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Kivonat

A teljesen autonóm, illetve önvezető autó megvalósítása korunk egyik legjelentősebb mér-
nöki kihívása. Ami valaha tudományos-fantasztikumnak számított, az a technológia fejlődé-
sével mára már valósággá válhat. Noha az önvezető autók még korai stádiumban járnak, de
elterjedésük forradalmasíthatja a forgalomirányítási és közlekedési rendszereket. Ennek elérése
érdekében több összetett kihívást kell leküzdeni először.

Az önvezető autókhoz kapcsolódó számos megoldandó probléma egyike a parkolóhelyek
automatikus detekciója. A jövőben a lakosság számának növekedésével a járművek száma is
folyamatosan növekedni fog, így egyre nagyobb lesz az igény a parkolóházak iránt, elegendő
parkolóhely biztosításának céljából. Azonban a parkolóhely keresés könnyen fáradságos mun-
kává válhat, melyet nem lehet figyelmen kívül hagyni. Időt, energiát és üzemanyagot fogyaszt,
valamint a sofőrnek akár többször is köröznie kellhet a parkolóban, mire végül talál egy üres
helyet. A dolgozat az automatizált parkolóhely detektálás kérdésének megoldása érdekében be-
mutat egy ultrahangos szenzorokat és LIDAR-okat használó módszert.

A feladat teljesítésének egyik szükséges feltétele a jármű pályájának megtervezése. Dinami-
kus környezet révén kizárólag alacsony számításigényű módszerek működhetnek megbízható-
an. Ennek a problémának az áthidalására mintavételen alapuló fa-építő algoritmust és a Reed’s-
Shepp lokális tervező folytonos görbületű változatát használó módszert mutat be a dolgozat.
Ezeket a tervezőket felhasználva a megoldás olyan utat eredményez, melyet a robot anélkül tud
követni, hogy meg kellene állnia a kerekek kormányzásához.

A közeljövőben a hagyományos és az autonóm járművek párhuzamosan lesznek jelen a
mindennapokban, így az utóbbiaknak le kell tudnia küzdenie az ebből adódó nehézségeket. A
mozgó objektumokkal (mint például a többi autóval és a sétáló emberekkel) rendelkező környe-
zetben működő autonóm járműnek képesnek kell lennie kezelni a velük való találkozást. Ennek
megoldására egy RGB-D kamerát alkalmazó algoritmust mutat be a dolgozat, ahol az objek-
tumokat gépi tanulás segítségével detektálják és mozgásukat becsülik a mélységi információ
felhasználásával.

A dolgozat a fent említett kihívásokkal foglalkozik, és arra törekszik, hogy lehetséges meg-
oldásokat találjon rájuk. Az első három fejezetben a megvalósított algoritmusok kerülnek be-
mutatásra, melyek a fő kérdésekre összpontosítanak, mint a parkolóhelyek felismerése, az útvo-
naltervezés és a dinamikus objektumok detektálása. Ezt követően bemutatásra kerül, hogy ezek
a megoldások hogyan alkotnak egy rendszert, amely képes az autonóm parkolási feladat végre-
hajtására. Az utolsó részben az elvégzett tesztek kerülnek ismertetésre és ezek alapján jövőbeni
fejlesztési javaslatok kerülnek felvetésre.
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Abstract

Building a fully autonomous or self-driving car is one of the most demanding engineering
challenges of our century. What was once considered a science-fiction can become a reality as
the technology matures. However, self-driving cars are fairly in their infancy today, but once im-
plemented they can revolutionize traffic management and transport systems. In order to achieve
that, numerous complex challenges must be overcome first.

One of the many scenarios associated with self-driving cars is related to automatic parking
space detection. In the future, as the population grows the number of vehicles will continue
to rise and it is likely that there will be an increasing demand for parking garages to provide
sufficient parking space. Nevertheless, finding a parking spot can easily become an issue which
cannot be neglected. It consumes time, energy, fuel and the driver may have to circle in the
parking lot until finally finding a vacant spot. To solve the issue of automated parking space
detection, this paper presents a method using ultrasonic sensors and LIDARs.

A necessary condition for the problem is planning a collision-free path for the car. Being in
a dynamically changing environment, the considered algorithms must provide trajectories with
low computational demand that can be followed precisely for car-like robots. To cope with this
problem, a sampling-based tree-growing planning method in conjunction with a continuous-
curvature version of the Reed’s-Shepp local planner is used. The coupling of these planners
results in such paths which the robot can follow without ever having to stop for reorienting its
wheels.

In the near future, conventional and autonomous vehicles will operate simultaneously, so the
latter ones need to deal with the resulting difficulties. For a robot functioning in an environment
with dynamic objects, e.g. other cars and people walking in the garage, it is crucial to manage
situations where they cross each other’s paths. To resolve this, an algorithm employing an RGB-
D camera is implemented, where objects are detected with the help of machine learning and
their movement is predicted utilizing depth information.

This paper deals with the aforementioned challenges and aims at finding potential solutions
to them. In the first three chapters, the implemented algorithms are presented. These parts are
focusing on the main issues which are vacant parking space recognition, path planning and dy-
namic object detection. After that, it is explained how these solutions create a system, which
is able to perform autonomous valet parking. Finally, the system is tested in a simulated envi-
ronment, where the operation is examined and suggestions are proposed about possible future
improvements.
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Chapter 1

Introduction

In this chapter, we first present the problem which we are undertaking to solve. After that,
a brief overview of the implemented system is introduced. Finally, a short description of the
employed framework is given.

1.1 Valet Parking Problem
The car is one of the most commonly used means of transport, without which today’s life

would be inconceivable. As the population grows, the number of privately-used vehicles in-
creases as well, but the number of parking spaces remains for the time being [1]. It is assumed
that numerous parking garages and parking lots will be built in the future to overcome this issue.
As technology improves, drivers do not need to bother themselves by searching for an appro-
priate parking space and parking their cars. Instead, they just simply get off of their cars at the
entrance of these parking garages and go about their businesses. In the past and present, this
service was already available in the form of Valet Parking offered by many restaurant, hotels,
stores and other establishments, where the aforementioned task was performed by a so-called
valet. In our research, we aimed at achieving this by leaving the human resources out and lean
completely on autonomous, intelligent cars to carry the task out.

First and foremost, finding a proper parking space is a burden for many drivers which can-
not be neglected. Owing to the increased demand for autonomous driving and advanced driver
assistant systems, automatic parking system is a topic which have been widely researched. Au-
tomatic parking systems start by recognizing vacant parking spots, but since parking lots and
garages are uncontrolled environments, various obstacles and illuminations are present, there-
fore it is a challenge for such systems to properly detect available locations. Furthermore, these
systems prefer to utilize sensors already installed on mass produced vehicles for ease of com-
mercialization. Among a variety of range-finding sensors, ultrasonic sensor based approaches
are the most popular [2]. However, even if finding a proper parking spot but parking a vehicle
is always a troublesome problem to drivers because it is hard to know the exact turning time [3]
and it is also generally considered a high-stress maneuver [4]. New drivers, disabled people,
unskilled and especially aged drivers can take benefit from our proposed system and also those
who wish to eliminate the time spent on the tedious process related to parking. It is hopeful that
the concept of our system will revolutionize parking scenario in the future.
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1.2 System Overview
As Section 1.1 gave an introduction about Valet Parking and the task to be solved, this

section gives an overview about what we call an Autonomous Valet Parking System and explains
the methods and decisions chosen to accomplish it.

In our simulated environment, the initial pose of the car is at the entrance of the parking
garage. As soon as the car enters the parking garage it starts to circle in the parking lot while
continuously detects the parking spaces and looks for free spaces. Once a proper free space
is found, which will be called the preferred space, a path is planned to that spot, so that the
car can autonomously carry the parking maneuver out. While in motion, it also scans its dy-
namically changing environment for potential objects, such as moving people. Therefore, our
proposed system consists of three main components. First, Parking Space Detection is intro-
duced in Chapter 2. Second, Path Planning is represented in Chapter 3. Third, Dynamic Object
Detection is described in Chapter 4. Valet Parking Manager is the integrator component of our
system which will be presented in detail in Chapter 5. At the end ouf our paper, future improve-
ments will be put forward.

Valet Parking
System

Parking Space
Detection

Path planning

Mapping

Dynamic Object
Detection

Control method

LocalizationPath Planning

Parking Space
Detection

Discovering the
garage and planning

the parking
maneuver

Finding vacant
parking spot

Person detection and
re-identi�cation

Creating control
signals

Providing map

Providing position

Collision
avoidance

Preventing the
collision of the robot

Figure 1.1: Components required for Autonomous Valet Parking. White color indicates the parts
developed by us, while gray color marks the already existing elements.

In order to solve the proposed task, a parking garage was modeled according to the real
parking lot found on the -2nd floor in Building Q of Budapest University of Technology and
Economics. Underground and indoor parking lots are one of the most challenging environments
for automatic parking systems due to their dim lighting, reflections on road surfaces, low con-
trast markings, and the presence of pillars [2]. Since almost all parking slots in underground
and indoor parking lots are of a rectangular type, this paper focuses on this type of parking
slot. Other types (diamonds, slanted, and parallel) are rarely located in these situations due to
their disadvantages in terms of space efficiency. Underground and indoor parking lots also have
much smaller spaces compared to outdoor parking lots.
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As mentioned in Section 1.1, the ease of commercialization is crucial in deciding what kind
of sensors to deploy. Therefore, ultrasonic sensors are most widely used as they are easy to at-
tach to vehicles at low cost. The ultrasonic sensor based detection method has been widely used
and is currently favored by the majority of car manufacturers. These kind of sensors correctly
measure obstacle distances when the target surface is nearly perpendicular to the transmitter [2].
Fortunately, this is the exact case in the most underground and indoor parking lots as the parked
vehicles are perpendicularly located with respect to the transmitter due to the parking slot.

However, unlike outdoor parking lots, underground and indoor parking lots include many
pillars. Since a pillar has a narrow width compared to parked vehicles, the ultrasonic sensor
based detection method has difficulty estimating its position due to inexact range data. In addi-
tion, it is hard to separate a pillar and a parked vehicle if they are located closely next to each
other, thus deteriorating the obstacle position estimation accuracies of the ultrasonic sensor
based method [2].

To overcome this issue, we employed LIDARs as well. Laser scanners have achieved re-
markably accurate performance for recognizing free spaces since they produce highly accurate
range data. At the same time, it must also be admitted that for the time being, they are used less
frequently in real cars due to their high price. However, it is likely that the price will fall over
time.

Furthermore, Section 2.1 provides ample examples that typical parking solutions use camera
technology to detect parking spaces either on their own or combined with data fusion mostly
with ultrasonic sensors. We decided that we leave the camera based solutions out for parking
space detection so it will entirely rely on distance measurement sensors due to the fact, that the
poses of parking spaces are known in advance.

The second core component of the application is the path planning. Car manufacturers have
been working on designing cars more safe and autonomous. As a result of this, the majority of
the latest models are equipped with drive-by-wire technology. This means, that the computers
can fully control the car. They can apply break and throttle signals, and turn the steering wheel
without the intervention of the driver.

A parking lot can be considered as a partially structured environment. The car should follow
the lanes and when a free space is detected, it should safely maneuver itself to the place. During
parking space detection, the velocity of the car should be fast enough not to block the others,
also the car must not deviate too much from the ideal path. In the parking phase precision is
more important, and staying inside the lane is not a priority, human drivers also cross the lane
to properly execute the parking maneuver.

Designing feasible path is computationally expensive, usually a frequency of at least 10Hz
must be met. Feasibility must consider the constraints of the car. Furthermore, since the car
would be driving in a hybrid environment (among autonomous and human-driven cars), the
path should be "human-like" so it will not surprise the participants of the traffic.

Chapter 3 describes the investigated and implemented algorithms in the project, that were
considered based on the aforementioned properties.

In Chapter 4 the problem of object detection is investigated, as the third part of the appli-
cation is visual-based dynamic object detection. In autonomous vehicles, it is crucial to gather
as many information about the environment as possible. There are several sensors that can be
used for this task, but cameras have the best potential without a doubt. In the application, an
RGB-D camera is chosen for object detection which extends the wealth of possibilities even
more. In the first part of the chapter, the different approaches of visual-based object detection
are summarized and after that, the chosen solution is explained. Although the actual solution

3



is used for person collision detection, the implemented structure is adaptable, with plenty of
possible improvements.

As for the implementation, we employed the Robot Operating System framework which
will be introduced in Section 1.3.

