
1 

 

 

Budapest University of Technology and Economics  

 

 

 

 

 

 

Gergő Zoltán Sipos 

Real-time, Hardware-In-The-Loop 

(HIL) based modelling of an electric 

drive system built on an 

asynchronous machine 

CONSULTANT 

Balázs Farkas 
BUDAPEST, 2018 



 

Table of Contents 
 

Abstract ............................................................................................................................ 3 

Kivonat ............................................................................................................................. 4 

1 Introduction .................................................................................................................. 5 

2 The fundamentals of real-time modelling .................................................................. 6 

2.1 Mathematical tools .................................................................................................. 6 

2.1.1 Simulation time ................................................................................................ 6 

2.1.2 Number representation ..................................................................................... 6 

2.1.3 Discrete numerical approximation methods .................................................... 7 

2.2 Technical environment ........................................................................................... 8 

3 Creation of the system elements real-time models .................................................. 11 

3.1 Grid model ............................................................................................................ 11 

3.2 Rectifier ................................................................................................................ 13 

3.3 DC link .................................................................................................................. 16 

3.4 Inverter .................................................................................................................. 18 

3.5 Asynchronous machine ......................................................................................... 21 

3.5.1 The Clarke and inverse Clarke transformations ............................................ 22 

3.5.2 Parameter reduction ....................................................................................... 22 

3.5.3 Model calculations ......................................................................................... 24 

3.5.4 Saturation calculation .................................................................................... 25 

3.5.5 Normal circuit variable calculations .............................................................. 27 

3.5.6 Transformations to rotating field coordinates (d-q) ....................................... 27 

3.5.7 Mechanical model .......................................................................................... 28 

3.5.8 Encoder modelling ......................................................................................... 28 

4 Design of the FPGA environment ............................................................................. 30 

4.1 Fixed points ........................................................................................................... 30 

4.2 Clock management ............................................................................................... 31 

4.3 Sigma-delta conversion ......................................................................................... 31 

5 Verification ................................................................................................................. 34 

5.1 Stationary tests ...................................................................................................... 34 

5.2 Dynamic tests ........................................................................................................ 37 

References ...................................................................................................................... 40 



3 

 

Abstract 

In my dissertation I implement a Hardware-In-The-Loop system, which is 

able to model the behaviour of an electric drive. The drive model consists of a 3-

phase rectifier, a DC link, a three-phase two-level voltage inverter and an 

asynchronous machine. The model works functionally and is also able to model 

such secondary functions as semiconductor losses, transistor dead times and 

saturation of the asynchronous machine.  

I build my model using Matlab Simulink toolbox elements in such a way, 

that the Verilog code - generated from the model - can run on the Xilinx Zynq-

7000 platform. I need to generate a bitstream, using Matlab and Xilinx Vivado, 

and the model needs to be suitable for a fast file generation for the FPGA. This is 

essential, because it speeds up the development significantly. 

I create a Matlab application to control this FPGA based, real-time drive 

simulator, on which I also carry out measurements. 

At the end of my dissertation I present the capabilities of my system and 

what it can be used for during the development of a drive control system.  

 

 

 

 

 

 

 

 

 

 



 4 

Kivonat 

A dolgozatomban egy Hardware-in-the-Loop rendszert valósítok meg, 

amely képes valós időben modellezni egy hálózatról működő, 3 fázisú 

egyenirányítóból, egyenáramú oldalból, 3 fázisú, kétszintű feszültség inverterből 

és aszinkron gépből álló hajtás működését. A modell nem csak a funkcionális 

működés emulációjára képes, hanem olyan másodrendű hatásokat is figyelembe 

vesz, mint a félvezetők veszteségei, kapcsolási holtidők, illetve az aszinkron gép 

telítése. 

A modellt a Matlab Simulink toolbox elemeiből építem fel, úgy, hogy az 

ebből generált Verilog kód a Xilinx Zynq-7000 platformon futtatható legyen. A 

hatékony fejlesztés érdekében a modellel szemben további elvárás, hogy a Matlab 

és Xilinx Vivado fejlesztő eszközökre épülő toolchain segítségével könnyen 

lehessen a FPGA-n futtatható bitfájlt generálni. Ez azért fontos, mert ez nagyban 

felgyorsítja a fejlesztés közi iterációkat.  

Az így létrejövő FPGA alapú, valós idejű hajtásszimulátor vezérléséhez 

létrehozok egy Matlab alapú applikációt és a létrejött szimulátoron méréseket 

végzek. 

Mindemellett, dolgozatom végén bemutatom, hogyan használható az 

általam fejlesztett eszköz egy hajtásrendszer vezérlőjének fejlesztése során. 

 

 

 



 5 

1 Introduction 

The main goal of my Hardware-in-The-Loop system is to make the development 

of an electric drive control unit easier. First, let’s take a look at how the electric drive 

system works.  

The drive system that consist of the grid, a three-phase rectifier, a DC link, a three-

phase two-level inverter model and an asynchronous machine.  

The grid provides the three phase voltages, 230 Volt RMS each. The three-phase 

rectifier converts this three-phase voltage into ~540 Volt DC voltage. The DC Link 

contains a capacitor and a reactor, which reduce the voltage and current ripple, which 

results in a more stable DC supply. The voltage inverter, controlled by the drive control 

unit, converts the DC voltage into a controlled AC voltage for the asynchronous motor. 

The control unit provides the control signals for the gate driver unit and regulates 

certain motor parameters. The gate driver unit gives voltage to the gates of the transistors 

in the inverter. This determines the output voltage of the inverter. Measured parameters, 

which make the regulation possible, are fed back to the control unit. 

If you want to test the control system’s algorithm, you can use non-real-time tests 

on a PC platform, but if you want to test the control unit itself, you either need a testbench 

with an inverter and a motor, or a HIL system. The benefit of a HIL system is that it is 

much cheaper, and easier to test the control unit, and you can also monitor motor 

parameters, which are difficult to measure. 

 It is very useful and important to be able to easily and cheaply test the drive 

control unit. Therefore, it is used widely in the industry for advanced development. 



 6 

2 The fundamentals of real-time modelling 

2.1 Mathematical tools 

2.1.1 Simulation time 

The FPGA clock cycles are discrete steps, so the HDL coder only supports 

discrete time codes. Therefore, the Matlab Simulink model is in discrete time as 

well. 

