
Budapest University of Technology and Economics
Faculty of Electrical Engineering and Informatics

Department of Measurement and Information Systems

Data model driven goodput optimization for
execute-order-validate blockchains

Scientific Students’ Association Report

Author:

Máté Debreczeni

Advisor:

Attila Klenik
dr. Imre Kocsis

2022

Contents

Kivonat i

Abstract ii

1 Introduction 1

2 Hyperledger Fabric Architecture 3

2.1 Network architecture . 3

2.2 Execute Order Validate . 5

2.3 Multiversion Concurrency Control conflicts 7

2.3.1 Notations . 8

2.3.2 Definitions . 8

3 MVCC conflict mitigation and avoidance 10

3.1 Protocol independent techniques . 11

3.1.1 System configuration tuning . 11

3.1.2 Semantic data model techniques . 12

3.2 Protocol optimizations . 13

3.2.1 Protocol alterations . 13

3.2.2 Protocol extensions . 14

4 Partitioning Framework 15

4.1 Core idea . 15

4.2 Total partitioning . 16

4.2.1 Total partitioning algorithm . 16

4.2.2 Benefits and potential shortcomings 17

4.3 Affinity based partitioning . 17

4.3.1 Affinity-based partitioning algorithm 18

4.3.2 Adaptations for application in HLF 19

4.3.3 Benefits and potential shortcomings 19

4.4 Prototype framework . 19

4.4.1 Framework API and usage . 20

4.4.2 Implementation . 21

4.4.2.1 Framework Core . 21

4.4.2.2 Total partitioning . 22

4.4.2.3 Affinity based partitioning 22

4.4.3 Code generation . 22

5 Empirical validation 24

5.1 System under test . 24

5.2 Case studies and benchmark campaigns . 26

5.2.1 Scenario 1. - Independent attribute access 26

5.2.2 Scenario 2. - Shared attribute access 26

5.3 Evaluation of results . 27

5.3.1 Used metrics . 28

5.3.2 Scenario 1 Results . 28

5.3.3 Scenario 2 Results . 32

5.3.4 Conclusion of benchmark results . 33

6 Dynamic endorsement delaying 35

6.1 Motivation behind the proposal . 35

6.2 Core idea . 35

6.3 Architecture . 36

6.3.1 Proxy Gateway . 36

6.3.2 Cache service . 36

6.4 Estimating MVCC conflict probability . 36

6.4.1 Core idea . 37

6.4.2 Input matching approach . 39

6.4.3 Further possibilities . 41

7 Conclusions and future work 42

7.1 Conclusions . 42

7.2 Future work . 42

Acknowledgements 43

List of Figures 45

List of Tables 46

Bibliography 46

Appendix 50

Kivonat

Az utóbbi időben az elosztott főkönyvi technológiák (DLT) használata széles körben el-
terjedt, még a vállalati világban is. A legismertebb a Hyperledger Fabric (HLF), egy jogo-
sultságkezelt DLT-megoldás a vállalati szektor számára. Ez az ágazat nagy teljesítményű
és robusztus rendszereket igényel, és a HLF általában mindkét igényt kielégíti. A nagy
áteresztőképességet igénylő alkalmazások esetében azonban a HLF-nek vannak potenciális
hiányosságai. A naiv adatmodellek esetében az egyik lehetséges hiányosság a többverziós
konkurrencia-kezelési konfliktusok (MVCC konfliktusok) miatt visszautasított tranzakci-
ók nagy száma. Ezek a konfliktusok a HLF optimista párhuzamossági modelljének és a
HLF által népszerűsített Elővégrehajtás Sorrendezés Validáció (EOV) architektúrának a
következményei. Kedvező forgatókönyvek esetén ezek a tervezési döntések nagyobb teljes
áteresztőképességet eredményeznek, mint az egyszerű zárolást alkalmazó megoldások, és a
hagyományos adatbázisokban évtizedek óta használatosak. A HLF elosztott jellege azon-
ban további késleltetéssel jár az elővégrehajtási és a validálási fázis között, így nagyobb a
konfliktus valószínűsége.

A tranzakciós hibák számának csökkentésére számos megoldási javaslat született, ame-
lyek többsége a HLF protokollszintű működésének megváltoztatásával próbálja kezelni a
problémát. Ebben a dolgozatban két intelligens adattárolási modell megközelítést javaslok,
amelyek az adatmodell és a tranzakciókészlet alapján működnek, és amelyek a változatlan
protokoll felett használhatók. Mindkét technika megváltoztatja az adatok szerializálásának
és a főkönyvben való tárolásának módját, de mindegyik különböző leképezési stratégiákat
használ, hogy ugyanazon információhoz nagyobb számú egyidejű hozzáférést tegyen lehető-
vé. A két technika közül a fejlesztők választhatnak, figyelembe véve a konkrét felhasználási
eseteik tárolási követelményeit és tranzakciós profilját.

Olyan keretrendszert fejlesztettem ki, amely ezeket a technikákat használja, de a hoz-
záadott komplexitást egy absztrakciós réteg mögé rejti, amely megőrzi a hagyományos
fejlesztői élményt. Az én implementációm intuitívabb felhasználói élményt is nyújt az
okosszerződés fejlesztők számára az azonnali konzisztencia, ismertebb nevén a "Read Your
Writes" emulálásával. E megoldások hatékonyságának értékeléséhez az implementációmat
több benchmark alkalmazáson tesztelem, és bemutatom az eredményeimet.

Továbbá javaslok egy MVCC konfliktus mérséklő stratégiát, amely dinamikusan kés-
lelteti a tranzakciók elővégrehajtását. A stratégia a rendelkezésre álló historikus adatok
alapján képes késleltetni a nagy valószínűséggel meghiúsuló tranzakciókat, így a hozzá-
adott késleltetésért cserébe elkerülhető a konfliktus egy folyamatban lévő tranzakcióval.
Emellett kitérek a lehetséges jövőbeli munkákra is, amelyeket a megoldásaimmal együtt
lehetne használni a további teljesítménynövelés érdekében. A javasolt technikák nem zárják
ki egymást. Éppen ellenkezőleg, kiegészítik egymást, és egy többrétegű MVCC konfliktus
mérséklési megközelítés részeként használhatók.

i

Abstract

In recent times the use of Distributed Ledger Technologies (DLT) have seen widespread
adoption, even in the corporate world. The most prominent is Hyperledger Fabric
(HLF),which is a permissioned DLT solution, meant for the enterprise sector. This sector
requires performant and robust systems and HLF generally fulfills both needs. However,
when it comes to high throughput use cases, HLF has potential shortcomings. In the case
of naive data models, a potential shortcoming is a large amount of rejected transactions
due to the occurrence of Multiversion Concurrency Control conflicts (MVCC conflicts).
These conflicts are the product of HLF’s optimistic concurrency model and the Execute
Order Validate (EOV) architecture it popularized in its domain. In favorable scenarios,
these design choices result in higher overall throughput than simple locking solutions and
have been used in conventional databases for decades.

However, the distributed nature of HLF comes with added latency between the execution
and validation phase, thus the probability for a conflict is greater.Several solutions have
been proposed to reduce the number of these transaction failures,most of which try to
tackle the issue by changing the way HLF works at the protocol level.In this paper I
propose two intelligent data storage model approaches, informed by the data model and
the transaction set, that can be used on top of the unmodified protocol. Both techniques
change how data is serialized and saved on the ledger, but each utilizes different mapping
strategies to enable more concurrent access to the same information. The choice between
these two techniques is up to the developers, who can make the decision based on their
specific use cases’ storage requirements and transaction profiles.

I developed a framework that uses these techniques, but hides the added complexity
behind an abstraction layer, that preserves the conventional developer experience. My
implementation also provides a more intuitive experience for chaincode developers, by
emulating immediate consistency, better known as "Read Your Writes". To evaluate the
effectiveness of these solutions, I test my implementation on multiple benchmarks and
present my results.

Furthermore, I propose an MVCC conflict mitigation strategy, that dynamically delays
the endorsement of transaction proposals. Based on available historical data, it is capable
of delaying transactions with a high probability for failure, thus avoiding conflict with
a pending transaction, in exchange for the added latency. I also elaborate on possible
future works that could be used in conjunction with my solutions, for further performance
gains. The proposed techniques are not mutually exclusive, on the contrary, they comple-
ment each other and can be utilized as part of a multi-layered MVCC conflict mitigation
approach.

ii

Chapter 1

Introduction

Ever since the creation of Bitcoin [14], Distributed Ledger Technologies (DLTs) have been
ever-increasing in popularity. Permissionless and permissioned DLT solutions are being
used to power systems people rely on and use daily. One of the most prominent of these
systems is Hyperledger Fabric (HLF) [2], which is hosted by the Linux foundation with
the goal of providing a modular, robust and performant blockchain framework for the
enterprise sector. HLF has since become a de facto standard in this area, and because of
this, it has been applied to a large number of use cases. It generally fulfils the requirements
of most of these use cases. However, because it has been applied in a wide variety of fields,
some potential shortcomings have also been exposed. One of these potential shortcomings
stems from an optimization effort, HLF’s optimistic concurrency control model. In an
optimistic concurrency control model, transactions are simulated/pre-executed, and their
result is not yet final. Only after a validation step can these transactions be considered
final. The transactions that are deemed invalid at this step are discarded. This is a well-
known technique for increasing the number of concurrent accesses to a system and is used
heavily by traditional databases. HLF was the first to popularize the use of optimistic
concurrency control in the permissioned blockchain domain and gained a performance
advantage [18, 15] over conventional blockchain systems like Ethereum [3]. This required
complex changes and represented a paradigm shift from Order Execute (OX) to Execute
Order Validate (EOV).

What makes the use of this paradigm potentially problematic in HLF is the added
latency, relative to conventional databases, that comes with the distributed nature of
DLTs. In some use cases, this can lead to the rejection of a large number of transactions.
The invalidated transactions represent wasted computation, electricity, network resources
and time. In order to mitigate the effects of Multiversion Concurrency Control conflicts
(MVCC conflicts), the cause of the rejections, multiple techniques have been proposed.
[4, 1, 20, 19, 24, 10, 25, 16, 11, 26] In my report, I provide a taxonomy of the current
MVCC conflict mitigation literature for EOV blockchains and discuss the methods used. I
categorize the contributions of others hierarchically, and I identify previously unexplored
possibilities in the literature. I propose multiple novel mitigation approaches and include
them in the hierarchical taxonomy. My contributions are the following:

• Taxonomy of the current MVCC conflict mitigation literature: Hierarchical classi-
fication of the current mitigation strategies.

• Proposition of a new category of mitigation approaches: A novel category of data
storage techniques optimizing the storage scheme.

1

• Prototype implementation for two data storage approaches Partitioning the tradi-
tional data model along attributes:

– Total partitioning: Maximizes the number of partitions for maximal MVCC
mitigation effect in all cases.

– Affinity-based partitioning: Partitions based on access patterns, creating a
smaller number of partitions than Total partitioning for comparable results.

• Validation of the implementations of the data storage techniques: Multiple scenarios
are benchmarked, and the effect of the implementations are compared to each other,
as well as the traditional approach.

• Proposition of a novel protocol extension based mitigation approach: Dynamically
delayable execution phase to probabilistically avoid MVCC conflicts.

The proposed data storage-based mitigation techniques can be used on top of the un-
modified protocol and require no modifications to the system configuration. The tech-
niques change how the data is saved on the ledger by partitioning the saved objects and
storing them under several keys. I implemented both approaches as part of a framework
that hides the added complexity of partitioning the objects behind an abstraction layer
that preserves the conventional chaincode development experience. The framework also
uses a cache within the context of each transaction, which enables it to support immediate
consistency, better known as Read Your Writes. The proposed protocol extension is ca-
pable of delaying the endorsement of transaction proposals. Based on available historical
data and the pending transactions, it is capable of identifying incoming transactions with a
high probability of failure and can delay them to potentially avoid conflict with a pending
transaction. These proposals are intended to be part of a Multi-Layered MVCC conflict
mitigation approach, as the parallel usage of both techniques does not impede each other;
they work synergistically.

The paper is structured in the following way. In chapter 2, HLF’s architecture is dis-
cussed to provide a better understanding of the system architecture. Chapter 2 also con-
tains formal definitions of MVCC conflicts and several related terms that are referenced
throughout the report. In chapter 3, the current literature of MVCC conflict mitigation
techniques is categorized hierarchically, and the techniques are discussed as part of the
taxonomy. In chapter 4 the theory behind the proposed data storage approaches is de-
scribed, and I showcase my implementations. In chapter 5, test scenarios are described,
and the results of the benchmarking campaigns are presented. The implications of their
outcomes will also be elaborated upon. In chapter 6, the topic of discussion is the proposed
protocol extension. The proposed architecture and possible approaches to determine the
probability of conflict are showcased. In chapter 7, I provide an overview of the results
and discuss some future works that could be used alongside my proposed strategies.