1.3 Robot Operating System
Robot Operating System, ROS for short, is a language-independent framework over Linux,

to develop software for robots. It is a set of applications, libraries and conventions to facilitate
the development of complex and robust robotic systems. The entire software is open source,
freely accessible, and supported by an entire community, thus ensuring that each other’s work
can be used to develop further improvements. The main features of the framework are that
it is peer-to-peer, device based and enables the usage of multiple programming languages. It
contains example navigation algorithms, machine vision modules, unified data structures for
different sensor types, robot geometric descriptions, display tool, and of course much more as
well [5].

1.3.1 Package
A ROS program consists of packages. A package performs a task or function. When there

is a need for a new task, it can be done by creating a new package. Multiple packages exist
in a workspace side by side and they are compiled at the same time. In a package there are
two main files, namely the package.xml and the CMakeLists.txt. The official trans-
lation system for ROS is catkin. Packages can be created in a so-called catkin workspace.
This catkin workspace stores every package, each with its associated package.xml and
CMakeLists.txt files. The package.xml file contains the description of the package, the
name and contact details of the author, the license (e.g. BSD), and the package dependencies.
CMakeLists.txt contains information for CMake translator, such as the required compiler
version, what message and service files need to be generated, what nodes to create, what is the
path to link directories, etc [6].

1.3.2 Node
Within a package, the base unit of the system is the node. The node is a separate, executable

program that can be written in one of the supported languages (C++, Python, Lisp). A node
can collect sensor data, run some calculations, or can be responsible for controlling a motor, for
example. Nodes can communicate with each other using the ROS client library (roscpp, rospy).
Client libraries also allow nodes written in different languages to communicate with each other.
Nodes can publish and/or subscribe to a topic. In addition, they can provide services to other
nodes. On startup, a node always announces itself to the master [7].

1.3.3 Master
The master is responsible for registering nodes and services, allowing the nodes to find each

other and exchange data. The master should always start first when the system is ready to run.
ROS is a distributed system therefore nodes can run on different devices within the network.
In this case, we need to specify the addresses of each devices and they must register at which
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address the ROS master is running, as only one master can be in a given ROS system. From this
time, communication between nodes takes place transparently through the network. In addition,
the master also includes the parameter server, which is a centralized database where parameters
related to the system can be stored [8].

1.3.4 Topic
The topic is a communication channel based on the principle of publish/subscribe. A node

publishes data to a topic, and any other node can subscribe to that topic. Multiple nodes can
subscribe to a topic, even from different devices. The subscription is implemented by specifying
a so-called CallBack function in the program, which is called when a new message arrives (see
Figure 1.2). There is always only one, predefined type of message which can be published to a
specific topic. Topics and nodes present in the system can be displayed with the rqt_graph tool,
which displays the relations between nodes and topics as a graph [9].

Advertising

Node Node

Master
Subscription

Topic
CallbackPublication

Figure 1.2: Communication in ROS based on the principle of publish-subscribe

1.3.5 Service
Service is another type of communication between nodes. A service enables a node to send

a request, to which the service responds. In other words, a node can create services that can be
used by other nodes. This can also be thought of as a remote function call, the request means the
input parameters and the response corresponds to the return value. Service’s input parameters
and its return values must be defined in a .srv file [10].

1.3.6 Message
Communication through topics is done by sending messages. Publisher and subscriber nodes

can communicate with each other, provided they use the same type of message. This means that
a topic is clearly determined by the type of message posted on it. A message is a mixed data
structure. It may contain primitive data types (bool, float, integer, string) and other message
types already defined. The fields of the message must be defined in a .msg file [10].
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1.3.7 RViz
RViz is a visualization program suitable for displaying information related to sensor data and

robot status. By subscribing, it displays the content of various topics in 3D, provided that this
is possible. Its primary purpose is displaying and debugging that are extremely useful during
development process. Maps, images and ultrasonic and laserscan data are displayed for example
by using RViz [11].

1.3.8 Gazebo
Gazebo is a physics engine especially designed for robot and environment simulation. It

is free, open-source and widely employed among ROS users. It uses URDF (Unified Robot
Description Format), which is a structured XML to describe the robot: links, joints, motors,
sensors and so on. Gazebo supports a wide variety of sensors e.g., LIDARs, ultrasonic sensors,
camera, odometry and IMU. It is possible to import 3D files, so one can place the robot into a
proper model of the real world. A simulator helps a lot, especially during program development.
Many scenarios, algorithms and ideas can be tested quickly in a safe environment, also it gives
freedom to the developer to try out the program without the need of a hardware. Despite all this,
one should always keep in mind that the simulator simplifies the real world [12].
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Chapter 2

Parking Space Detection

Nowadays, finding a proper parking space becomes an increasingly difficult task. Most of
the times, even if vacant spots are available, the drivers may not have any information about
them. It is either because the free spot is too far from them or it is hidden by some other cars or
objects large enough to hide the spot. In the past, and maybe at some places even now, parking
spaces are managed by personal staff working in the parking lot who might not have a total view
of the available parking spaces. Sometimes the driver has to check for a vacant space by circling
in the parking lot, and the process for searching a free space is not only time but also energy-
consuming as well as it is a wastage of fuel. Serious traffic congestion may also occur due to
unavailable parking space. Automated parking space detection is a major part of an autonomous
valet parking system which aims at solving the aforementioned issues.

2.1 Related work
Various methods and techniques have been proposed to overcome the problem of parking

space detection in congested areas. Nyambal and Klein [1] proposed an approach for a real-time
parking space classification based on Convolutional Neural Networks (CNN) using Caffe and
Nvidia DiGITS framework. The training process has been done using DiGITS and the output
is a caffemodel used for predictions to detect vacant and occupied parking spots. The system
checks a defined area whether a parking spot (bounding boxes defined at initialization of the
system) is containing a car or not (occupied or vacant). Those bounding boxes coordinates are
saved from a frame of a video of the parking lot in a JSON format, to be later used by the system
for sequential prediction on each parking spot. They achieved significant results regarding that
their system did not get triggered when a human passed through the classification area as well
as a street sign did not trigger the classifier if it partially covered a vacant parking spot.

Suhr and Jung [2] put forward a method that reliably detects and tracks vacant parking
spaces in underground and indoor environments by fusing only those sensors which are already
installed on mass-produced vehicles: an AVM (Around View Monitor) system, ultrasonic sen-
sors, and in-vehicle motion sensors. The proposed method detects vacant parking spaces by
combining two complementary approaches: Free space-based and parking slot marking-based.
The free space-based approach finds vacant parking spaces by recognizing adjacent vehicles.
This is one of the most popular approaches as it can be implemented using various range-finding
sensors. However, this approach has a fundamental drawback in that it cannot find free spaces
when there is no adjacent vehicle and its accuracy depends on the positions of adjacent vehi-
cles. The parking slot marking-based approach finds parking spaces by recognizing markings
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on road surfaces. Unlike the free space-based approach, the performance of this approach does
not depend on the existence and positions of adjacent vehicles. However, it cannot be used in
cases where parking slot markings are not present or are severely damaged.

Guo et al. [13] advanced a vision based smart parking framework to assist the drivers in
efficiently finding suitable parking slot and reserve it. A web camera is deployed to get images
of the parking area and image processing techniques are used to detect the presence or absence
of cars to count and locate the available parking spaces. The status of the parking lot is updated
whenever a car enters or leaves the parking lot. Initially, they segmented the parking area into
equal size blocks using calibration. Then, they classified each block to identify the car and
intimate the driver about the status of parking either reserved or free.

Kakinami et al. [14] presented a system to detect the empty spaces available for parking
between vehicles. To detect the parking space, this system combines information coming from
an ultrasonic sensor and a 3D vision sensor. The profiles of parked vehicles are modelled by
a couple of vertical planes: a longitudinal plane and a lateral plane. The empty space between
profiles is the detected parking space. Longitudinal planes are computed with ultrasonic data
while lateral planes are obtained from 3D vision data. As a result of their research, it was shown
that 3D vision and ultrasonic sensing technologies could mutually complement each other in
order to detect and localize parking spaces.

Lin et al. [15] designed a vehicle transverse automatic parking auxiliary system which can
assist the driver to the roadside parking. Their topic was mainly concerned with the develop-
ment of a vehicle transverse automatic parking assist system. The entire system included front-
wheel drive, turning mechanism, transverse drive mechanism and ultrasonic distance detecting
control. Ultrasonic sensors were placed at the front and rear right side of the car so that the mea-
surement mechanism primarily determined whether an obstacle is parallel to the car and thus
whether the detected space is of appropriate size. Both Kamarudin et al. [16] and Spitzner et
al. [17] implemented automatic parking space detection in a very similar way to [15], primarily
using ultrasonic sensors. Moreover, it is also identical in [15], [16] and [17] that the proposed
algorithms were implemented in a small-scaled, car-like mobile robot.

Lee et al. [4] dealt with parking space detection by employing ultrasonic sensor. Using the
multiple echo function, the accuracy of edge detection was increased. The single echo function
means that one ultrasound pulse set is sent and just one echo is received. Then the distance is
calculated by Time of Flight (ToF). The ultrasonic sensor detects the nearest object placed in its
effective beam width by the single echo function and it estimates the direction of the object or
assumes that the direction is an orthogonal angle. Contrarily, the multiple echo function means
that after an ultrasound pulse set was sent and the first echo was received, it also waits for
more echos at each „Multiple Echo Resolution Time”. Then the distance is calculated by ToF
of the first echo and the other echos. The significance of this method is that a surface shape can
efficiently be classified whether it is an edge or a plane.

Last but not least, Anwar et al. [18] presented an ultrasonic sensor based autonomous car
parking system. The system has the ability to self-park the vehicle with coordination between
the sensors and to likewise park the car through mobile phone application remote control. To
achieve the purpose of autonomous parking the system searches for an appropriate parking
space, performs obstacle detection and generates PWM signals from the controller to the servo
motors to achieve parking. The car parking system proposed is a compact module that can be
integrated into any vehicle. In this implementation, the vehicle searches for an empty parallel
parking space such that the space is at least 1.8 times the actual length of the vehicle. If the free
space is less than 1.8 times the actual length of the vehicle, then it tends to find other free space.
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2.2 Methodology
In the sequel, both the used and developed parts and components will be introduced which

were employed in implementing Parking Space Detection. Table 2.1 gives an overview.

Component Function
Map Server Providing the map

AMCL Localization
Minkowski Difference, GJK algorithm Deciding whether two shapes are overlapping or not

Parking Space Detection Node Determining the state of parking spaces

Table 2.1: Components of the system related to Parking Space Detection

2.2.1 Mapping
Although mapping is not the major part of our paper, we cannot leave it without a word

as a map is needed to solve the task. If a mobile robot does not have any information about
its surroundings, but it has to build a map and localize itself within it, then the task is often re-
ferred to as SLAM - Simultaneous Localization and Mapping. This topic is also well researched
and now many off-the-shelf algorithms are available. In our project we experimented two com-
monly used SLAM algorithms, namely GMapping and Cartographer, both of them are capable
of generating an adequate map. GMapping provides a map with lower resolution and has less
sensitivity to map changes therefore it requires less computational demand. On the other hand,
Cartographer is a more precise and complex SLAM algorithm, it provides various other ser-
vices than just basic SLAM and can adapt to the changes in the dynamic environment faster. Its
drawback is, that running the Cartographer requires almost the full computational power of a
modern mid-range PC.

2.2.1.1 Map Server

Map Server is a ROS Package providing the Map Server ROS Node [19]. Its primary task
is transmitting the map data as a ROS Topic. Maps managed by this tool are stored in a pair of
files. The YAML file describes the map meta-data and identifies the corresponding image file.
The image file encodes the occupancy data. It describes the occupancy state of each cell of the
world in the color of the corresponding pixel. In the standard configuration, light gray pixels
are free, black pixels are occupied, and mid-gray pixels are unknown (see Figure 2.1). Color
images can be used too, but they will be converted to grayscale images.

The YAML file contains the following required fields:

• image: Path to the image file. It can be relative or absolute.

• resolution: Resolution of the map in meters/pixel.

• origin: The 2D pose of the bottom-left pixel in the map in the format of (x, y, yaw). Y aw
is interpreted as a counterclockwise rotation.

• occupied_thresh: The pixels which occupancy probability is greater than this threshold
value will be considered completely occupied.
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• free_thresh: Pixels with occupancy probability less than this threshold value are consid-
ered completely free.