2.1.2 Number representation 

 There are two options for number representation, these are floating-point and 

fixed-point data types. 

 Floating-point data type numbers consist of three parts, a signum bit, exponent 

bits and fraction bits. The fraction bits represent the number itself, and the exponent bits 

determine where the binary point is. Floating-point representation can represent numbers 

in an enormous scale. 

 Fixed-point numbers, on the other hand, have a signum bit and an integer part, 

with a pre-defined binary point. If the range of the representable number is known 

precisely, fixed-point representation is more accurate than floating-points. 

But if we don’t know the exact range, then the following problems may occur: 

• Its range is much lower than using floating-points. If the representable 

number is bigger than the limit, the fixed-point number overflows. 

• If the representable number is small compared to the maximum 

representable value, it will contain a lot of unnecessary zeros, and it will 

be inaccurate. 

I use only fixed-point data types in the model, because it is much faster for FPGA 

calculations, and it is pretty easy to know the ranges of the variables in the model.  



 7 

2.1.3 Discrete numerical approximation methods 

For approximating differential equations solutions, we can use any of the 

Runge-Kutta methods. The first-order Runge-Kutta method is the Euler method. 

The explicit Euler method looks like the following: 

𝑦[𝑛 + 1] = 𝑦[𝑛] + 𝑇𝑠 ∙ 𝑓(𝑦[𝑛], 𝑡[𝑛]) 

Where y stands for the variable, t stands for time and Ts stands for the fundamental 

step size.  

While the implicit Euler-method:  

𝑦[𝑛 + 1] = 𝑦[𝑛] + 𝑇𝑠 ∙ 𝑓(𝑦[𝑛 + 1], 𝑡[𝑛 + 1]) 

These are one-step solutions, which are really simple and can be calculated very 

quickly.  

There are more complicated Runge-Kutta methods, like the fourth-order and the 

second-order Runge-Kutta. For example, the second-order explicit Runge-Kutta method 

is a two-step method, which calculates as follows: 

𝑘1 = 𝑓(𝑦[𝑛], 𝑡[𝑛]), 𝑘2 = 𝑓(𝑦[𝑛 − 1] + 0.5 ∙ 𝑇𝑠 ∙ 𝑘1, 𝑡[𝑛 − 1] + 0.5 ∙ 𝑇𝑠) 

𝑦[𝑛 + 1] = 𝑦[𝑛] + 𝑇𝑠 ∙  𝑘2 

The error of the Runge-Kutta methods are determined by the fundamental step 

size. The global error of each method is proportional to the step size raised to the power 

of the Runge-Kutta’s order. 

 Therefore, these higher-order Runge-Kutta methods are much more precise, than 

the Euler method, but they are more complicated, and are much harder to compute.  

 With using higher-order Runge-Kutta methods, the simulation can be more 

precise. However, with the Euler-method, the easier computations make me able to reduce 

the fundamental step size. The step size can be reduced so low, that it will not be 

comparable to the system time constants, so higher-order Runge-Kutta methods will not 

be necessary. Reducing the step size is very good for the other calculations in the model 

as well.  

For example, here is the differential equation of the inductivity, which I want to 

implement in my model in discrete time: 



 8 

𝑈𝐿(𝑡) = 𝐿 ∙
𝑑𝑖𝐿(𝑡)

𝑑𝑡
 

Examining a step size interval: 

∫ 𝑑𝑖𝐿(𝑡)
𝑇𝑠

0

= ∫
𝑈𝐿(𝑡)

𝐿
𝑑𝑡

𝑇𝑠

0

 

Converting the equation using the backward Euler method: 

𝑖𝐿[𝑛 + 1] = 𝑖𝐿[𝑛] +
𝑈𝐿[𝑛 + 1]

𝐿
𝑇𝑠 

I use the implicit (forward) Euler method, because I want to determine the current 

of the inductivity for the same clock cycle, that is in the input voltage, not the previous 

one. The signal flow:  

 

1. Figure: Signal flow of the inductivity Euler 

 

2.2 Technical environment 

For the implementation, I use the Zedboard Rev D. The Zedboard is a 

development kit containing a high-performance FPGA Artix and an ARM A9 processor 

with an SD card.  It also has plenty of interfaces, like micro-USBs, ethernet, Pmods and 

switches. The block diagram of the Zedboard: 



 9 

 

2. Figure: Zynq 7000 Block diagram [4] 

The ARM processor functions as an application processor, it is responsible for 

signal processing and communication, while the FPGA is running the model. They have 

on-chip connection, therefore they are called system on chip (SoC).  

The SoC also has a 512 MB DDR RAM, which can be reached from the FPGA 

and accepts data with FPGA clock rate. It is a huge data container that improves 

traceability. 

The FPGA stands for Field-Programmable Gate Array. It is an integrated circuit 

designed to be configurable. The advantage of the FPGA compared to a processor is that 

the FPGA can operate in parallel and process multiple signal flows at the same time. 

While processors have faster clock, they follow instructions and can process only one 

signal at a time.  

The basic components of the FPGA are flip-flops (registers) and lookup-tables 

(LUTs). Flip-flops are responsible to store data between operations in the FPGA. They 

require a clock signal. 



 10 

Lookup-tables are basic blocks in the FPGA, which can implement any logic 

functions of the input variable, like a truth table.  

Besides these blocks, the FPGA contains digital signal processing (DSP48) 

blocks, which are made for fast arithmetic calculations (adding, multiplying).  

 

3. Figure: The block diagram of the DSP 48 in the FPGA 

The DSP blocks have 18x25 bit multipliers, which I will take into consideration 

when choosing the fixed-point data types. The FPGA can implement multiplications with 

wider bits, but it costs more resources, more DSP48 blocks. 

The Zedboard’s FPGA has a clock range of 5-500 MHz. The implemented design 

can have multiple clock signals, and it is really important to choose the proper ones to 

operate with. A faster clock enables more accurate results and make the output easier to 

filter by a low pass filter. On the other hand, if the clock is too fast, the FPGA will not 

have enough time for its calculations and will not be able to meet its timing constraints. 

This will lead to the “worst negative slack” of the design to be negative. The optimal 

design has as fast of a clock as possible, with the worst negative slack staying positive. 

