Budapest University of Technology and Economics
Faculty of Electrical Engineering and Informatics
Department of Automation and Applied Informatics

Deep learning-based synthesis of brain {MRI
images using a diffusion probabilistic approach

Scientific Students’ Association Report

Author:

Levente Oszvald

Advisor:

Dr. Luca Szegletes
Szabolcs Torma

2023



Contents

Kivonat

Abstract

1 Introduction

2 Background

2.1 Medical imaging . . . . . . . ...
2.1.1 MRI . .. o

2.1.2 fMRI. . . .o

2.2 Deeplearning . . . . . . ...
2.2.1 Neural Network . . . . .. .. .. . . L

2.2.1.1 Operation of the network . . . . .. ... ... ... ....

2.2.1.2 Common architectures. . . . . . .. ... ... ... ....

2.3 Generative Modeling . . . . . . ... oo
2.3.1 Diffusion-based generative modeling . . . . ... ... ... .....

2.3.1.1 Diffusion Process . . . . . . .. ... L.

2.3.1.2  Denoising Diffusion Probabilistic Models . . . . . ... ..

2.3.1.3 Conditional DDPM . . . ... ... ... ..........

2.3.1.4  Denoising Diffusion Implicit Models . . . . . ... ... ..

3 Datasets
3.1 ABIDE . . . .
3.1.1 ABIDE Preprocessing . . . . .. ... ... .
4 Methods

4.1 Background on applied neural networks . . . . . ... ... ...
4.2 Problem formulation . . . . ... ... L
4.3 2D fMRI generation . . . . . . .. . ..

4.3.1 Generating power of 2D approach . . . ... ... ... .. ... ..

ii

10
11
12
13
13
14
15
16

17
17
17



4.4 3D fMRI generation . . . . . . .. ...

5 Evaluation

5.1 Qualitative and Quantitative Evaluation . . . . . . . ... .. ... .....

5.1.1 Quantitative Evaluation Metrics . . . . . . ... ... ... .....

5.2 Evaluation resultson fMRI . . . . . . . . . . ... ... ..

5.2.1 Concerns regarding popular evaluation metrics . . . . . ... .. ..

5.2.2 Contrastive Encoder . . . . . . . . . ... .

5.2.3 SVM

6 Conclusions

Acknowledgements

Bibliography

25
25
25
27
28
29
33

36

37

38



Kivonat

A modern orvosldsban a funkciondlis MRI (fMRI) vizsgalatok az egyik legnépszeriibb kép-
alkoté technoldgianak szamitanak. A mérések az idegrendszeri aktivitassal dsszefliggésben
1év6 valaszt mérik az emberi agyban, amellyel képesek a kutatok elvaltozasokat észlelni,
betegségeket diagnosztizalni és ezeket kezelni. Ennek azonban tébb kihivasa is akad, t6b-
bek kozott rendkiviil eroforrdsigényes, illetve a paciens szamara megterhel6. Ennek okan
megné az igény kiilonb6z6 adatdisité modszerek fejlesztésére.

Napjainkban a generativ modellezés, ha errdl kifejezetten nem is szerziink tudomast,
sok helyen jelen van. Legyen sz6 szintetikus zenékrol, politikusok szajaba adott monda-
tokrol, vagy akar olyan képekrol, amelyeken nem 1étezé emberek mosolyognak, ez a tech-
noldgia szerves részét képzi, és fogja képezni életiinknek az elkévetkezd években. Mint oly
sok teriiletre, az orvosi képalkotashoz is elért a hulldm, ahol is tobb, addig megoldatlan
feladatra is valaszt jelenthet.

Dolgozatomban a generativ modellezés csaladjanak egyik legkorszeriibb tagjat, a diffa-
zi6s valosziniiségi modelleket hasznalom fel val6saghii fMRI jelek generaldsara. A munkiam-
ban kitérek kiilénb6z6 olyan mddszerekre is, amelyekkel a mintavételezést kondiciondlom,
illetve franyitom bizonyos tulajdonsidgok (pl. osztalyhiiség, adathiiség) elérése érdekében.
A modelleket a latens térben alkalmazom, ezzel csokkentve a futasi id6t és a hardverigényt,
igy novelve a hatékonysdgot. A szintetikus adatok mindségét az irodalomban gyakran al-
kalmazott metrikdk segitségével kvantitativ, tovabba kvalitativ médon értékelem ki és
elemzem.

Munkam eredményeként bemutatom, hogy a diffiiziés generdlassal lehetséges élethii
fMRI jelek el6allitasa zajmintakbol, és ezek a modellek képesek ezen adatok komplex
karakterisztikdjanak megtanulasara.



Abstract

In modern medicine, functional MRI (fMRI) is one of the most popular imaging technolo-
gies. This technology measures the response associated with neural activity in the human
brain, enabling researchers to detect lesions, diagnose diseases and treat them. However,
it has several challenges, including being extremely resource-intensive and stressful for the
patient. This increases the need to develop different data augmentation methods in this
domain.

Today, generative modeling, even if not explicitly known, is present in many areas.
Whether it is synthetic music, sentences spoken by politicians, or even pictures of non-
existent people smiling, this technology is, and will be an integral part of our lives for
years to come. As in so many areas, the wave has reached medical imaging, where it could
provide solutions to a number of previously unsolved problems.