2

Chapter 2

Hyperledger Fabric Architecture

Hyperledger Fabric1 (HLF) is an open-source, permissioned, distributed ledger technology
(DLT) platform, hosted by the Linux foundation. It is built to be open, performant, robust
and modular, which is a difficult task and requires ingenuity and creativity. To achieve
these goals, the creators of HLF had to come up with unique solutions, which resulted in a
novel system architecture. The complex architecture of the system enabled it to be more
performant than other similar systems in its domain (e.g. Ethereum). As the central topic
of the report and an important contribution to the domain of DLTs, I find it important
to discuss its architecture.

2.1 Network architecture

HLF was created to enable mutually beneficial cooperation between organizations that do
not trust each other. This is heavily reflected in its architecture, and the way network
participants are organized. This is discussed in detail in the paragraph 2.1. In paragraph
2.1, the components of the network and how they are used are explained, as it is necessary
to understand how they enabled HLF to become so widely used.

Network participants At a high level, a HLF network consists of Organizations. Each
organization has clients, peers, Ordering Service Nodes (OSNs) and a membership service
provider (MSP). All network participants are provided identities by the MSP. MSP is just
an abstraction; it can be implemented in many ways. For instance, each organization
can provide certificates (conventional x509 certificates) to their peers and use the default
implementation of a certificate authority (CA), Fabric-CA.

The OSNs are separate from the other peers and are unaware of the application state.
There are multiple implementations available for the ordering service. Kafka, Raft2 and
Solo implementations can be used. However, as of version 2.0, Solo and Kafka are depre-
cated. Because of this, only Raft is discussed here. The Raft-based implementation of the
Ordering Service is a Crash-fault tolerant (CFT) service. Raft is a consensus algorithm
that enables multiple nodes to work together and tolerate the failure of nodes.

Peers can be divided into two groups, Endorsing peers and Validating peers. However,
endorsing peers are a subset of Validating peers, so the Validating qualifier is redundant.
Each network participant has a clearly defined role:

1https://hyperledger-fabric.readthedocs.io/
2https://raft.github.io/raft.pdf

3

• Ordering Service Nodes: provide the global and deterministic ordering of transac-
tions for the endorsing peers,

• Membership Service Providers: provide identification and membership services for
network participants,

• Peers: validate the simulated transactions based on the data that is read from and
written to the ledger by the transactions,

• Endorsing Peers: execute the transaction logic and communicate the result to the
client and the OSN.

Figure 2.1: Simplified view of an example HLF network

Network components The network participants can agree to establish private subnets
of communication, called channels. Each channel is a shared instance of a ledger between
the participating members. Channels serve as a way to isolate data and the procession of
the data. The data store of HLF is a key-value database, where the keys are versioned
to enable multiple concurrent views. A key’s version is equal to the commit height of the
transaction it was updated in. Thus a written key’s version in a transaction that was
committed in the 800th block and was the 21st transaction in the block is :

{"version_block":800, "version_tx": 21}

The most recent version of the keys is stored in the World state. The data procession can
be done by chaincodes, programs installed on a per-channel basis that contain transaction
functions. The functions are executed when an authorized client sends a proposal input
to an endorsing peer. The proposal input is a list of strings that contains the transaction
function that is to be invoked and the parameters passed to it. The result of the executed
transaction functions is the generated read and write sets on each endorsing peer. The
read-sets contain the keys and their versions that the transaction retrieved from the world
state, while the write-sets contain the key-value pairs that are to be written to the ledger.
The chaincodes are HLF’s version of smart contracts that run in containers and can be
written in multiple general-purpose programming languages. The languages available for
chaincode development are Golang, Javascript and Java. As mentioned earlier, the chain-
codes run in containers, which enables HLF to support multiple development languages.

4

The containers use the API provided by the SDK to read, query and modify the ledger
state. The transaction functions can be called by clients, who are identified channel par-
ticipants. Their identity is verified and provided by the MSP, and it can be used to control
access to the transaction functions. The transactions are not necessarily executed on every
peer, as explained in the previous section 2.1. However, so-called endorsement policies are
defined when a chaincode is installed, which specify rules about how many endorsements
a proposal has to collect from each organization. This is made possible by the use of
identities in HLF.

2.2 Execute Order Validate

Shortcomings of previous systems To understand the advantages of the Execute Or-
der Validate model, we must first understand the shortcomings of Order Execute. In the
Order Execute paradigm, every transaction is ordered via the consensus model, and then
the transactions are propagated to the peers (nodes), where they are executed sequentially.
At high loads, the sequential execution becomes a limiting factor which lowers the sys-
tem’s throughput considerably. This design is also vulnerable to Denial of Service (DoS)
attacks, as malicious transactions could delay the execution of all following transactions
indefinitely. Public DLTs solve this problem by introducing a cost for all computations via
a cryptocurrency. Permissioned systems like HLF usually do not have cryptocurrencies
because malicious actors can be dealt with in other ways thanks to the identification of
participants.

Figure 2.2: The execute-validate flow

Overview The Execute Order Validate paradigm has fundamental differences that set it
apart from EV. The execution of transactions precedes the ordering step, and a third step
is introduced to protect against attacks such as double spends [Figure 2.3]. The execution
of transactions can be done in parallel and on any subset of the peers that take part in
the endorsement (execution) process. As a result of the endorsement process, the read
and write-sets are generated for each transaction. However, the endorsed transactions
are not yet final; they are only simulated and need further validation before they can be
committed to the ledger. Before progressing to the validation phase, a globally consistent
transaction order is established by the Ordering service. Networks with a single OSN
are possible. However, the use of multiple nodes is strongly encouraged in production
networks, as they serve to further the resilience of the system. The ordering process is
not based on the contents of the transactions, which many alternative solutions seek to
alter [25, 20, 24, 19, 10]. After the transactions have been ordered, they are sent back
to peers for validation, where they are evaluated sequentially in the order established by
the Ordering Service. This evaluation is deterministic, and all conflicting transactions are
discarded.

5

Figure 2.3: The execute order validate flow

Transaction flow The transaction flow describes each step of the transaction’s lifecycle,
from the moment the client initiates the transaction until it is committed on the ledger.
The simplified transaction flow is depicted on Figure 2.4

Step 1. - Proposal construction The client initiates a transaction by calling a trans-
action function defined in one of the chaincodes installed on the channel. The transaction
function can read and/or write multiple keys from the state database. The client SDK
then constructs a transaction signed proposal from the input, which is sent to a num-
ber of endorsing peers. The number of endorsing peers it is sent to depends upon the
endorsement policy.

Step 2. - Proposal endorsement The endorsing peers verify the signature validity
and the well-formedness of the proposal and check if the client is authorized to change
the ledger state. If the proposal passes all verification checks and has not already been
submitted, the transaction is executed by the peers, and the proposal is endorsed. The
ledger is not yet updated with the execution results.

Step 3. Assembling a transaction The client receives the proposal responses from
the endorsing peers and verifies that all responses are identical. If the responses differ
in any way, the transaction proposal is rejected. The endorsements are assembled into a
transaction by the client, which is then sent to the OSNs for ordering and block inclusion.
The assembled transaction contains the Channel ID, the read/write sets and the signatures
of the endorsing peers.

Step 4. Transaction Ordering An OSN receives the endorsed transaction along with
potentially many other transactions. The full contents of these transactions are not in-
spected, as the ordering result does not take them into account. The ordered transactions
are included into blocks on a per-channel basis. The blocks are then delivered to the peers
for validation.

Step 5. Transaction validation The transactions in the block are validated against
the endorsement policy, as well as the current ledger state. Because of concurrent accesses,
modifications could have been made to the ledger since the read and write sets were
assembled. The transactions that fail any of the validations are rejected and marked as
invalid. Their modifications will not be committed to the ledger.

Step 6. Transaction commit The peers add the validated blocks to each channel’s
ledger, after which the write sets are committed to the current state database as well. The
process is completed by an event emission, which notifies the peer of the result.

6

Figure 2.4: The simplified transaction flow. Notice that all peers take part in the vali-
dation process

2.3 Multiversion Concurrency Control conflicts

Data in HLF is stored as key-value pairs. This data is accessed by clients, who can read and
update a key and its value independently of each other, even on multiple peers. Because of
the EOV architecture, the effect of transactions does not take place instantaneously. In the
case of a bank account use case, this presents the well-known double spend problem. Let
T1 and T2 be transactions that read key k and value v, where k = balance, v = 5. Thus
both transactions’ read-set is: {k = balance,v = 5}. If T1 and T2 both decrease the value
of balance by five and are submitted at the same time, both transactions are considered
valid at the endorsement phase. The resulting write-sets would be: {k = balance,v = 0}.
Without any concurrency control, both transactions could be committed, and double
spends would be possible.

This is prevented in HLF by attaching a version to every key, which is checked during the
last phase of the transaction lifecycle. With versioned keys, the previous scenario would
change in the following way. Both transactions’ read-sets are identical: {k = balance,vk =
version1,v = 5} After execution, the write sets of both transactions are the following:
{k = balance,vk = version2,v = 0} At the endorsement phase, both transactions are still
considered valid. However, at the validation phase, the version of the keys is checked, and
the transaction that tries to update the value for the second time would fail.

Transaction Read key written key key version status
Tx1 (k1, v1) k1 v2 success
Tx2 (k1, v1) k1 v2 fail (invalidated)

Table 2.1: Example of an MVCC conflict

7

2.3.1 Notations

The following notations will be used in the formalization of MVCC conflicts3.

• Set of endorsing peers: P

• Set of transaction attempts in a system: T

• Set of callable operations (denoted as functions in HLF): F

• Ledger-resident keys: K

2.3.2 Definitions

In this subsection, I formally define important terms that are often referenced throughout
the report. The precise definition of these terms is necessary to avoid ambiguity throughout
the rest of my report. The following terms are defined in this section:

• Read-set,

• Write-set,

• World state,

• Transaction dependency,

• Transaction function dependency,

• MVCC conflict.

Definition: Read-set Read-set Rp
t is an ordered set of unique keys and associated

version numbers, generated by an endorsing peer p ∈ P during the endorsement of t ∈ T.

Rp
t = {(k1, vk1), ..., (kn, vkn)}, where n ∈ N, {k1, ..., kn} ∈ K

Definition: Write-set Write-set W p
t is an ordered set of unique key-value pairs gener-

ated by endorsing peer p ∈ P during the endorsement of t ∈ T.

Wt = {(k1, Vk1), ..., (kn, Vkn)}, where n ∈ N, {k1, ..., kn} ∈ K

Definition: world state World state Sp is an ordered set of unique keys and their
associated versions and values, as accepted by a given peer p ∈ P as the latest.

Sp = {(k1, vk1 , Vk1), ..., (kn, vkn , Vkn)}, where n ∈ N, {k1, ..., kn} ∈ K

Definition: Transaction dependency Transaction ti ∈ T depends on transaction
tj ∈ T if the read-set of Rti and the write-set of Wtj both contain the same key. By
omitting the peer index for the write and read sets, I assume that a sufficient number
of peers agreed on the endorsement results (transaction dependency-related questions are
only meaningful over pairs of sufficiently agreed-on endorsement sets).

∆(ti, tj) =
{

1← Rti ∩Wtj ̸= ∅ and i ̸= j

0 otherwise
3The definitions are inspired by [4]

8

Definition: Transaction function dependency Transaction function fi ∈ F is de-
pendent on transaction function fj ∈ F if transactions ti ∈ T and tj ∈ T exist (with
appropriate function call parameter bindings) such that ∆(ti, tj) = 1.

Definition: MVCC conflict During the block validation process on a peer p ∈ P, a
transaction t ∈ T is deemed an MVCC conflict if and only if there exists a key k ∈ K in
the read-set Rt of t, whose associated version vk does not match the version v′

k of k found
in the world state Sp.

9

Chapter 3

MVCC conflict mitigation and
avoidance

In this chapter, the current literature of MVCC conflict mitigation techniques is discussed.
On Figure 3.1, a categoric tree of the current literature can be seen. I have identified the
following hierarchical categories (blue-coloured branches on [Figure 3.1]):

• MVCC conflict mitigation techniques: the root of the categoric tree, as all catego-
rized works contributed to the mitigation of MVCC conflicts,

• Protocol independent techniques: this subcategory of MVCC conflict mitigation
techniques can potentially be used with all EOV blockchains,

• Protocol optimizations: this subcategory contains contributions that mitigate the
effects of MVCC conflicts at the protocol level,

• System configuration tuning: the techniques in this subcategory are concerned with
selecting the optimal system configuration with the specific goal of mitigating MVCC
conflicts,

• Data storage techniques: a previously unexplored category of techniques, that mit-
igate the effects of MVCC conflicts by means storing the logical data in an alternate
way,

• Semantic data model techniques: this category contains data modelling techniques
that aid in mitigating the MVCC conflicts,

• Protocol alterations: the contributions in this category attempt to mitigate the
effects of MVCC conflicts by altering the protocol of HLF, but because of the alter-
ations, they are incompatible with a network using the unmodified protocol,

• Protocol extensions: the techniques in this subcategory extend the protocol of HLF
in such a way that they remain compatible with a network using the unmodified
protocol.