• negate: Whether the white/black, free/occupied semantics should be reversed. The inter-
pretation of the threshold values remain unaffected.

Besides from providing an already existing map, Map Server also enables to save a currently
generated map for later use. This will produce the above-mentioned image and YAML files. A
more detailed description (for example about the value interpretation of Map Server) can be
found in [19].

Figure 2.1: The map provided by Map Server

2.2.2 Localization
In order to find the pose of the car on the map, AMCL was employed. AMCL is a prob-

abilistic localization system for a robot moving in 2D [20] and it is one of the most common
methods among today’s robotic localization solutions [21]. It implements the Adaptive Monte
Carlo Localization approach, hence its name. As a prerequisite, it needs a known map in which
the robot can be placed. This is fulfilled by the Map Server presented in Section 2.2.1.1.

During its operation, AMCL generates hypotheses about the pose of the car and puts arrows
indicating these on the map. While the car is in motion, these hypotheses are filtered out by a
so-called particle filter, thus the arrows are gradually grouped around points that the algorithm
considers potential positions of the car. Finally, the arrows are arranged in a group which is
estimated as the real position of the car and so the actual localization is realized.
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(a) Initial state (b) Intermediate state (1)

(c) Intermediate state (2) (d) Final state

Figure 2.2: AMCL in operation. As the car moves, the hypotheses (tiny red arrows) will be
grouped around the real pose of the car. The green dots represent the merged front and rear
LIDAR scans. It can also be noticed that as AMCL becomes more confident with its pose esti-
mation, the green dots become congruent with the map.

ROS provides the AMCL package which works with laser scan data, takes in a laser-based,
known map, transforms messages and outputs pose estimates. On startup, AMCL initializes its
particle filter according to the parameters provided. Amongst the AMCL parameters, it can be
given an estimation of the car’s initial pose. The initial covariances can also be set, i.e., how
much the initial hypotheses depend on each other around the starting point. This affects in how
much space and in what direction the algorithm will place the arrows. This can help in some
cases, but if the car starts from another position, it is not worth relying on this, as this may cause
the algorithm to find a wrong position that counts for the best result locally but not globally.

If the car is positioned incorrectly on the map, we have an option to use a service from
AMCL called global_localization. This service initiates global localization, wherein all parti-
cles are dispersed randomly through the free space in the map and it gradually rearranges them
around the actual position of the car.

11



However, if we do not know that the car is in the wrong position, this solution is not appro-
priate. AMCL also provides another option, which is turned off by default. The solution is if the
algorithm constantly adds some random hypotheses to the existing ones, assuming that the car
is in the wrong place, thus giving a chance to find the real position.

Last but not least, Figure 2.3 shows the differences between localization using odometry
and AMCL. Odometry is the determination of the amount of displacement along the path of the
robot. Knowing the angular rotation of the wheels and the orientation of the steering, the pose
of the robot at the next time can be calculated. A major advantage of odometry is that given the
aforementioned data, it is always able to estimate the new pose of the robot. The disadvantage
is that due to its integral nature, the pose calculation error can increase beyond all limits and
keeping the error within a given limit requires pose verification using a periodically independent
reference.

In ROS, base frame is attached to the robot, in odom frame the relative displacement of
the robot is calculated using odometry and global frame usually means the map frame. The
transition between these coordinate frames takes place with the help of coordinate transforma-
tions. During operation, AMCL estimates the transformation of the base frame (/base_frame)
in respect to the global frame (/map_frame) but it only publishes the transform between the
global frame (/map_frame) and the odometry frame (/odom_frame). Essentially, modifying this
transform accounts for eliminating the drift that occurs using Dead Reckoning [20].

Odometry

AMCL

/odom_frame
Translation

/base_frame
Orientation

/map_frame
Translation

/odom_frame
Orientation

Translation
/base_frame

Orientation

Odometry Drift Dead Reckoning

Estimated by AMCL

Figure 2.3: Differences between odometry and AMCL [20]

More information about the topics, services and parameters of the AMCL package provided
by ROS is available in [20] while about the theory of localization and the algorithm of AMCL
is found in [21].

2.2.3 Minkowski Difference
The implemented parking space detection algorithm presented in Section 2.2.5 incorporates

frequent polygon overlapping checks based on the GJK algorithm, which relies on the concept
of Minkowski Difference. The computation of Minkowski Sum and Minkowski Difference is
crucial for many applications, such as robot motion planning, morphological image analysis
and computer-aided design and manufacturing [22].

12



Let us assume that there are two shapes. The Minkowski Sum of those shapes is all the
points in ShapeA added to all the points in ShapeB:

A⊕B = {a+ b|a ∈ A, b ∈ B} (2.1)

A
B

MS

(a) (b)

Figure 2.4: (a) Two polygons A and B (b) The Minkowski Sum of Polygon A and B [22]

The Minkowski Difference of those shapes is all the points in ShapeB substracted from all
the points in ShapeA:

A	B = {a− b|a ∈ A, b ∈ B} (2.2)

The Minkowski Difference is most commonly employed in obstacle detection algorithms of
mobile robots due to its following, defining factor: if two convex shapes are overlapping (inter-
secting) the Minkowski Difference will contain the origin [23].
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Figure 2.5: A concrete example of Minkowski Difference

Figure 2.5 demonstrates an example where the Minkowski Difference is performed on
ShapeA and ShapeB. These two convex shapes are intersecting each other, therefore the re-
sulting shape (the Minkowski Difference) contains the origin.
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2.2.4 GJK Algorithm
The example in Figure 2.5 highlights a major disadvantage of the Minkowski Difference.

Performing the operation requires the number of vertices of ShapeA multiplied by the number
of vertices of ShapeB multiplied by 21 substractions. Both shapes are convex and defined by
the outermost vertices, therefore the Minkowski Difference must be only performed on the
vertices of the shapes. However, regarding arbitrary polygons, its computational cost can still
be significant due to the possible large number of vertices. This is where the GJK algorithm
facilitates the operation.

The Gilbert-Johnson-Keerthi distance algorithm or simply GJK algorithm is an iterative
method which converges quickly and can run in near constant time. A major prerequisite, that
GJK can only operate on convex shapes since it is based on the Minkowski Difference. GJK’s
original intent was to determine the distance between two convex shapes. GJK can also be used
to return collision information and can be supplemented by other algorithms as well [24].

A substantial benefit of the GJK algorithm is that there is no need to calculate the Minkowski
Difference. Instead, a polygon can be built inside the Minkowski Difference that attempts to
enclose the origin. This polygon is called the Simplex. If the Simplex encompasses the origin
then the Minkowski Difference also contains the origin [24]. The Simplex is built by using
a so-called Support Function. The task of the support function is to return a point inside the
Minkowski Difference given two shapes. The easiest method would be to take a point from
ShapeA and from ShapeB and substract them to obtain a point in the Minkowski Difference.
However, it is not adequate if the support function provides just a random point. Instead, it is
expedient to make the support function dependent on a direction and it is worth choosing the
farthest point in a given direction. Choosing the farthest point has significance because it creates
a simplex which contains a maximum area therefore increases the chance that the algorithm
exits quickly. In addition, the fact can be used that all the points returned this way are on the
edge of the Minkowski Difference and therefore if a point cannot be added past the origin along
some direction then it is certain that the Minkowski Difference does not contain the origin. This
increases the chance of the algorithm to exit quickly in non-intersection cases.

Figure 2.6 demonstrates an example of building a simplex, using ShapeA and ShapeB
from Figure 2.5 and performing the support function three times. First with the direction of
(−1,−1) which results in point (−6,−3), second with the direction of (1,−1) wich results
in point (−1,−3) and last with the direction of (−1, 1) which results in point (−6, 3). Inci-
dentally, it is also noticeable that if the direction of (−1, 0) were used then all the points of
(−6, 3), (−6, 1), (−6,−1) and (−6,−3) would be sufficient. Looking at Figure 2.6 it can be
clearly seen that the Simplex does not encompass the origin but it is known from Figure 2.5
that the two shapes are overlapped. The problem here is that even if the farthest point is chosen
in a given direction but randomly choosing a direction did not yield a Simplex that contained
the origin. If instead the direction of (1, 1) were to be chosen for the third Minkowski Differ-
ence point that yields a Simplex shown in Figure 2.7 and now it contains the origin so it can be
determined that there is overlapping.

As it is clearly seen, the choice of direction can affect the outcome. It can also be noticed
that if we obtain a Simplex that does not contain the origin another point can be calculated and
used it instead. This is where the iterative part of the algorithm comes in. The GJK algorithm
cannot guarantee that the first 3 points chosen are going to contain the origin nor can it guarantee

1Although in terms of “vector substractions” this 2 multiplier here is superfluous, but computer calculations
are performed on scalars, and 2D points have x and y coordinates which must be substracted from each other.
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Figure 2.6: Creating a Simplex
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Figure 2.7: Creating another Simplex

that the Minkowski Difference contains the origin. However, it can modify how the points are
chosen by only choosing points in the direction of the origin.

Basically, only the first direction for the first Minkowski Difference point needs to be cho-
sen, because it is expedient to choose the second direction as the opposite of the first so that
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the initial Simplex has a maximum area. After that the direction should always point towards
the origin. There are numerous options for choosing the first direction, for example an arbitrary
direction, the direction created by the difference of the centers of the shapes, etc. Any will work,
in our implementation it is the first point of ShapeA pointing towards the first point of ShapeB
in a given data structure. After that the algorithm iteratively performs and checks the following:

1. Does the current Simplex contain the origin? If yes, there is overlapping and the GJK
algorithm terminates.

2. Is the Simplex able to get closer to the origin so that it encompasses it? If no, there is no
overlapping and the algorithm terminates.

More information about the implementation part and the theory of GJK algorithm can be
found in [25, 24], respectively.

2.2.5 Parking Space Detection Algorithm
By now we have a map provided by the Map Server presented in Section 2.2.1.1. The car

is localized on this map by employing AMCL described in detail in Section 2.2.2. This Section
focuses on the implementation and demonstrates how the Parking Space Detection algorithm is
realized.

The modeled parking garage was simulated according to the real parking lot found on the
-2nd floor in Building Q of Budapest University of Technology and Economics. The generated
map of this parking lot can be seen in Figure 2.1. The parking spaces are stored in a YAML file
based on the authentic blueprint of the real parking garage. This is significant, because in our
implementation one YAML file contains one layout of parking spaces. If the map changes for
some reason, the parking spaces stored in the YAML file must also be redefined or modified.
The following values are stored for every parking space:

• id: An identification number that uniquely determines the parking space.

• center:

– position: 2D coordinates (x, y) of the center of the parking space.

– orientation: Orientation of the center of the parking space in quaternions
(x, y, z, w). We decided to use quaternion because it is a built-in, default type in
ROS which facilitated the implementation process.

• width: Width of the parking space.

• length: Length of the parking space.

A ROS node was programmed in C++ language called Parking Space Detection Node. On
startup, it reads the YAML file and interprets its content. If one of the data is corrupted (for
example there is an invalid quaternion value), it warns the user and aborts the program. In this
way it is ensured that the parking space detection only occurs when the parking spaces are
properly defined. Furthermore, the node also supplements its internal data structure with a field
called free. Initially, all the values of free are set to false which means that every parking space is
assumed as being occupied. This is a security precaution since it conveys less danger if a vacant
parking space is recorded as occupied as its opposite. Moreover, that is the reason why free is
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not stored in the YAML file, e.g. to avoid unnecessary redundancy. As a matter of course, when
the car moves in the parking garage it will explore its surrounding environment and update the
states of the parking spaces with the help of ultrasonic sensors and LIDARs. The following
steps are performed at each examination:

Step 0: Identifying nearby parking spaces in order to reduce the computational demand of
the further steps: a simple distance test between the center of the parking spaces and the
center of the rear axis of the car is executed. Further steps only apply to nearby parking
spaces.

Step 1: Dividing each parking spaces into 2 · N equal sized cells and extending them by one
cell in the direction of the road, so that all in all there are 2 · (N + 1) sections. The value
of N is calculated as follows:

N = Rounding
(
length

width/2

)
(2.3)

The extension is virtual, only needed for the detector algorithm, displaying the parking
spaces uses the normal size. Then, it is examined whether the 2D projection of the possi-
ble maximum ultrasonic cone (which is a triangle) overlaps with all cells. This is impor-
tant, because it ensures that at least one ultrasonic sensor can have a maximum coverage
of the parking space. Determining the intersection of the 2D projection of the possible
maximum ultrasonic cone as a triangle and each equal sized cells is fulfilled by the GJK
algorithm presented in Section 2.2.4. If there is an intersection, Step 2 follows. If there is
no intersection, then the state of the parking space is unchanged. It is to be noted that the
enlargement by one cell towards the road is advantageous so that if a car sticks out of a
parking space, the detector algorithm still has the chance to identify it correctly.

