is application-specific and should be determined by combining 
many variables such as latency, energy efficiency, privacy, and bandwidth cost. [10] 

For example, if the scenario is an AGVs video stream, and we would like to detect when people 
are near the AGV to prevent accidents, the model could be trained everywhere since the 
detection of the people works always the same. Although the model should run on the edge, 
because response time is much better, and in safety-application latency should reduce to the 
minimum.    

But if the goal is to implement a Simultaneous Localization and Mapping (SLAM) solution, the 
training should also run on the edge. The SLAM problem asks if a mobile robot can be placed 
in an unknown area and incrementally build a consistent map of that environment while 
simultaneously establishing its location within that map. A solution to the SLAM problem has 
been named the "holy grail" of mobile robotics, besides the increasing abstraction level of 
commands, since it would allow a robot to be autonomous.  

It requires a lot of computing power; hence the location of the execution is important. The 
robot search for marker points in the stream and on the map also, after it found it then tries 
to triangle itself. Although references could be moved also, new items could appear and old 
ones disappear on the map, etc. It could be supported by AI, and Mobile Network also has 
information about the location, so the two could be combined and reach the level of accuracy 
which is impossible for the old implement AI in the application method.  These and a lot of 
other use-cases are imaginable with that architecture, in the next chapter I describe the 
possible use-cases a bit deeper. 
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3. Use Case scenarios 
 

Edge AI could be a plethora of new use cases, since it opens the opportunity for applications 
that demand minimal latency. These solutions can be place in a wide spectrum, thus my 
objective was to build an architecture that is able to provide each of them. Some of the 
possible solutions are mentioned above: 

1. Enhance functional safety by utilizing external sensors. Instead of deploying light barriers 
in this case, cameras are used to detect people or other obstacles that are in the wrong 
location (Figure 2.3-1).  As a result, this AI is a machine vision with a single bit of output. 
We must add this one bit to the Profinet dataflow. Therefore, a proxy that can combine 
external data with OT dataflow serves as the solution in this situation. In this situation, 
there is no need to change the OT system. That use-case could be helpful also for self-
driving cars which are trying to avoid pedestrians at all costs, but also for AGVs in a factory 
environment. The issue is solvable with an Object Detection algorithm, which is able to 
detect human workforce and avoidable object on a simple video stream.  

 

Figure 2.3-1 Enchance Functional Safety 

2. Virtual sensors. We could employ less expensive sensors and allow artificial intelligence 
(AI) make them smarter instead of adding smart sensors to the AGV.  For instance, a few 
moderately priced (stereo) cameras can be used in instead of fairly expensive LIDAR (e.G. 
SICK S30A-4111CL costs ~3400€). The objective in this more complex scenario is to lower 
the price of AGVs. We can perform this camera-to-lidar conversion for the current 
controllers if we don't want to replace them.  

Although deep learning has shown amazing results in camera localization, single-image 
algorithms currently used frequently lack robustness and produce huge outliers. 
Sequential (multi-images) or geometry constraint techniques, which can learn to reject 
dynamic objects and lighting circumstances to improve performance, have helped to 
address this to some extent. 
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As solution there’s more methodologies, I would like to introduce a deep neural network 
architecture called Attention Guided Camera Localization (AtLoc) uses self-attention to 
identify camera postures from a single image. The proposed framework's modular 
structure, shown in Figure 2.3-2, includes a visual encoder, an attention module, and a 
posture regressor. The visual encoder condenses the scene of a single image into an 
implicit representation. The attention module computes the self-attention mappings 
based on the retrieved features to re-weight the representation into a new feature space. 
The 3-dimensional location and 4-dimensional quaternion that were added after the 
attention operators are further mapped into the camera posture by the pose regressor 
(orientation). [11] 

 

Figure 2.3-2 An overview of our proposed AtLoc framework 

3. Increasing the precision of indoor positioning. Indoor localization typically has an accuracy 
of +-5 cm, albeit the requirement is 2cm or smaller. However, if we use the current CCTV 
camera to measure the AGV position optically, we can locally abide by the 2-centimeter 
criterion. In this a non-existing use-case today, because mobile robots are usually based 
on other methods (magnetic stripe, QR-code, different SLAM methods, etc.). Mobile 
positioning, however, would be effective if we could somehow improve accuracy. And this 
is an option. To localize cars outdoors with this +-2 cm accuracy, companies use 
differential GPS. However, there is currently no appropriate option for indoor.  

The high-tech Global Positioning System (GPS). was created as a result of decades of real-
time location research and development that focused on military and civilian target 
tracking and navigation demands. 

The US Department of Defense controls the space and ground elements of the GPS 
architecture [12], while the user segment, or GPS receiver, offers services to the user or 
system. 24 satellites form a constellation that orbits the earth and provide coverage all 
across the world. Four satellites in line-of-sight are utilized for trilateration, which uses 
them to estimate the true location. GPS has a wide range of uses, including missile 
guidance, monitoring of people and vehicles, cellular system clock synchronization, 
geographic information systems, surveying, and mapping. 
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Ultrasonic (US), infrared (lR), radio-frequency (RF) based systems, such as radio-frequency 
identification (RFID), received signal strength (RSS) of RF signals, Bluetooth, wireless local 
area network (WLAN), ultra-wideband (UWB), camera-based vision analysis, etc., are 
some of the technology options for the design of an Indoor Localization Systems (ILS). 

There are many different uses for ILSs in real life, and each one has specific needs. As a 
result, there is no one positioning system that is suitable for all applications, needs, and 
physical situations. A taxonomy put forth by Hightower and Borriello is helpful in providing 
direction for application developers [13]. Various factors, including system scalability, 
cost, coverage area, capacity, accuracy, and precision, are used to categorize location 
systems. 