The leaves in each category have been colour-coded to help distinguish the origin of the
contributions. The green leaves are my contribution, while the tan leaves feature already
established literature. My contributions will be discussed in their dedicated chapters, 4,
6.

10

Figure 3.1: Categoric tree of the current state of the MVCC conflict mitigation literature

3.1 Protocol independent techniques

This category features optimization approaches that are independent of the used version
of the protocol.1 The techniques present in this category might be applied to any of
the protocol optimized versions of HLF, and they might result in a decreased number of
conflicts. The subcategory is depicted on Figure 3.2.

Figure 3.2: The protocol-independent subcategory of MVCC conflict mitigation tech-
niques

3.1.1 System configuration tuning

Although there are numerous papers that are concerned with performance modelling and
optimizations of HLF [22, 13, 9, 7, 23, 21], only those that are concerned with optimizing
for improved transaction failures will be discussed here. At the time of writing, the only

1in the case of StreamChain, the block size is not applicable

11

paper I found is written by Chacko et al. [4]. In the paper, the effect of the following
configuration options are investigated.

• Block size: The maximum number of transactions in a block,

• Endorsement policy complexity: the number of endorsements that are required for
successful transaction endorsement,

• Network complexity: the number of organizations and peers in the network,

• Database selection: whether GoLevelDB or CouchDB is used for storing ledger data.

Block size In the paper, the authors found that the effect of block size is network and
workload-specific and should be experimented with on a case-by-case basis. However, as
a guideline at lower transaction arrival rates, a smaller block size is recommended, as
it generally results in lower latency, which is favourable for MVCC conflict mitigation.
Counter-intuitively, latency is limited by a larger block size at higher transaction arrival
rates, as the overhead of ordering and validating larger blocks is reduced relative to the
same number of transactions in smaller blocks.

Endorsement policy complexity Endorsement policy complexity is best kept at a
minimum, as the higher number of required endorsements result in higher latency values,
which increase the amount of MVCC conflicts.

Network complexity Similarly to Endorsement policy complexity, it is beneficial to
limit the number of peers and organizations as much as possible, as with the increased
network complexity comes increased latency. The authors did not publish the impact of
network complexity on MVCC conflicts, only on Endorsement policy failures. However,
their results show that higher latencies lead to more MVCC conflicts. Thus network
complexity should also be considered a tunable parameter when the aim is to reduce
MVCC conflicts.

Database selection GoLevelDB performed better in all metrics; thus, the authors rec-
ommend choosing GoLevelDB if the rich queries offered by CouchDB are not a necessity.

3.1.2 Semantic data model techniques

The most notable paper in this subcategory is written by Alzubaidi et al. [1], in which
the authors showcase an MVCC conflict-aware data model for an Internet of Things (IoT)
chaincode that deals with high-frequency updates but low-frequency reads. Although the
example the authors used was IoT-specific, the technique has a wider range of applications.
It can be used in any situation where the frequency of updates is high relative to the
frequency of the reads and where the updates are not dependent on the previous value
of the updated key. The technique is based on essentially forbidding updates on a key
and opting to write the new values to new objects on the ledger instead. The authors
utilize composite keys for the objects so that they can be read with range queries in case
of infrequent reads. Although the authors only showcased the technique in a case study,
the approach could be automated and generalized as part of a semantic data model, which
could popularize the use of the approach.

12

3.2 Protocol optimizations

The techniques present in this category either extend or alter the protocol of HLF. In this
paper, the alteration will be used as a synonym for breaking change. This means that a
peer running an instance of the altered software would not be compatible with other peers
running the unaltered protocol. In contrast, the technique(s) listed as protocol extensions
are compatible with a network running the unaltered version of the protocol.

Figure 3.3: The subcategory of MVCC conflict mitigation techniques that are based on
protocol optimizations

3.2.1 Protocol alterations

Fabric++ Fabric++ reorders transactions based on data dependencies and, in the pro-
cess, utilizes early aborts for conflicting transactions that can not be successfully com-
mitted even with reordering. [20] The early aborts are done by greedily early aborting
transactions that are part of the highest number of cycles. If all cycles are resolved, the
remaining transactions can be reordered.

FabricSharp and FastFabric# Similarly to Fabric++, FabricSharp utilizes transac-
tion reordering based on data dependencies.[19] However, FabricSharp achieves the re-
ordering more efficiently and works with a reduced set of constraints on transaction serial-
izability, which prevents the abortion of transactions that read across blocks. FastFabric
is a performance-optimized version of HLF, but it is not concerned with reducing MVCC
conflicts [9]. However, Ruan et al. also implemented the improvements of FabricSharp on
top of the optimizations of FastFabric.

LMLS Fabric LMLS Fabric uses a centralized database to lock accessed keys and thus
early abort conflicting transactions [24]. The solution also utilizes a cache of the latest

13

values belonging to the keys to decrease the number of transactions that read outdated
information.

XOX Fabric XOX Fabric got its name from the architectural changes it features. It
utilizes a post-ordering execution phase to re-execute the failed transactions with the newly
updated world state [10]. Since the transactions are re-executed with newly updated data,
MVCC conflicts due to outdated reads are eliminated.

CATP Fabric CATP Fabric also utilizes transaction reordering but with a different
approach. In CATP Fabric, a key-based transaction processing module is introduced after
the regular protocol’s ordering step [25]. This module filters transactions with outdated
read-sets, prioritize read-only transactions and merges conflicting transactions’ write-sets
if the balance of the key is sufficient for both transactions to pass. The authors do not
mention how the system deals with conflicting transactions operating on non-balance-like
data.

CRDT Fabric CRDT Fabric incorporates Conflict-Free Replicated Datatypes (CRDT)
into the protocol [16]. CRDTs essentially bypass MVCC checks; thus, conflicts are not
possible when using them. The results of the transactions are stored in a specific data
structure that merges them; thus no results are lost. CRDTs are not suitable for all
applications, as the lack of MVCC validation would result in possible overspends in the
case of financial balance data.

StreamChain StreamChain limits transaction latency by not using blocks and optimiz-
ing the components of HLF to deal with the overhead caused by only batching transactions
before commitment [11]. To mitigate the effects of the streaming approach, StreamChain
uses RAMDisks both at the Orderer, added parallel validation of transaction signatures
and implemented software pipelining, among other things. Due to these changes, Stream-
Chain achieves extremely low latency (10ms) and thus reduces the transaction failure rates
[4].

3.2.2 Protocol extensions

Client side queuing and conflict detection Zhang et al. [26] implemented a modified
client-SDK, that employs a queuing mechanism for transactions via a client-side cache.
Transactions in the queue are subject to conflict analysis. Thus they can be early aborted
and re-executed before they are sent to the OSNs.

14

Chapter 4

Partitioning Framework

Previous approaches failed to take advantage of the possible performance optimizations in
a semantic data modelling approach. In general, the advantage of a data modelling-based
optimization approach over previous solutions is twofold. First, it can be used without
modifying the underlying protocol. Second, it can be tailored to the specific needs of the
use case. In general, the downside of such approaches is that the burden of implementation
and maintenance falls on the developers, which can be complex and might require a spe-
cialized workforce. I propose a novel semantic data modelling framework that can improve
transaction failure rates and provide a more intuitive chaincode development experience.
The framework splits the objects used in traditional Object Oriented Programming into
multiple partitions, and stores each partition under a different key, thereby enabling more
concurrent access.

4.1 Core idea

In practice, MVCC conflicts are usually a product of frequent updates to a key-value pair.
If the value is a complex object, the frequency of the updates can potentially be reduced
by storing some attributes as separate key-value pairs. Consider the following example.
A factory is tracking the assembly progress of cars, and at any point in time, there are
multiple robot arms working on a single car. The robots are not allowed to put some parts
in before others for safety reasons. The car object is a simple checklist of parts, where the
parts are the keys and the values are either "true" or "false". Since cars are complex and
have many parts, this would result in a large amount of data being stored under a single
key. A JSON representation of the object might look like this:

{"carID": "000", "engine":true, "tires":true,..., "exhaust":false}

This JSON object could be stored on the ledger under a single key. This would result in
every transaction being dependent upon every other transaction that deals with the same
car, as the the object would have to be read to verify that no part has been placed in
violation of the safety code and the object would be updated with the added part in every
transaction. An alternate way to store this data might be the following:

{"carID": "000", "engine":true},...,{"carID": "000", "exhaust":false}

Instead of storing every part in a single object on the ledger, every part can now be stored as
a separate object under a separate key. This resolved most transaction dependencies, as the
only dependencies remaining are between transactions that created the safety-critical parts
that the other transactions check. The first data model could be considered the logical data

15

model, where data is grouped together based on OOP and other similar principles. The first
data model is convenient to write programs with but can result in problems. The second
data model is hard to write programs with. For example, in a Java chaincode, it might
require the creation of many classes and would result in boilerplate code. However, the
second data model is better suited for storage on the ledger, therefore, can be considered
the ledger data model. Decoupling the two data models and programmatically translating
between the two combines the benefits of both models.

As defined in the Hot Key Theorem by Gorenflo et al., [10] if l is the average time between
a transaction’s execution and its state transition commitment, then the average effective
throughput for all transactions operating on the same key is at most 1/l. By dividing the
data stored under key k to n ∈ N number of distinct independent parts and storing them
under keys {k1, ..., kn}, the average effective throughput of all transactions that operated
over key k becomes at most n/l.

Example Consider the data model of object A. [Figure 4.1] Object A has two attributes
that can be represented as two separate objects. Representing them as such is potentially
beneficial from a transaction failure perspective, as the attributes can now be accessed
independently.

object attribute2A

attribute2

object A

attribute1

attribute2

object attribute1A

attribute1

Figure 4.1: Object A is partitioned along its attributes

Practical considerations This was done to some extent by encouraging developers to
follow OOP practices like separation of concerns. While this can result in fewer conflicts,
the goal of such guidelines was predominantly to increase the maintainability of the code,
not to decrease transaction failure rates. By following the above-described partitioning
practice, more concurrent access is possible, however, code would become hard to maintain.
For code maintainability, it is best if the logical data model is preserved and the mapping
between the logical and ledger data models is done programmatically.

4.2 Total partitioning

As explained in 4.1, the logical data model must be divided into distinct non-overlapping
subsets for a potential increase in effective throughput. One possible approach is to create
a subset for each attribute of the object. 4.1. The algorithm is discussed in the following
section.

4.2.1 Total partitioning algorithm

The algorithm creates a partition for all attributes of an object. These partitions can then
be saved as separate objects on the ledger. The algorithm has a complexity O(n) where n

16

is the number of attributes the object and its attributes (if they are nested objects) have
combined.

Algorithm 1 Total partitioning algorithm
1: procedure partitionTotally(asset)

▷ asset is an instance of a subclass of Asset class
▷ Asset class has the following property:
▷ uuid: string, a unique identifier of the object
▷ As asset is a subclass, it can have any number of attributes
▷ attributes are typed key-value pairs, where the key is a string

2: result← {} ▷ empty key-value store
3: id← getUuid(asset)
4: serializedId← serialize(id)
5: put(id, serializedId) ▷ saving the asset’s id as a partition
6: for attribute : asset do
7: if attribute instanceof Asset then ▷ attribute is nested asset
8: nested←partitionTotally(attribute) ▷ call recursively
9: for entry : nested do

10: put(result, entry) ▷ Put the key-value pair in the result map
11: end for
12: end if
13: serialized← serialize(attribute)

▷ getName returns the key of an attribute
14: attributeName← getName(attribute)
15: put(attributeName, serialized)
16: end for
17: return result ▷ The key-value pairs to be saved on ledger
18: end procedure

4.2.2 Benefits and potential shortcomings

The algorithm requires no input other than the logical data model, which is presumably
readily available in the early stages of the design process. The approach is simple, but
offers a maximum reduction in failure rates, assuming there are no transactions accessing
only a subset of the data stored as an attribute. However, creating a partition for all
attributes of an object might not be necessary, as there might be attributes that are
never accessed independently. In such cases, the resulting ledger data model requires
unnecessary database accesses, which might affect the throughput and the latency of the
system negatively. Another potential drawback of this, and all partitioning approaches, is
the increased storage requirements.