Figure 2.8: Dividing a parking space into equal sized cells (orange). The added cells are drawn
in a lighter color. The green rectangle represents the enlarged parking space while the purple
triangle is the 2D projection of the ultrasonic cone.

Step 2: It is investigated whether the enlarged parking space as a rectangle intersects with the
2D projection of the currently measured ultrasonic cone as a triangle. To decide this the
GJK algorithm is called. If there is no intersection, the state of the parking space remains
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unaffected. This is relevant if for some reason the sensor cannot see the parking space,
even though it would have the opportunity. This may be because another car is parked
in front of the parking space or a pillar hides it from the sensor’s field of view. Due
to the presence of pillars, underground and indoor parking garages are one of the most
challenging environments for automatic parking space detection systems [2]. But if there
is intersection, Step 3 proceeds.

Step 3: The Parking Space Detection node receives a pointcloud which contains the merged
points of the ultrasonic sensors and the LIDARs. If the enlarged parking space contains
any of these points then its state is set to occupied otherwise it is set to vacant. A simple
distance measurement test diminishes the computational demand. Only those points are
checked which are closer to the center of the parking space than half the diagonal of the
parking space. So this critical distance in this case is the radius of the circle enclosing the
rectangle.

Figure 2.9 demonstrates an example where all the parking spaces are vacant. Parking spaces
are displayed as rectangles where color green indicates vacant while red occupied parking
spaces. Moreover, the green dots are the merged front and rear LIDAR scans, white dots are
the merged ultrasonic and LIDARs pointcloud and the purple cones are the ultrasonic sensor
measurements. When ultrasonic sensors measure above 99% of their maximum range, the mea-
sured range values are not added to the merged pointcloud, because it cannot be determined
whether there is an object or the sensor has simply reached its maximum measurement limit.

The car starts from the bottom left corner and as mentioned earlier, initially all the parking
spaces are regarded as occupied. As the car comes in motion, it runs the parking space detection
algorithm and updates the state of the parking spaces if necessary. Figure 2.9 illustrates two
more things as well. First, parking spaces 5 and 82 are not yet detected as vacant because at this
current moment, there is no ultrasonic cone which overlaps with every equal sized cell, therefore
their previous states remain (Step 1 from earlier). Second, in order to avoid false recognitions
resulting from the uncertainty of AMCL, where the algorithm detects the points of the wall as
occupied parking spaces (otherwise this could happen, for example in case of parking spaces 4
and 81) therefore the length and width values of each parking spaces were reduced by 10%.

Figure 2.9: Detection of parking spaces
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The typical runtime of the parking space detection algorithm is approximately 4-6 milliseconds
which can be considered remarkably robust, especially knowing that there are 170 parking
spaces and 10 ultrasonic sensors which are to be examined in each iteration.

Last but not least, the Parking Space Detection node has a ROS Service through which the
setting of a preferred parking space can be switched on and off. If it is turned on, the node
determines the close parking spaces (similar to Step 0 from earlier) from which it selects a free
parking space which is closest to the center of the car’s rear axis. In Figure 2.9 the preferred
parking space is blue. If amongst the close parking spaces there is no vacant spot, then there is
no preferred parking space and the car keeps in motion waiting for a close and free space which
will be the preferred.
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Chapter 3

Path planning

Path planning is a mandatory process for autonomous mobile robots, that finds a path be-
tween two configurations. The robot is often surrounded by obstacles, that can be standing or
moving, and it must be aware of. Finding a collision-free, safe and optimal path in such a sce-
nario is a difficult problem. This makes the topic actively researched in recent decades.

Optimal paths could vary depending on the application. Algorithms often optimize for
length or travel time, but there are more special approaches also, for example minimizing the
total amount of turning. Sometimes, not only the environment of the robot causes constraints
but the robot itself.

A system is holonomic when the number of controllable degrees of freedom is equal to
the total degrees of freedom. So a holonomic robot can drive straight to a goal that is not in-
line with its orientation. These robots do not have intrinsic kinematic constraints, so finding a
feasible path is much easier. Robots built on castor wheels or omnidirectional wheels is a good
example of holonomic drive.

A non-holonomic robot has less controllable degrees of freedom than the total so it can not
follow any geometric path. It can not drive straight to a goal that is not in-line with its orien-
tation, meaning the robot must either rotate to the desired orientation before moving or rotate
as it moves. Creating a path for such a robot should be done carefully so that the robot’s con-
straints are not violated and it can precisely follow the desired trajectory. Car-like vehicles are
example of non-holonomic robots, since the controllable degrees of freedom is two (accelera-
tion/breaking and turning angle of steering wheel), but the total number of its freedom is three
(position and orientation).

Path planning is a broad and complex field, the exact needs vary on applications, therefore
no best solution exists. A common practice is separating the process into two steps, a global
planning which uses a priori information of the environment, and a local planning phase where
the constraints of the robot and the dynamic obstacles are taken into consideration. There are
numerous algorithms for both used in recent applications and some of them are also addressed
in this document.
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3.1 Global planners
Global path planning is a major component in the navigation process. It contains of finding

a global path between two robot configurations in a cluttered environment. It is also a well-
studied research area, since it is explicitly used in many fields outside robot motion planning,
like: network optimization [26], video games [27] or biology [28]. The core ideas are often
connected to graph-search algorithms which is also a well and actively researched field. Most
of the commonly used global planning algorithms for a single mobile robot can be categorized
into one of these groups:

• Graph search algorithms: Graph is created from the map, as the following: nodes are free
spaces in the map and edges represent the cost of getting there (usually the length of that
path). There are some widely used algorithms that can find the shortest path in this graph.
These algorithms are usually complete, meaning that it will terminate with a solution if it
exists.

– Dijkstra’s algorithm [29]: Starting from the initial node and marks all the neighbor-
ing nodes with the cost to get there. If a node has no more edges to check, it chooses
the least costly node, and calculates the cost of its adjacent nodes. If multiple path
exists to the same vertex, the cheaper one will point to it. Once the goal is reached,
the algorithm terminates and the shortest path is presented with the pointing edges.
It always finds the shortest path.

– A* algorithm [30]: This method is very similar to Dijkstra’s one, but it is addressing
its weaknesses. A general problem with the former one is that it discovers the graph
in all directions. A* introduces a heuristic function which helps to priorities select-
ing nodes in the direction of the goal. This algorithm is being described in more
depth later on.

– D* algorithm [31]: D* is also an improvement of the A* method. Generally the for-
mer algorithm is quite fast and finds optimal solution, but when an obstacle appears
in the path of the robot, re-planning is very expensive. To overcome this issue, D*
starts planning from the goal and has the ability to change the cost of the path. This
enables keeping the previously calculated path outside the obstacle, so can find a
new path quicker.

• Sampling-based algorithms: Instead of considering the whole state space, it is reduced
by sampling. Usually a graph or tree is created and formerly mentioned or commonly
used graph algorithms are used to find solution. In practice, most of these algorithms are
only resolution complete, meaning that the outcome depends on the used resolution. It
can happen that some solution is missed if the state-space is not discretized with enough
precision or the maximum time elapsed.

– Rapidly-exploring random trees: an algorithm designed to randomly select points
from the search space. The selected point is connected to the existing graph. One (or
more) trees are grown from the samples and when there is a path between the start
and goal configuration a basic graph search is used. Many types of RRT algorithms
have been developed, which usually vary in point selection, tree connection, node
number or uses heuristic functions.
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– Rotate-Translate-Rotate (RTR): similarly to RRT a tree is grown but the sampling,
node selection and extension steps are different. This provides good and fast solution
in congested spaces. Because of its favorable computational time, this solution was
chosen and later will be described in more depth.

• Intelligent, heuristic based methods: In the last few decades, there has been a rapidly
increasing interest towards more heuristic methods. Some of them are inspired by biolog-
ical systems e.g.: swarm optimization [32] and genetic algorithms [33], [34]. While other
algorithms were introduced with the advancement of the neural networks [35]. In gen-
eral, these algorithms usually provide optimal solution, but their computational demand
is much higher than the previous methods and is rising with a great magnitude as the map
resolution is increasing

3.1.1 RTR planner
As mentioned earlier briefly, RTR, is short for Rotate-Translate-Rotate, is a planner algo-

rithm inspired by the Rapidly Exploring Random Tree. The detailed walk-through of the algo-
rithm can be found in this paper [36], here a brief overview is presented.

The algorithm builds a topological tree in the free space configuration. It consist of 3 steps:
sampling, node selection and tree extension. It is mainly designed for differential drive robots,
and is proved to provide quick solution with high success rate in narrow environment.

The first step is sampling, and is different from the one commonly used in RRT algorithms.
A random position named guiding position, pG is selected on the free plane. The algorithm only
considers the position, without orientation.

Next step is vertex selection, where the nearest configuration qnearest in the tree is deter-
mined. This is realized with the basic metric function, Euclidean distance, hence no special
metric is needed.

The last step is the tree extension and this is the main difference to the RRT method. From
the selected qnearest configuration, rotation is applied to achieve the desired orientation that
points toward pG. If it successfully performed without collision, then translation is applied to
both forward and backward until the first collision. In narrow space the robot often collides
even in the rotational step, but RTR-planner performs the transnational extension just at the
colliding orientation. Furthermore, the rotation is tried again in the other turning direction as
well, and tree extension is applied on collision (or on successful alignment with pG). Figure
3.1a shows this step in case of the rotational step is blocked. This extension strategy results in a
more aggressive space exploration than the basic RRT.
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(a) Collision occurs in the rotational step [36] (b) Path planned with RTR

Figure 3.1: RTR planner examples

Similarly to bi-directional RRT, the RTR builds two trees, one from the initial the other from
the goal configurations. Connecting the trees is attempted in every iteration. The newly added
transnational element is checked for intersection with the other tree. If one is found and the
necessary rotation at the intersection is collision-free, then the path exists in the merged tree.

3.1.2 A* planner
According to the related works [37], an improved version of the A* can be used in structured

environment, similar where the robot will operate. Therefore, for first the basic A* planner is
introduced in this section. This particular planner aims to resolve the main issue of Dijkstra’s
algorithm. Although the path found by the latter one is optimal in length, it’s drawback is the
required resources. Dijkstra starts exploring the nodes based on their distance from the starting
configuration in ascending order, meaning many nodes are discovered even though they are not
in the direction of the goal. It can be seen easily, that it gets computationally expensive as the
world is expanding.

A* introduces a heuristic function h(n), that underestimates the cost of reaching the goal
from each node. Such function must meet the following criteria:

• h(goal) = 0

• For any two adjacent nodes x and y:

– h(x) ≤ h(y) + d(x, y), where d(x, y) denotes the length of the edge

First one states, that if the goal is achieved, the heuristic function must provide 0. The second
statement means, the function must return less than or equal the real distance between the goal
and node x. Two of the most commonly used of expressions in two dimensional problems are
Euclidean Distance and Manhattan Distance.
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If the sets of criteria is met, the heuristic function is called admissible and is guaranteed to
return a least-cost path. Lets denote any node as n and the goal with g, the form of the distances:

1. Euclidean distance:

h(xn, yn) =
√

(xn − xg)2 + (yn − yg)2 (3.1)

2. Manhattan distance [38]:

h(xn, yn) = |xn − xg|+ |xn − yg| (3.2)

The overall cost of a node f(n) is the sum of the path length from start point to the node g(n)
and the heuristic value of the function:

f(n) = g(n) + h(n) (3.3)

It terminates when the goal is selected (meaning there is a path in a graph) or there are no more
nodes to select. Selection is usually done from a priority queue, where the adjacent nodes of
the already visited ones are listed in a descending order of function f . The first one, with the
least cost is chosen and the value f and g of its neighbors are updated and added to the priority
queue. Each node keeps track of its predecessor, so when the algorithm is stopped at the goal,
the shortest path can be determined.

(a) Dijkstra’s algorithm (b) A star algorithm

Figure 3.2: Comparison of optimal planners [39]

Figure 3.2 shows a comparison between Dijkstra’s algorithm and A*. Although the shape
of the found path is different, they are equal in length. The blue crosses marks the discovered
area and shows the effectiveness of the A* planner over the Dijkstra algorithm.