In my work, I apply diffusion probabilistic models, a state-of-the-art member of the gener-
ative modelling family, to generate realistic fMRI signals. I also explore various methods
to condition and control the sampling in order to achieve certain properties (e.g. class
fidelity, data fidelity). The models operate in the latent space, reducing runtime and hard-
ware requirements, thus increasing efficiency. The quality assessment of the synthetic data
involves both quantitative analysis, utilizing metrics commonly employed in the literature,
as well as qualitative evaluation.

As a result of my work, I show that it is possible to generate lifelike fMRI signals from
noise samples using diffusion generation, and that these models are capable of learning
the complex characteristics of these data.
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Chapter 1

Introduction

During the course of my work, I dive into the realm of generative modeling, an innovative
and emerging technology that has garnered significant attention in recent years. This
cutting-edge approach has been driven by the latest scientific advancements, and I explore
its application across various data modalities while evaluating the outcomes achieved.

To embark upon this journey, it is necessary to provide a concise yet comprehensive
introduction to the field of generative modeling. This introductory section sets the stage for
understanding the fundamental principles and key concepts that underpin this specialized
area of research. By capturing the essence of generative modeling, we can appreciate its
huge potential in generating synthetic data that exhibits striking resemblance to real-world
samples.

In recent years, deep learning-based generative modeling has brought a paradigm shift
across multiple domains of multimedia, encompassing areas such as speech recognition
and text generation. This revolutionary technology has also significantly impacted the
realms of video and image generation, reshaping the methods by which we produce and
comprehend visual and textual content. However, in the scope of this paper, my focus
remains primarily on the exploration of image generation techniques. Through the power
of deep learning, generative models have the ability to learn intricate patterns and gener-
ate novel, realistic images that resemble those from the real world. This transformative
technology has found applications not only in creative fields such as art and design but
also in scientific research, including the realm of brain imagery. Brain imaging technolo-
gies, such as functional magnetic resonance imaging (fMRI) and electroencephalography
(EEG), provide crucial insights into the functioning and structure of the human brain.
However, the interpretation and analysis of brain imaging data pose significant challenges
due to their complex and high-dimensional nature.

Deep generative models, such as Variational Autoencoders (VAEs)[23] and Generative
Adversarial Networks (GANs)[16] have revolutionized the field by leveraging the power of
neural networks to model and generate images. These models learn from vast amounts of
training data, discovering underlying patterns and features that enable them to generate
compelling and diverse visual content.

Recently, new techniques and methods have emerged in the domain of image generation.
One such intriguing category is referred to as Diffusion Models, which harness the prin-
ciples of diffusion processes derived from the fields of statistics and physics. Within this
domain, various ideas have emerged, including the Denoising Diffusion Probabilistic Mod-
els (DDPMs)[19]. These models have demonstrated exceptional performance, achieving
state-of-the-art metric results in generative competitions focused on the CIFAR10 dataset.



Figure 1.1: MRI[7], EEG[1] and fMRI[3] signals from top to bot-
tom

Building upon this progress, subsequent advancements have been made to enhance sam-
pling and generation efficiency, as demonstrated by the Denoising Diffusion Implicit Models
paper[33]. Furthermore, another notable development in this field is the introduction of
Stable Diffusion[28], which garnered considerable attention in the past year. These recent
advancements showcase the continuous evolution and potential of Diffusion Models in the
context of image generation.

Shifting to brain imagery, there have been scientific papers released about the synthesis
between EEG and fMRI signals using generative adversarial networks and Autoencoders
(AE)[11], as well as about EEG generation with DDPMs [36], however, it is important
to note that a widely accepted standard for brain imagery generation has not yet been
established in this field.

A comprehensive evaluation is essential when assessing the quality of generated content,
regardless of the specific domain, both qualitatively and quantitatively speaking. For such
reasons, several techniques have been established as the universal standard for such cases.
Two prominent metrics are the Inception Score (IS) [31] - which utilizes the so called
InceptionNet [35] model to evaluate the quality of the generated images - and the Frechet
Inception Distance (FID)[18] - which measures the similarity between the generated and
real images by leveraging the latent features of the InceptionNet model. Additionally, 1
have employed a self-supervised contrastive learning-based [13] evaluation on the real and
generated fMRI samples to ascertain whether the generated images are embedded similarly
to real images within the latent space. This method aims to determine the fidelity of the
generated samples by examining their proximity to real samples. I thoroughly investigate
the effectiveness of the mentioned metrics to extensively assess the quality and fidelity of
the generated content.



Within my thesis, I propose an approach to generate high-quality fMRI signals using
deep learning approaches, such as the above mentioned DDPMs, and encoders. With my
solution, fMRI signals conditioned on features derived from the datasets are also produced.

Section 2 introduces the fundamental principles of my method, offering an in-depth ex-
ploration of the diffusion process, generative modeling, the denoising diffusion model and
its sampling techniques. Moving forward, Section 3 provides a concise overview of the
dataset utilized in the experiment, encompassing information on acquisition and prepro-
cessing. Subsequently, in Section 4, I present the proposed image generation method,
outlining the network training process, with the neural network architecture included.
Furthermore, in Section 5, I present a detailed analysis of the results obtained, along with
the evaluation metrics - such as contrastive learning - and corresponding scores achieved.
Finally, Section 6 concludes with conclusions drawn from the findings, and possible future
directions for further advancements.