4.3 Affinity based partitioning

If data is available about the frequency of the transaction functions, the objects and
attributes accessed by each function is known, it is possible to create more sophisticated
ledger data models. (Example input data is provided at [Table 4.1].) By using the well-
known techniques of Vertical Partitioning proposed by Navathe et al. [17], but only
considering the transactions that update values as a semantic alteration to their approach,

17

ledger data models with a smaller number of partitions can be created that potentially
offer the same degree of improvement in failure rates as the total partitioning approach.

4.3.1 Affinity-based partitioning algorithm

The algorithm works by constructing an affinity matrix (AA) from the input data, which
is a diagonal matrix, where each field contains a value representing the similarity of each
attribute in terms of the accesses to them. (Example AA at Table 4.2) The Bond Energy
algorithm (BEA) [12] is then applied to this matrix to create clusters. (Example at Table
4.2) After the clustering step, the SPLIT_NON_OVERLAP algorithm [17] is applied to
the matrix. This is done n times, once for each permutation of the matrix created by
the SHIFT procedure, where n is the number of rows columns in the matrix. The SHIFT
procedure places the leftmost column to the extreme right of the matrix and the bottom
row to the top. From all the resulting binary partitions, only one is selected, such that the
number of transactions that access only one of the two partitions is maximized, while the
number of transactions that access both partitions is minimized. This is done by finding
the binary partitioning with the maximal z value. The z value of a binary partition is
calculated as such:

z = cucl − c2
i (4.1)

Where:

• cu: is the number of transactions that access only the upper partition of the AA
matrix,

• cl: is the number of transactions that access only the lower partition of the AA
matrix,

• ci: is the number of transactions that access both partitions of AA matrix.

Only partitions with a positive z value are accepted. N-ary partitioning is achieved by
repeatedly applying the algorithm to the affinity matrix of the resulting partitions.

Example input data about the updating functions
Transaction function attribute1 attribute2 attribute3 invocations
function1 1 0 1 30
function2 0 1 0 50

Table 4.1: Example input data for affinity-based partitioning. Accessed attributes are
marked with a 1

attributes attribute1 attribute2 attribute3
attribute1 30 0 30
attribute2 0 50 0
attribute3 30 0 30

Table 4.2: AA matrix created from table 4.1. (The algorithm only uses the numerical
values)

18

attributes attribute2 attribute1 attribute3
attribute2 50 0 0
attribute1 0 30 30
attribute3 0 30 30

Table 4.3: This AA is transformed from table 4.2 by the BEA.

Final partitions
partitions attributes
partition1 attribute2
partition2 attribute1, attribute3

Table 4.4: The result of partitioning the matrix in table 4.3.

4.3.2 Adaptations for application in HLF

Only updating transactions as input The input data is limited only to the updating
transactions because the key’s version only changes upon updates. Thus storing attributes
that are frequently read together as separate objects does little to decrease the number
of MVCC conflicts, as any transaction that reads only a subset of the updated attributes
before the previous transaction is committed will be invalidated. Besides this, read-only
transactions are encouraged not to be submitted for validation by the HLF community.

SPLIT_NON_OVERLAP as the splitting algorithm From the algorithms pro-
posed in [17] for splitting the clustered AA matrix SPLIT_NON_OVERLAP was chosen
despite the author’s recommendations for algorithms to use in the case of a distributed
database with replicated allocation because of the fundamental differences between tradi-
tional distributed databases and HLF. The cost of all factors examined by the paper is far
outweighed by the cost of resubmission that is necessary in case of a rejected transaction.
Besides this, all peers possess the state database; therefore, no data is fetched from other
nodes in the endorsement step. Thus HLF is more akin to a single-site database in this
regard.

4.3.3 Benefits and potential shortcomings

The benefits of affinity-based partitioning over the total partitioning approach are twofold.
First, no unnecessary partitions are created, reducing the number of database accesses.
Second, the maximum number of partitions and the minimum partition size are config-
urable, making the approach configurable for storage size. Compared to total partitioning,
the drawback of this approach is that it requires input data, which might not be available
at the design stage when data modelling decisions are made. However, the frequency input
data does not need to be very precise, as the 20-80 rule specifies that a limited number of
transactions are responsible for the majority of traffic, thus rough estimates should suffice.

4.4 Prototype framework

The prototype framework was implemented in Java, apart from the partitioning scheme
creation for the affinity-based approach, which was created in Python. The design focuses
on modularity and ease of use for the developers. The prototype has a fully functional

19

runtime implementation. However, a production-grade version of the framework could also
utilize code generation, thereby further simplifying the developer experience beyond the
one offered by the current implementation. (An example chaincode using the partitioning
framework, and an example of the traditional approach is available in the appendix 7.2.)

4.4.1 Framework API and usage

A short description of the most notable classes and interfaces of the framework:

• AssetBase: All classes that need to be persisted in a partitioned manner must
extend this class. It defines the core structure of the ledger objects.

• DataLayer: An interface that defines the expected API of the classes that deal with
ledger access.

• AssetCache: This interface defines the expected functionality of a cache.

• IAttributePartitioning: Defines the expected API of classes that translate between
the logical and ledger data models.

• PartitionedCachedContext: Custom transaction context that contains the applica-
tion level cache. Data retrieved from the ledger is saved in its read cache, and data
that needs to be written to the ledger is put in its write cache.

• AssetContractInterface: Provides default implementations for the before and after-
Transaction lifecycle functions and creates the PartitionedCachedContext instances
for each transaction.

Figure 4.2: Simplified class diagram of the implementation

20

API The current implementation differs from the conventional development experi-
ence in 2 significant ways. First, immediate consistency (RYW) is supported using an
application-level cache. Second, it is possible to use getters and setters on classes inherit-
ing from the AssetBase class that read from the ledger and write to a cache. The getters
perform tasks that are akin to loading each attribute of the asset lazily from the ledger.
The changes done to the object by the setters are cached. The cache is then persisted after
the transaction function is executed. It is important to note, that because the changes
to the object are persisted on the ledger, AssetBase needs an instance of Context to be
instantiated.

Usage The current implementation requires chaincode developers to write two classes
for each class that holds data that needs to be persisted on the ledger with a partitioning
approach. Consider a class named ExampleAsset that holds data that needs to be persisted
on the ledger in a single attribute named attribute1. (Example illustrated on Figure 4.2)
First, a class extending AssetBase needs to be created that defines the data model, anno-
tates the attributes that need to be persisted and uses the getAttribute and setAttribute
functions of DataLayer in its getter and setter implementations to get and set data on the
object. Second, the ExampleAssetRepository class needs to be created that defines create,
read, update and delete (CRUD) functions for the ExampleAsset. This class is a wrapper
class and is expected to use the similarly named functions of PartitionedDataLayer in the
implementation, as the logic is already implemented generically, and the functions require
type arguments and are not convenient to use. These steps could be trivially automated in
a production-ready implementation, as explained in subsection 4.4.3. After creating these
simple classes, the developer can implement the business logic of the chaincode using the
functions defined in the newly created classes.

4.4.2 Implementation

This subsection discusses the implementation details of the prototype partitioning frame-
work. The classes and interfaces of the framework can be divided into two groups. The
first one constitutes the rigid core of the framework, and the second is the extensible
part responsible for implementing the different partitioning strategies. The core part is
discussed in subsection 4.4.2.1, while the implemented approaches are discussed in sub-
sections 4.4.2.2, 4.4.2.3.

4.4.2.1 Framework Core

The two main components responsible for translating between the ledger and logical data
model are the classes that implement the DataLayer and IAttributePartitoning interfaces
[Figure 4.2]. A new partitioning approach can be implemented by creating the two classes
that extend the above-mentioned interfaces. The framework uses a custom context, that is
the subclass of org.hyperledger.fabric.contract.Context and it implements the AssetCache
interface. PartitionedDataLayer is implemented so that if an asset is read, it places it in
the context’s read cache, and if it is modified, it puts the serialized byte array of the new
value in the writeCache. The writeCache is persisted after the transaction’s business logic
is completed via an invocation of the persistCache function in the afterTransaction lifecycle
function of the AssetContractInterface [Figure 4.6]. For every transaction a new instance
of PartitionedCachedContext is created, thus no new shared state is created between the
transactions.

21

4.4.2.2 Total partitioning

As previously explained in subsection 4.4.2.1, partitioning approaches are implemented
in a two-step process. First, a class that implements the IAttributePartitoning interface
needs to be created, which handles the translation between the ledger and logical data
model. Second, a class implementing the DataLayer interface needs to be created that is
responsible for creating the CRUD operations that deal with the specifics of the ledger data
model. In the case of Total Partitioning approach, the algorithm discussed in subsection
4.2.1 was implemented with the help of the Java.lang.reflection library, as part of a class
that implements the IAttributePartitioning interface.

Figure 4.3: Example of the data model resulting from total partitioning (the ledger data
model used in benchmarking [chapter 5])

4.4.2.3 Affinity based partitioning

As mentioned at the beginning of section 4.4, the affinity-based partitioning approach
was implemented in Python. The python program takes files that contain the necessary
metadata for running the partitioning algorithm as input. These are simple .csv files
with data structured similarly to the example in Table 4.1. The output of the Python
program is the partitioning scheme for all classes. The Java SDK then parses this, and
the partitioning is performed by a class implementing the IAttributePartitioning interface
accordingly. This flow is depicted on Figure 4.4.

Figure 4.4: Flow depicting the usage of the Affinity-based partitioning approach

4.4.3 Code generation

The developer experience could be further enhanced with code generation in a production-
grade implementation. As mentioned earlier, the code responsible for handling data per-

22

Figure 4.5: Example of the ledger data model resulting from affinity-based partitioning
(the ledger data model used in benchmarking [chapter 5])

sistence could be generated. The data model could be parsed from an input UML diagram,
and ExampleAsset and ExampleAssetRepository classes could be generated. This way the
developers would not need to be concerned with the specifics of ledger access in HLF, as
it could be treated similarly to conventional databases.

Figure 4.6: Example of a simplified asset creation sequence by the framework

23

Chapter 5

Empirical validation

The implementation of both partitioning approaches was tested to validate the viability of
the techniques, as well as to assess the quantitative differences in performance between each
of the data storage strategies. The tests were performed on the private cloud infrastructure
of Budapest University of Technology and Economics, and the approaches are compared
not only to each other but to the traditional solution as well. This chapter contains
detailed explanations of the testing infrastructure, both software and hardware [section
5.1], the testing methodology and the benchmarking campaigns [section 5.2], as well as
results and detailed analysis of them [section 5.3].

5.1 System under test

Finding optimal system configuration is not the goal of the tests, as those have been
investigated thoroughly [4]. Since the partitioning solutions are applied at the application
level, the effects of system configuration-based mitigations are not expected to change
when partitioning is applied. However, to be able to compare the effects of my solution to
others and ease the reproducibility of the results, it is necessary to detail the configuration
of the system under test [Figure 5.1].

Hardware and Software environment The tests were performed in the Budapest
University of Technology and Economics’ private cloud on 7 QUEMU-based virtual ma-
chines (VM) running on eight-core Intel CPUs with 16GB of RAM. No RAMDisk-based
Hyperledger Fabric configurations were tested. The operating system was Ubuntu 18.041,
on which docker2 20.10 was installed, and the containerized HLF network components
were orchestrated by a Docker Swarm.

Hyperledger Fabric configuration Hyperledger Fabric 2.22 was used, and the net-
work consisted of 3 nodes; 2 peer nodes and an Ordering Service Node. All nodes were
installed on separate virtual machines to limit interference. Both peers took part in the
endorsement process, and each belonged to a different organization. A simple endorsement
policy was chosen to avoid any possible overhead caused by it. A proposal conformed to
the endorsement policy if any of the two organizations endorsed it. A batch timeout of
750ms and a max message count of 80 was chosen, as a reasonable middle ground between

1https://ubuntu.com/
2https://docker.com/

24

Figure 5.1: Test environment in the cloud

throughput and latency, that many applications might use. The maximum size of a block
was set to 99MB, and the preferred max size was set to 30MB. GoLevelDB was used as
the state, index and history databases. All remaining configuration options were left on
their default values.

Workload generation For workload generation, Hyperledger Caliper [8] was chosen,
as it offers easy configuration, and when using multiple workers, it can generate sufficient
loads. The benchmarking campaigns utilized four caliper workers and a master placed on a
single VM. This was not a limiting factor, however, as Caliper workers are single-threaded
javascript processes, therefore the eight core VM was not overutilized.