3.1.3 Hybrid A* planner
The largest disadvantages of the previous approaches is that the paths are sampled in discrete

space (grid map) thus the resulting paths are also discrete. This implies errors in the motion
execution part (when following the line), usually it is smoothed with approximation or in the
local planning phase, but that requires more computation and admissibility might gets violated.

In Hybrid A* search, nodes can be in any continuous point on the grid, considering the
non-holonomic constraints. The state space usually has three dimensions, containing the x, y
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position and θ orientation. The next, reachable states are determined using precomputed prim-
itives that are known to be followable for the car. At each state, these motion primitives are
placed, and its end positions are saved as adjacent, reachable nodes to the open set (priority
queue).

(a) Regular A* (b) Hybrid A*

Figure 3.3: Comparison of A* and Hybrid A* planners [40]

Furthermore, a cost function is still used. One that computes how expensive is it to reach the
adjacent position (which is still known from the primitives) and a heuristic function to estimate
the cost of reaching the goal. The sum of these function is the total cost, which determines its
position in the priority queue. Every node keeps track of its parent which is later used for the
final path reconstruction.

The algorithm got more recognition after it was successfully used in the DARPA Urban
Challenge in 2007 [40]. Many papers were published afterwards about its operation and re-
sults [37, 41, 42].

3.1.3.1 Hybrid A* planner in structured environment

In many scenarios, it is useful be able to influence the final trajectory of the path by assign-
ing waypoints. Suppose the robot should follow lanes, turn or go across junctions, it is highly
preferred to stay in the lane as much as possible, or perform the turn without high deviation
from the ideal curve. This is a crucial step for real-world applications. In our application, the
parking garage also has lanes, that the car should be able to follow, so this algorithm was chosen
as one of the planners.

A typical representation of such waypoints is a directed graph, that captures the topological
structure of the environment. This either requires prior knowledge and created manually, or it
might be generated automatically. In this project the former solution was used. In offline mode,
we manually selected the lane points that are feasible and preferred. This graph is then loaded
together with the map, and is taken into consideration during global planning.

For the structured planner, the heuristic function is extended and new distance metric is
introduced. Given this lane network, represented as a graph: G = 〈V,E〉, where V is a set of
vertexes and E is a set of edges, with αE denoting the angle of an edge. Euclidean distance can
be computed from a vehicle configuration q = (x, y, θ) to the graph:

D(G, q) = arg min
i

〈
Ei : |αE − θ| < αmin

〉
D(Em, q) (3.4)

where D(Em, q) is the Euclidean distance between the edge that is determined by the arg min
expression and the point of the robot configuration. The min expression means, we first look
for the edge that has almost the same heading as the robot. This is especially helpful to avoid
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following the oncoming lane, and staying on the preferred path in turns. Also, for a human
user point of view, to further increase the traveling experience it is favorable to reduce direction
change and reverse traveling as much as it is possible. This soft-constraint is also added to the
cost, as a penalty, so the algorithm tends to chose paths that are more "human-friendly".

Figure 3.4: Path primitive of the Hybrid A* in structured environment

Figure 3.4 shows the progress of the Hybrid A* planner in structured environment. On the
left side of the image, the green rectangle shows the initial pose of the car. On the right bottom
side the red vector indicates the goal. The green curve is the final trajectory. Also, black and red
motion primitives can be seen, which shows the progress of the algorithms.

3.2 Local planners
A local planner is responsible for generating feasible path for the robot with respect to its

intrinsic constraints in the absence of obstacles. A global planner e.g. from the previous section,
provides a collision-free path which usually consists of straight segments (in case of graph
based planners). In case of non-holonomic robots the local planner has the task of connecting
these configurations, provided by the global planner, with smooth and followable trajectory.
Properties of the path are dependent on the type of the used local planner.

After a feasible path is generated, it is checked against collision, and if it fails then new
iteration is started.

Local planners are strongly coupled with steering methods (sometimes they refer the same)
and used in decomposition-based path planning. The exploration of collision-free configuration
space involves a huge amount of steering operations and computation. In order to achieve real-
time planning, the efficiency and the selected methods are crucial.

3.2.1 Car model
Designing local path for non-holonomic robots has been in scope of many research

teams [43, 44, 45]. These research works use a simplified model for the car-like robot and
compute paths made up of line segments connected with tangential circular arcs of minimum
radius determined by the kinematics of the car. Such model is described with the following
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equations:

ẋ = cos(θ)v, (3.5)
ẏ = sin(θ)v, (3.6)

θ̇ =
1

L
tan(φ)v, (3.7)

where the notations match with Figure 3.5. The (x, y, θ) is the car configuration, v is the lon-
gitudinal speed, L is the distance between the front and rear wheel axles and φ refers to the
steering angle.

Figure 3.5: Ackermann model for car-like robots [36]

The turning radius can be expressed as: ρ = L
tanφ

. The shortest path between two configura-
tions for the simplified car was first established by Dubins [44] for a car moving forward only,
and later by Reeds and Shepp [45] for the car moving in both directions. Although the resulting
path is optimal in terms of length, the curvature of this type of path is discontinuous. Disconti-
nuities occur between segments and arcs, also between arcs with opposite direction of rotation.
In order to follow such path precisely the car would have to stop at each curvature discontinuity.
This behavior is not preferred for human beings so curvature continuity is a desirable property.
Continuity can be described with one more parameter: steering velocity. This is a finite, upper
bounded variable of the robot. The implied equation that need to be met:

|σ| ≤ |σmax| =
Ωmax

L cos2 φ
(3.8)

where σ denotes the curvature change rate, Ω is the actual steering angle rate of change (steering
velocity).

One of the most wide-spread algorithms is presented in the next section, the RS method is
using the simpler model, and an improved version is described later that overcomes the problem
of discontinuity is using the extended model of the car.

3.2.2 Reeds-Shepp’s paths
Reeds and Shepp (RS in short) were the first who proposed a solution to find the shortest

path for the simplified car model. This allowed the car to go forward and backward at a constant
velocity or turn with minimum turning radius. This limitation enabled them to show that the
shortest path between two configurations on a 2D plane belongs to a family of 48 paths. These
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paths are a result of at most 5 primitives’ concatenation. A primitive in this context is either a
line segment or a circular arc. Sussman and Tang [46] further restricted the possible path pool
to 46 based on the minimum principle of Pontryagin.

Let S denote a straight line segment and C a circular arc with a radius %. Left and right turns
are represented with L and R. Furthermore subscripts denote the length of the straight line or
the angle of the arc. The direction is represented with (+) for forward and (-) for backward, and
cusps, where the direction change happens is with "|". The following 9 groups and 46 motion
primitives can describe the shortest path:

Base word (groups) Sequences of motion primitives
C|C|C (L+R−L+)(L−R+L−)
CC|C (L+R+L−)(L−R−L+)(R+L+R−)(R−L−R+)
C|CC (L+R−L−)(L−R+L+)(R+L−R−)(R−L+R+)

CSC
(L+S+L+)(L−S−L−)(R+S+R+)(R−S−R−)
(L+S+R+)(L−S−R−)(R+S+L+)(R−S−L−)

C|Cβ|CβC (L+R+
β L
−
βR
−)(L−R+

β L
+
βR

+)(R+L+
βR
−
β L
−)(R−L−βR

+
β L

+)

C|CβCβ|C (L+R−β L
−
βR

+)(L−R+
β L

+
βR
−)(R+L+

βR
−
β L

+)(R−L+
βR

+
β L
−)

C|Cπ/2SC
(L+R−π/2S

−R−)(L−R+
π/2S

+R+)(R+L+
π/2S

−L−)(R−L+
π/2S

+L+)

(L+R−π/2S
−L−)(L−R+

π/2S
+L+)(R+L+

π/2S
−R−)(R−L+

π/2S
+R+)

CSCπ/2|C
(L+S+L+

π/2R
−)(L−S−L−π/2R

+)(R+S+R+
π/2L

−)(R−S+R−π/2L
+)

(R+S+L+
π/2R

−)(R−S−L−π/2R
+)(L+S+R+

π/2L
−)(L−S+R−π/2L

+)

CCπ/2SCπ/2|C
(L+R−π/2S

−L−π/2R
+)(L−R+

π/2S
+L+

π/2R
−)

(R+L−π/2S
+R+

π/2L
−)(R−L+

π/2S
+R−π/2L

+)

Table 3.1: Path primitives and groups for optimal path from Reeds and Shepp

Between two configurations, the optimal path can be found in this pool of groups. RS is
usually used to connect the points of the global path that is almost fully feasible for a non-
holonomic robot. The geometric path has nonzero clearance from the obstacles and the steering
method verifies the topological property, so the approximation succeeds in finite time [47].

Figure 3.6: Path planned with RS algorithm

Figure 3.6 shows a parking maneuver using the RS algorithm.
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3.2.3 Continuous-Curvature generalization of Reeds-Shepp’s paths
As mentioned earlier, the drawback of the path generated with an RS algorithm for a car-like

robot is that it has curvature discontinuities. This either has to be addressed in a way, otherwise
the resulting trajectory is not feasible for a human observer or will result as a jumping error for
the steering controller. Therefore path smoothing algorithms have been published over the last
three decades. The used curves that results in a continuous curvature path can be categorized
into two groups: curves that have closed-form expression e.g. B-splines [48], polynomials [49]
or polar splines and parametric curves whose configuration point is a function of their arc length
e.g. clothoids [50], cubic spirals or intrinsic splines [51].

CCRS is the abbreviation of Continuous-Curvature Reeds-Shepp algorithm. This steering
method computes paths with the following properties:

• continuous-curvature

• upper-bounded curvature

• upper-bounded curvature derivative

The algorithm is similar to the RS in terms of path generation, but in order to ensure continuity
it introduces CC-Turns and uses them instead of circular arcs. The final path is a sequence
consisting of CC-Turns and straight line segments. It was shown, that the CCRS path is not
optimal in terms of length, however they converge to the optimal RS path as the sharpness of
the curvature goes to infinity. To achieve the desired continuity between the segments and arcs,
a new motion primitive has to be introduced.

3.2.3.1 Clothoid

Clothoid is a curve which curvature changes linearly with its curve length. The curvature
change is described one parameter: sharpness, denoted by α, which is constant all along the
shape. It does not have a closed form of expression. The curvature, denoted by κ, as a function
of the length of the curve:

κ(s) = κ(0) +

∫ s

0

γαdξ = κ(0) + γαs (3.9)

To derive the equations for the configuration along the clothoids, first the Fresnel-integrals have
to be introduced:

CF (r) =

∫ r

0

cos
(π

2
ξ2
)
dξ, (3.10)

SF (r) =

∫ r

0

sin
(π

2
ξ2
)
dξ, (3.11)

where ξ is the variable of the integration. The (x, y, θ) configuration can be expressed as a
function of length:

x(s) = γ

√
π

|α|
CF

(√
|α|
π
s

)
, (3.12)

y(s) = γsgn(α)

√
π

|α|
SF

(√
|α|
π
s

)
, (3.13)

θ(s) = γ
κs

2
, (3.14)
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where γ denotes direction of the motion.
When clothoids are used for path planning, eight different types can be distinguished and are

shown in 3.7. The sign of sharpness sgn(α) is either Positive or Negative. The robot’s direction
γ can be Forward or Backward. Lastly, the sign of the absolute curvature change sgn

(d|κ|
ds

)
determines whether a clothoid is in-type or out-type.

Figure 3.7: Different types of clothoid curves [36]

Defining clothoids can be done in various different ways. It was shown by Wilde [52] that
a clothoid can be described with a (κ, δ) pair, the curvature and the deflection of the curve at
a certain point. The paper only covers the case of forward motion, and the more general case
was presented in [36]. Furthermore, a new representation is shown in the paper, that helps us to
reduce the number of free parameters from two to only one. This makes the explicit computation
of these curves simpler. The former variable pair can be written as:

α =
κ2

2δ
=

κ2CC
2δCC

(3.15)

where κCC and δCC can be any fixed coherent pair. For simplicity, it is preferred to point them
to the endpoint, where they have maximum value along the curve. With this representation the
necessary equations that fully describe the in-type clothoid:

x(δ) = sgn(δCC)

√
2π|δCC |
κCC

CF

(√
2|δ|
π

)
, (3.16)

y(δ) =

√
2π|δCC |
κCC

SF

(√
2|δ|
π

)
, (3.17)

θ(δ) = δ, (3.18)

κ(δ) = κCC

√
δ

δCC
. (3.19)

The expressions for the out-type clothoids are very similar. The changes occur in the sign of the
maximum deflection: δoutCC = δinCC and in the calculation of the total deflection: δout = δin− δinCC .
The CF and SF represents the corresponding Fresnel-integrals.
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3.2.3.2 CC-Turns

A CC-Turn is a geometric element made up of three parts:

• in-type clothoid

• circular arc

• out-type clothoid

It has continuous-curvature along the whole turn and is used in CCRS instead of a simple
circular arc.