An FPGA can add or subtract pretty fast compared to multiplication, which takes 

more time. Division is much slower than multiplication, so I want to avoid that if possible.   

  

 



 11 

3 Creation of the system elements real-time 

models 

The model is a three-phase converter model with a grid and an asynchronous 

machine: 

 

4. Figure: The model 

I will interpret the models one by one, starting from the grid to the motor outputs. 

3.1 Grid model 

The Grid model has three phase voltage generators and there are no impedances 

like grid inductances. Each phase has a 50 Hz frequency, 230 V effective voltage. The 

three phases are symmetrical by default, but the model supports asymmetric grid voltages. 

The model calculates the grid phase voltages (Ua, Ub, Uc) as its output. The schematic 

circuit diagram of the grid: 

 

5. Figure: Schematic of the grid 



 12 

The model has three sine wave generators, with 50 Hz frequency and 325 

amplitude, because I want to model a 230 V effective phase. The Ua phase doesn’t have 

an offset, the Ub phase has a 120° offset and the Uc phase has a 240° offset. These will 

add up to a symmetrical three-phase system. The model only includes fundamental 

frequency voltages, can be improved to model harmonics later on. 

The sine wave generators are from Matlab Simulink DSP toolbox and compute 

their output from a lookup-table. 

The output time function of the grid, with the phase voltages, plotted via Matlab: 

 

6. Figure: Grid phase voltages 

 The picture shows that the model produces what I expected, symmetrical three 

phases, each 50 Hz and 325 V peak. 

 



 13 

3.2 Rectifier 

The rectifier model contains 6 diodes, 2 for each phase. Its input is the 3 phase 

voltages (Ua, Ub, Uc) from the grid model and the rectified current (irec) from the DC link. 

Its output is the rectified voltage (Urec). The schematic circuit diagram of the rectifier: 

 

7. Figure: Schematic of the rectifier 

I use logic operations to compute the output voltage. The basic idea is that on the 

high side, the phase with the highest potential has the conducting diode. On the low side, 

the phase with the lowest potential has the conducting diode. 

First, the model checks, if the Ua phase voltage is higher than the Ub and Uc 

voltages. If it is, the model passes it into the positive potential of the rectifier, Urec+. If 

not, the model checks whether Ub or Uc is higher and passes it to the Urec+ signal.  

The low side of the bridge computes in a completely analogic way. The model 

checks if the Ua phase voltage is lower than the Ub and Uc voltages. If it is, the model 

passes it into the negative potential of the rectifier, Urec-. If not, the model checks whether 

Ub or Uc is lower and passes it to the Urec- signal.  

Then, the model computes the original rectified voltage (Urec,org), with the 

following equation. This does not contain the diode voltage drops.  

𝑈𝑟𝑒𝑐,𝑜𝑟𝑔 = 𝑈𝑟𝑒𝑐+ − 𝑈𝑟𝑒𝑐− 



 14 

As shown in a table: 

Phase voltages Urec+ Urec- Urec,org 

Ua > Ub > Uc Ua Uc Ua – Uc 

Ua > Uc > Ub Ua Ub Ua - Ub 

Ub > Ua > Uc Ub Uc Ub – Uc 

Ub > Uc > Ua Ub Ua Ub – Ua 

Uc > Ua > Ub Uc Ub Uc – Ub 

Uc > Ub > Ua Uc Ua Uc – Ua 

 

 The average voltage Urec,avg of the rectifier can be calculated from the phase peak 

voltages (Upeak, assumes symmetrical phase voltages), with the following equation: 

𝑈𝑟𝑒𝑐,𝑎𝑣𝑔 =
3 ∙ √3 ∙ 𝑈𝑝𝑒𝑎𝑘

𝜋
 

With my model having 325 V peak voltages, the result of the equation is around 

537.5 V 

The diode drops (Udiode) are determined by the rectified current. The model 

contains a lookup table, which assigns the voltage drop to the rectified current. I modelled 

the forward characteristics of a power diode: 

 

8. Figure: Forward diode characteristics [2] 



 15 

The 1-dimensional lookup table models the 25°C line. HDL Coder doesn’t support 

interpolation (it would be too much computing anyway), so I filled up a 64-element 

lookup-table, so it is accurate without the extrapolation. 

The diode drops at a certain moment are the same on the high and the low side, 

because the diodes are usually same (they are modelled as being equivalent), and the same 

current flows through them. Therefore, the calculated rectified voltage (Urec): 

𝑈𝑟𝑒𝑐 = 𝑈𝑟𝑒𝑐,𝑜𝑟𝑔 − 2 ∙ 𝑈𝑑𝑖𝑜𝑑𝑒 

The output time function of the rectifier, with the rectified voltage, plotted via 

Matlab:

 

9. Figure: Rectified voltage 

The expected average voltage of ideal rectifier would be 537.5 V. The rectified 

voltage on the picture is a tiny bit lower, which is expected due to the diode drops. 

 



 16 

3.3 DC link 

The DC link model contains a choke inductivity and a DC capacitor. The DC 

link’s input is the rectified voltage (Urec) from the rectifier and the DC current (idc) from 

the inverter model. Its outputs are the DC voltage (Udc) and the rectified current (irec). The 

schematic circuit diagram of the DC link: 

 

 

10. Figure: Schematic of the DC link 

The inductivity and capacitor models use the formerly presented Euler method. 

The choke’s input is its voltage (Uchoke), its output is its current (ichoke).  The inductivity 

Euler: 

𝑖𝐿[𝑛 + 1] = 𝑖𝐿[𝑛] +
𝑈𝐿[𝑛 + 1]

𝐿
𝑇𝑠 

The choke inductivity model has a resistor model connected in series, modelling 

the choke resistance. The simple resistor model calculates its voltage from its current via 

Ohm’s law: 

𝑈𝑅[𝑛] = 𝑅 ∙ 𝑖𝑅[𝑛] 

The choke inductivity and resistance are connected in series, so their current will 

be the same and their voltage will add up: 

𝑖𝑅[𝑛] = 𝑖𝐿[𝑛] = 𝑖𝑐ℎ𝑜𝑘𝑒[𝑛] 

𝑈𝐿[𝑛] = 𝑈𝑐ℎ𝑜𝑘𝑒[𝑛] − 𝑈𝑅[𝑛] 



 17 

The DC capacitor’s input is its current (iDCcap), its output is its voltage (UDCcap). 