In general, infrastructure and mobile devices can be used to categorize the architecture 
of positioning systems based on equipment. The primary elements of the system that 
support location estimate are the infrastructure, as in GPS and satellites. These are 
referred to as base stations, beacons, transmitters, etc. in ILSs. The individual whose 
location needs to be determined is connected to the mobile devices, which act as 
receivers, such as a mobile device, listener, or receiver, or a GPS receiver. 

The physical quantity to be measured, the measuring method, and finally the extraction 
of relevant location information based on the measurements are the three steps of a 
location system's process for obtaining location information, as shown in Figure 2.3-3. To 
measure physical quantities and determine location, sensing devices can employ any 
signal, including US, RF, IR, or vision. These signals provide coordinate information for 
reference nodes as they move between transmitters and receivers. The physical quantity 
is then calculated using a variety of techniques, including measuring the time of arrival 
(TOA), the time difference of arrival (TDOA), the angle of arrival (AOA), the received signal 
strength (RSS), etc. Several methods and algorithms are used to convert the raw data of a 
physical quantity measured into useable position information. 

Triangulation/trilateration, Scene Analysis, Proximity, and fingerprinting [13] [14] are 
some of the techniques that have been categorized. The position that algorithms estimate 
can be either absolute or relative, and it varies from system to system. For example, GPS 
estimates absolute positioning for every device that is detected. 

 

Figure 2.3-3 Phases of Location estimation 
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In comparison to other ILSs, US location systems provide a variety of benefits, including low 

system costs, dependability, scalability, great energy efficiency, and—most importantly—no 

room leakage. US ILSs offer centimeter-level precision (Table 2.3-1 Comparison of US systems 

Reviewed) and fine-grained localization. US systems have the capacity to serve more 

consumers at once thanks to their increased ability to track numerous mobile nodes 

simultaneously. [15] 

 

Table 2.3-1 Comparison of US systems Reviewed 

System Spreading 
and Channel 
access 

Update 
Rate 

Measurement 
Method 

Accuracy 
(cm) 

Orient
ation 
(degre
es) 

Structure Cost 

Cricket - Low (1Hz) TDOA 10 cm 3-5 Decentralize
d 

Low 

Buzz - High (33 Hz) TOA 4-10 cm Not 
Suppo
rted 

Centralized, 
Decentralize
d 

Low 

Dolphin Gold Codes / 
CDMA 

High(20Hz) TOA 3 cm Not 
Suppo
rted 

Centralized Medium 

D Kasami 
codes FHSS 

High TOA, AOA 1,5 cm 4.5 Centralized High 

E GOLD 
Codes/CDM
A 

High TOA 2 cm Not 
Suppo
erted 

Centralized  

 

The three-dimensional position of an object can be ascertained using machine vision 

algorithms and video cameras. Standard mathematical algorithms can carry out this 

transition. 

Using a common Brown-Roberts-Wells (BRW) phantom simulator in conjunction with the 

BRW angiographic localizer, preliminary accuracy tests of stereotactic localization with video 

cameras were carried out. The localization's precision was 1.5 mm. Freehand stereotactic 

localization of the position and orientation of surgical instruments is one potential use for 

machine vision techniques. These methods can be used to continuously check the location of 

instruments inside the cranial vault if the computer speed is fast enough. [16] 

As a summary with few video cameras more precise results could be achieved than with 

traditional approaches. Hence if we use some camera streams with an extension of Deep 

Learning, the application can reach the desired accuracy. 

4. Support cellular hints for mobile robots (based on NWDAF - network data analytics 
function). Compared to legacy cellular networks, 5G cellular networks have many new 
features, such as the Network Data Analytics Function (NWDAF), which gives network 
operators the option of implementing their own Machine Learning (ML)-based data 
analytics methodologies or integrating third-party solutions into their networks. [17] 

For instance, we can alert an Industry4.0 robot of potential cell-handover or poor network 
quality when it moves and welds simultaneously. Our chained service in this instance is 
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collaboration with the NWDAF. [18] Between the REST-only NWDAF and the industrial 
protocol-only OT system, our AI module could turn OT into IT and have an interface that 
adheres to the NWDAF standards. This NWDAF use case, which is still simply a plan, 
involves co-located external services.  

5. Legacy robot control that is 5G compatible. The well-known P-I-D control is typically used 
for real-time robot control. Technology that is over than 60 years old but is still in use. 
However, they are incompatible with cellular networks, which frequently forces us to 
meet extremely strict Ultra Reliable Low Latency Communications (URLLC) standards. [19] 
We could accomplish the aims on networks of low quality while employing a superior 
robot control method. Hence, one option is to build a proxy that, on the outside, 
resembles a PID-controlled "robot" but, on the inside, controls the real robot using a fault-
tolerant semi-open-loop horizon-control technique. (Investment protection, do not need 
to replace outdated hardware, just upgrade it.)  

6. Massive gathering of IoT data. Although a Lightweight M2M (LwM2M) protocol does not 
even permit cooperation between low-power devices, we could collect data, pre-process 
it, and then send it back to the industrial system using an AI in the core. [20] Because 
LwM2M is encrypted in this use-case, the chained method is impractical. It is preferable 
to utilize a separate service. 

7. AI on the UE, somehow integrate AI into the UPF. DPI and service chaining are solely two 
potential and practical deployment strategies. The network conceals the implementation 
of A.I., so we can still add it to the system. A.I. can operate on the UE and in micro-
containers, which has two significant benefits: it can operate offline and has extremely 
low latency. I do not intend to address the significant orchestration issue that downloads 
themselves provide just yet. I want to concentrate on imparting these logics. Since training 
an AI requires a lot of power, it should be done on a UPF host using hardware acceleration 
(a GPU). Deep Learning Solution, which will be chained in the network. Therefore, in this 
model, we simply use the chained AI to learn and create a model, after which we 
download it to the UE. 