Figure 3.8: General case of CCTurn [53]

In this general case, the first part of the CC-Turn is a clothoid arc of sharpness α = αmax
whose curvature goes from 0 to κmax followed by a circular arc with radius R = 1/κmax and
an out-type clothoid with sharpness −α whose curvature goes back to 0. The sign of α and κ
determines the shape if the CC-Turn. From implementation point of view, it can be assumed
without loss of generality, that the starting configuration is (0, 0, 0, 0), where the last element is
the curvature. After this primitive is constructed, it can be transformed to any pose in the plane.
The qs and qg are the start and goal configuration, and the qi, qj are the beginning and the end
of the circular arc.

There are cases when the CC-Turn is degenerate. Let δmin denote the minimum deflection
required for the in-type clothoid to reach the maximum curvature κCC from 0 followed by
an out-type clothoid that goes from κCC to 0. The first scenario is when the total amount of
deflection is less then the minimum δmin, so there is no circular arc in the CC-Turn. This is
usually referred as Elementary path and can be seen on Figure 3.9a. Calculation of δmin :

δmin =
κ2max
σmax

, (3.20)

where σmax is the upper bound of the curvature change rate. Lets denote v the constant velocity
of the robot, than σ can be computed as the following: αmax|v| = σmax

The other case is when the total amount of deflection has a value from the following range:
δ ∈ [δmin + π; 2π). In this case, it is possible to further reduce the length. The RS-car (and
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therefore the CC-car also) can make backward motions (unlike the Dubins car), so it is possible
to refine the CC Turn to start moving backwards when it reached the end of the first, in-type
clothoid. Moving back with a deflection of δ − δmin − 2π will result in the exact same position
as it would be if it had traveled all along the circular arc. This path is not only shorter but is
more likely to be collision free, since the bounding box of the total trajectory is way smaller.
This case can be seen in Figure 3.9b.

(a) Elementary path (b) Backward arc path

Figure 3.9: Degenerate versions of the CC-Turn [53]

3.2.3.3 CC Path

To reach any arbitrary configuration on the free space, connecting CC-Turns and segments
are necessary, their result is called CC Path. Constructing them is similar to the RS method. The
main difference here is that now two circles are connected with a µ-tangent line segment. To
help understanding the scenario, Figure 3.10 shows a typical CC path consisting of a C-S-C and
C-C sequence where C denotes a CC-Turn.

(a) CSC sequence (b) CC sequence

Figure 3.10: µ-tangent line connection of the common cases of CC-path [53]
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The necessary groups for path planning in case of CCRS are similar to the ones for the RS
path. One possible grouping was described more detailed in [54].

Papp D. had a CCRS implementation for a previous version of our system. Our implementa-
tion reused some of his ideas regarding the grouping of the path type. Also, we had to integrate
the algorithm to the currently used robotic framework. Furthermore, we focused on improv-
ing the computational speed as well. According to the book, written by Nikolaus Correll [55],
collision checking could take up to 90% of the execution time in path-planning problems so a
successful and quick local method is mandatory. Usually during collision checking, the local
path planner is invoked until a free path is not found.

Some best practices we used during implementations:

• if it is possible only compute the points once and transform them later to the required
configuration

• use look-up tables wherever it is possible

We followed the first one for every geometric element — clothoid, arcs, CC-Turns. The latter
one was used for the Fresnel-integrals to fasten the calculation of clothoids [56]. The values
were stored for elements, having maximum deflection of π/2 and was multiplied by a gain
calculated from the varying parameters of the primitive. Along with these improvements, our
implementation has become around 4 times quicker than the earlier, making it a better option to
choose as a local planner in highly congested areas.

3.2.3.4 Result comparision of CCRS and RS path

Figure 3.11 shows a perpendicular parking maneuver situation. This kind of parking happens
the most in case of a parking garage.

(a) Planned with RTR+RS (b) Planned with RTR+CCRS

Figure 3.11: Perpendicular parking maneuver with different planners

The path planned with RS is more crude and would not be comfortable for a human pas-
sanger. The path is not only contains a backward motion part, but also a couple of discontinuities
where the car must stop, and reorient its wheels. On the other hand, the path designed by the
RTR+CCRS planner combination provides a smooth and continuous curvature path, which the
car can execute without stopping. Also, this path is more human-like, therefore is preferred in a
hybrid environment, where autonomous and human-driven cars are present.
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3.2.4 Approximator
In this section, the aforementioned approximator, that was used together with the global

and local method, is described. The main task is to divide the global paths into smaller parts
that can be followed by the robot. When the path is created by the global planner, (start, goal)
configurations should be given to the local planner. At first, the global path’s start and goal
configuration is given, but the local planner is most likely to fail to return a collision-free path.
In the next iteration the local planner should be invoked for planning with a (start, goal) point
pair, where the new goal point shall be closer to the start then the previously selected goal
configuration. The next goal point in case of this approximator is chosen as the following:

• the end configuration of the primitive before the last one

• if there are only one primitive left, then the last one is halved

The shape and length of the primitives depends on the used global planner. In our case for the
RTR planner, the primitives are straight line segments and rotational movements.

If the local planner successfully provides a path for the invoked start and end configuration,
then in the next iteration, the reached goal will be chosen as start and the global goal will be the
goal. To prevent an endless division of the last segment, a minimum distance is specified, and
the approximation report failure.

3.3 Methodology
The path planning methods were chosen in the aspect of the project’s goal. As it was de-

scribed earlier in Chapter 1 our goal was to create and automated valet parking system. That
being said, the used algorithms have to perform well in parking lots and in narrow, dynamically
changing area. Based on the previously presented literature and algorithm review, we ended up
using two, different methods. The first one is the Hybrid A* planner in structured environment
and the second one is a combination of the RTR and CCRS with the approximator described.

In the presented scenario, we have captured the map in advance with Cartographer and is
using AMCL for localization in runtime. Since the map was available, we manually added a
track graph for the lanes. They helped the Hybrid A* planner to keep the car in the correct
side of the road during it is scanning for an empty parking lot. The properties of this planner
makes it a suitable and reasonable candidate. For the parking task, we wanted to test another
method, that can provide successful solution fast enough in narrow spaces. It can happen from
time to time, that we have to invoke the planner as the environment is changing, so we chose the
mentioned combination: RTR+CCRS. Furthermore the parking maneuver is performed in very
narrow area, so it is crucial for the robot the follow the path very precisely. The result of the
combined planners always provide such path with the properly measured and tuned parameters.
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Chapter 4

Dynamic object detection

Autonomous navigation of robots and cars requires adequate models of their static and dy-
namic environment. In many situations, for instance in the given parking space detection exam-
ple, the map of the static environment can be constructed offline and used as a reliable starting
point. In a more general situation, where the static environment is unknown, the standard solu-
tion is based on perceptions of the distance from objects, then processing the measurements to
build a local representation of the surrounding scene and finally integrating the local represen-
tation into a global one [57].

In contrast, dealing with the dynamic environment is always challenging since the focus
is more on the interpretation of an unknown situation, so the robot is able to react properly,
which is a difficult and a computationally demanding task. Furthermore, detecting moving ob-
jects from an autonomous vehicle is a major precursor to many activity recognition, object
recognition and tracking algorithms.

4.1 Object detection
Detection can be thought of as general or object-specific detection. In the case of general

detection, the goal is typically to find the area in which the vehicle can safely navigate. For
this task, it is expedient to use distance-based detection, to which we can apply active and pas-
sive sensors. The former involves sensors based on RADAR, LASER or LIDAR and ultrasonic,
while the latter includes optical (camera) sensors. In the case of object-specific detection, there
are two main approaches, one is called traditional object detection whilst the other one uses
learning-based algorithms to solve this task. In traditional object detection, the recognition al-
gorithms typically focus on the outline, shape, structure, or symmetry of the object based on an
image taken by a camera and look for the features that define it [58] . As for deep learning, it
rejects the traditional programming paradigm where problem analysis is replaced by a training
framework where the system is fed a large number of training patterns (sets of inputs for which
the desired outputs are known) which it learns and uses to compute new patterns [59].

For clarification, in this paper, the problem definition of object detection means the task to
determine where objects are located in a given image (object localization) and which category
each object belongs to (object classification).

The first part of this chapter gives a brief overview about the typical sensors used to solve the
issue of object detection and declares the choosen sensor. The second part is about the different
methods used in object detection.
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4.1.1 Sensors used in object detection
The most typical sensors used for object detection in autonomous vehicle systems are

sonars, LIDARs, RADARs and cameras. Including more sensors into sensor fusion system ben-
efits with better performance and the robustness of the solution since each sensor has its own
advantages and drawbacks [58, 60].

Ultrasonic sensors are inexpensive, but have short-range, which can be further reduced by
dusty environments, and reflections impair their accuracy due to their poor angular resolution.
They are typically used in automatic parking systems and low-speed adaptive cruise control
because they are not suitable for accurate object localization for the reasons mentioned [58] .

Laser-based distance sensors promise better resolution but are much more complex and
expensive technology. They are accurate, capable of high-resolution 3D measurement and are
insensitive to environmental influences, however, dark, light-absorbing surfaces can cause prob-
lems [58, 60] .

RADARs have relatively long distance but low angular resolution, so they are not really
effective in scenarios with multiple objects. These sensors are typically used for adaptive cruise
control, collision avoidance and emergency braking systems as well as for classification in ob-
ject detection [60] .

The use of cameras as sensors is becoming more and more popular, in addition to the fact
that image processing technologies have evolved a lot during the last few decades. At the same
time, these devices have also become cheaper, more compact and their quality got better. Nor
can we ignore the fact that the computing power available to computers has also increased
dramatically. These advances in technology have contributed greatly to be able to use computer
image processing as a real-time method in practice [61, 62] .

Although RADAR and LIDAR systems used in the automotive industry can detect obstacles
effectively, their ability is limited when it comes to distinguishing objects. The camera, on the
other hand, can be used for this and many other purposes. However, for a moving vehicle in a
dynamic environment in most cases, it is crucial to have information about the distance from the
recognized object so that collision can be avoided. There are methods to estimate the distance
based on a single image input, but the accuracy of these methods is questionable [63].

To resolve this contradiction, the sensor that is chosen in this paper for object detection is
an RGB-D camera. These type of cameras capture RGB colour images augmented with depth
data each pixel. A variety of techniques can be used for producing the depth estimates, such
as time-of-flight imaging, structured light stereo, dense passive stereo, laser range scanning,
etc. While many of these technologies have been available to researchers for years, the recent
application of structured light RGB-D cameras to home entertainment and gaming has resulted
in the wide availability of low-cost RGB-D sensors, that are well-suited for robotics applications
[64, 65, 66] .

4.1.2 Object detection based on traditional vision
As it was stated earlier, to gain complete image understanding, one should not only concen-

trate on classifying different images but also try to precisely estimate the locations of the objects
contained in each image. These two tasks, classification and localization are the two key steps
to a complete object detection algorithm.

In traditional techniques, a computer vision solution that performs classification usually con-
sists of the execution of several algorithms in a sequence called an algorithmic pipeline [67].
The first step is a pre-processing phase with image correction like noise filtering or intensity
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Figure 4.1: Haar-like features (left) and their use for facial detection (right) [67]

transformation. This is followed by a feature extracting phase, the purpose of which is to trans-
form the information found in the pixels of the image to a a higher level of abstraction, which
are image characteristics . These image features (SIFT, SURF and BRIEF are the most common
for object detection [59]) are designed to easily separate task-relevant information from inter-
fering effects in the space they define. The last step is the decision phase in which the algorithm
assigns a tag to the given image based on the image characteristics [67].

In the sequel, some traditional classification and segmentation techniques are explained, to
get a general view of this topic.

4.1.2.1 Classification techniques

Viola-Jones: This method is also known as Haar Cascade detector because it uses a special
feature type, called Haar-like features. Even though it is good for general object recognition, it
is typically used for face detection (4.1 [67]). The Haar features examine a detail of the image
using a binary window by subtracting the pixels below the black parts from the sum of the
intensities of the pixels under the white parts. This gives a signed number that describes the
similarity between the window and the image detail. A large positive result means similarity,
a large negative result means contrast, while a result around zero means a complete lack of
similarity [67].