The capacitor Euler: 

𝑈𝐶[𝑛 + 1] = 𝑈𝐶[𝑛] +
𝑖𝐶[𝑛 + 1]

𝐶
𝑇𝑠 

The capacitor also has a resistor model in series with it, modelling the equivalent 

series resistance (ESR) of the capacitor, calculating the same way as the choke resistance.  

The capacitor and its ESR are also in series, so their current will be the same and 

their voltage will add up. 

𝑖𝐸𝑆𝑅[𝑛] = 𝑖𝐶[𝑛] = 𝑖𝑅[𝑛] = 𝑖𝐷𝐶𝑐𝑎𝑝[𝑛] 

𝑈𝐷𝐶𝑐𝑎𝑝[𝑛] = 𝑈𝐶[𝑛] + 𝑈𝐸𝑆𝑅[𝑛] 

Based on the schematic circuit diagram of the DC link, we can calculate the 

following equations: 

𝑈𝑐ℎ𝑜𝑘𝑒[𝑛] = 𝑈𝑟𝑒𝑐[𝑛] − 𝑈𝐷𝐶[𝑛] 

𝑖𝐷𝐶𝑐𝑎𝑝[𝑛] = 𝑖𝑟𝑒𝑐[𝑛] − 𝑖𝐷𝐶[𝑛] 

𝑖𝑟𝑒𝑐[𝑛] = 𝑖𝑐ℎ𝑜𝑘𝑒[𝑛] 

𝑈𝐷𝐶[𝑛] = 𝑈𝐷𝐶𝑐𝑎𝑝[𝑛] 

So, we have the inputs of the choke and the DC capacitor, and the outputs of the 

DC link. 

The DC link’s purpose is to reduce the voltage and the current ripple. The DC 

voltage (blue) compared to the rectified voltage (red), plotted via Matlab: 



 18 

 

11. Figure: DC voltage and Rectified voltage 

As we can see in the plot, the DC voltage ripple is lower than the rectified voltage 

ripple, as the effect of the DC capacitor.  

3.4 Inverter 

The inverter contains three bridge branches, each of them having a 2 transistor-

diode pairs. Its input is the DC voltage (Udc) from the DC link, the transistor control 

signals from the control system, (T1, T2, T3, T4, T5, T6) and the motor phase currents (i1, 

i2, i3). Its outputs are the three inverted phase voltages (U1, U2, U3) for the motor, the DC 

current (idc), and the error signal. The schematic circuit diagram of the inverter: 



 19 

 

12. Figure: Schematic of the inverter 

 

The inverter model separates into the three bridge branches. Each branch 

determines the phase voltage (Uph) and the error signal via the high and low transistor 

signals (Thigh, Tlow) and the phase current (iph). 

 Thigh Tlow iph Error Uph 

1 0 + 0 Udc - Utr,high 

1/0 0 - 0 Udc + Udiode,high 

0 1 - 0 0 + Utr,low 

0 0/1 + 0 0 - Udiode,low 

1 1 +/- 1 short circuit 

  

 Once the Thigh and the Tlow are true at the same time, the simulation throws an 

error signal, and the other results will be irrelevant. The error signal is fed into an SR flip-

flop, so the error signals remains as long as we don’t reset the SR. 

 The model computes the semiconductor drops, Utr and Udiode via lookup-tables. 

The diode uses the same lookup as the rectifier does, but it can be set to a different one if 

we know what can of diode we want to model. The transistor lookup models the output 

characteristics of an IGBT: 



 20 

 

13. Figure: The output characteristic of the IGBT [2] 

  The model also takes transistor deadtimes into consideration. The deadtime 

block’s inputs are the control signals, its outputs are the T signals to the bridge branch 

blocks. It starts a counter when the control signal changes from zero to one and this 

change will only appear on its output when the counter has counted up to a certain value, 

determined by the turn-on delay and rise time of the transistor [2]. The same happens in 

case of a turn off, a counter starts, and the output only turns off when the counter says so.  

The deadtime block can functionally operate when the control signals change 

their value back while the counters are still counting, and the change of the output signal 

is declined. 

The inverter block calculates the DC current (idc) for the DC link. If it would 

simply add all the motor phase currents, the DC current would be just be zero (if the 

control signals are correct). Instead, it adds the currents flowing through the high side of 

the transistor, which will result in the DC current. Each branch has a “phase DC current” 

as its output, which is the phase current if the high transistor or diode conducts (Thigh =1, 

or Tlow=0 and iph<0), and 0 otherwise. The inverter model adds these up and gets the DC 

current. 



 21 

3.5 Asynchronous machine 

The asynchronous machine model operates in standing Descartes coordinates 

transforms to rotating coordinates in the end. It uses a reduced parameter equivalent 

circuit. Its inputs are the three phase voltages (U1, U2, U3) and the load torque (. Its outputs 

are the three phase currents, the rotor angular speed and rotor position, and every 

electrical parameter in either x-y or d-q coordinates, which can be used for testing. 

The schematic of the equivalent circuit of the squirrel-cage asynchronous 

machine: 

 

14. Figure: The schematic of the asynchronous machine 

The parameters and the variables are the following: 

U    Stator voltage vector 

ψ    Inducted flux vector 

is, ir    Stator and rotor currents 

Rs, Rr    Stator and rotor resistances 

Lls, Llr    Stator and rotor leakage inductances 

Lm    Magnetizing inductance 

w    Electric angular speed of the rotor 

Ls = Lls + Lm   Stator net inductance 

Lr = Llr + Lm   Rotor net inductance 



 22 

3.5.1 The Clarke and inverse Clarke transformations 

The Clarke transformations are used to transform the motor phase voltages (U1, 

U2, U3) to standing Descartes coordinates (Ux, Uy). The Clarke transformation in matrix 

format: 

[

𝑈𝑥

𝑈𝑦

𝑈𝑧

] =
2

3
[

1 −0.5 −0.5

0
√3

2
−

√3

2
0.5 0.5 0.5

] ∙ [
𝑈𝑎

𝑈𝑏

𝑈𝑐

] 

The Uz component is the zero-sequential voltage component and does not 

influence the motor calculations, so the model does not calculate it. 