Besides these, several other scenarios could be implemented, the main concept is the 
architecture which can host these use-cases, this architecture is introduced in the following 
chapter. 
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4. System Architecture  
 

There is a lot of legacy AGVs in factories, which could be control more efficiently from the 
Cloud or from the Edge, since in that case AGVs have all the data during the functioning. When 
the controlling part moved from the machine into the Edge robots need wireless 
communication technology to communicate.  

 

4.1. Communication Protocol 

The cellular industry wants to enable ultra-reliable low latency communications (URLLC) for 
the industrial Internet of Things as it transitions to 5G mobile technology (IoT). [21] [22] 
Factory automation (FA) is a common application where closed-loop control applications 
execute periodic cycles with cycle lengths between 0.25ms and 50ms and require extremely 
low downtime with packet error rates of 10 or less. [23] Historically, wireline bus systems 
have handled these applications. [24] A paradigm shift toward moving FA communications 
from landline to wireless has taken hold in recent years. The numerous drawbacks of wireline 
solutions, such as their high installation and replacement costs for wiring as well as their 
maintenance-prone support for moving sensors and actuators, which rely on trailing cable 
systems, slip rings, or sliding contacts, are the driving forces behind this development. 

The current wireless communication systems used in industrial automation typically operate 
in the industrial, scientific, and medical (ISM) radio band and use unlicensed technologies. 
These bands' broad bandwidths enable factories to handle the high volume of traffic typical 
of FA applications. However, the current commercial solutions are unable to meet the 
demanding dependability goals with latencies < 10ms. 

In mobile broadband, where smart devices opportunistically prefer Wi-Fi over cellular 
technology, such a technique has long been prioritized. In order to increase capacity at a low 
cost, the cellular industry has continued its efforts to extend into the unlicensed band. But 
unlike FA, mobile broadband has a different economic reality. Resource contention in the 
unlicensed band does not noticeably degrade the service experience because latency is much 
less strict than in FA. 

Additionally, cellular connectivity offers wide-area coverage, which sets it apart from 
unlicensed-band hotspots. Last but not least, mobile operators can spread the cost of the 
licensed band across a large user base. 

4.2. Service Chaining  

 

If AGVs are controlled from the edge, the controlling system becomes smarter and is capable 
of performing out more difficult tasks. Additionally, 5G is used as a communication protocol 
because of its lesser latency and more dependable coverage. AGVs under certain scenario 
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have UE on them. My ambition is to provide the cellular network an additional layer of 
intelligence in order to make the system smarter. I obtain it using the Service Chaining 
because it is the effective way for the task. My objective is to determine whether the 
employment of that architecture is effective, efficient, and helpful or not. What are the 
solution's benefits and drawbacks in comparison to locally running and edge-running 
solutions? Service Chaining can be used as a component of the solution even though it was 
not initially intended for that proposition. 

Service Chaining is a widely used solution in cellular networks since 3G. Network Function 
Virtualization (NFV) is a technology, which purpose is to virtualize network functions and 
applications that were previously only available through hardware appliances. The goal of 
Software-Defined Networks (SDNs) implementation method is to replace numerous network 
equipment with more flexible software that runs on real servers, virtual machines, or clouds, 
allowing for much more flexible service chaining. Indeed, software service chaining allows 
operators to dynamically construct network services, addressing the need for both network 
optimization and revenue through the deployment of customer-dependent services.   

Creating a service chain to support a new application used to take a long time and effort. It 
entailed purchasing network devices and connecting them in the proper order. Each service 
required its specific hardware device, which had to be configured individually with its 
command syntax. Because network operations are now implemented in software, procuring 
hardware is no longer required to construct a service chain. Furthermore, because application 
demands frequently increase over time, designing a chain that would not require frequent 
reconfiguration means over-provisioning to accommodate growth.   

In Network as a Service (NaaS) model, the network provides Artificial Intelligence for higher-
level applications. Loads of services require the transient data, hence an alternative use of 
the Service Chain, though not its intended purpose, maybe a viable choice.  

Industrial systems are mostly divided into domains, each domain organized by different 
teams. Typically, domains could be Information Technology (IT) and Operational Technology 
(OT). OT is concerned with the management and control of physical equipment that exists 
and function in the real world. Controlling real-world equipment dates back to the dawn of 
industry and production. Electronics and digital technology have found a wide range of 
applications in operational control systems, including computerized numerical control 
machining systems.  

OT focused on behaviors and outcomes, while IT focused on data and communication. Most 
industrial and factory control systems were not networked, resulting in silos of specialized 
equipment, each of which was electronic to some degree but unable to connect or share 
information. This indicates that each piece of equipment's physical functions was 
programmed or managed by human operators. Closed or proprietary protocols were utilized 
even by devices that allowed centralized control. IT encompasses the creation, processing, 
storage, security, and sharing of all types of electronic data using computers, storage, 
networking devices, and other physical equipment, infrastructure, and procedures.  



Utilizing AI in 5G Edge Networks | Marton Aron Horvath 

22 
 

In a typical industrial scenario where the purpose is to manage AGVs in a plant, the robots, as 
well as the application that supports them, are in the OT domain. It is considerable for robot 
developers to rent AI rather than develop it themselves. As an example, the network 
operator, implement it in the service chaining system of the network.   

Cascading Solution: All middleboxes (MBoxes) in service provider networks are cascaded with 
this approach. The MBoxes are serially chained, as shown in Figure 4.2-1a. Despite its 
simplification, it has several flaws, the majority of which stem from the fact that all traffic 
flows must transit through all MBoxes, rather than just the ones that are desired. To begin, 
inserting MBoxes or upgrading existing ones necessitates a significant amount of human labor 
and operator experience. Second, any MBox failure might bring the entire service-chaining 
network to a halt. Third, the cost of processing and forwarding all traffic flows for each MBox 
rises.  