Chapter 2

Background

2.1 Medical imaging

Medical Imaging is a significant field in the realm of healthcare that has revolutionized
the way we analyze and treat various medical conditions. This field includes a diverse
range of technologies and techniques designed to visualize the internal structures of the
human body, providing invaluable insights into the functioning and abnormalities of some
organs or tissues hidden by the skin and bones. Although imaging of removed organs and
tissues can be performed for medical reasons, such procedures are usually considered part
of pathology instead of medical imaging.

Recently, the advancements in noninvasive! techniques have further expanded the horizons
of medical imaging. These noninvasive methods hold a valuable advantage in healthcare by
eliminating the need for invasive procedures, thus reducing risks, discomfort, and recovery
times.

2.1.1 MRI

Magnetic Resonance Imaging [14], also known as MRI, is one of the most widely employed
noninvasive medical imaging techniques nowadays. It utilizes powerful magnetic fields and
radio waves to produce detailed, high-resolution images of the body’s organs and tissues.
This method does not use ionizing radiation, thus being safer than other well established
imaging modalities, like computed tomography (CT) or positron emission tomography
(PET) scans[30].

In contrast to the aforementioned methods, MRI offers improved contrast in soft tissue
images. Nevertheless, it might be less comfortable for patients due to lengthier scan times,
noisier environments, and less convenient positioning. This positioning is partly due to the
design of the MRI scanner (shown in 2.1). The machine has three major components, the
outer most being a magnet, which produces a strong homogeneous magnetic field. This
magnetic field is about 10000 times the earth’s magnetic field. The middle component is
the gradient coils, which localizes the radio frequency (RF) signal in three dimensional
space. The inner most part is the RF coils, which sends and receives the RF signal to and
from the organ or tissue.

!The term “noninvasive” refers to medical procedures or techniques that do not require the penetration
of the skin or the body’s natural barriers, such as the skin
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Figure 2.1: Architecture of a MRI machine[6]

Mechanism Certain atomic nuclei are able to absorb and re-emit radiofrequency en-
ergy when placed in a magnetic field, such as the one inside the MRI scanner. During
measurement, nuclei - mostly hydrogen nuclei, protons - inside a person’s body tend to
behave like this.

This magnetic field causes the protons in the hydrogen atoms of the body’s tissues to align
themselves with the magnetic field’s direction. After this, radiofrequency (RF) pulses are
sent into the body, which leads to the protons “flipping out” of their magnetic align-
ment. Following this, the nuclei gradually return to their original alignment, emitting
radiofrequency signals in the process. Figure 2.2 visualizes the aforementioned steps.

t

e —

/-4
d .- &; 0 , 6‘5‘

Figure 2.2: Steps of signal detection in MRI. From left to right: no
magnetic field, magnetic realignment, RF pulse and
flip, realignment with magnetic field, release of RF
pulse [9]

Different tissues in the body produce different signals, resulting in contrasts in the created
images. These differences originate from two key factors, T1 and T2 relaxation. T2
relaxation refers to the time it takes for the protons in tissues to return to their equilibrium
state - meaning the loss of coherence among protons within the same tissue - after being



flipped out by RF pulses. On the other hand, T1 relaxation is the process by which the
protons return to their equilibrium alignment with the main magnetic field after the flip.

By adjusting various parameters, MRI technicians have the ability to create MRI images
of the examined body part with different contrasts (Figure 2.3. This is done by changing
the timing and characteristics of radiofrequency pulses and the time intervals between
them. One of these parameters is “Echo Time” (or TE), which corresponds to the time
the MRI technician waits to detect the signals after the nuclei have been knocked out of
alignment with the field. The other significant parameter is called the “Repetition Time”
(or TR), which refers to the time interval between successive radiofrequency pulses during
an MRI scan.

T1-weighted T2-weighted

Figure 2.3: T1- and T2-weighted MRI images [7]

The choice of shorter TE and TR parameters results in emphasizing the contrast between
tissues with different T1 relaxation times. In such cases, tissues with extended T1 relax-
ation times appear brighter, while those with shorter T1 relaxation times appear darker.
This imaging technique is called T1-weighted MRI.

Likewise, longer TE and TR enhances the contrast between tissues with different T2
relaxation times. In this setup, tissues with longer T2 relaxation times appear brighter,
while those with shorter T2 relaxation times appear darker. This is characteristic of
T2-weighted images.

T1-weighted images are often used for anatomical imaging and for highlighting the bound-
aries between different tissue types, while T2-weighted images are valuable for detecting
abnormalities involving fluid content, such as inflammation, edema, or lesions.

Since the 80s, MRI has established itself as a versatile imaging technique, it is widely used
in hospitals all around the world, having roughly more than 50 000 machines in operation
[3].

2.1.2 fMRI

Functional Magnetic Resonance Imaging (often referred to as fMRI) extends the use-cases
of MRI by incorporating brain activity measurements. This technique has, in less than two
decades, become the most commonly used method for the study of human brain function
[30].

When neurons in the brain become active - as a consequence of some physical or mental
task - local blood flow through that area is increased. This activity related increase in
blood flow leads to a relative surplus in local blood oxygen. The signal, which is measured
in fMRI depends on this change, and is called Blood Oxygenation Level Dependent, or



BOLD (Figure 2.5). This is a type of specialized brain scan used to map the neural activity
in the brain by imaging the change in blood flow that follows a brief period of neuronal
activity. This phenomenon is also recognized as the hemodynamic response [30], which
exhibits exciting characteristics. It is very slow, taking approximately 5 seconds to reach
its peak, and features an even slower undershoot phase (Figure 2.4).
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Figure 2.4: Hemodynamic response [5]

Moreover, fMRI is also able to measure resting state, which helps in identifying the pa-
tient’s baseline BOLD activity [25]. It follows a similar approach to Positron Emission
Tomography (PET) but surpasses it by being non-radioactive, faster, and more widely
accessible.