Data collection Multiple sources of data were collected throughout the tests. An in-
stance of Hyperledger Explorer was installed on a separate VM, which was used to gather
data about the read/write sets of the transactions. A custom build of Hyperledger Caliper
was utilized to collect data about the throughput, latency and validity of transactions. The
partitioning framework implementations were instrumented with the help of a logging so-
lution, and the logs were collected with Logspout3 and processed with, Logstash4 and
Elasticsearch5. The utilization of system resources was monitored on all VMs with cmon-
itor6, which was chosen as a lightweight alternative to more popular solutions to minimize
overhead on the system.

3https://github.com/gliderlabs/logspout
4https://www.elastic.co/logstash/
5https://www.elastic.co/
6https://github.com/f18m/cmonitor

25

5.2 Case studies and benchmark campaigns

To evaluate the effectiveness of my implementations, I created two simple micro-benchmark
scenarios. The scenarios were chosen not only because they showcase the behaviour of the
mapping strategies well , but they represent a widespread data modelling pattern used in
many real-world applications. Both scenarios simulate a very simple bank account with
three balances. The three balances could represent different currencies and sub-accounts
like trading accounts, savings accounts etc. The data model [5.1] is overly simplistic to be
used in any real-world application, but that does not affect the key versioning. The three
numbers could be swapped for more complex nested objects (a typical pattern in Object
Oriented Programming), but the key versioning would remain the same. As explained in
section 2.3, MVCC conflicts are the product of key versioning, and the scenarios test gen-
eral access patterns; thus, an effect on performance on this synthetic workload is expected
to translate to real-world usages with similar patterns reasonably well.

Account

float balance1
float balance2
float balance3

Table 5.1: Data model of the Bank account

5.2.1 Scenario 1. - Independent attribute access

Description In this scenario, three transacting functions each access a balance inde-
pendently. These functions read the balance’s previous value to ensure sufficient funds
for the transaction execution and then update the value accordingly. The createAccount
function is used to initialize the ledger with the accounts that will be the subject of the
transacting functions. This scenario was chosen to investigate the hypothesis that storing
the partitioned object on multiple keys provides more parallel access to the information
and that this effect is not outweighed by the cost of more frequent database accesses.

Campaigns The test runs consisted of two phases. First, the ledger was initialized with
the assets by calling the createAccount function at a constant rate of 50 transactions per
second. The tests were performed with 200, 2000 and 20 000 accounts on the ledger, from
which the accounts were selected for transacting in the second phase. The random selection
was performed with uniform distribution. To investigate the effect of the framework
for a wide range of workloads, the second phase was divided into four sub-phases, each
with incrementally increasing loads. A range of accessed attributes was also tested by
performing the tests three times by altering the second phase to call only a subset of the
possible transaction functions. Only two partitioning frameworks were tested, as in the
independent access scenario, the affinity-based strategy resulted in the same mapping as
the total partitioning. A total of 36 different configurations were benchmarked on both
strategies.

5.2.2 Scenario 2. - Shared attribute access

Description In contrast with the previous scenario, the attributes here can not be ac-
cessed independently, as balance1 and balance2 are accessed together by a single transac-

26

Functions and access patterns
function name accessed attribute access type
createAccount balance1, balance2, balance3 W
transactWithBalance1 balance1 R+W
transactWithBalance2 balance2 R+W
transactWithBalance3 balance3 R+W

Table 5.2: The transacting functions access the attributes independently

Control variables and possible values
Variable name Possible values
workload (tps) 30, 60, 90, 200

accessed attributes balance1, OR(balance1, balance2),
OR(balance1, balance2. balance3)

number of assets 200, 2000, 2000
partitioning framework total partitioning, no partitioning

Table 5.3: All variables and their possible values in the independent access scenario

tion function. There are two transaction functions: transactWithBalance1, which accesses
balance1 and transactWithBalance23 which accesses the remaining two balances. Similar
scenarios are also commonplace in many applications, as this access pattern could repre-
sent a swap between two balances or a simultaneous update to two related values in any
number of other use cases. This scenario was chosen to investigate the effectiveness of the
affinity-based partitioning and to examine the potential drawbacks of the total partitioning
strategy when the increased parallel accessibility can not be utilized.

Campaigns Similarly to the campaigns in paragraph 5.2.1, this test consisted of two
phases. The first initialization phase was identical, and the second phase was divided into
four subphases with incrementally increasing workloads again. The tests were conducted
on the same range of accounts, and the transacting accounts were chosen in the same man-
ner. However, the functions in the second phase were different, as described in paragraph
5.2.2. These two functions were called in a sequentially alternating manner. A total of 12
configurations were tested on each of the three partitioning options.

Functions and access patterns
function name accessed attribute access type
createAccount balance1, balance2, balance3 W
transactWithBalance1 balance1 R+W
transactWithBalance23 balance2, balance3 R+W

Table 5.4: Attributes balance1 and balance2 are accessed by a shared function

5.3 Evaluation of results

Throughout the two scenarios, a total of 48 configurations were tested, and the effectiveness
of the partitioning approaches was evaluated on five key metrics. Transaction failure
rates, throughput and latency, are widely used in the performance evaluation of Online
Transaction Processing (OLTP) systems [6], as well as the HLF specific literature [22, 13,

27

Control variables and possible values
Variable name Possible values
workload (tps) 30, 60, 90, 200
number of assets 200, 2000, 2000
partitioning framework total partitioning, affinity-based partitioning, no partitioning

Table 5.5: All control variables and their possible values in the shared access scenario

9, 7, 23, 21]. These metrics convey a great deal of information, even to the uninitiated
reader. Two tool-specific metrics, Read-set and Write-set sizes will be used to examine
the potential downsides of my approach.

The rest of this section is structured as follows: The used metrics are formally defined
in subsection 5.3.1. In subsection 5.3.2, the results of the benchmarking campaigns for
Scenario 1 are discussed, after which a similarly structured evaluation of Scenario 2 follows
in subsection 5.3.3.

5.3.1 Used metrics

Transaction failure rate Transaction failure rate is the proportion of the total trans-
action count after which no update of the ledger occurred. In the following sections, this
metric will be presented as a percentage.

Throughput Throughput is defined as the total number of transactions processed by
the system over a period of time. This includes failed transactions as well as successful
ones. Throughput values will be presented as transactions per second (tps).

Latency Latency is the total elapsed time from the submission of a transaction proposal
to the receival of the result notification event by a client. All latency values in this paper
are in milliseconds.

Read-set size Read set sizes are usually specified as the number of read keys. However,
here the combined size of the business logic JSON7 object and the key will be used in-
stead, as it has more relevance when evaluating the potential downsides of the partitioning
approach. All read set size values are to be interpreted as bytes.

Write-set size Write set size is the combined size of the business objects encoded in
JSON and the associated keys. All write-set size values will be presented in bytes.

5.3.2 Scenario 1 Results

Transaction failure rate When all test configurations are examined, it can be con-
cluded that in the case of the independent access scenario, the total partitioning approach
was effective at conflict mitigation. The total partitioning approach performed comparably
or significantly better than the traditional data model in all cases.

7https://www.json.org/

28

200 assets Generally, high transaction failure rates were observed in test runs with
only 200 assets on the ledger [Figure 5.2]. This was expected, as even at the lowest send
rate of 30 tps, the probability of an asset receiving two transactions in a single second
is approximately 13%. Failure rates increased close to linearly with the increase in send
rates. Without partitioning, the failure rates remained constant when the number of
accessed attributes was changed. In the case of the total partitioning approach, however,
the number of accessed attributes had an enormous impact on the results. At 2 and 3
accessed attributes, the number of conflicts was decreased by close to 1/2 and by 1/3,
respectively. At lower send rates, the failures decreased by more than 1/n, where n
is the number of accessed attributes. These results are similar to what the theory in
section 4.1 suggests might be possible. However, the factor of reduction shows a slight
diminishing trend as the send rates are increased. It is important to note that while no
significant reduction in failure rates occurred when only one attribute was accessed, the
added complexity of the partitioning approach did not cause any deterioration relative to
the conventional approach.

30 60 90 120
0

5

10

15

20
no partitioning
total partitioning

send rate (tps)

%
 o

f t
ot

al
 tr

an
sa

ct
io

ns

30 60 90 120
0

5

10

15

send rate (tps)

%
 o

f t
ot

al
 tr

an
sa

ct
io

ns

30 60 90 120
0

5

10

15

send rate (tps)
%

 o
f t

ot
al

 tr
an

sa
ct

io
ns

Figure 5.2: Transaction failures for 1, 2 and 3 written keys at 200 assets.

2000 assets With a 10x increase in assets on the ledger from 200 to 2000, a decrease
of the same magnitude can be observed in the percentage of failed transactions. [Figure
5.3]. Despite the decrease in the number of conflicts, the improvements achieved by the
total partitioning approach are similar in magnitude to one observed in the tests with
200 assets. At a single accessed attribute, performance was close to identical, while at
2 and 3 attributes the failure rates decreased by nearly 2x and 3x. Curiously, the same
diminishing trend with the increase in send rates can not be observed in every case.

30 60 90 120
0

0.5

1

1.5

2

no partitioning
total partitioning

send rate (tps)

%
 o

f t
ot

al
 tr

an
sa

ct
io

ns

30 60 90 120
0

0.5

1

1.5

2

send rate (tps)

%
 o

f t
ot

al
 tr

an
sa

ct
io

ns

30 60 90 120
0

0.5

1

1.5

2

send rate (tps)

%
 o

f t
ot

al
 tr

an
sa

ct
io

ns

Figure 5.3: Transaction failures for 1, 2 and 3 written keys at 2000 assets.

20 000 assets In the case of 20000 assets, the number of failures due to MVCC conflicts
was generally low, even without a partitioning approach. [Figure 5.4] When the number
of assets was increased by 100x relative to the first tests, the amount of failed transactions

29

decreased proportionally. Although the probability of conflict was low with all send rates,
the partitioning approach further decreased them.

30 60 90 120
0

0.05

0.1

0.15

0.2

0.25

no partitioning
total partitioning

send rate (tps)

%
 o

f t
ot

al
 tr

an
sa

ct
io

ns

30 60 90 120
0

0.05

0.1

0.15

0.2

send rate (tps)

%
 o

f t
ot

al
 tr

an
sa

ct
io

ns

30 60 90 120
0

0.05

0.1

0.15

0.2

send rate (tps)

%
 o

f t
ot

al
 tr

an
sa

ct
io

ns

Figure 5.4: Transaction failures for 1, 2 and 3 written keys at 20000 assets.

Latency Despite the added complexity of the partitioning framework, latency remained
unchanged throughout all test configuration options [Figure 5.5]. As observed by Thakkar
et al. [22], latency substantially increases with increased send rates, only above the sat-
uration rate of the system. In these benchmarking campaigns, this rate was avoided
intentionally. In previous experiments I observed less consistent system performance at
such high workloads, which could potentially interfere with the test results. As mentioned
at the beginning of this section 5.1, finding the optimal system configuration for MVCC
mitigation or performance modelling HLF is not the aim of my report.

30 60 90 120
0

200
400
600
800

1000

no partitioning
total partitioning

send rate (tps)

la
te

nc
y

(m
s)

30 60 90 120
0

200

400

600

800

send rate (tps)

la
te

nc
y

(m
s)

30 60 90 120
0

200

400

600

800

send rate (tps)

la
te

nc
y

(m
s)

Figure 5.5: Latency for 1,2 and 3 accessed attributes across all asset counts

Throughput Throughput values were essentially identical for the tested approaches,
suggesting that the added complexity of the total partitioning approach did not affect
the throughput [Figure 5.6]. It is worth noting that the send rates were closely matched
by the throughput values in all configurations, as the system was not loaded above the
saturation level.

1 2 3
0
5

10
15
20
25
30

no partitioning
total partitioning

attributes accessedm
ea

n
th

ro
ug

hp
ut

 (t
ps

)

1 2 3
0

10
20
30
40
50
60

attributes accessed

m
ea

n
th

ro
ug

hp
ut

 (t
ps

)

1 2 3
0

10
20
30
40
50
60
70
80
90

attributes accessed

m
ea

n
th

ro
ug

hp
ut

 (t
ps

)

1 2 3
0

20
40
60
80

100
120

attributes accessed

m
ea

n
th

ro
ug

hp
ut

 (t
ps

)

Figure 5.6: Mean throughput values at 30, 60, 90, 120 tps send rates, across all asset
counts

30

Read-set sizes In the case of the transacting functions, read set sizes have increased
by nearly 76%, while for the account creation, the same metric shows nearly 4.5x. The
use of composite keys causes the 4.5x increase in size in the case of the creation function.
Composite keys store metadata about the values that are stored under them. In the
non-partitioning approach, composite keys were not utilized, as the complexity of the
data structure does not require it. However, this significant proportional increase is not
concerning, as when the accounts are created, the keys are read only to check for an
account with the same key. If the account does not exist, which was always the case in
this scenario, only the key is read, which might be proportionally large, but the absolute
difference between the values is unlikely to be a limiting factor of system performance. This
notion is further reinforced by the latency and throughput data, where the more significant
absolute differences between the approaches showed no impact on performance.