The inverse Clarke transformations are used to transform the x-y coordinate 

currents back (ix, iy) to phase currents (ia, ib, ic). The inverse Clarke transformation in 

matrix format: 

[
𝑖𝑎
𝑖𝑏
𝑖𝑐

] =

[
 
 
 
 

1 0 1

−0.5
√3

2
1

−0.5 −
√3

2
1]
 
 
 
 

∙ [

𝑖𝑥
𝑖𝑦
𝑖𝑧

] 

The iz current is assumed to be 0. 

3.5.2 Parameter reduction 

The equivalent circuit seen above would be hard to model, because one inductivity 

would need to be driven by current, which cannot be modelled via Euler method 

functionally. Therefore, reduced parameters are introduced, so the model does not need 

to model the inductivity driven by current. 

The reduction starts from the basic flux equations of the motor:  

𝜓𝑠 = 𝐿𝑠 ∙ 𝑖𝑠 + 𝐿𝑚 ∙ 𝑖𝑟 

𝜓𝑟 = 𝐿𝑚 ∙ 𝑖𝑠 + 𝐿𝑟 ∙ 𝑖𝑟 

 I want the member with the ir to disappear, so I introduce “a” reduction factor. 

𝑎 =
𝐿𝑚

𝐿𝑟
 

The new reduced values, Lmr and ir
*: 



 23 

𝐿𝑚 ∙ 𝑖𝑟 = (𝐿𝑚 ∙ 𝑎) ∙ (
𝑖𝑟

𝑎
) = 𝐿𝑚𝑟 ∙ 𝑖𝑟

∗ 

The stator flux with the reduced values: 

𝜓𝑠 = 𝐿𝑠 ∙ 𝑖𝑠 + 𝐿𝑚𝑟 ∙ 𝑖𝑟
∗ 

The stator current must remain the same through the reduction, so the reduced 

magnetizing current has to change: 

𝑖𝑠 = 𝑖𝑚 − 𝑖𝑟 = 𝑖𝑚
∗ − 𝑖𝑟

∗ 

The flux equation reduced, with the reduced stator leakage inductivity, Llsr: 

𝜓𝑠 = 𝐿𝑠 ∙ 𝑖𝑠 + 𝐿𝑚𝑟 ∙ 𝑖𝑟
∗ = 𝐿𝑠 ∙ 𝑖𝑠 + 𝐿𝑚𝑟 ∙ (𝑖𝑚

∗ − 𝑖𝑠) 

𝜓𝑠 = (𝐿𝑠 − 𝐿𝑚𝑟) ∙ 𝑖𝑠 + 𝐿𝑚𝑟 ∙ 𝑖𝑚
∗ = 𝐿𝑙𝑠𝑟 ∙ 𝑖𝑠 + 𝐿𝑚𝑟 ∙ 𝑖𝑚

∗ 

The rotor flux with the reduced values: 

𝜓𝑟 = 𝐿𝑚 ∙ 𝑖𝑠 + 𝐿𝑟 ∙ 𝑖𝑟 = 𝐿𝑚 ∙ (𝑖𝑚
∗ − 𝑖𝑟

∗) + 𝐿𝑟 ∙ 𝑖𝑟
∗ ∙ 𝑎 

𝜓𝑟 = 𝐿𝑚 ∙ 𝑖𝑚
∗ + (𝐿𝑚 − 𝐿𝑟 ∙

𝐿𝑚

𝐿𝑟
) ∙ 𝑖𝑟

∗ = 𝐿𝑚 ∙ 𝑖𝑚
∗ 

 As we can see, the ir successfully disappeared, so we don’t have to model the 

additional inductivity. Additionally, I introduce the reduced rotor flux because I want to 

use the reduced Lmr parameter instead of the original Lm. 

𝜓𝑟
∗ = 𝜓𝑟 ∙ 𝑎 = 𝐿𝑚 ∙ 𝑖𝑚

∗ ∙ 𝑎 = 𝐿𝑚𝑟 ∙ 𝑖𝑚
∗ 

Now the flux equations work in the reduced model. Let’s see the voltage 

equations. The stator voltage equation for the squirrel-cage asynchronous machine, from 

a standing coordinate system: 

𝑈𝑠 = 𝑅𝑠 ∙ 𝑖𝑠 +
𝜕𝜓𝑠

𝜕𝑡
 

The stator current and flux are the same in the reduced parameter model, so the 

stator resistance can remain the same as well.  

The rotor voltage equation for the squirrel-cage asynchronous machine, from a 

standing coordinate system: 



 24 

0 = 𝑅𝑟 ∙ 𝑖𝑟 +
𝜕𝜓𝑟

𝜕𝑡
− 𝑗𝜔𝜓𝑟 

 Now with the reduced parameters, introducing the reduced rotor resistance, Rrr: 

0 = 𝑅𝑟 ∙ 𝑖𝑟
∗ ∙ 𝑎 +

(
𝜕𝜓𝑟

∗

𝜕𝑡
− 𝑗𝜔𝜓𝑟

∗)

𝑎
= 𝑅𝑟 ∙ 𝑖𝑟

∗ ∙ 𝑎2 + (
𝜕𝜓𝑟

∗

𝜕𝑡
− 𝑗𝜔𝜓𝑟

∗) 

0 = 𝑅𝑟𝑟 ∙ 𝑖𝑟
∗ +

𝜕𝜓𝑟

𝜕𝑡

∗

− 𝑗𝜔𝜓𝑟
∗
 

 The reduction is complete. The equivalent schematic circuit reduced: 

 

15. Figure: Schematic of the reduced equivalent circuit 

Where the reduced parameters can be calculated from the original ones, via the 

eqations above. Summarizing the reduced parameters: 

𝑎 =
𝐿𝑚

𝐿𝑟
 

𝐿𝑚𝑟 = 𝐿𝑚 ∙ 𝑎 

𝐿𝑙𝑠𝑟 = 𝐿𝑠 − 𝐿𝑚𝑟 

𝑅𝑟𝑟 = 𝑅𝑟 ∙ 𝑎2 

3.5.3 Model calculations 

The model is built up from resistance and inductivity blocks, that compute with 

the same Euler method as presented earlier. The only new addition is how the model 

computes the fluxes from voltage, an integration with the Euler method: 