Figure 2.5: fMRI signals[4]

Imaging The analysis of fMRI data includes the manipulation and processing of images.
An fMRI image is constructed from voxels, which are three dimensional pixels, having
a third, Z axis along with the familiar X and Y axis. Thus, when assembled, in an
fMRI image X represents the left—right dimension, Y represents the anterior—posterior
dimension, and Z represents the inferior—superior dimension.

While (structural) MRI images are displayed as three-dimensional matrices (Figure 2.6),
fMRI data have an additional fourth, time axis, making it a time series of three dimensional
images. This four-dimensional matrix is usually stored in a single entity. These images
are most commonly stored as unsigned 16-bit values, meaning that they can take integer
values from 0 to 65535.

Finally, the problem of having different kind of shapes, and sizes of brain images introduced
a common space in which different individuals can be aligned, creating a standardized
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Figure 2.6: 3-dimensional, matrix nature of the data

database of samples. The most well known of these is the approach developed by Jean
Talairach [24], which method was also applied during my experiments.

2.2 Deep learning

Deep learning has emerged as a groundbreaking field within the broader domain of machine
learning, revolutionizing the way computers learn and perform complex tasks[10]. This
powerful approach to artificial intelligence is inspired by the structure and functioning of
the human brain, specifically the interconnected network of neurons. By utilizing deep
neural networks with multiple layers of interconnected nodes, deep learning algorithms
can automatically learn hierarchical representations of data, enabling them to effectively
extract intricate patterns, features, and relationships from large and complex datasets.
Deep learning is a subset of both machine learning and artificial intelligence, while building
on the foundation of both, it introduces additional capabilities.

One of the key advantages of deep learning lies in its ability to handle raw, unstructured
data, such as images, text, and audio, without the need for explicit feature engineering.
Instead, deep neural networks can automatically learn relevant features directly from the
data, eliminating the need for manual feature extraction and significantly reducing the
reliance on domain-specific knowledge.

Furthermore, deep learning has demonstrated remarkable performance in a wide range
of applications, including computer vision, natural language processing and speech recog-
nition. With its remarkable capacity to learn from vast amounts of data and uncover
complex patterns, deep learning has achieved breakthroughs in tasks such as image classi-
fication, object detection, machine translation, and voice synthesis, pushing the boundaries
of what was previously thought possible.

The fundamental framework powering this entire approach is called the neural network.
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2.2.1 Neural Network

A neural network is a powerful computational model inspired by the structure and func-
tioning of the human brain. It is composed of interconnected nodes, known as neurons,
which work collaboratively to process and analyze complex patterns in data. Each neuron
receives input signals, performs calculations, and generates an output signal that is passed
on to other neurons [40].

The connection between biological and artificial neurons lies at the fundamental principles
of information processing. Biological neurons receive electrical signals from other neurons
through specialized structures called dendrites. These signals are integrated within the
neuron and, if the accumulated input reaches a certain threshold, an electrical signal
known as an action potential is generated and transmitted through the axon to other
connected neurons. This process forms the basis of communication and information flow
in the brain.

Similarly, artificial neurons in neural networks receive inputs from other neurons or exter-
nal sources (in the first “layer”). Each artificial neuron applies a mathematical function
to the weighted sum of its inputs, determining whether it should produce an output signal
or “fire”. The weights assigned to the inputs play a crucial role in controlling the strength
of the connections between neurons.

By looking at 2.7, one can inspect the elements of one neuron. As mentioned the weighted
inputs and the bias term are summed up, and then fed through an activation function
to produce the output of the neuron. This bias term acts similarly to the intercept term
in linear regression. It allows the neuron to adjust its output independently of the input
values. This helps the network to learn and represent patterns and relationships that
are not strictly dependent on the input values alone, resulting in better outcomes. The
activation function helps in introducing non-linearity to the system, which is essential for
solving complex problems, like finding the connection between non-linear input variables.
There are several types of activation functions commonly used in neural networks, each
with its own characteristics and suitability for different tasks. Some of the popular activa-
tion functions are Sigmoid, Rectified Linear Unit (ReLU) or Softmaz, each with it’s own
advantages and use-cases.

By organizing these neurons into layers and leveraging mathematical algorithms, neural
networks are capable of learning from data and making accurate predictions or decisions.
A simple neural network is depicted on figure 2.8. The strength of a neural network lies in
its ability to automatically extract relevant features from raw data, enabling it to tackle a



Figure 2.8: A simple network with two inputs and one hidden
layer

wide range of tasks such as image recognition, natural language processing, and predictive
modeling.

2.2.1.1 Operation of the network

A fully functional neural network comprises two essential components: the feedforward
pass and the backward pass. The feedforward pass involves the propagation of input data
through the network, starting from the input layer and proceeding to the output layer. At
each neuron, the weighted sum of inputs is computed, followed by the application of an
activation function, which generates the neuron’s activation value. This process continues
until the network produces its final output. This output typically represents a numerical
variable, such as an image matrix, a vector, or a single value. The produced output is then
compared with the desired output, leading to the calculation of an error or discrepancy
between the two.