Branching Solution: The service chains are designed ahead of time in this system, and traffic 
is then branched to the appropriate service chain. Deep Packet Inspection (DPI) is used to 
classify traffic flows, as seen in Figure 4.2-1b. The branching technique has been enhanced 
over the cascading deployment described above to address the aforementioned issues. 
Despite its utility, it is not without flaws. First, when too many traffic flows pass via service-
provider networks, the DPI device may become a bottleneck. Second, making service-chaining 
changes, such as adding or removing MBoxes from an existing service chain, is difficult. Third, 
because the MBoxes cannot be multiplexed, it could result in exorbitant expenses.  

 

Figure 4.2-1 Traditional solution for service chain 

Current service-chaining systems have many shortcomings [25], including limited scalability 
and expensive operational costs. As a result, academics and businesses are on the lookout for 
a new service-chaining solution that is both flexible and scalable.  In our case the DPI module 
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selects which flow is to send to service chaining, the decision is based on pre-defined rules, 
which are applied for session.  

Before the installation of the system and the implementation of the Artificial Intelligence 
layer, the architecture needs to be defined. In my case that means I need to define two 
different architectures, first is the real-life scenario, when the data is generated by real users, 
with physically existed equipment. The second is the demo deployment when my purpose is 
to represent the first one with simulations, where the traffic generator simulates the cases 
and the scenarios that could happen in a real-life environment.  The two architecture needs 
only differ in the generation of the traffic and in the application, both of them are replaced 
by simulation. The traffic generator is replaced by a traffic generator, the simulation is with 
AppSimu.  

 

4.3. Architecture of the real-life scenario  
 

In the real-life scenario, the traffic is generated by real users, which means in daily life that 
the people generate it with their mobile equipment.  Although my application focuses on the 
industrial sector where the equipment is typically not the traditional mobile phone, but rather 
robots, sensors, and other equipment which supports processes in the factory. Let us focus 
on the robots, it can be a single AGV, a fleet of AGVs, or maybe a huge group of different types 
of robots including robot arms, AGVs, and cobots.   

The whole architecture is inFigure 4.3-1, in that case, the source of the data flow is a couple 
of Automated Guided Vehicles, they are communicating directly with Radio Access Network 
(RAN), then from RAN data flow to the User Plane Function, to the UPF, which is run on a 
server.   

The virtual machine or container runs the Controller, which is the control plane, that controls 
the UPF. One of 5G’s main concepts is Control and User Plane Separation (CUPS).  In 5G 
systems the user plane and the control plane is separated, this allows running only a UPF on-
prem, and the CP in the operator datacenter. 

Controller’s components are AMF responsible to maintain connection and SMF which is liable 
for the session, which means it controls the UPF. UDM tracks the sim cards, policies, etc. in 
the systems, and in that scenario, the robots use these SIMs, and UDR is a huge database. 
Controller is omitted in the demo deployment; however, it should be noted that it is a 
required component in that scenario.  

Data forwards to UPF by RAN on the N3 interface, information flow has a session, and that 
has a lot of other parameters. The packet then arrives in a ramification, the two possible ways 
are slow path and fast path. The first packets are the most interesting, they need to be 
investigated to be able to describe the traffic. Packets flow through a Deep Packet Inspection 
and it applies the rules to the session if needed. For example, sometimes it needs to slow 
down the bandwidth, because of the tolerated but unsupported activity, sometimes it needs 
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to stop the price charging, for example in the case of services, which are provided by the 
mobile network provider without debit the monthly limit. After the investigation happened, 
the rest of the packet can take the fast path, and the further investigations can be omitted. 
After that it arrives at Service Chaining if it is defined in the ruleset, if not it leaps that step.  

The AI has been implemented in the Service Chaining, not in the application, hence when we 
forward it finally to the application, the application gets the output of the Deep Neural 
Network also. When the Deep Learning Solution (DLS) is an object detection algorithm, which 
takes an AGV’s camera’s output as an input, we could send the list of recognized objects, the 
bounding boxes which appears on the video stream. Maybe the output is chained further, 
and different Artificial Intelligence services use it as input, the chained service could be for 
example responsible for detecting anomalies and prevent accidents, so the traffic flow which 
arrives in the application carries warning messages and the application can start to react to 
them.  

 

Figure 4.3-1 Architecure of the real-life scenario 

 

4.4. Architecture of the demo deployment scenario  

Before building a complete 5G core and implement a full-scale PoC, I have implemented 
simplified version, focusing on the UPF-AI connection. The complex and expensive system 
elements were simulated from software. In that case the traffic is generated by a traffic 
generator instead of real AGVs. In Figure 4.4-1 the most obvious difference, if we compare it 
with the previous one, is that in the case of that architecture there is no Controller included, 
the cause of the absence is the Traffic Generator, which simulates it. In that scenario 
everything happens between servers which have placed in a Flight Rack (FR), Apart from the 
source of data, the radio network, and the endpoint, which in this case is the application, the 
data travels inside UPF in the same way.   
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The traffic after Service Chaining flows back to the Traffic Generator. The reason is that when 
it stimulates the internet it acts as a drain and when it simulates the mobile traffic it acts as a 
generator.  

A simulation is a representation of the operation of a real-world process or system. The parts 
which are not simulated should run in the same way also whether the traffic is simulated or 
not, that architecture is suitable for simulating a real-life event, and allows testing the 
implemented AI layer.  

 

Figure 4.4-1 Architecure of the demo scenario 

Excluding the A.I. As Service part, most components of the architecture are fixed. I described 

couples of scenarios, but I had to decide which one to implement. The next chapter describes 

the selected scenario.  
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5. Deep Learning Solution, which will be chained in the network  
 

Several scenarios could be implemented in the network, and various types of data flow could 
be using different deep learning solutions, or deep learning solution chains, but as I created a 
Proof-of-Concept (PoC), I was considered to create a solution that legitimate every other 
solution also.   

Object Detection is adequate for PoC purpose, since that comes with a lot of solvable issues, 
like receive video stream, process video stream, and encode the processed frames back to a 
video stream and forward it further. To solve the beforementioned issues high amount of 
processing requires on the data. Catching video stream needs to be fast as possible, Object 
Detection solutions requires a complex model, but despite that fact it should be run as fast as 
possible to minimize the latency which caused. The video encoding has a highest resource 
requirement, hence its critical to find the optimal solution. 