One of the main drawbacks of using Haar-like features is that even for a relatively small part
of the image, there are a huge number of different features which would require a tremendous
amount of computation. This number is reduced with the help of several optimization methods
but this takes a lot of additional effort. Another disadvantage is that the characteristics used are
not invariant to image transformations, so the algorithm performed with their help is only able
to compensate for this problem to a certain extent [67, 68].

Bag of (Visual) Words: The original ’Bag of Words’ idea is that a text can be classified by
topic based on the relative frequency of words that appear in the text.

The same concept can be easily adapt to the case of image classification where the ’words’
are local image features. These are usually corner-like points coded into a transformation-
invariant descriptor. These features simultaneously encode the look and structure of the image
in a small local slice, and from their relative location, the global shape can also be inferred.
Their main disadvantage is that their calculation is quite expensive.
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Figure 4.2: Histogram of visual words [67]

A so-called visual dictionary is also needed so that the classification can be done based on
it. The objects are represented as a cluster of words, and the choice of the number of clusters
is basically the task of the designer, who has to find a compromise value between reducing the
compactness of the clusters and over-increasing the number of groups. If the visual dictionary is
successfully constructed with the help of clustering, the new local image features can be easily
assigned to its words by minimizing the square error from the word centers [67] .

The histogram of the visual words in a given image expresses which relative frequency of
the words in the visual dictionary occurs in the image in Figure 4.2. A big shortcoming of this
method is not utilizing any information about the absolute or relative position of each visual
word to make the classification, so it lacks the ability to localize the position of the object.

Deformable part-based model (DPM): This method overcomes the mentioned drawback
of the previous one by describing each class as a graph of words, where the edges of the graph
represent the geometric relationships between each word. These connections are not completely
rigid, but can vary within certain limits (deformation). As it can be seen in Figure 4.3 the features
used by deformable submodels are basically convolutional filters, which have two types: central
(root) and partial (part) filters. The former has the task of giving a large response at the centre of
the object, while the latter must give a large response at the position of the previously mentioned
parts of the object [67, 69].

4.1.2.2 Segmentation techniques

In the field of computer vision, there are several scenarios when it is important to classify
each pixel into separate objects. This task is called segmentation, which output is usually a
multi-state image, which contains the labelled pixels [67].
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Figure 4.3: Visualisation of the two type of filters on an example image [67]

The simpler techniques are based on colour and intensity thresholding or clustering. Other
methods try to find related regions based on different inclusion criteria, these are called region-
based methods. There are also edge, motion, and graph-based methods [67].

Clustering The essence of clustering is to divide the points of a set of points defined in any
space into some subset, that is, a cluster, so that the clusters thus obtained satisfy some com-
pactness criterion as much as possible. Although several algorithms have been proposed for
clustering, one of the most common solutions is the k-means procedure [67].

Figure 4.4: The process of k-means clustering [67]

K-means The k-means method intends to classify the set of points into k clusters so that
the sum of the squared distances of the elements of these clusters from the centre of the cluster
is minimal [67]. It uses an iterative algorithm whose initialization step is to randomly place k
centres in the space stretched by the data points. It then repeats the next two steps until the
algorithm converges. Figure 4.4 shows the steps of k-means. As a first step, you assign each
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point to the cluster centre closest to it, thus changing the cluster assignment of each point. It
then assigns a new value to each cluster centre, which will be the arithmetic mean of the points
in that cluster. This step changes the position of the centres, so that which point belongs to
which cluster, so that the iteration can continue to run.

4.1.3 Object detection using machine learning
Traditional vision techniques use descriptive analysis to solve the problem, and as a result,

the algorithms they use are exact and can easily be formulated as some series of instructions
and logical conditions. Deep learning, on the other hand, takes a completely different approach.
It rejects the traditional programming paradigm by replacing problem analysis with a training
framework, which tries to discover the rules that underlie a phenomenon. This method is called
predictive analysis [59] .

Figure 4.5: Complete flow of a CNN to process input image classification [70]

Although there are many types of neural networks in deep learning, most of them are not
considered effective in the field of computer vision, because an average image has at least hun-
dreds of pixels and usually three channels, so traditional fully-connected architectures would
generate millions of parameters, which easily leads to overfitting and requires lots of computa-
tion [67].

Perhaps the most commonly used neural networks in object detection are CNNs or Convo-
lutional Neural Networks [71]. In a CNN architecture each input image passses through a series
of convolutional layers, pooling, fully connected layers (FCs) and finally a activation function
classifies the object. The flow is shown in figure Figure 4.5, the different parts of CNN has
different functions which are described in the sequel [70].

Convolution Layer Convolution is a mathematical operation that extracts features from the
input with the help of a kernel (or filter) that preserves relationship between pixels. Based on
the chosen kernel the operation can perform edge detection, blurring, sharpening etc.

Convolution layers have a parameter called stride, which determines the number of pixels
to be shifted with kernel during convolution.

Sometimes the filter with a given stride does not perfectly fit the input image. In this case
there are two options, either the image is padded with zeros or the part where the filter did not
fit is dropped [70].
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ReLU ReLU stands for Rectified Linear Unit for a non-linear operation. It can be described
as follows:

f(x) = max(0, x) (4.1)

ReLU’s purpose is to introduce non-linearity into the neural network. Other non linear functions
can substitute it, but in data science ReLU is tend to be the best solution due to its performance
[70].

Pooling Layer This layer helps to reduce the number of parameters, in case the image is too
large. This step reduces the dimensionality of each map but keeps the important information.
This step usually called as spatial pooling or downsampling. The typical types are max, avarage
and sum pooling [70].

Fully Connected Layer The Fully Connected layer is a traditional Multi Layer Perceptron
[72] that uses a softmax activation function in the output layer. The Softmax function takes a
vector of arbitrary real-valued scores and squashes it to a vector of values between zero and
one that sum to one. The output from the convolutional and pooling layers represent high-level
features of the input image. The purpose of the Fully Connected layer is to use these features
for classifying the input image into various classes based on the training dataset [70].

Activation function This is the final step of the CNN, which classifies the output.

The frameworks of generic object detection methods can mainly be categorized into two
groups [71]. One starts by generating region proposals and then classifying each of them into
different object categories similarly to the traditional object detection pipeline. The other tries
to solve the two problems (categorization and localization) in one step. These are usally labelled
as regression-, classification-based or single shot frameworks.

4.1.3.1 Region Proposal-Based Frameworks

There are several region proposal-based methods like R-CNN [73], Fast R-CNN [74], Faster
R-CNN [75], spatial pyramid pooling (spp-net) [76] etc. To have a general view about this
approach the next pharagraph briefly explains evolution of R-CNN into Faster R-CNN.

Figure 4.6: Architecture of R-CNN [77]
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R-CNN The R-CNN adopts a selective search to generate about 2000 region proposals for
each image. These 2000 candidate region proposals are warped into a square and fed into a
convolutional neural network that produces a 4096-dimensional feature vector as output. The
CNN extracts the features and feds them into an SVM (Support Vector Machine [78]), to classify
the presence of the object within the region. In addition, the algorithm also predicts four values
which are offset values to increase the precision of the bounding box [71]. Figure 4.6 shows the
architecture of the method.

The drawbacks of this method that to train the network one should classify 2000 region
proposals per image and the processing time is far from real time, as it takes around 47 seconds
to test each image.

Figure 4.7: Architecture of Fast R-CNN [77]

Fast R-CNN Figure 4.7 shows the architecture of Fast R-CNN. Instead of feeding the re-
gion proposals to the CNN, the input image is directly fed to the neural network to generate a
convolutional feature map. From this, it identifies the region of proposals and with the help of
a RoI pooling layer it reshapes the proposals into a fixed size so they can be fed into a fully
convolutional layer [71, 77].

With these modifications Fast R-CNN is able to produce output in every 2 seconds. While
this is a significant improvement compared to the previous algorithm, this method can not be
used in real time applications [79].

Faster R-CNN Both of the previously mentioned algorithms use selective search to gather
region proposals. This turned out to be a slow and time consuming process which affects the
performance of the network. Faster R-CNN enchances its performance by leaving the network
to learn these region proposals [77].

Instead of using a selective search algorithm on the convolutional feature map (like Fast
R-CNN does), it uses a separate network to predict the region proposals. The rest of the steps
are similar to Fast R-CNN [77].

With these improvements, Faster R-CNN is finally able to detect obects under 0.2 seconds,
which means it can operate at 5 frames per second [79].

4.1.3.2 Single Shot Detection Frameworks

Frameworks that are able to map image pixels straightly to bounding box coordinates and
class probabilites seem to outperform region proposal-based methods in terms of execution
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speed[71]. To enhance performance, these frameworks tend to use lower resolution which af-
fects their accuracy. The two state of the art frameworks that are described here are YOLO [80]
and SSD [81].

Figure 4.8: The model of YOLO [80]

You Only Look Once (YOLO) Yolo divides the image using an SxS grid and each grid
cell is responsible for predicting the object centered in that grid cell. Each of them predicts B
bounding boxes (BBs) and confidence scores for those boxes. Each bounding box consists of
5 predictions: x, y, w, h and confidence. x, and y are the coordinates of the center of the box,
while w and h are the width and height relative to the image size. There are also C conditional
class probalities predicted in each cell. As a result, all cells has Bx(C + 5) outputs, which are
produced by a 1x1 convolutional filter. Figure 4.8 shows the general process of the algorithm.

YOLO has a difficulty in dealing with small objects in groups, which is caused by strong
spatial constraints imposed on bounding box predictions [71].

There are newer version of YOLO, trying to improve the performance of the original one. In
YOLO2 the width and height of the enclosing rectangle are estimated in relation to a reference
rectangle (so-called anchor box), of which there are a total of B pieces (one for each estimate).
The width and height values of each anchor box are determined using B-element clustering
on the rectangles in the training database. It is also important to mention that during detection,
YOLO may find an object more than once, in which case we keep the highest confidence value
of the predictions of too similar a shape, while discarding the rest. This step is called non-
maximum suppression [67] .

Single Shot MultiBox Detector (SSD) Instead of fixed grids SSD takes the advantage of a
set of default anchor boxes with different aspect ratios and scales to discretize the output space
of bounding boxes. During prediction the network generates scores for each object category
present in each default box. The network combines predictions from multiple feature maps with
different resolutions, which helps it to conveniently handle objects with various sizes [81].
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Figure 4.9: The model of SSD [81]

SSD uses VGG16 network as a feature extractor (the same CNN is used in Faster R-CNN).
Then it adds custom convolution layers afterward. However, each of these layers reduce the
spatial dimension and resolution. To overcome this problem it does independent object detection
from multiple feature maps as it can be seen in Figure 4.9.

Figure 4.10: A comparison between different frameworks [79]

As it was already stated, single shot frameworks are superior to region proposal-based meth-
ods in terms of execution speed. However, it is important to mention that the price for the speed
must be payed, and it costs accuracy. As Figure 4.10 shows each algorithm has its pros and cons
[79]. Altough YOLO runs the fastest, it provides the worst accuracy amongst these methods,
while Faster R-CNN gives the best. As for SSD, it seems to be a good solution as it is able to
run on a video with little accuracy trade-off [82].

In conclusion, there is no golden rule when it comes to choosing the right object detection
method because it depends on the problem one is facing.
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4.2 Methodology
In the current valet parking scenario, our focus was on detecting people moving around the

parking spaces and avoiding collision with them. A collision avoidance system using two (a
front- and a back-facing) LIDARs have already been developed for the autonomous vehicle,
which uses the point cloud created from the fusion of the two sensors perceptions as an input.
However, these sensors could only detect objects at a given height, which caused failures in
some scenarios. To overcome this problem we expanded this solution with the help of image-
based object detection and depth image segmentation, where the dynamic object detection al-
gorithm also contributes to the input of the collision avoidance system by adding the recognised
people to the point cloud. It is important to emphasize, that the implemented method is modular
and can be used in various other applications.
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Figure 4.11: The process of dynamic object detection

As it was already stated, an RGB-D camera provides the input to the dynamic object detec-
tion algorithm. In practise, the inputs are two ROS Topics, one stores the RGB image with the
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bit depth of 8 on each channel, while the other contains the depth information on 16 bits, where
each pixel value stores its the distance from the camera in millimetres. The general view of the
process can be seen in Figure 4.11. After the first step, which is person detection the output is
used for re-identification and depth image segmentation. The outputs of the re-idenetification
part are yet to be utilized, while image segmentation is used for collision avoidance. To achive
this the segmented depth image is converted into point cloud, then merged together with point
clouds from other sources (LIDARs) from which the Obstacle Detector make decisions during
motor control.