This error is then propagated backwards in the network, this is called the backward pass.
This component of the network computes the gradients of the error with respect to the
weights in each layer (2.1) and uses these gradients to adjust the weights in a way that
reduces the error. Adjusting the weights can happen in different manners also, but this in
not in the scope right now.

derror
_— 2.1
dweight; (2.1)

Upon examining the revised neural network illustrated in Figure 2.9, one can observe
the backward propagation of the error rate. The iterative process - which involves the
feedforward and backward pass in succession - is called the training of the neural network.
During this training phase, the forward pass calculates the output of the network, while
the backward pass tries to minimize the error coming from this output by updating the
weights of the system accordingly. This process continues until the network’s performance
reaches a satisfactory level. Once the network’s performance is sufficient, the prediction
of the system can be initiated on yet unseen input data.
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Figure 2.9: A simple network with backpropagation

The feedforward pass, and its complementary, the backward pass is also dependant on the
architecture of the network, which can easily differ from the proposed simple architecture
in 2.8.

2.2.1.2 Common architectures

Neural networks can take various architectural forms, each designed to address specific
problem domains and achieve specific learning objectives. Here, I shortly present an
overview of some commonly used neural network architectures.

Feedforward Neural Networks, also known as Multi-Layer Perceptrons (MLPs)[27], are the
simplest and most widely used neural network architecture. They consist of an input layer,
one or more hidden layers, and an output layer. Information flows only in one direction,
from the input layer through the hidden layers to the output layer, without any loops or
feedback connections.

Convolutional Neural Networks (CNN)[26] are primarily employed for analyzing visual
data, such as images. They leverage convolutional layers, pooling layers, and fully con-
nected layers to extract meaningful features hierarchically from input data. CNNs are
known for their ability to capture spatial relationships and translational invariance, mak-
ing them well-suited for tasks like image classification, object detection, and image seg-
mentation. Other kinds of architectures can also be formulated based on convolutional
layers. Omne such network is called the U-net architecture, which I will cover in more
details.

Recurrent Neural Networks (RNN)[32] are designed to handle sequential data by intro-
ducing recurrent connections within the network. This architecture allows information to
be processed not only based on current inputs but also on previous inputs and internal
states. RNNs exhibit temporal dynamics, making them suitable for tasks such as speech
recognition, language modeling, and sequence generation.

Generative Adversarial Networks (GAN) [16] consist of two neural networks, a genera-
tor and a discriminator. The generator aims to generate realistic data samples, such as
images, while the discriminator attempts to distinguish between real and generated sam-
ples. Through an adversarial training process, GANs can learn to generate high-quality
synthetic data that closely resembles the training data distribution. GANs have found ap-
plications in image synthesis, style transfer, and data augmentation. These will be covered
in a later section.

11
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Figure 2.10: Structure of generative modeling

The above mentioned architectures are just a few examples and there exist many other
variations and specialized architectures tailored for specific tasks.

2.3 Generative Modeling

Generative modeling is an emerging field that aims to create new data that closely resemble
a given dataset. It revolves around the idea of learning and understanding the underlying
patterns and structures of the data in order to generate new instances that exhibit similar
characteristics and features. The goal is not to merely replicate existing data, but rather
to capture the essence of the data distribution and generate novel samples that possess
inherent variability and creativity [34].

The process of this modeling can be split into to sections, as shown in Figure 2.10. First,
the learning of the true underlying patterns is initiated. In this section, the model tries
to learn some hidden or latent features of the input data, usually its distribution p(x).
Learning (or approximating) this distribution can be achieved in several ways. Variational
autoencoders do this, by mapping the data into a low-dimensional feature- or latent-space
through an encoder network, which learns a probabilistic distribution over the latent
variables given the data, and later VAEs use this latent space to sample (generate) the
new images. Generative Adversarial Networks, on the other hand, achieve this by trying
to fool the discriminator part of the network, as mentioned earlier.

It is important to note that learning the true underlying distribution of complex high-
dimensional data is often infeasible or even impossible. Instead, generative models aim to
approximate the true distribution as closely as possible, capturing the essential character-
istics and variability of the data.

After completing the learning phase, the next step involves sampling. This process relies
on the learned (approximated) distribution, denoted as p’(z), which represents the model’s
understanding of the underlying data distribution. By leveraging this learned distribution,
the generative model can generate novel samples that capture the essential characteristics
of the training data.

12



Figure 2.11: Diffusion Process, stochastic flow of particles

In addition to GANs and VAESs, a novel approach has emerged in the field of generative
modeling known as Diffusion-Based generative networks [19][33].

2.3.1 Diffusion-based generative modeling

The subsequent sections will introduce the principles of the diffusion-based methodology
for generative modeling, starting from its foundational components.

2.3.1.1 Diffusion Process

To capture the essence of the diffusion based generative modeling approaches, we have to
understand what is diffusion itself. Diffusion is the net movement of anything - for example,
atoms - generally from a region of higher concentration to a region of lower concentration.
Figure 2.11 represents this specific feature. Brownian motion is also classified as a diffusion
process.

Diffusion processes are a specific class of stochastic processes known as Markov processes
[12] [21]. Markov processes are characterized by the Markov property. The Markov prop-
erty states that the future state of the process depends only on its current state and is
independent of its past states. In other words, given the present state, the future behavior
of the process is not influenced by the history of the process. In the case of diffusion pro-
cesses, the random motion and spreading of particles or quantities occur in a continuous
manner, with the probability of transitioning from one state to another determined by the
local environment and the concentration gradient.