The use-cases for that application are extensive. AGVs are equipped with a variety of sensors, 
including Line Sensors, Light Detection and Ranging (LIDAR), Microphones, and Cameras. A 
camera is commonly a prerequisite on AGVs, and it is not affordable. The robot should drive 
safely if it passes through an area where people are present, therefore object detection could 
be useful in a variety of circumstances like to prevent an accident. In addition, the method 
might be applied to any other situation in which a camera is present and capable of sending 
a video stream to the network.  

The choice of an appropriate model for the solution is the first and most crucial step. After 
defining Object Detection, I went on to explain the approach I took in developing my solution. 

5.1. Choosing model for Object Detection  
 

The most important component in my Deep Learning solution is the model, several algorithms 
available and the choice of the right one is crucial. Making the right decision requires a basic 
knowledge about Object Detection and its algorithms. 

Detecting instances of visual objects of a specific class (such as persons, animals, or cars) in 
digital photographs is an important computer vision task. Object detection's goal is to create 
computational models and algorithms that give one of the most fundamental bits of 
information required by computer vision applications: What objects are where?  

Convolutional Neural Networks (CNNs) reemerged in 2012 [26]. Because a deep convolutional 
network can learn robust and high-level feature representations of an image, it's logical to 
wonder if it may be used to recognize objects. Object detection has progressed at an 
extraordinary rate since then.   

Object detection is an important aspect of computer vision. Pose estimation, vehicle 
detection, and surveillance all benefit from object detection. Object detection algorithms 
differ from classification algorithms in that detection methods attempt to locate an object of 
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interest within an image by drawing a bounding box around it. Also, in an object detection 
instance, sometimes only just one bounding box creation is needed, there could be multiple 
bounding boxes representing distinct things of interest within the image, and it is not known 
how many until after the fact.  

The main reason this problem cannot be solved by using a typical convolutional network 
followed by a fully connected layer is that the output layer's length is changeable — not 
constant — due to the fact that the number of occurrences of the items of interest isn't fixed. 
To solve this problem, a simple technique would be to extract different regions of interest 
from the image and use a CNN to classify the presence of the object within each zone. The 
problem with this method is that the objects of interest may be in different spatial locations 
and have different aspect ratios within the image. As a result, a large number of regions have 
to be chosen, which could take a long time to compute. The most popular algorithms are R-
CNN, Fast R-CNN, Faster R-CNN, YOLO, and SSD.  

In Table 5.1-1 I collected the parameters of the the fastest and most efficient  models. SSD is 
intended for real-time object detection. Faster R-CNN creates boundary boxes using a region 
proposal network and then uses those boxes to classify objects. The entire process runs at 7 
frames per second, which is considered state-of-the-art in accuracy. Far below the 
requirements of real-time processing. By removing the need for the region proposal network, 
SSD speeds up the process. SSD implements several enhancements, including multi-scale 
features and default boxes, to compensate for the drop in accuracy. These enhancements 
allow SSD to match the accuracy of the Faster R-CNN using lower resolution images, further 
increasing the speed. It achieves real-time processing speed and even outperforms the 
accuracy of the Faster R-CNN, according to the following comparison (Table 5.1-1). (The 
precision of the predictions is measured as the mean average precision mAP.) Considering 
these results, I decided beside SSD300 algorithm. Since the model has been chosen, the next 
step was to implement it. 

 

Table 5.1-1 Object Detection algorithm comparison  

System  VOC2007 test mAP  FPS  Number of Boxed  Input resolution  

Faster R-CNN  73.2  7  ~6000  ~1000x600  

YOLO  63.4  45  98  448x448  

SSD300  77.2  46  8732  300x300  

SSD512  79.8  19  24564  512  
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6. My object detection implementation  

Training a new model from scratch would be a huge task since it needs a lot of data, and the 
training process requires a lot of computing power and time. The best models nowadays are 
trained in the cloud, which has seamlessly limitless GPU capacity, so I have chosen to use a 
trained model. In the previous chapter I mentioned the widely known algorithms, I have 
chosen SSD from them, since it is the fastest and most accurate.  

I downloaded a well-trained model and I use it with python scripts. The model works on 
images, hence, to use it on a video stream I needed to process the video frame by frame. The 
model can identify 20 different items, including: background, aero plane, bicycle, bird, boat, 
bottle, bus, car, cat, chair, cow, dining table, dog, horse, motorbike, person, potted plant, 
sheep, sofa, train, TV monitor. The 21st is the background, but that category is kept for ’no 
match’ cases. From these the most important is person, since I would like to recognize human 
presence. The model's accuracy was satisfactory, and it is suitable for usage in my application.  

6.1. Architecture 
 

The entire application operates on a flight rack, which is a portable 5G-SA core that contains 
several servers. I used three of them during my project: the Jump Host, which grants access 
to other servers; the Edge UPF, which provides us the router functionality in 5G networks, 
and the Cognitive Edge server, which is designated to run the AI module.  