The gray colored nodes were already implemented and their function is the following:

• ScanMerger node: This node is able to merge point clouds from different sources into
one single set.

• Obstacle Detector: This node is able to control the motor and limit its maximum speed
if necessary. The decision is affected by the point cloud provided on its input.

All the communication is implemented using ROS topics, and the implemented solutions
are described in the following part of this section excluding the already implemented Scan-
MergerNode and CollisionAvoidanceNode.

4.2.1 Object detection implementation
Object detection is realised with the help of OpenVINO Toolkit (Open Visual Inference and

Neural Network Optimization) developed by Intel as it has modular and powerful solutions for
vision-based applications. The Toolkit also provides pre-trained models for several applications,
including person detection as well [83]. We chose this solution because in the future we plan to
use an Intel RGB-D camera.

Unfortunately, the toolkit does not support depth image segmentation with neural networks,
so that part of the task was implemented using traditional techniques.

Figure 4.12: Overview of OpenVINO Toolkit [83]

4.2.1.1 OpenVINO Toolkit

OpenVINO toolkit is a comprehensive toolkit for quickly developing applications and so-
lutions that solve a variety of tasks including emulation of human vision, automatic speech
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recognition, natural language processing, recommendation systems, and many others. Based on
latest generations of artificial neural networks, including the already mentioned Convolutional
Neural Networks (CNNs), recurrent and attention-based networks, the toolkit extends computer
vision and non-vision workloads across Intel hardware, maximizing performance [83].

Figure 4.13: Logic flow presented in ROS OpenVINO Toolkit [84]

Figure 4.12 shows an overview of the toolkit. It is extremely versatile as it is able to use
pre-trained models from almost all sources (Caffe, TensorFlow, MXNet etc.) using its Model
Optimizer, which optimizes the model and converts it into its intermediate representation. Be-
sides, the Inference Engine helps in the proper execution of the model on different devices such
as CPU, GPU, FPGA and the Intel Movidius Neural Compute Stick [83].

Fortunately Intel created a ROS wrapper called ROS OpenVINO Toolkit, which integrates
the capabilities of OpenVINO into ROS, which makes it easy to use in our system [84, 84].
In addition, it also provides a logic implementation, by introducing the definitions of parameter
manager, pipeline and pipeline manager. Figure 4.13 depicts how these entities co-work together
when the corresponding program is launched.

Considering the needs of the current application the toolkit is configured so that it takes an
RGB camera topic as an input and performs person detection and re-identification with the help
neural networks. The toolkit provides pre-trained networks for both purposes [84].

For person detection we chose a model that uses SSD, because it gives a good compro-
mise between speed and accuracy, as it was discussed previously in Section 4.1.3. It takes the
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provided RGB image in a lower resolution (320x544) and gives the detected people with their
bounding boxes, label and confidence [84].

The re-identification model takes a whole body image as an input and outputs an embedding
vector to match a pair of images by the cosine distance. The model is based on the OmniS-
caleNet backbone developed for fast inference. A single re-identification head from the 1/16
scale feature map outputs an embedding vector of 256 floats [84].

All the outputs of the mentioned neural networks are available by subscribing to the corre-
sponding topics and the results are visualized and an output image can be viewed using RViz.

Figure 4.14: Output of the neural networks visualised in RViz

The output of the neural networks (inclouding the bounding boxes, the ID given during
re-identification and the confidence value) can be seen in Figure 4.14.

4.2.1.2 Depth image segmentation

To utilise the extra information provided by the camera, in this step the position of the
objects is specified with the help of the depth image.

Figure 4.15 shows the steps of this process segmentation. In the first part the mask of each
object is created separately and in the final step these masks are merged together.

The creation of the mask involves the following phases: first, the depth image is cropped,
with the help of ROIs (region of interests or bounding boxes - as they were referred earlier)
which are provided by the neural network. Then the distance of the object is predicted. The
prediction is based on the assumption, that the pixels in the middle of the bounding box are part
of the objects and the predicted distance is the mean value of these pixels. After that, the cropped
image is divided into clusters with the help of k-means. This step makes sure that the position
of the pixels relative to each other is taken into account during segmentation. Finally, the mean
value of the clusters is calculated and if this value is in a given range from the predicted one,
the cluster is considered part of the object. Figure 4.16 shows the output mask image.

Depth to point cloud converter node Fortunately ROS provides several packages to manip-
ulate data on ROS topics and one of them is called depth image proc which provides basic
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Figure 4.15: Steps of segmentation

Figure 4.16: Mask of the segmentad image

processing for depth images. It includes converting the depth image to point cloud, so the ap-
plication utilizes this package to provide depth image proc output to the previously mentioned
ScanMerger node. The only configuring it needs is to provide the name of the input and output
topics.
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(a) The point cloud created from the LIDARs. (b) Detected people become part of the
point cloud.

Figure 4.17: Output of ScanMerger before and after the implementation of dynamic detection

In Figure 4.17, with red colour, the point cloud of the merged sets can be seen before and
after the people are added. On the right you can see they contain the surface of the person, as it
is seen from the view of the camera.
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Chapter 5

Valet Parking System

The last chapter of our paper demonstrates the top level application of the system and shows
the experimental results. Finally, opportunities for further improvements will be proposed.

5.1 Valet Parking Manager
Section 1.1 gave a general overview about the problem we aimed at solving, while Chapter 2,

Chapter 3, and Chapter 4 described in detail the employed means of achieving it. This Section
focuses on the Valet Parking Manager Node which is the integrator part of our system. It can be
considered as a state machine, the state of which can be seen in Figure 5.1.

Start

Valet Parking Manager

Executing the
parking maneuver

Detecting parking
spaces

Parking
completed

End

Dynamic Object Detection

Figure 5.1: Flowchart of Valet Parking Manager Node

The initial position of the car is the driveway to the parking garage. Valet Parking Manager
Node provides 2D Navigation Goals which purpose is to ensure that the car is circling in the
parking lot. These goals are stored in the same YAML file where the parking spaces are stored
as well presented in Section 2.2.5. The following values are stored related to the navigation
goals:

• id: An identification number that uniquely determines the navigation goal.

• position: 2D coordinates (x, y) of the goal.

• orientation: Orientation in quaternions (x, y, z, w). The reason for using quaternions is
the same as explained in Section 2.2.5.
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Similar to Parking Space Detection Node in Section 2.2.5, Valet Parking Manager Node
reads this YAML file and interprets its content. If one of the data is corrupted (for example
there is an invalid quaternion value), it warns the user and aborts the program. In this way it
is ensured that navigation goals are properly set. All in all, there are a total of eight navigation
goals, two-two in each corner of the parking garage, one before the corner and one after the
corner. This is significant for the following reason. At first, a path is planned from the starting
pose of the car to the first navigation goal which is designed by the Hybrid A* planner. A
TrackGraph can be drawn on the map in advance which is taken into account when planning a
path using Hybrid A*. This TrackGraph was introduced in Section 3.1.3.1. With proper tuning
of the parameters, the planned path is nicely aligned with the lanes. As for curves in corners,
it is especially important that the planned path does not deviate completely from the road we
have defined in advance. That is the reason why there is a navigation goal before and after every
corner as it can be seen in Figure 5.2.

Figure 5.2: The parking garage with the parking spaces. The purple box indicates the driveway
from the upper level while the blue crosses denote the eight navigation goals. The small arrows
constitute the TrackGraph.

Simultaneously with circling, the car also detects the parking spaces and determines whether
they are vacant or occupied. If the previously set navigation goal is approached, then the next
goal is provided by Valet Parking Manager Node. If there is currently no vacant parking spots
in the parking garage, the car will keep circling around the eight navigation goals until finding
a vacant space. Once a vacant spot is detected, two things happen. First, if it is the only one
free parking space in the close environment of the car, it will not just be a simple vacant spot,
but also the preferred parking space denoted by Parking Space Detection Node. If there are
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multiple free spaces, then a preferred space will be selected as described in Section 2.2.5. Park-
ing Space Detection Node sends the preferred parking space to Valet Parking Manager Node.
Thereafter, Valet Parking Manager Node signals back to Parking Space Detection Node to turn
off determining another preferred parking space. Second, it also changes the planner type from
Hybrid A* to RTR+CCRS. This communication happens by using ROS Message and ROS Ser-
vice, respectively. Once this change happened, the path to the parking space will be planned
by RTR+CCRS, and the car executes the parking maneuver. Although the planned path must
be followed by the car, the algorithm of the used Path Follower is out of the scope of the cur-
rent work. We only note that the task of path following was solved by employing MPC (Model
Predictive Control). While executing the parking maneuver, Valet Parking Manager compares
the current pose of the car with the pose of the preferred space so it is known when the park-
ing operation has just finished. Figure 5.3 demonstrates the above described operation of Valet
Parking Manager.

(a) Initial pose of the car and the planned path to
the first navigation goal

(b) As the car gets close enough to the current
goal, a new goal will be set if there is no preferred
parking space

(c) If there is a preferred parking space, path plan-
ner will be changed from Hybrid A*
to RTR+CCRS

(d) Car parked to the preferred parking space and
other parking spaces were successfully detected
(spot 104 and 105) as well

Figure 5.3: Valet Parking Manager Node in operation
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All along the process, people are detected and re-identified with the help of neural networks.
Exploiting the extra depth data from the RGB-D camera a pointcloud containing the detected
objects is also created. The collision avoidance system makes use of this pointcloud, while the
other outputs are yet to be utilized in the process of improving the solution.

(a) The neural networks are able to detect and re-identify multiple people

(b) The detected people appear in the pointcloud as well

Figure 5.4: Dynamic Object Detection in operation

Figure 5.5 shows the simulated environment in Gazebo and also verifies the correct work of
our system based on Figure 5.3 and Figure 5.4. It can be seen that parking spaces were correctly
identified (for example spot 104 and 105 are vacant). Furthermore a standing and a walking
person was detected as well.
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It should also be noted that it can be influenced in advance how the car will pose itself
within the parking spot. This is achieved by a ROS Parameter called reverse_parking. If it is
set to true, then the back of the car will be posed towards the wall when parked. If it is set to
false then its opposite happens. Also, parameters of the planners can be set in the same way.
The most important ones for the Hybrid A*: length of the primitives, maximum deviation from
the TrackGraph, weights of the distance from the graph points and the obstacle, and iteration
limit. For RTR+CCRS planner, the most important is the maximum curvature change rate σ
from Equation 3.8 which ensures that the path is feasible.

Figure 5.5: The car in the simulated environment which was modeled by Gazebo

Our progress can be followed at a YouTube channel1 where we also demonstrate what could
be seen in Figure 5.3 and Figure 5.4 in a form of a video.

5.2 Future Improvements
In the current implementation, a map was generated as described in Section 2.2.1, made

available by the Map Server presented in Section 2.2.1.1 and the car was localized by employing
AMCL explained in Section 2.2.2. We are aware of an issue, that since only localization is
currently happening, the static map is never updated, therefore the cars in the detected occupied
parking spaces will not be appeared in the real map. To overcome this hurdle, we propose
to use the SLAM algorithm called Cartographer. As explained in Section 2.2.1, compared to
GMapping, Cartographer is capable of adapting to the fast changes in the dynamic environment.

As in the case of path planners, there is a recent paper about further increasing the smooth-
ness of the path [85]. It is achieved by introducing an upper limit not only to the maximum
curvature and maximum curvature rate but for the maximum curvature acceleration as well.
This approach fully satisfies the dynamic constraints of the steering system therefore results

1https://www.youtube.com/channel/UCethKCG_CuYYY_Mb5pV8jIg
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in a better tracking performance. This local planner could be used as an improvement of the
CCRS.

It can be noticed in Figure 5.4a that the people in the simulated environment are not scaled
properly. We tried to change it with a couple of programs already, but due to their animation the
simulator could no longer load it. In the future, we would like to align their sizes with the rest
of simulated objects.

As for Dynamic Object Detection, there are plenty ways for improvement. By having the
depth data and the detected people their movements can be predicted which information can be
utilized by the path planner. Apart from person detection the current method can easily be used
to detect other object, for example cars or road signs. With these information more complex
decisions can be made.

Our team is already developing a 1:3 scaled model car at our department which is equipped
with all the sensors used in the simulation. The ultimate goal is to operate the system on this
real robot car in the future.
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