When discussing generative modeling, diffusion processes are usually mentioned as the
building blocks - or the main foundation behind the idea - of the diffusion-based generative
models. By simulating the gradual spreading and mixing of information in a continuous
manner, diffusion-based generative models can generate high-quality synthetic data that
closely resembles the characteristics of the original data distribution. I present here one
of these models.

13



2.3.1.2 Denoising Diffusion Probabilistic Models

Denoising Diffusion Probabilistic Models (DDPM) [19] have gained significant attention
as a powerful tool for modeling complex data distributions. In this section, I present the
core ideas behind this approach.

DDPMs leverage the principles of diffusion processes and probabilistic modeling to pro-
gressively refine noisy or corrupted data samples, ultimately generating high-quality and
diverse samples. The model consists of a forward and a backward diffusion process. In
the forward process, the model iteratively transforms an initial x¢ data point sampled
from the original data distribution towards a target distribution. This target distribution
is usually a Gaussian (Normal) distribution. These iterative steps are formulated as the
following:

q(xy | 2p—1) = N(x5 V1 = Bray—q, BeD), (2.2)

where z;_1 is the previous state of the data point, which is perturbed with some Gaussian
noise according to a f3; scaling variable. The whole forward process consists of multiple,
T repeated steps creating the following equation:

,’:h

q(z1.7 | 20) = q(21, 22, ..., 27 | T0) q(we | w-1) (2.3)

t=1
Using a large enough T', sampling from the g(z1.7 | o) distribution will be completely
independent of the original distribution of our data, i.e. q(z7) ~ N(0,I) is our target.

The term sampling might be a bit abstract in the case of x; ~ q(z; | ;—1), but it can be
formalized using the reparameterization trick

Ty = \/OTtIL’t_l + vV 1-— Qi €, (24)

where ay = 1 — B¢, e ~ N(0,I). This introduction is needed to show how the sampling for
any t between time 0 and T is expressed:

q(zs | 20) = N (25 VAwo, (1 — ay)T), (2.5)

where a; = Hf:o «;. This equation will be in use during the training phase of the network
in each iteration.

The backward diffusion process is formulated in a way, that it can complement the
forward process by transforming the xp ~ ¢(zr) noisy sample back into an “initial”
sample, which looks as if it was sampled from the original distribution, g(xo):

T
po(zo.T) = H (g1 | 2¢), (2.6)
where
po(@i—1 | @) = N(@i—1; po(@e, t), Xo(xe, 1)), (2.7)
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po(xTi—1|xs)

Figure 2.12: Visualization of the processes

The forward and backward processes are shown on 2.12, This pg(zo.7) is intractable, which
brings the evidence lower bound (ELBO)][2] into the equation and thus, a minimization task
is formulated, which is also suitable for a neural network. Through multiple mathematical
simplifications, the ELBO equation becomes a “denoising” task, meaning that the neural
network’s only task is to match the noise, which is added to the datapoint in the forward
process. If the neural network is able to successfully reconstruct this noise term, then this
up-until-now intractable formula pg(zo.7) becomes predictable, and thus the backward
process is feasible. The loss function of the neural is network is the following:

L=El| e = eg(ae,t) ||, (2.8)

Assuming that this task succeeds, the next step is incorporating this information into the
backward process, which leads to the iterative sampling procedure, from zp up until Xo:

L (B
var

where t =T, ...,0, 3, & are scalers and o is some arbitrary Gaussian noise.

—cg(4,1)) + 042, (2.9)
1— (673

Tt—1 =

2.3.1.3 Conditional DDPM

The above mentioned diffusion model can be further evolved, one of the options is the
introduction of conditional generation. In this case, the model is not only conditioned on
the ¢-th time of the forward diffusion, but also on a class-label or vector-like variable, let’s
name it c. This modification does change some of the previously declared equations, but
for the sake of clarity, only the sampling is re-introduced:

_L(CC . ﬁt €
_\/(715 t ,71—5% 0

where €(zy,t,c)) is the newly formulated neural network.

Ty—1 (x¢,t,€)) + 012, (2.10)

With this approach, the generation could be guided in a concrete direction depending on
the ¢ variable.

In scientific papers [19][33], the conditioning property was mostly a class label, depicting
the type of the to-be-generated image, e.g. a gorilla. To bring this idea into this use-
case, which is brain imagery, one can choose between some options. The connection (or
synthesis) between EEG and fMRI signals could be investigated, futhermore, how condi-
tioning the generation on preprocessed (or latent) EEG signals could effect the generated
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fMRI images’ features. In the case of fMRI images, conditioning the generation on purely
attached class-labels was feasible, which will be further evaluated later on.

2.3.1.4 Denoising Diffusion Implicit Models

Denoising Diffusion Implicit Models (DDIMs) are a variant of DDPMs, with a twist of
introducing a non-markovian generative process, which allows for a deterministic genera-
tion. This is achieved by using an implicit sampling that allows for fewer timesteps in the
backward process, resulting in a faster and more efficient sampling. This approach was
used during the my generative experiments.
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Chapter 3

Datasets

During the experiments, one publicly accessible dataset was used in this work to investigate
the capabilities of the denoising neural networks.