The running processes and the path of the packet flow is represented on Figure 6.1-1, on the 
Jump Host I stored the video file(s), which has HD resolution (1280x720p), I sent it through 
the system as testing purpose. The video file is sent with VLC to Traffic Generator inside the 
server. The next hop is the Edge UPF, which had Agent Marci pod in the beginning, but it was 
moved to the Cognitive Edge server because it needed more computing capacity, hence it 
forward towards the Cognitive Edge server, which runs Agent Marci pod, and it is also in the 
same Kubernetes cluster. Forwarding in Edge UPF is described in detail in Chapter 4.2 and 4.3, 
hence I do not go into details this time. After Agent Marci caught the packets, it processes it 
and sends back to Traffic Generator. The caught packets store in the Jump Host server, that 
means the stream can be replayable and has all the functionality what a video stream 
nowadays has.  
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Figure 6.1-1 Running Processes on nodes 

In that demo scenario I used a Traffic Generator to simulate traffic, that Traffic Generator 
works as a Gateway. I send a video file with VLC, divide it into UDP packets, and send it to 
Traffic Generator, it sends the received packets immediately to Edge UPF, in Edge UPF Deep 
Packet Inspection recognize that these packets need to send to service chaining, hence it 
forwards packets for Agent Marci. Agent Marci receives packets with OpenCV, and after 
processing the frames it recognizes the object in the frames and make a bounding-boxes 
around the object and labels them, for Example when recognize a person in the frame it draws 
a box around them and write ‘person’ label and accuracy rate to the box. After that Agent 
Marci generate a video stream from the frames and send back through the system, and then 
ffmpeg receives the packets. After making a tunnel to the ffmpeg container, the video stream 
is able to catch by a video player, for Example with VLC, or also implemented a simple 
webpage which has a video player, which is able to play the video. The Chart of the process 
shows in Figure 6.1-2. 
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Figure 6.1-2 Video-streaming process chart 

6.2. Decisions made for process’ architecture 

Every part of the process was built in purpose. First to imitate the video stream of the camera 
I needed to make a video stream, which in a real-life scenario is replaced by a stream of a real 
camera. I needed an UDP based video stream, since in mobile networks travels UDP packets.  

I collected alternatives to find the best for my application, these are: 

• GStreamer: A library used to build media handling component graphs. Its supported 
uses include everything from straightforward Ogg/Vorbis playing to advanced audio 
(mixing) and video (non-linear editing) processing. It’s free and open-source, has 
demuxer, decoder, processer, encoder, muxer choice and setting, dynamic plugin 
loading, variety of formats, detailed pipeline and process debugger, and it cross-
platform. I also has an experience with this framework, I sent AGV’s video stream and 
to a laptop, where I use the stream to recognize traffic signs and sent back controlling 
commands to the robot. 

• FFMPEG: The universal multimedia toolkit. It’s free and open-source, cross-platform. 
Demuxer, decoder, processer, encoder, muxer choice and settings, dynamic plugin 
loading, detailed pipeline and process debugger, screen capture, streaming support, 
multiple graphical front ends, but it has a steep learning curve.  

• VLC: Multipmedia player and framework that plays most multimedia files as well as 
DVDs, Audio CDs, VCDs, and various streaming protocols. It’s free and open-source, 
cross-platform. No outside codecs are needed, support variety of formats. Supports 
streaming across private networks with sftp/ssh to any device which has VLC. 

• MPV: A free media player for the command line. It’s free and open-source, cross-
platform, no outside codecs are needed, supports variety of formats. Able to cache 
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livestreams, has many front ends. But it has minimal interface, front-end required, 
harder to install then VLC.  

I’ve chose to send the video file with VLC, because it made the stream suitable for Traffic 
Generator. The Traffic Generator forwarded the packets with DPDK through the system, the 
Linux Foundation oversees the open-source software project known as the Data Plane 
Development Kit (DPDK). The operating system kernel's processing of TCP packets is offloaded 
to user-space processes using a collection of data plane libraries and network interface 
controller polling-mode drivers. This offloading outperforms the interrupt-driven processing 
offered by the kernel in terms of compute efficiency and packet throughput (Figure 6.2-1). 

 

Figure 6.2-1 How DPDK works 

 

The first problem occurred that point, since I had to process the packets, but I needed to catch 
DPDK’s packets. There is a code which responsible to catch DKPK packets, it’s written in C, 
and in production the best solution would be to do the whole processing with the extension 
of that code, but it would be a lot of development for a PoC solution, hence I decided beside 
python, which is currently the most popular language for Deep Learning purposes.  

The build method involved sending packets into a session, reading them out, sending them 
back to another socket, and eventually sending them on to their intended destination. At that 
point I sent traffic through the system, and everything was ready to work except the 
processing part of the data.  

 



Utilizing AI in 5G Edge Networks | Marton Aron Horvath 

32 
 

 

 

6.3. Processing the stream 

The most crucial part of the application was the processing part, which should be work nearly 
real-time. That means the processing needs to be fast as possible, which requires 
computational power.  

The first step was to send a video stream through the system without implementation of AI 
and without the use of entire Service Chaining. I measured the latency and it diverged 
between 2-10 ms, which is low enough for the most scenario.  

After sending stream through the system worked, the next step was to implement Service 
Chaining in them and smart the system up. The container which is responsible for the AI called 
Agent-Marci, hence it is an AI agent and I named it after myself. Hence, I added a new pod to 
the Kubernetes environment, first on the Edge UPF’s machine, but resources were allocated 
to other tasks which are required by the Edge UPF and the resource was insufficient for the 
deep learning and video receiver/encoder libraries, henceforth I was forced to move the 
module to the Cognitive Edge server, which was originally designated for that purpose. Since 
I calculated with that scenario, where the container requires huge number of resources, 
hence I has an experience in Deep Learning and Video Streaming from the past.  

Cognitive Edge Server has 40 CPU, type of each is Intel(R) Xeon(R) CPU E5-2650 v3 @ 2.30GHz, 
albeit I had huge number of CPUs, I tried to use the less resource which I can, since there 
could be more chains, or more element of the chain. Although I have known that I do not aim 
to develop a production grade application.  I separated the reading and the processing into 
two different threads. First the encoding was the bottleneck. In most Object Detection 
application, the processing happens frames by frame, for processing mostly NumPy, pandas, 
and OpenCV are used, the Deep Learning Model has a fixed size input, and the output is an 
OpenCV frame. The output stream is mostly not a real stream, just figure the OpenCV frames 
one by one and it seems like a video. In that case the output is not a real video, just a sequence 
of pictures, and a lot of frames lost during the processing, but it not recognizable. Since I 
needed to send back a video stream, I had to encode frames into video. 