 25 

𝜓𝐿[𝑛 + 1] = 𝜓𝐿[𝑛] + 𝑈𝐿[𝑛 + 1] ∙ 𝑇𝑠 

The equation between current and flux, which is also used by the model: 

𝜓𝐿[𝑛] = 𝑖𝐿[𝑛] ∙ 𝐿 

With all the blocks in mind let’s see the equations of the equivalent circuit, that 

connect the blocks: 

𝑈𝑥 − 𝑈𝑟,𝑥
∗ = 𝑈𝑅𝑠,𝑥 + 𝑈𝐿𝑙𝑠𝑟,𝑥

∗ 

𝑈𝑦 − 𝑈𝑟,𝑦
∗ = 𝑈𝑅𝑠,𝑦 + 𝑈𝐿𝑙𝑠𝑟,𝑦

∗ 

𝑖𝑟,𝑥
∗ = 𝑖𝑚,𝑥

∗ − 𝑖𝑠,𝑥 

𝑖𝑟,𝑦
∗ = 𝑖𝑚,𝑦

∗ − 𝑖𝑠,𝑦 

𝑈𝑟,𝑥
∗ = −𝑖𝑟,𝑥

∗ ∙ 𝑅𝑟𝑟 − 𝜔𝜓𝑟,𝑦
∗
 

𝑈𝑟𝑦𝑥
∗ = −𝑖𝑟,𝑦

∗ ∙ 𝑅𝑟𝑟 + 𝜔𝜓𝑟,𝑥
∗
 

𝜔 = 𝜔𝑚𝑜𝑡 ∙ 𝑝𝑚𝑜𝑡 

Where wmot is the motor angular speed and pmot is the number of pole pairs in the 

motor. 

The equivalent circuit model also calculates the motor electric torque (Me). The 

torque equation in vectoral form, then in x-y coordinates: 

𝑀𝑒 =
3

2
∙ 𝑝𝑚𝑜𝑡 ∙ (𝜓𝑟

∗ × 𝑖𝑠) 

𝑀𝑒 =
3

2
∙ 𝑝𝑚𝑜𝑡 ∙ (𝜓𝑟,𝑥

∗ ∙ 𝑖𝑠,𝑦 − 𝜓𝑟,𝑦
∗ ∙ 𝑖𝑠,𝑥) 

3.5.4 Saturation calculation 

The magnetizing inductance saturates, so the on higher currents it will decrease 

substantially. At the current state of the model, only the magnetizing inductance saturates. 

If the leakage inductances saturate due to certain motor construction, it can be added to 

the model very easily, because the reduced parameters are coming from a lookup-table 

anyway.  The saturation is approximated well with the following equation: 

𝑖𝑚 = 𝑖𝑚 𝑛𝑜𝑚 ∙ (𝑘 ∙
Ψ

Ψ𝑛𝑜𝑚
+ (1 − 𝑘) ∙ (

Ψ

Ψ𝑛𝑜𝑚
)
𝑝2

) 



 26 

This is an empirical equation, where the variables are the following, and “nom” 

stands for nominal 

𝑖𝑚 𝑛𝑜𝑚 ≈ √2 ∙ 𝑖𝑛𝑜𝑚 ∙ sin(𝜑) 

Where φ is the phase angle and sin(φ) is proportional to the reactive power. 

Ψ𝑛𝑜𝑚 =
√2 ∙ 𝑈𝑛𝑜𝑚

√3 ∙ 2𝜋 ∙ 𝑓𝑛𝑜𝑚

 

 Unom is the nominal effective line voltage, fnom is the nominal frequency. 

𝑘 ∈ [0…1] 

𝑝2 = 5 𝑜𝑟 7 

“k” is an empirical constant. If “k” is one, the magnetizing inductivity is linear 

and does not saturate. p2 determines how the equation approximates the saturation. These 

two constants define the nature of the saturation and can be measured for each motor. 

The magnetizing inductance: 

𝐿𝑚 =
Ψ

𝑖𝑚
 

Expressing the magnetizing inductance via the two equations: 

𝐿𝑚 =
1

𝑖𝑚 𝑛𝑜𝑚
(
Ψ𝑛𝑜𝑚

𝑘
+

1

(1 − 𝑘)
∙
Ψ𝑛𝑜𝑚

𝑝2

Ψ(𝑝2−1)
) 

This equation is performed by a Matlab script. The script calculates the Lm for 128 

flux value. Lm determines all the reduced parameters, which are used in the model, so the 

model calculates the reduced parameters by lookup tables. These lookup-tables have the 

flux square as their input, because the model calculates in x-y coordinates, and this way 

the FPGA does not have to perform a square root.  

Each lookup has 128 breakpoints and values. The model wants to divide by the 

Lmr reduced inductance. A division takes muck more resources in the FPGA than 

multiplication, so I rather calculate the reciprocal of Lmr in the lookup-table to save 

resources. Regarding the Lls, the model wants to use its reciprocal multiplied by the step 

size. I rather do this all in the script, so I fill up the lookup in the model with the Lls 

reciprocal multiplied by the step size. 

 



 27 

3.5.5 Normal circuit variable calculations 

Throughout the reduction, most inner variables change, and they have to be 

transformed back to the normal circuit values, if I want to have them as outputs. The stator 

values, stator flux and stator current are invariant. The calculations of the variant ones: 

𝑖𝑟 = 𝑖𝑟
∗ ∙ 𝑎 

Ψ𝑟 =
Ψ𝑟

∗

𝑎
 

𝑖𝑚 = 𝑖𝑠 + 𝑖𝑟 

Ψ = Ψ𝑟 − i𝑟 ∙ 𝐿𝑙𝑟 

The calculation of the inducted flux is necessary even if we don’t want to have it 

as an output, because it is the input of the parameter lookup-tables for the saturation. 

3.5.6 Transformations to rotating field coordinates (d-q) 

The rotating field coordinate transformations are based on the rotor flux angle (α). 

The figure of the x-y and d-q coordinates, including the rotor flux angle: 

 

16. Figure: d-q transformation vectors 

Its calculated by the rotating field x-y coordinates: 

𝛼 = atan ( 
Ψ𝑟,𝑦

Ψ𝑟,𝑥
) 



 28 

Each variable in x-y coordinates are transformed to d-q coordinates via the 

following equations which are implemented in the model’s d-q transformation blocks. 