Figure 5.7: Read-set sizes of all transaction functions in Scenario 1

Write-set sizes The account creation function of the total partitioning approach saw
a ~2.5x increase in mean write set sizes. This is a drawback of the total partitioning
approach. By creating a different partition for each attribute, the same information is
stored with increased metadata. If efficient storage is a necessity, other approaches should
be considered. In the case of the transacting functions, a ~39% reduction in write sizes was
observed. This is a benefit of using the total partitioning approach, as only the necessary
subsets of the asset are updated. However, in a benchmark of this scale, none of the
differences appeared to impact system performance. A more complex benchmark scenario
might show a more significant effect of read and write sizes on performance.

Figure 5.8: Write-set sizes of all transaction functions in Scenario 1

31

5.3.3 Scenario 2 Results

Transaction failure rate Like in the previous scenario, the failure rates decreased by
10x every time the same amount increased the asset count. [Figure 5.9] In the case of
the traditional approach, essentially identical failure rates can be observed. In the case of
the total partitioning approach, this scenario saw similar failure rates as the independent
access scenario with two accesses attributes. This was expected, as the previous bench-
marking campaigns showed that the added complexity did not have an adverse effect on
latency, and in the case of total partitioning, the difference between the independent access
scenario with two attributes accessed and this one is a single database access for every call
to the transactWithBalance23 function. Considering these facts, it is not surprising to see
that the affinity-based approach failed to significantly outperform the total partitioning
approach in failure rate reduction. The difference in failure rates between the two ap-
proaches is negligible and is most likely the result of the random account selection during
workload generation.

30 60 90 120
0
5

10
15
20

no partitioning
total partitioning
affinity based partitioning

send rate (tps)%
 o

f t
ot

al
 tr

an
sa

ct
io

ns

30 60 90 120
0

0.5

1

1.5

2

send rate (tps)

%
 o

f t
ot

al
 tr

an
sa

ct
io

ns

30 60 90 120
0

0.05
0.1

0.15
0.2

0.25
0.3

send rate (tps)
%

 o
f t

ot
al

 tr
an

sa
ct

io
ns

Figure 5.9: Transaction failures at 200, 2000 and 20 000 assets

Latency Similarly to the independent access scenario, the partitioning strategies did not
significantly impact the latency. This was not surprising considering the facts discussed in
paragraph 5.3.3. Interestingly, in the test run with 200 assets, there was an irregularity in
latency with the traditional approach. This is most probably caused by a sudden demand
on the university cloud. It is also worth noting that the affinity-based solution performed
better, but this was not statistically significant and was well within the margin of error.
The latency values did not increase with the increase in send rate, most probably for the
reason discussed in paragraph 5.3.2.

Figure 5.10: Latency for 1,2 and 3 accessed attributes across all asset counts

Throughput As observed in the previous scenario [Figure 5.6], there was no significant
difference in throughput values when a partitioning approach was applied. This scenario
was no different [Figure 5.11]. All approaches’ and configurations’ throughput closely
matched the send rate.

32

Figure 5.11: Mean throughput values at 30, 60, 90, 120 tps send rates, across all asset
counts

Read-set sizes Read-set sizes are highly elevated. The more complex key structure can
partly explain the larger read-set sizes. This is most visible at the createAccount function,
where the difference in read-set sizes comes from the key sizes alone. In the case of the
transacting functions, the cause of the elevated sizes comes from the increase in metadata.
However, as seen previously [Figure 5.10], with a high bandwidth connection, the larger
read-set sizes did not cause any deterioration in latency values.

Figure 5.12: Read-set sizes of all transaction functions in Scenario 2

Write-set sizes Unlike read-set sizes [Figure 5.12], the size of the write-sets did not
increase for all transaction types [Figure 5.13]. In the case of the createAccount function,
significant write-set size increases were observed for both partitioning implementations.
This is a potential drawback of the partitioning approaches, as the larger write-set sizes
result in more used storage. In the cases of the transacting functions, the write set sizes
did not increase nearly as much. On the contrary, write set sizes decreased when only a
single balance was accessed. This is the result of updating only a subset of the data that
is stored as a single object in the case of the traditional approach. This did not result
in smaller write set sizes when two balances were accessed, as the increased amount of
metadata had a more pronounced effect than the finer-grained access since the data model
is simplistic.

5.3.4 Conclusion of benchmark results

Overview of the test results Both partitioning versions heavily outperformed the
traditional approach in transaction failure rates in every scenario where more than one
attribute was accessed. When only a single attribute is accessed, no improvements can

33

Figure 5.13: Write-set sizes of all transaction functions in Scenario 2

be made by partitioning along attributes, as explained in section 4.1. In the scenarios
where more than 1 attribute was accessed, transaction failure rates generally decreased
by 1/n, where n is the number of accessed attributes. The throughput metrics (which in-
cluded the failed transactions), along with the latency values, did not change significantly.
Mean read-set sizes increased significantly in all configurations where a partitioning ap-
proach was utilized, while write-set sizes were comparable or reduced. The partitioning
approaches effectively decreased the failure rates, and the overhead of the added com-
plexity did not impact throughput and latency metrics. The affinity-based partitioning
approach did not perform better than the total partitioning approach in conflict mitiga-
tion, which was expected. The affinity-based approach performed comparably to the total
partitioning approach in latency and throughput metrics while using less storage. This
can be considered a success, as it can not be expected to outperform the Total partitioning
approach due to the theory discussed in section 4.1.

Shortcomings of the benchmarking campaigns Potential shortcomings of the
benchmark campaigns are the simplistic data model and synthetic workload. While more
complex data models would have likely resulted in larger comparative storage use for the
partitioning approaches, the metadata would likely also be a smaller portion of the read
and write-sets, and the finer-grained access to attributes would also further decrease the
read and write-set sizes relative to the traditional approach. A non-synthetic workload
might see the affinity-based approach fall behind the total partitioning one in failure rate
reduction, as there might be more overlap between the transaction functions regarding
accessed partitions. The micro-benchmark successfully showed the approach’s viability
on often-used patterns, but more comprehensive testing is needed with workloads more
representative of real-world use. For this reason, I plan to implement and test TPC-C [5]
as a Java chaincode. TPC-C is a standardized benchmark for OLTP systems which was
designed to be representative of real-world usage.

Shortcomings of the partitioning approaches A potential shortcoming of the par-
titioning approaches might be the storage used. They create more ledger objects, which
result in more world state entries leading to longer database searches when objects are
retrieved. However, my tests did not observe the adverse effects of the longer database
searches.

34

Chapter 6

Dynamic endorsement delaying

6.1 Motivation behind the proposal

Numerous techniques try to mitigate the effect of MVCC conflicts, most focusing on
optimizing a single aspect. Even when used alone, these efforts can provide great op-
timizations, but a layered approach combining the solutions could result in even larger
improvements. However, most of these solutions are incompatible with each other and
the unaltered protocol. While specialized use cases which require total optimization of
a single aspect exist, most applications do not fall into this category. Most applications
would benefit more from an approach that combines the effect of the optimizations. Re-
maining compatible with the unaltered protocol has further benefits regarding adoption.
A solution that can be integrated iteratively and does not require the overhaul of existing
systems is more likely to be adopted by businesses. Motivated by these reasons, I propose
an approach which is compatible with the unaltered protocol and can be used as part of
a multi-layered MVCC conflict mitigation strategy.

6.2 Core idea

In HLF v2.4 Fabric Gateway (FG) was introduced, which provides a simplified interface
for writing client applications. By creating a service which offers the same API as the
FG, to which clients can connect transparently, it is possible to build an organization-level
optimization layer on top of the HLFs network. The proposed service forwards clients’
proposals to peers for endorsement, exactly like the FG, but the possibility of delaying
the endorsement is a powerful tool. By delaying the endorsement of a proposal, it can
be executed on a world state that contains updated versions of the keys accessed by the
proposal. This would result in fewer failed transactions. The service can inspect the inputs
passed to the chaincode function and decide to delay the endorsement if it detects a high
probability of conflict. To provide accurate and reliable predictions, there are multiple
data sources available to the service besides the current transaction:

• Past transactions: By connecting to the network as a client itself, the service is able
to retrieve all past transaction data.

• Pending transactions of the Organization: Transactions that are proxied through
the service are stored in a cache.

35

These can be used as inputs to different algorithms that estimate the probability of a
transaction being an MVCC conflict.

6.3 Architecture

The Optimization layer is situated between the client and the unaltered HLF network. The
original architecture of HLF remains the same, while the organizations’ clients connect
to the optimization layer’s proxy gateways. The optimization layer consists of two main
components, the Proxy gateway and the Cache service. The components will be discussed
in their subsections below.

6.3.1 Proxy Gateway

The Proxy Gateway manages the communication between the client, the Cache service
and the HLF network. There can be many instances of the proxy gateway; it is not a
centralized service. It exposes the full gRPC API of the FG and forwards most calls to
the FG unchanged. The simplified version of the original communication flow can be seen
on [Figure 6.1], and the altered version is depicted on [Figure 6.2]. Whenever it receives
a proposal submitted for endorsement, it forwards it to the Cache service. The cache
service saves the transaction and processes it to estimate the probability of conflict. After
the necessary time has passed according to the probability, the Cache service signals to
the proxy service that the proposal can be submitted for endorsement. The proposal is
forwarded to the FG, where the FG gathers the endorsements from the endorsing peers.
The result is then returned to the Proxy Gateway, which forwards it to the client. After
this step, no changes are made. All client requests are forwarded to FG, and the responses
of the FG are sent back to the client.

6.3.2 Cache service

The Cache service is responsible for storing the pending transactions and estimating the
probability of conflict for the incoming ones. After the decision has been made to delay
it or not and the potential delay time has passed, the Cache service notifies the Proxy
Gateway that the delay duration has expired. The Cache service removes a proposal from
storage once it has received the Commit event of the block that contains a transaction.
This is done

6.4 Estimating MVCC conflict probability

Chaincodes usually have a limited number of functions available for invoking, and their
execution must be deterministic, or they will fail validation. By their nature, chaincode
functions usually perform the same types of ledger accesses when invoked. This means
the invoked function’s name and parameters passed in can be used to create rules that
probabilistically define when a transaction function depends upon another one.

36

Figure 6.1: Simplified flow of communication between HLF’s components and the client

Figure 6.2: Simplified flow of information between the components of the Org-level Op-
timization layer and HLF. Note that only steps 2 and 3 are new. Steps
12,10,4,8,17 are forwarded requests; other steps are unchanged.

6.4.1 Core idea

As mentioned in section 6.2, the full transaction history is available for the cache service,
along with the read and write sets of the past transactions and the proposal input that
resulted in the generation of the read and write-sets. In the full transaction history, it
is possible to find for every failed conflicting transaction the transactions it conflicted
with. This can be done by finding every valid transaction which the failed transaction
depended upon, whose commit height is newer than the version of the key that is present
in both sets. By finding every failure causing dependency and examining which functions
were invoked, it is possible to find the most problematic functions the failed transaction’s

37

function depends on. Creating rules based only on the functions’ names is not sufficient
for reliable predictions. For such rules to be created, the parameters the function was
invoked with are essential data. Consider the following example of two functions:

Transaction function buyCar takes three arguments (carID, buyerID, price), while
takeLoan takes (loanerID, loaneeID, amount) as inputs. Although the parameter names
are different, the two functions can deal with the same ledger object, which is a wallet of
a person. In this case, if buyerID and loaneeID are the same, the functions will modify
the balance of the person represented by buyerID and loaneeID. Thus function buycar
is dependent upon function takeLoan and vice versa. To avoid MVCC conflicts, in this
case, a rule can be created that states that if there is a pending takeLoan function with a
loaneeID that equals the buyerID parameter of the incoming buyCar transaction, buyCar
needs to be delayed until the result of takeLoan is committed. In the case of this example,
the resulting transactions were guaranteed to change the value of the balance if the trans-
action was successful. However, if the buyCar function were to contain conditional logic
that would result in the balance only getting updated in some cases, then the previous
rule would result in the delayment of buyCar in cases where it is unnecessary. To avoid
such cases, a confidence value c can be used:

c = nc/nd × nc/nm

where :

• nc: is the number of cases where a buyCar transaction was invalidated because of a
takeLoan transaction and the parameters loaneeID = buyerID.

• nd: is the total number of cases where buyCar was dependent on a recent takeLoan
transaction and the parameters loaneeID = buyerID.