First try was with OpenCV video writer, forasmuch the frames read out with the help of 
OpenCV, the output is also an OpenCV frame, the most obvious solution was to use its library 
to solve the issue. Unfortunately, that solution was too slow. 

Other solution was to write bytes of the frames on standard output, then pipeline it to ffmpeg, 
which save the video file. That solution was faster, but not fast enough, hence I needed an 
optimized, multi-threaded solution. 

There is a better solution, a full, adaptable, and reliable wrapper over FFmpeg, a top 
multimedia framework, is offered by WriteGear API. Real-time frames can be converted by 
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WriteGear into a lossless compressed video file with all necessary parameters (such asbitrate, 
codec, framerate, resolution, subtitles, etc.).  

Additionally, WriteGear supports classic streaming protocols like RTSP/RTP and RTMP. With 
just a few lines of code, it is capable of sophisticated tasks like multiplexing video-audio with 
real-time frames and live streaming (for platforms like Twitch, YouTube, etc.). The best part 
is that WriteGear's unique Custom Commands function gives users total freedom to 
experiment with any FFmpeg option without relying on any external APIs. 

Additionally, WriteGear offers flexible access to the VideoWriter API features from OpenCV 
for encoding video frames without compression. 

The following two modes are the main ones that WriteGear uses (Figure 6.3-1): 

• Compression Mode: To compress lossless multimedia files, WriteGear uses the robust 
internal encoders of FFmpeg.This mode enables us to quickly and easily take 
advantage of practically every parameter offered by FFmpeg, and it does so while 
quietly and robustly handling any problems or warnings. 

• Non-Compression Mode: In this mode, WriteGear makes use of the fundamental 
features of the OpenCV VideoWriter API. The ability to alter encoding parameters and 
other crucial characteristics like video compression, audio encoding, etc. is not 
available in this mode, which supports all parameter transformations offered by the 
OpenCV VideoWriter API. 

 

Figure 6.3-1 Functioning of VidGear’s WriteGear framework 

Video was saved to an m3u8 file, an UTF-8 Encoded Audio Playlist file is one that ends in the 
extension M3U8. Both audio and video players can use these plain text files to describe the 
location of media files. 
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Might see references to online files for an internet radio station in one M3U8 file, for instance. 
One more might be made on the computer to compile a playlist of own music or a collection 
of videos.  

It doesn't matter which method to use, the result is the same: open the file to quickly and 
easily begin playing whatever the playlist points to. Might create an M3U8 file as a sort of 
shortcut to play those tracks in your media player if discover that urge to listen to the same 
music repeatedly. 

Since the file segments are made continuously, I am able to transmit them back to their 
original location, and as I already indicated, the stream can start playing once a tunnel has 
established. (Figure 6.3-2).   

 

Figure 6.3-2 Playing the stream 

When I am optimized the encoding process, I started to measure the efficiency of the system, 
writing speed means how fast the writing is compared to the video’s speed. That means 1x 
writing speed means real-time, hence that was the minimum which I wanted to accomplish. 
As I started to increase the number of the CPUs, I realized that above 5 CPU the performance 
do not improves anymore, hence I needed to debug what other issue could be cause that slow 
writing speed (Figure 6.3-3). 
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Figure 6.3-3 Speed improvment with Core number increase 

And the other bottleneck was the reading speed of the frames, hence I had to implement a 
more efficient solution for the reading process. Then I implemented a multi-threaded version 
of reading frame class, which was fast enough. Then continued to increase the number of the 
CPUs. As I gave more and more resource to the container, I realized that my code could read 
out more frames (Figure 6.3-4), that means the slower reading rate caused frame loss. The 
desired 1x writing speed and 25 frames/reached (which was original FPS of the video) with 14 
CPUs.(Figure 6.3-5) 

 

Figure 6.3-4 Number of frames has read  
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Figure 6.3-5 Speed improvment with Core number increase after multi threaded reading 

 

6.4. Expected latency in HTTP live content streaming  
 

My solution has an implementational glitch, since the solution requires to save 1s of video 

before it could send it forward, hence the delay is more than 1s. Albeit the large delay caused 

by bad implementation, the total minimum delay of the live content streaming via HTTP can 

estimate with the following equalation: Ttot = Tssp + Tafs + Thd + Tb = 5dms + dlink, where  

dms – Segment Duration 

Tssp – Segmentation Delay, The server-side packetization is specific for segment-based 

streaming, and depends directly on the media segment duration, minimal packetization delay 

equal to the media segment duration: Tssp = dms. 

Tafs – Asynchronous fetch of media segments, the asynchronous fetch of the segments is due 

to that there is no synchronous signaling from the server that a new segment is ready, but 

the client must poll for data. To avoid unsuccessful fetches, the client needs to schedule the 

fetches some time period after the calculated ideal availability time, leading to a typical delay 

contribution: Tafs = dms 

Thd – HTTP download time, the HTTP download time does of course also matter. If the 

available bandwidth is used to a reasonable share, the download time of a media segment 

should be close to the segment duration time: Thd = dms + dlink 

Tb – Buffering in the client The buffering in the client is needed to provide a smooth media 

play-out, and hide transport jitter such a varying download time. To be more robust, it may 

be good to increase the buffer to 2 segments, leading to Tb = 2 dms 

dlink –  Link duration 
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It is still necessary to select a value for dms given this formula. The best value depends on the 

sort of event, particularly the level of competition. Receivers of an HTTP streaming session 

shouldn't get the intended content significantly later than users of broadcast TV or a 

comparable technology. For RTP streaming, buffering and link delay are also present, hence 

the main delay difference in a straight comparison is 3dms - dRTP_ps. The RTP packet serialization 

time, dRTP_ps, is only a few tens of milliseconds here; for example, 20ms for a link at 160 kbps 

and a packet size of 1000 bytes. Therefore, a live HTTP streaming service has a roughly 3-

second longer delay than the similar RTSP/RTP-based service when segment sizes are 1 

second.  [27] 