The v stands for the transformed variable. 

𝑣𝑑 = cos(𝛼) ∙ 𝑣𝑥 + sin (𝛼) ∙ 𝑣𝑦 

𝑣𝑞 = cos(𝛼) ∙ 𝑣𝑦 − sin (𝛼) ∙ 𝑣𝑥 

3.5.7 Mechanical model 

The model calculates a basic inertia differential equation, which calculates the 

angular speed from the motor torque and the inertia: 

𝑑𝜔𝑚𝑜𝑡

𝑑𝑡
=

1

𝜗
∙ 𝑀 

Where the motor torque is the load torque and the friction torque subtracted from 

the electrical torque. 

𝑀 = 𝑀𝑒 − 𝑀𝑙 − 𝑀𝑓 

𝑀𝑓 = 𝜔 ∙ 𝑓𝑓 

Mf is the friction torque, which is proportional to the angular speed and the friction 

factor (ff). 

 The Euler equation of the mechanical model: 

𝜔𝑚𝑜𝑡[𝑛 + 1] = 𝜔𝑚𝑜𝑡[𝑛] +
𝑀[𝑛 + 1]

𝜗
∙ 𝑇𝑠 

  

3.5.8 Encoder modelling 

The rotary encoder converts the angular position of the rotor to a digital signal. I 

model an incremental encoder, which has two digital outputs. These outputs are called 

“a” and “b” incremental encoder outputs. Each is a square wave, which’s frequency is 

determined by the angular speed of the rotor (fenc), and the resolution (res) of the encoder: 

𝑓𝑒𝑛𝑐 =
𝜔𝑚𝑜𝑡

2𝜋
∙ 𝑟𝑒𝑠 

The “b” output is offset by 90° compared to the “a” output, so the observer can 

determine the direction of the rotor speed.  



 29 

I modelled the incremental encoder with a counter, that adds the current angular 

speed to the counter at every clock cycle, until it reaches its limit (incrlimit), then resets to 

zero: 

𝑖𝑛𝑐𝑟𝑙𝑖𝑚𝑖𝑡 =

2𝜋
𝑇𝑠 ∙ 𝑟𝑒𝑠

2
 

The output of the incremental encoder changes each time the counter reaches its 

limit. The limit is divided by two because the counter needs to have twice the encoder 

frequency. 

“a” encoder (red) and “b” encoder (blue) outputs on a 2π and -2π angular speed, 

with a resolution of 36 per turn, plotted via Matlab. 

 

17. Figure: Incremental encoder outputs 

 



 30 

4 Design of the FPGA environment 

In this chapter I will describe what changes I made to the model to make it HDL 

coder compatible and functional on the FPGA. 

4.1 Fixed points 

As default, the Simulink uses floating-point arithmetic, double. Since I want to 

use fixed-point number representation, I have to determine the fixed-point types of the 

variables. 

The model has a global fixed-point data type for each physical quantity. A script 

calculates the fixed-point number’s integer and fractional bits by the following variables: 

width and range. 

𝑖𝑛𝑡𝑒𝑔𝑒𝑟 = 𝑓𝑙𝑜𝑜𝑟(𝑙𝑜𝑔2(𝑟𝑎𝑛𝑔𝑒)) + 1 

I calculate it this way instead of simply rounding it upwards, because that would 

give incorrect value if the logarithm gave an integer value. 

𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 = 𝑤𝑖𝑑𝑡ℎ − 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 − 𝑠𝑖𝑔𝑛 

Most of the variables calculated via script are signed, so the sign bit is 1. My 

model has two typical number widths, 18 and 25 bits. It is because as I wrote it in a 

previous topic, the FPGA has 18x25 bit multipliers, and I want to optimize the model for 

these multipliers. 

The fixed-point numbers are given in the following format: 

𝑓𝑖𝑥𝑑𝑡(𝑠𝑖𝑔𝑛, 𝑤𝑖𝑑𝑡ℎ, 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛) 

Fraction bits can be higher than the width, that representable number does not 

contain the binary point, it is “over” it. If the fraction bits are negative, the binary point 

is “under” the number. 

The blocks that perform Euler equations have different fixed points and are 

converted back to the global ones after. Let us take a look at the signal flow of the 

inductivity model from a previous chapter again: 

 



 31 

 

18. Figure: Signal flow of the inductivity Euler 

The incoming signal is a 18 bit wide voltage value. It is multiplied by the step size 

divided by the inductivity, ending up as a really small number. This number will be added 

to the integrator, changing its previous value. This change is pretty small, and it has to be 

representable by the fixed point. The full current value on the other hand is a much bigger 

number. The data type of the adder has the fraction length of its input, and has the integer 

length of the output. this means that it has to be a really wide variable. This is also 

calculated by the script. 

4.2 Clock management 

20 MHz is the fastest clock cycle in the model. The most important calculations 

run at the 20 MHz clock, like the Euler blocks, the converter and motor calculations. 

10 MHz is the other major clock cycle. Some motor calculations run in the 10 

MHz clock, like the reduced to normal circuit block and the d-q transformation block 

which are not in feedback path. The saturation parameter calculation block also runs on 

the 10 MHz clock, which is in feedback path, but it is an approximation and is not 

important to run on the faster clock. 

Sine wave generator lookup-tables run on a 500 kHz, because they do not have 

enough breakpoints and values to run on a faster one at 50 Hz. 

4.3 Sigma-delta conversion 

The output signals of the model are digital number signals, which I want to convert 

to analogue signals. Since the FPGA does not have analogue signals, a sigma-delta 

conversion is need. This S-D modulated signals feeds an RC low pass filter, which filters 

the clock cycle of the FPGA, resulting in an analogue signal. 

The schematic of the S-D converter: 



 32 

 

19. Figure: Schematic of the S-D converter 

 The input of the S-D is scaled to a 12-bit number (max 4095) via the reference 

value. The model subtracts 4095 from this scaled input, if the previous output was a 1. 

The subtracted value goes into an integrator, which is followed by a comparator, which 

leads to the 1-bit output of the S-D converter. 