3.1 ABIDE

The Autism Brain Imaging Data Exchange (ABIDE) set is formed by a collaboration of
sixteen imaging sites sharing neuroimaging data. I used the preprocessed version of the
data. [15] The dataset includes observations from altogether 1112 subjects: 539 autism
spectrum disorder-suffering (ASD) individuals and 573 typical control participants. This
nature of the subjects is referred to as “ASD vs non-ASD” throughout the rest of the
paper. The subjects’ resting state and structural fMRI were recorded. Multiple versions
exist of the preprocessed data, as five different teams made their own versions with varying
tools, pipelines and strategies. In the current work, I used the version which was produced
by using the Connectome Computation System pipeline and strategy with filtering but no
global signal correction.

3.1.1 ABIDE Preprocessing

As noted, the ABIDE dataset was previously preprocessed to a certain degree, however
for the special use-cases of the paper, further preprocessing was necessary.

The fMRI samples were stored as 4-dimensional vectors, the first 3-dimensions being the
spatial dimensions, and the fourth being the time dimension. These vectors were sliced
into 3D samples along the time dimension and transposed into the order of A x § x C
(axial, saggital and coronal, in image space, channel, height and width (Figure 2.6)).
Rescaling was also applied on the samples into the [—1, 1] range during the experiments.
Furthermore, in my experiments, I excluded measurements for which at least one of the
reviewers of the fMRI measurement noted failure. I padded the slices along the saggital and
the coronal dimension for, resized the images for easier processing and less computational
power. The resulting dimensions of each 3-dimensional samples were 61 x 48 x 56 during
the denoising diffusion modeling. For each 3D fMRI sample, a number of numerical and
text based features were available, some of those are

e The ASD vs non-ASD feature

e The site of the measurement
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o The subject of the measurement (the person)

o The time slice of the given 3D sample!

During my experiments, the feature that I have dealt with the most was the ASD vs
non-ASD feature, this was the basis of my class-conditional generation.

Splitting Having a look at several 3D samples from the same subject revealed, that
“close” samples - in time manner - are not distinguishable, they carry the same structural
features. This is not a surprise, since only a few seconds pass between connecting time
slices.

This finding resulted in two different spliting of the train, valid and test sets during my
work. These were the following:

1. Splitting to keep the ASD vs non-ASD balance across the splits, not paying attention
to the site/subject cross section

2. Splitting the data in a way that no subject is present in two splits, keeping the ASD
vs non-ASD balalnce as good as possible

The first split was applied at the start of the work, during the generation process and
at the first iteration of the evaluations, which is detailed in 5.2.1. The second split was
applied after this, which greatly improved the evaluation metrics, but no generation was
done with this split yet.

for one subject multiple 3D samples are available, since slicing along the temporal axis was done
beforehand
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Chapter 4

Methods

4.1 Background on applied neural networks

In the previous sections, the need for a neural network-based model was justified. It’s
task was set to be the noise “segmentation”, reconstruction based on the input image
and the volume of the noising, i.e. the ¢-th time of the forward process. In a formulated
manner: €p(z,t). For such case, the U-Net architecture is commonly used[29]. The
U-Net architecture is a convolutional neural network (CNN) that has revolutionized the
field of medical image segmentation. The architecture exhibits a unique encoder-decoder
structure that enables learning complex latent features of the input, such as - in this case
- the added noise to an image.

The name “U-Net” originates from the U-shaped architecture formed by its symmetrical
structure. The network architecture comprises two key components: the contracting path
(encoder) and the expansive path (decoder). The contracting path consists of a series of
convolutional and pooling layers, which capture the spatial information from the input im-
age. This encoding process progressively reduces the spatial dimensions while increasing
the number of feature channels. The expansive path, on the other hand, is responsible for
recovering the spatial information lost during the encoding process. It employs transposed
convolutions, also known as upsampling, to gradually increase the spatial resolution while
reducing the number of feature channels. Skip connections are a distinctive feature of the
U-Net architecture, connecting corresponding layers in the encoder and decoder paths.
These connections enable the network to utilize both local and global contextual informa-
tion during the segmentation process. On Figure 4.1, this skip connection is visualized.

Skip connection

Swish Flx) +x

Swish

F(x)

| Convolutional layer
| Convolutional layer

Figure 4.1: Skip connection in the U-net model
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In addition to this, in my model, incorporating - embedding - the timing information ¢
from the forward process is a necessity, in order to learn the appropriate size of the
noise added to the input image. Time embedding involves encoding temporal information
into the input data, allowing the network to learn and exploit temporal dependencies
during the segmentation process. For this, I used the positional encoding introduced in
the Attention Is All You Need paper[39]. 4.1 shows how the positional embedding from
the position - in my case ¢ - is calculated. The authors stated, that using this the would
allow the model to learn the relative positions.

100002/ dmoder

, _ pos
Pg(pos, 2i + 1) = cos (100002i/dm0de1)

Pg(pos, 2i) = sin (pOS> (4.1)

This extension enhances the U-Net’s ability to handle time-varying patterns, motion, and
temporal context. In our case, this time embedding is existent at each convolutional (skip)
connection, allowing the network to fuse both spatial and temporal features at different
scales.

My model has 4 downsampling and 4 corresponding upsampling blocks, with each block
having residual skip-connections. FEach upsampling step makes use of the concatenation
with the matching downsampling state, which preserves some context of the original input.
Therefore, the final output of the model is the exact same in case of dimensionality as the
input image.