Consider all of this, the approximately 1s delay is acceptable when the goal is to stream an 

event real-time, but not in our environment, where the avoidance of the accidence depends 

on couples of milliseconds. Hence my purpose is to find other solution which reduces the 

delay as much as possible. Albeit my hypothesis was that the Edge 5G Networks are able to 

host AI solutions and process the data flow seamlessly. With a bit performance optimalization 

a wide variety of use cases could be provided by the Edge UPF.
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7. Conclusions and future plans 

I built a system which is adequate for running AI modules in the edge 5G system, albeit the 
have not achieved the desired latency yet, I made a Proof-of-Concept architecture which is 
able select specific packets and run Deep Learning on them. I have chosen a solution which 
needs more processing than casual, and the system worked properly. In Chapter 3 I described 
a bunch of use-cases, which should be able to be hosted by my architecture. After I get a bit 
expert in edge 5G I would like to predict which are the beforementioned use-cases are 
implementable, and which are not (Table 6.4-1). 

 

Table 6.4-1 Feasibility of the Use-case Scenarios 

Use-Case Feasible?  Justification 

Enhance functional safety YES Albeit my video streaming solution was not 
getting the desired latency, in that solution we do 
not need to stream the video stream forward, 
just look at frames and send the important data 
in plain text. 

Virtual sensors YES In that case we need a more complex Deep 
Learning Solution, but I describe it in that 
Chapter. That case that solution should be 
implemented in the Agent-Marci container.  

Increasing the precision of 
indoor positioning 

MODERATELY With video processing more precise result can be 
achieve than with Ultra Sonic systems, the 
architecture is proper to process video streams, 
but it need to be effective in that scenario. But in 
case of intensive movement, it could be 
inaccurate, E.g. if the AGV moves with 1 m/s, 200 
ms latency means 20cm inaccuracy.   

Support cellular hints for 
mobile robots 

YES A Couple of research described its feasibility. [19] 

Legacy robot control that is 5G 
compatible 

MODERATELY 5G provides the desired low latency for the 
controlling, in the scenario where the Upstream 
is the robots feedback and the answer is the 
controlling command it would functioning 
properly. Albeit I would recommend to 
implement the controlling application (because 
its complexity) in the Edge-Cloud and use the 
Edge UPF solution only for supporting purposes. 

Massive gathering of IoT data YES System is adequate for massive dataflow; DPI can 
forward the designated streams to further 
processing and the rest just pass through the 
system. 

AI on the UE, somehow 
integrate AI into the UPF 

NO That scenario seems like a bit sci-fi from today’s 
perspective, but when it get possible in the future 
I think it would be solvable by the architecture.  
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In the future I would like to decrease the latency of a stream as much as possible. I would not 
achieve as low latency as a native C code could, but that could be decreased further. My goals 
also contains that the demo scenario will be replaced with the real-life scenario. Hence, I 
move the whole architecture in a real 5G edge core, do not simulate anything, use real User 
Equipment, and send it back to real application. I also would like to write a REST API, which 
can control the Deep Learning Solution, and can get parameters, prediction results, etc. I also 
write the basics of that API, but I need to be done it to fit in 3GPP’s standard.  

To summarize the results the architecture could be host a wide variety of application and it 
opens a new direction in Smart Telecommunication System.  
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9.  List of abbreviations  

The following table describes the significance of various abbreviations and acronyms used 
throughout the thesis. The page on which each one is defined or first used is also given. 
Nonstandard acronyms that are used in some places to abbreviate the names of certain white 
matter structures are not in this list.  

Abbrevation Meaning Page 

3GPP 3rd Generation Partnership Project 6 
AOA Angle of Arrival 17 
AtLoc Attention Guided Camera Localization 16 
AGV Automated Guided Vehicle 23 
CUPS Control and User Plane Separation 23 
CP Control Plane 6 
CNN Convolutional Neural Network 27 
DN Data Network 6 
DPDK Data Plane Development Kit 32 
DLS Deep Learning Solution 24 
DNN Deep Neural Network 13 
DPI Deep Packet Inspection 7 
EI Edge AI 13 
FA Factory automation 20 
FR Flight Rack 25 
GPS Global Positioning System 16 
HPA Horizontal Pod Autoscaler 11 
IIOT Industrial Internet of Things 5 
ILS Indoor Localization Systems 17 
ISM Industrial, Scientific, and Medical 20 
IT Information Technology 21 
lR Infrared 17 
IoT Internet of Things 5 
Lidar Light Detection and Ranging 5 
LwM2M Lightweight M2M 19 
ML Machine Learning 5 
M2M Machine-to-Machine 10 
MBoxes Middleboxes 22 
mmWave millimeter-wave 10 
MIMO multiple-input multiple-output 10 
NAT Network Address Translation 7 
NaaS Network as a Service 21 
NWDAF Network Data Analytics Function 19 
NFV Network Function Virtualization 21 
OT Operational Technology 21 
PGW Packet Network Data Gateway 7 
PoC Proof-of-Concept 27 
PDU Protocol Data Unit 6 
QoS Quality of Service 6 
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RAN Radio Access Network 6 
RF Radio-Frequency 17 
RFID Radio-Frequency Identification 17 
RSS Received Signal Strength 17 
SFC Service Function Chaining 7 
SF Service Functions 7 
SGW Serving Gateway 7 
SMF Session Management Function 6 
SDN Software Defined Networks 7 
SLAM Simultaneous Localization and Mapping 7 
TDOA Time Difference of Arrival 17 
TOA Time of Arrival 17 
URLLC Ultra Reliable Low Latency Communications 19 
US Ultrasonic 17 
UWB Ultra-Wideband 17 
UDM Unified Data Management 6 
UPF User Plane Function 6 
WLAN wireless local area network 17 
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