• nm: is the total number of cases where a buyCar transaction was invalidated because
of a takeLoan transaction.

Recency here is the number of past blocks that are examined for the dependency. The
optimal value of this is different for every system configuration, and this is an input
parameter of the algorithm. The usage of a confidence value is advantageous because, in
the case of multiple matching parameters, finding the meaningful match is not possible
without further metadata. In the previous example, if price and amount were to match
without using a confidence value, transactions working on unrelated business objects with
the same price would get delayed. However, in this example, since the third parameters
of the functions are not the ones leading to conflicts, it is reasonable to assume that given
a large enough sample of transaction history, the rule resulting from the parameters price
and amount matching would have a lower confidence value, as the parameters might match
in cases where there are no conflicts and might not match in cases with conflicts. This effect
is shown in table 6.1, where a single conflicting transaction where price = amount results
in a rule with a confidence value of 1, but after three more conflicting transactions where
price ̸= amount the confidence value of the "incorrect" rule is only 0.25. By assigning a
confidence value to every rule, the algorithm becomes configurable, as system operators
can choose a threshold confidence value p, where if p > c, the delay is not applied. This is
beneficial, as the approach can be tailored to use cases with different degrees of tolerance
for the added latency and the number of failing transactions.

38

nm 1
parameters carID buyerID price

loanerID 0 0 0
loaneeID 0 1 0
amount 0 0 1

nm 4
parameters carID buyerID price

loanerID 0 0 0
loaneeID 0 4 0
amount 0 0 1

nm 1
parameters carID buyerID price

loanerID 0 0 0
loaneeID 0 1 0
amount 0 0 1

nm 4
parameters carID buyerID price

loanerID 0 0 0
loaneeID 0 4 0
amount 0 0 1

nm 1
parameters carID buyerID price

loanerID 0 0 0
loaneeID 0 1 0
amount 0 0 1

nm 4
parameters carID buyerID price

loanerID 0 0 0
loaneeID 0 1 0
amount 0 0 0.25

Table 6.1: The nc (1st row), nd (2nd row) and c values (3rd row) of each rule after one
(left) and four (right) conflicts

6.4.2 Input matching approach

By creating rules between every possible parameter pairing of every dependent function
in a transaction history, a knowledge base can be defined that contains rule-sets for ev-
ery function. The rule-sets can be queried with proposal input pairs. A proposal input
pair consists of the incoming transaction’s proposal input and one of the pending trans-
action’s proposal inputs. If a query returns a rule with a confidence value higher than
the threshold value set by the operators for any of the pending proposal inputs, no more
queries are necessary; the incoming proposal should be delayed. Only the querying needs
to be executed for every incoming transaction, which has an algorithmic complexity of
O(n ×m × l) if a linear search is used, where n is the number of functions the incoming
transaction function depends upon, m is the maximum number of parameters any function
has in the knowledge base, and l is the number of pending transactions.

• Let fi and fj be transaction functions such that fi depends upon fj .

• Let ni be the number of input parameters fi has and nj be the number of parameters
of fj .

• Let pi be a parameter of fi and pj be a parameter of fj

• Let rpi,pj be a rule declaring an incoming proposal of fi should be delayed with
confidence value c

fi,fj
rpi,pj

= n
fi,fj
cpi,pj

/n
fi,fj

dpi,pj
× n

fi,fj
cpi,pj

/n
fi,fj
m where:

– n
fi,fj
cpi,pj

is the number of times a transaction of fi was invalidated because of a
dependency on fj such that pi = pj .

– n
fi,fj

dpi,pj
is the number of times function fi depended on a recent fj such that

pi = pj .

– n
fi,fj
m is the number of times a transaction of fi was invalidated because of a

dependency on fj .

39

• Let rule-set Rfi,fj
be a set of rules containing ni × nj rules, one for each possible

{pi, pj} pair.

• Let knowledge base B be a set of rule-sets for every possible fi,fj dependent pairs
of functions in a chaincode.

D(fi, tj) =

1← ∃ρ ∈ Rfi,fj
with matching parameterization and c

fi,fj
rpi,pj

≥ τ,

0 otherwise

where τ is a threshold parameter specified by the system configurator

The knowledge base can be stored in a structure similar to the one depicted on [Listing 6.1].
On the depicted example, function1 and function2 are both transaction functions with
two parameters. The rules are the numbers in the "confidences" matrix, where each entry
belongs to a parameter pair. The conflicts and the dependencies between the functions
with matching parameters are both counted, as well as the total number of conflicts,
from which the confidence values can be calculated by the equation shown earlier in this
subsection. The structure is stored in memory for querying performance. Because of the
combinatorial nature of the problem, a large number of rules are created for a relatively
small number of functions. However, since chaincodes are not extremely complex, by my
estimations, the memory requirements are not expected to be a problem. The hierarchical
structure of the knowledge base results in faster queries; instead of one linear search
of O(n2 × m) algorithmic complexity, three linear searches are performed, each with a
complexity of O(n), O(n), O(m), where n is the number of defined functions and m is
the maximum number of parameters any function has. Building the knowledge base is
computationally intensive, as it requires O(n ×m × l) iterations, where n is the number
of transactions in the transaction history, m is the recency block, parameter and l is the
maximum number of transactions in each block.

1 {
2 "function1":{
3 "function1":{
4 "total_conf":4,
5 "conflicts":[[0,0],[2,1]],
6 "dependencies":[[0,0],[2,2]],
7 "confidences":[[0,0],[0.5,0.125]]
8 },
9 "function2":{

10 "total_conf":5,
11 "conflicts":[[0,0],[1,0]],
12 "dependencies":[[0,0],[4,0]],
13 "confidences":[[0,0],[0.05,0]]
14 }
15 },
16 "function2":{...}
17 }

Listing 6.1: Example of the structure of the knowledge bases

40

6.4.3 Further possibilities

The input matching approach presented in subsection 6.4.2 is a general approach that
can be used without any information about the data model and structure used by the
chaincode. However, it is possible to implement a solution that utilizes the metadata used
in the Affinity-based partitioning approach presented in section 4.4. This could provide
more accurate predictions with potentially less computational effort. It is also possible
to use machine learning algorithms to provide predictions. In the future, I intend to
implement all three of these approaches and empirically validate them to compare their
effectiveness.

41

Chapter 7

Conclusions and future work

7.1 Conclusions

In my report, I created a taxonomy of the current MVCC conflict mitigation literature
and identified a previously overlooked class of mitigation techniques. I contributed two
possible approaches to this category of data storage-based techniques. The approaches
prioritize different aspects and are suitable for a wide range of use cases. The total
partitioning approach prioritizes the reduction of failure rates above storage efficiency.
The affinity-based partitioning approach results in more efficient storage, while it can
potentially match the failure reduction effects of the partitioning approach. I implemented
the proposed approaches as part of a prototype framework and evaluated them on multiple
micro-benchmark scenarios. The results of the evaluations are promising; however, they
require a more complex test scenario. I contributed to the protocol extension category
of mitigation techniques with the proposal of a novel endorsement delaying framework. I
provide a potential solution for both the architectural structure of the framework as well
as the algorithm to select the potentially problematic transactions for delayment.

7.2 Future work

In the future, I plan to implement TPC-C [5] as a Java chaincode and perform compre-
hensive testing on the improved prototype implementations. I plan to implement code
generation as a part of the framework, resulting in a better chaincode development ex-
perience than the current implementation. I plan to release this improved version as
open-source software for public use. I also intend to implement the proposed endorse-
ment delaying framework with multiple estimation algorithms. The empirical evaluation
of these implementations is also a possible future work.

42

Acknowledgements

I am deeply thankful for the help of my advisors, Attila Klenik and dr. Imre Kocsis. Their
advice was invaluable and my work would not have been possible without their unrelenting
support.

43

List of Figures

2.1 Simplified view of an example HLF network 4

2.2 The execute-validate flow . 5

2.3 The execute order validate flow . 6

2.4 The simplified transaction flow. Notice that all peers take part in the vali-
dation process . 7

3.1 Categoric tree of the current state of the MVCC conflict mitigation literature 11

3.2 The protocol-independent subcategory of MVCC conflict mitigation tech-
niques . 11

3.3 The subcategory of MVCC conflict mitigation techniques that are based on
protocol optimizations . 13

4.1 Object A is partitioned along its attributes 16

4.2 Simplified class diagram of the implementation 20

4.3 Example of the data model resulting from total partitioning (the ledger
data model used in benchmarking [chapter 5]) 22

4.4 Flow depicting the usage of the Affinity-based partitioning approach 22

4.5 Example of the ledger data model resulting from affinity-based partitioning
(the ledger data model used in benchmarking [chapter 5]) 23

4.6 Example of a simplified asset creation sequence by the framework 23

5.1 Test environment in the cloud . 25

5.2 Transaction failures for 1, 2 and 3 written keys at 200 assets. 29

5.3 Transaction failures for 1, 2 and 3 written keys at 2000 assets. 29

5.4 Transaction failures for 1, 2 and 3 written keys at 20000 assets. 30

5.5 Latency for 1,2 and 3 accessed attributes across all asset counts 30

5.6 Mean throughput values at 30, 60, 90, 120 tps send rates, across all asset
counts . 30

5.7 Read-set sizes of all transaction functions in Scenario 1 31

5.8 Write-set sizes of all transaction functions in Scenario 1 31

5.9 Transaction failures at 200, 2000 and 20 000 assets 32

5.10 Latency for 1,2 and 3 accessed attributes across all asset counts 32

44

5.11 Mean throughput values at 30, 60, 90, 120 tps send rates, across all asset
counts . 33

5.12 Read-set sizes of all transaction functions in Scenario 2 33

5.13 Write-set sizes of all transaction functions in Scenario 2 34

6.1 Simplified flow of communication between HLF’s components and the client 37

6.2 Simplified flow of information between the components of the Org-level
Optimization layer and HLF. Note that only steps 2 and 3 are new. Steps
12,10,4,8,17 are forwarded requests; other steps are unchanged. 37

45

List of Tables

2.1 Example of an MVCC conflict . 7

4.1 Example input data for affinity-based partitioning. Accessed attributes are
marked with a 1 . 18

4.2 AA matrix created from table 4.1. (The algorithm only uses the numerical
values) . 18

4.3 This AA is transformed from table 4.2 by the BEA. 19

4.4 The result of partitioning the matrix in table 4.3. 19

5.1 Data model of the Bank account . 26

5.2 The transacting functions access the attributes independently 27

5.3 All variables and their possible values in the independent access scenario . . 27

5.4 Attributes balance1 and balance2 are accessed by a shared function 27

5.5 All control variables and their possible values in the shared access scenario . 28

6.1 The nc (1st row), nd (2nd row) and c values (3rd row) of each rule after
one (left) and four (right) conflicts . 39

46

Bibliography

[1] Ali Alzubaidi, Karan Mitra, and Ellis Solaiman. Smart contract design con-
siderations for sla compliance assessment in the context of iot. 2021. DOI:
10.1109/SmartIoT52359.2021.00021.

[2] Elli Androulaki, Artem Barger, Vita Bortnikov, Srinivasan Muralidharan, Christian
Cachin, Konstantinos Christidis, Angelo De Caro, David Enyeart, Chet Murthy,
Christopher Ferris, Gennady Laventman, Yacov Manevich, Binh Nguyen, Manish
Sethi, Gari Singh, Keith Smith, Alessandro Sorniotti, Chrysoula Stathakopoulou,
Marko Vukolić, Sharon Weed Cocco, and Jason Yellick. Hyperledger fabric: A
distributed operating system for permissioned blockchains. volume 2018-January.
Association for Computing Machinery, Inc, 4 2018. ISBN 9781450355841. DOI:
10.1145/3190508.3190538.

[3] Vitalik Buterin. Ethereum: A next-generation smart contract and decentralized
application platform. 2014. URL https://github.com/ethereum/wiki/wiki/
White-Paper.

[4] Jeeta Ann Chacko, Ruben Mayer, and Hans Arno Jacobsen. Why do my
blockchain transactions fail?: A study of hyperledger fabric. 2021. DOI:
10.1145/3448016.3452823.

[5] Transaction Processing Performance Council. TPC-C benchmark. 2010. URL https:
//www.tpc.org/tpc_documents_current_versions/pdf/tpc-c_v5.11.0.pdf.

[6] Bailu Ding, Lucja Kot, and Johannes Gehrke. Improving optimistic concur-
rency control through transaction batching and operation reordering. Proceed-
ings of the VLDB Endowment, 12:169–182, 10 2018. ISSN 2150-8097. DOI:
10.14778/3282495.3282502. URL https://dl.acm.org/doi/10.14778/3282495.
3282502.