 Basically, the S-D sums up the average difference of the input and the reference 

value, hence the name. The ratio of the input (Vin) and the reference (Vref) value will 

determine the interval ratio (IR) of the S-D modulated output: 

𝑖𝑓 
𝑉𝑖𝑛

𝑉𝑟𝑒𝑓
≤ 0, 𝐼𝑅 = 0 

𝑖𝑓 
𝑉𝑖𝑛

𝑉𝑟𝑒𝑓
≥ 1, 𝐼𝑅 = 1 

𝑖𝑓 0 <
𝑉𝑖𝑛

𝑉𝑟𝑒𝑓
< 1  𝐼𝑅 =

𝑉𝑖𝑛

𝑉𝑟𝑒𝑓
 

 The Sigma-Delta conversion takes place inside of the FPGA. The S-D modulated 

outputs have to be filtered for an analogue signal. The RC filter schematic: 



 33 

 

20. Figure: The schematic of the RC filter 

 

I selected the values of the resistor and the capacitor. The first determined value 

was the resistor via the current limit of the Zedboard’s PMODs, which is 1.2 mA. The 

PMOD outputs are 3.3 V. According to Ohm’s law, the resistor has to be at least 2750 Ω. 

I put a standard 3 kΩ in the filter. The Zedboard has a 200 Ω serial resistance built in, 

meaning the capacitor has to be chosen next to a 3200 Ω resistor. 

I chose a 1 nF capacitor for the filter. This way the RC filter’s cutoff frequency is 

around 50 kHz. This means it won’t filter the switch frequency effects, which can be 

around 30 kHz maximum. The point of the RC is to filter the FPGA clock frequency, that 

is 20 or 10 MHz. The RC with these parameters reduces the 10 MHz component to 0.5% 

and the 20 MHz component to 0.25%. 



 34 

5 Verification 

I based the verification on the Simulink Simpower systems toolbox. I built a 

Simulink model of a converter and an asynchronous machine. This machine is an ABB 

18.5 kW asynchronous machine. I took the parameters of the ABB asynchronous machine 

and implemented my real-time model with those parameters. The semiconductor and DC 

link parameters can be found in the references [2,3]  

The real-time model’s time functions were captured by a Digilent Analog 

Discovery 2, which is a PC based oscilloscope and logic analyser. The measurements 

were put into a .csv file and imported by Matlab. It measures the FPGA signals after S-D 

conversion, and an RC filter. 

The inverter was driven by a basic, “dummy” control unit that I made for a 50 Hz 

voltage and ~ 10 kHz switching frequency. 

5.1 Stationary tests 

I made some no-load stationary tests, and load tests with 40 NM load torque. 

The phase currents from the HIL model and the reference: 

 

21. Figure: No-load phase currents 



 35 

 

22. Figure: No-load phase current zoomed in 

They are similar, both for nature and amplitude, the amplitude difference is shown 

in the zoomed in figure. The transistor switch frequency current ripple can be observed 

cleanly. The load currents will be higher, as the next figure shows: 

 

23. Figure: Load phase currents 

          



 36 

The comparison of the d-q currents could be informative, as we know that the d 

current component generates flux, and the q component generates torque. The plotted 

values: 

 

24. Figure: No-load d-q currents 

 

25. Figure: Load d-q currents 



 37 

As we can see, the load q current is much higher. The q component decreased a 

little bit as the load is increased. 

5.2 Dynamic tests 

I want to show the start-up transients of the HIL model and compare them to the 

Simpower System reference. First, let us take a look at the torque and angular speed 

transient: 

 

26. Figure: Start-up angular speed 



 38 

 

27. Figure: Startup torque 

The initial torque of the asyncronous machine is low and has big ripples. Since 

the torque is made by the flux and the q component of the current, their startup 

characterisctics may tell us why: 



 39 

 

28. Figure: Start up rotor flux

 

29. Figure: Start-up  stator "q" current 

We can see that the rotor flux takes some time to be created. It becomes stable 

similarly to the q current and they make the toque stable and bigger as well, a little bit 

after the initation. 



 40 

References 

[1] https://www.xilinx.com/support/documentation/sw_manuals/ug998-vivado-intro-

fpga-design-hls.pdf 

[2] https://www.infineon.com/dgdl/Infineon-FF650R17IE4-DS-v03_03-

EN.pdf?fileId=db3a30431ff9881501201dcfe2a54986 

[3] https://hu.mouser.com/ProductDetail/KEMET/C44HLGR6400AASJ?qs=sGAEpi

MZZMsh%252b1woXyUXjzRu9w46NtHr%252bEdhPtGVC0k%3d 

https://hu.mouser.com/ProductDetail/KEMET/SS26V-

300028?qs=sGAEpiMZZMsVJzu5wKIZCRKkZmKdbMQOky%252b7rTdJ2X4

%3d 

[4] http://zedboard.org/product/zedboard 

 

 

 

https://www.xilinx.com/support/documentation/sw_manuals/ug998-vivado-intro-fpga-design-hls.pdf
https://www.xilinx.com/support/documentation/sw_manuals/ug998-vivado-intro-fpga-design-hls.pdf
https://www.infineon.com/dgdl/Infineon-FF650R17IE4-DS-v03_03-EN.pdf?fileId=db3a30431ff9881501201dcfe2a54986
https://www.infineon.com/dgdl/Infineon-FF650R17IE4-DS-v03_03-EN.pdf?fileId=db3a30431ff9881501201dcfe2a54986
https://hu.mouser.com/ProductDetail/KEMET/C44HLGR6400AASJ?qs=sGAEpiMZZMsh%252b1woXyUXjzRu9w46NtHr%252bEdhPtGVC0k%3d
https://hu.mouser.com/ProductDetail/KEMET/C44HLGR6400AASJ?qs=sGAEpiMZZMsh%252b1woXyUXjzRu9w46NtHr%252bEdhPtGVC0k%3d
https://hu.mouser.com/ProductDetail/KEMET/SS26V-300028?qs=sGAEpiMZZMsVJzu5wKIZCRKkZmKdbMQOky%252b7rTdJ2X4%3d
https://hu.mouser.com/ProductDetail/KEMET/SS26V-300028?qs=sGAEpiMZZMsVJzu5wKIZCRKkZmKdbMQOky%252b7rTdJ2X4%3d
https://hu.mouser.com/ProductDetail/KEMET/SS26V-300028?qs=sGAEpiMZZMsVJzu5wKIZCRKkZmKdbMQOky%252b7rTdJ2X4%3d
http://zedboard.org/product/zedboard