[7] Tien Tuan Anh Dinh, Ji Wang, Gang Chen, Rui Liu, Beng Chin Ooi, and Kian-
Lee Tan. Blockbench: A framework for analyzing private blockchains. Proceedings
of the 2017 ACM International Conference on Management of Data, Part F127746:
1085–1100, 3 2017. ISSN 07308078. DOI: 10.1145/3035918.3064033. URL http:
//arxiv.org/abs/1703.04057.

[8] Hyperledger Foundation. Hyperledger caliper 2022, 2022. URL https://
hyperledger.github.io/caliper/. [Online;accessed 26-October-2022].

[9] Christian Gorenflo, Stephen Lee, Lukasz Golab, and Srinivasan Keshav. Fastfab-
ric: Scaling hyperledger fabric to 20,000 transactions per second. 2019. DOI:
10.1109/BLOC.2019.8751452.

47

http://dx.doi.org/10.1109/SmartIoT52359.2021.00021
http://dx.doi.org/10.1145/3190508.3190538
https://github.com/ethereum/wiki/wiki/White-Paper
https://github.com/ethereum/wiki/wiki/White-Paper
http://dx.doi.org/10.1145/3448016.3452823
https://www.tpc.org/tpc_documents_current_versions/pdf/tpc-c_v5.11.0.pdf
https://www.tpc.org/tpc_documents_current_versions/pdf/tpc-c_v5.11.0.pdf
http://dx.doi.org/10.14778/3282495.3282502
https://dl.acm.org/doi/10.14778/3282495.3282502
https://dl.acm.org/doi/10.14778/3282495.3282502
http://dx.doi.org/10.1145/3035918.3064033
http://arxiv.org/abs/1703.04057
http://arxiv.org/abs/1703.04057
https://hyperledger.github.io/caliper/
https://hyperledger.github.io/caliper/
http://dx.doi.org/10.1109/BLOC.2019.8751452

[10] Christian Gorenflo, Lukasz Golab, and Srinivasan Keshav. Xox fabric:
A hybrid approach to blockchain transaction execution. 2020. DOI:
10.1109/ICBC48266.2020.9169478.

[11] Zsolt István, Alessandro Sorniotti, and Marko Vukolić. Streamchain: Do blockchains
need blocks? 2018. DOI: 10.1145/3284764.3284765.

[12] William T. McCormick, Paul J. Schweitzer, and Thomas W. White. Problem decom-
position and data reorganization by a clustering technique. Operations Research, 20,
1972. ISSN 0030364X. DOI: 10.1287/opre.20.5.993.

[13] Takuya Nakaike, Qi Zhang, Yohei Ueda, Tatsushi Inagaki, and Moriyoshi
Ohara. Hyperledger fabric performance characterization and optimization us-
ing goleveldb benchmark. pages 1–9. IEEE, 5 2020. ISBN 978-1-7281-6680-3.
DOI: 10.1109/ICBC48266.2020.9169454. URL https://ieeexplore.ieee.org/
document/9169454/.

[14] Satoshi Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash System. December 2008.
URL https://bitcoin.org/bitcoin.pdf.

[15] Qassim Nasir, Ilham A. Qasse, Manar Abu Talib, and Ali Bou Nassif. Performance
analysis of hyperledger fabric platforms. Security and Communication Networks,
2018, 2018. ISSN 19390122. DOI: 10.1155/2018/3976093.

[16] Pezhman Nasirifard, Ruben Mayer, and Hans Arno Jacobsen. Fabriccrdt: A
conflict-free replicated datatypes approach to permissioned blockchains. 2019. DOI:
10.1145/3361525.3361540.

[17] Shamkant Navathe, Stefano Ceri, Gio Wiederhold, and Jinglie Dou. Vertical par-
titioning algorithms for database design. ACM Transactions on Database Systems
(TODS), 9:680–710, 12 1984. ISSN 15574644. DOI: 10.1145/1994.2209.

[18] Suporn Pongnumkul, Chaiyaphum Siripanpornchana, and Suttipong Thajchayapong.
Performance analysis of private blockchain platforms in varying workloads. Institute
of Electrical and Electronics Engineers Inc., 9 2017. ISBN 9781509029914. DOI:
10.1109/ICCCN.2017.8038517.

[19] Pingcheng Ruan, Dumitrel Loghin, Quang Trung Ta, Meihui Zhang, Gang Chen, and
Beng Chin Ooi. A transactional perspective on execute-order-validate blockchains.
2020. DOI: 10.1145/3318464.3389693.

[20] Ankur Sharma, Divya Agrawal, Felix Martin Schuhknecht, and Jens Dittrich. Blur-
ring the lines between blockchains and database systems: The case of hyperledger
fabric. 2019. DOI: 10.1145/3299869.3319883.

[21] Harish Sukhwani, Nan Wang, Kishor S. Trivedi, and Andy Rindos. Performance
modeling of hyperledger fabric (permissioned blockchain network). 2018. DOI:
10.1109/NCA.2018.8548070.

[22] Parth Thakkar, Senthil Nathan, and Balaji Viswanathan. Performance bench-
marking and optimizing hyperledger fabric blockchain platform. 2018. DOI:
10.1109/MASCOTS.2018.00034.

[23] Arnold Woznica and Michal Kedziora. Performance and scalability evaluation of
a permissioned blockchain based on the hyperledger fabric, sawtooth and iroha.
Computer Science and Information Systems, 19, 2022. ISSN 24061018. DOI:
10.2298/CSIS210507002W.

48

http://dx.doi.org/10.1109/ICBC48266.2020.9169478
http://dx.doi.org/10.1145/3284764.3284765
http://dx.doi.org/10.1287/opre.20.5.993
http://dx.doi.org/10.1109/ICBC48266.2020.9169454
https://ieeexplore.ieee.org/document/9169454/
https://ieeexplore.ieee.org/document/9169454/
https://bitcoin.org/bitcoin.pdf
http://dx.doi.org/10.1155/2018/3976093
http://dx.doi.org/10.1145/3361525.3361540
http://dx.doi.org/10.1145/1994.2209
http://dx.doi.org/10.1109/ICCCN.2017.8038517
http://dx.doi.org/10.1145/3318464.3389693
http://dx.doi.org/10.1145/3299869.3319883
http://dx.doi.org/10.1109/NCA.2018.8548070
http://dx.doi.org/10.1109/MASCOTS.2018.00034
http://dx.doi.org/10.2298/CSIS210507002W

[24] Lu Xu, Wei Chen, Zhixu Li, Jiajie Xu, An Liu, and Lei Zhao. Solutions for con-
currency conflict problem on hyperledger fabric. World Wide Web, 24, 2021. ISSN
15731413. DOI: 10.1007/s11280-020-00851-6.

[25] Xiaoqiong Xu, Xiaonan Wang, Zonghang Li, Hongfang Yu, Gang Sun, Sabita Ma-
harjan, and Yan Zhang. Mitigating conflicting transactions in hyperledger fabric-
permissioned blockchain for delay-sensitive iot applications. IEEE Internet of Things
Journal, 8, 2021. ISSN 23274662. DOI: 10.1109/JIOT.2021.3050244.

[26] Shenbin Zhang, Ence Zhou, Bingfeng Pi, Jun Sun, Kazuhiro Yamashita, and Yoshi-
hide Nomura. A solution for the risk of non-deterministic transactions in hy-
perledger fabric. pages 253–261. IEEE, 5 2019. ISBN 978-1-7281-1328-9. DOI:
10.1109/BLOC.2019.8751453. URL https://ieeexplore.ieee.org/document/
8751453/.

49

http://dx.doi.org/10.1007/s11280-020-00851-6
http://dx.doi.org/10.1109/JIOT.2021.3050244
http://dx.doi.org/10.1109/BLOC.2019.8751453
https://ieeexplore.ieee.org/document/8751453/
https://ieeexplore.ieee.org/document/8751453/

Appendix

1 public class DemoContract implements AssetContractInterface {
2 private static final DemoAssetRepository repo = DemoAssetRepository.getInstance();
3

4 @Transaction()
5 public boolean demoAssetExists(Context ctx, String uuid) {
6 return repo.demoAssetExists(ctx, uuid);
7 }
8

9 @Transaction()
10 public void createDemoAsset(Context ctx, String uuid, Double pocket1, Double pocket2,

Double pocket3) {
11 repo.createDemoAsset(ctx, uuid, pocket1, pocket2, pocket3);
12 }
13

14 @Transaction()
15 public void transactWithPocket1(Context ctx, String uuid, Double amount) {
16 DemoAsset asset = repo.readDemoAsset(ctx, uuid);
17 if (asset.getPocket1Attribute() + amount < 0) {
18 throw new ChaincodeException("Not enough funds in pocket1 to finish

transaction");
19 }
20 asset.setPocket1Attribute(asset.getPocket1Attribute() + amount);
21 }
22 }

Listing A.0.1: Contract implementation using the partitioning approach

1 @AssetType(type = "DemoAsset")
2 public class DemoAsset extends AssetBase {
3

4 @Attribute
5 public Double pocket1;
6

7 DemoGeneratedAsset(SparseCachedContext ctx, String uuid) {
8 super(ctx, uuid);
9 }

10

11 DemoGeneratedAsset(AssetBase nestHost) {
12 super(nestHost);
13 }
14

15 public Double getPocket1Attribute() {
16 try {
17 return dataLayer.getAttribute(DemoAsset.class, this, "pocket1", () -> pocket1,

null);
18 } catch (NoSuchFieldException | SecurityException | JsonProcessingFailureException

e) {
19 throw new ChaincodeException(e);
20 }
21 }

50

22 }

Listing A.0.2: Asset with implementing the logical data model for the partitioning
approach

1 // the asset used in this contract is a standard Java class with getters and setters
2 public class DemoAssetContract implements ContractInterface {
3

4 @Transaction()
5 public boolean demoAssetExists(Context ctx, String demoAssetId) {
6 byte[] buffer = ctx.getStub().getState(demoAssetId);
7 return (buffer != null && buffer.length > 0);
8 }
9

10 @Transaction()
11 public void createDemoAsset(Context ctx, String uuid, Double pocket1, Double pocket2,

Double pocket3) {
12 boolean exists = demoAssetExists(ctx, uuid);
13 if (exists) {
14 throw new RuntimeException("The asset " + uuid + " already exists");
15 }
16 DemoAsset asset = new DemoAsset();
17 asset.setUuid(uuid);
18 asset.setPocket1(pocket1);
19 asset.setPocket2(pocket2);
20 asset.setPocket3(pocket3);
21 ctx.getStub().putState(uuid, asset.toJSONString().getBytes(UTF_8));
22 }
23

24 @Transaction()
25 public void transactWithPocket1(Context ctx, String uuid, Double pocket1) {
26 DemoAsset asset = readDemoAsset(ctx, uuid);
27 if ((asset.getPocket1() + pocket1) >= 0) {
28 updateDemoAsset(ctx, uuid, asset.getPocket1() + pocket1, null, null);
29 }
30 }
31 }

Listing A.0.3: Contract implementation using the traditional approach

1 transactions,1,2,3,accesses
2 t1,0,1,0,30
3 t2,1,0,1,50

Listing A.0.4: Example input csv used by the python script

The prototype framework code is available here1.

1https://drive.google.com/drive/folders/108YiSVFuVORp9drXjYTGlvDham7gwtbG?usp=sharing

51

	Kivonat
	Abstract
	Introduction
	Hyperledger Fabric Architecture
	Network architecture
	Execute Order Validate
	Multiversion Concurrency Control conflicts
	Notations
	Definitions

	MVCC conflict mitigation and avoidance
	Protocol independent techniques
	System configuration tuning
	Semantic data model techniques

	Protocol optimizations
	Protocol alterations
	Protocol extensions

	Partitioning Framework
	Core idea
	Total partitioning
	Total partitioning algorithm
	Benefits and potential shortcomings

	Affinity based partitioning
	Affinity-based partitioning algorithm
	Adaptations for application in HLF
	Benefits and potential shortcomings

	Prototype framework
	Framework API and usage
	Implementation
	Framework Core
	Total partitioning
	Affinity based partitioning

	Code generation

	Empirical validation
	System under test
	Case studies and benchmark campaigns
	Scenario 1. - Independent attribute access
	Scenario 2. - Shared attribute access

	Evaluation of results
	Used metrics
	Scenario 1 Results
	Scenario 2 Results
	Conclusion of benchmark results

	Dynamic endorsement delaying
	Motivation behind the proposal
	Core idea
	Architecture
	Proxy Gateway
	Cache service

	Estimating MVCC conflict probability
	Core idea
	Input matching approach
	Further possibilities

	Conclusions and future work
	Conclusions
	Future work

	Acknowledgements
	List of Figures
	List of Tables
	Bibliography
	Appendix