4.2 Problem formulation

The generation of the fMRI samples involve two phases, namely the training of the neural
network, and the sampling part, which features this trained network for its denoising
capabilities

Training Having sampled a batch of fMRI samples from the dataset S = {x1,z2,...}
with a distribution of p(S), where each sample has a shape of 61 x 48 x 56, these samples
are randomly perturbed with ¢ steps of Gaussian noise, resulting in a x; sampled from the
2.5 distribution. This x¢,t pair is fed into the neural network eg, - where 6 denotes the
trainable parameters. The neural network’s goal is to give an estimate about the noise
added to the x; sample in each forward t step. The objective is to minimize the distance
between the estimate eg(x¢,t), and the gaussian noise € ~ N (0,I).

Sampling If trained, the neural network with 6 learned parameter is used in this process.
Starting from a random noise sample 27 ~ N(0,I), the sampling process iterates from
T to 0, while gradually removing the noise learned in the training phase. If succeeded,
the final product of the sampling @y ~ p(S), thus the neural network is able to generate
samples, which could belong in the original dataset.
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4.3 2D fMRI generation

The experiments started with the generation of the 2-dimensional fMRI samples, meaning
only the saggital and coronal axis of the originally 4-dimensional data was used.

This means, that the slices of the axial dimension were separated, and included in the
dataset as normal different samples. With this, the size of the dataset greatly increased.
The training was performed on a machine with GPU capabilities, namely Nvidia Geforce
3090 (24 gigabytes of VRAM), and lasted for 16 hours. Results obtained from the sampling
are presented on Figure 4.3.

Conditioning on class labels In the case of the ABIDE dataset, the conditioning was
done using the ASD versus non-ASD features of the samples, which - for the human eye -
is invisible, thus evaluating this condition is up to the metrics mentioned in 5.

Conditioning on class and index labels Initially, the concept of generating three-
dimensional samples emerged from a conditional perspective. Namely, that conditioning
the neural network - just as in the case of class-conditioning - on the indexes of the slices
might work as expected, resulting in samples which are in succession.

Taking a look at the real images in 4.2, this nature of the data is visible, i.e. the three
images representing axial dimension slices 50, 52, and 54 appear to show a progressive
reduction in the size of the brain signals. In the case of the generated images, the following
section summarises the findings.

4.3.1 Generating power of 2D approach

If we take a look at the some consecutive fMRI slices from a real sample, it is obvious
that some kind of connection is present between the images. In our case, the successive
slices are getting smaller and smaller, which of course does not come as a surprise, since
the axial view of the fMRI does shrunk with superior slice numbers.

Figure 4.2: Real 2d samples

On the other hand, the index-conditioned 2 dimensional fMRI generation can not take into
account information from the previous slice, which can be explained rather simply. Since
the number of training samples and subjects in the dataset is so large, it is not feasible to
have every - let’s say - 50th axial slice to carry the same features. This means, that if the
neural network is given the index 50 and 52, it might produce slices closer to two different
subjects, resulting in cases shown on Figure 4.3. In this particular case, the 52nd slice
likely corresponds to a subject whose original brain images were not adequately captured,
or it is possible that the 52nd slice has exceeded the upper boundary of the brain.
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Figure 4.3: Index conditioned 2d generated samples

Learning from these experiences, I turned to 3-dimensional - including the axial dimension
- generation.

4.4 3D fMRI generation

In the case of 3-dimensional generation, the only change included was the modification of
the neural network. This meant the inflation of the thus far 2-dimensional convolutional
layers to 3-dimensional ones. The sampling of the generated samples did not change, only
the new dimension was added.

My experimentation encompassed various sampling methods, as outlined in 2, including
DDPMs and DDIMs, each exhibiting distinct characteristics in terms of speed and memory
usage.

The most prominent trials were the following, each with included generated samples - the
images show the axial slices starting from upper left corner:

e The usage of DDIM sampler, with a step size of 8'. This sampling was the fastest,
but resulted in less meaningful images. Figure 4.4 shows the results.

e The usage of DDIM sampler with a bigger - yet compared to DDPM still a small -
number of steps, 64. Here, the generation produced more visible and easier-to-see
samples?.Figure 4.5 shows the results.

e The usage of the DDPM sampler, despite being the most time-consuming among
the three mentioned due to its 1000 timesteps in the reverse phase, produces results
that are significantly more realistic, as evidenced by Figure 4.6.

To have a strong base of qualitative evaluation of the generated samples, Figure 4.7 depicts
how a 3-dimensional sample, originating from the ABIDE dataset looks like.

Lthis number represents the steps taken in the backward - generating - process
2this saturation of the images is one downside of DDIM samplers

22



Figure 4.4: Generated ABIDE samples with DDIM (8 steps)
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Figure 4.5: Generated ABIDE samples with DDIM (64 steps)
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Figure 4.6: Generated ABIDE samples with DDPM

ENBEEEEE
F[E[z[c[c[e[e[e
eleee
Seeeeeee

Figure 4.7: Real ABIDE samples
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Chapter 5

Evaluation

Evaluation involves the systematic process of assessing the value, quality, and significance
of a subject, guided by a predefined set of criteria and standards. This method is uni-
versally employed across various domains, including human resources, engineering, and
healthcare, to gauge the effectiveness, performance, and impact of initiatives and projects.
In the field of deep learning it is no different, evaluating the product, the output of the
experiments is a must. In my case, the generated MRI and fMRI signals are assessed in
this manner.

5.1 Qualitative and Quantitative Evaluation

Evaluation, broadly speaking, can be done in multiple ways. Two common sides of the
process are qualitative and quantitative evaluations, both these methods play a huge role
in the final verdict. Quantitative analysis of data is primarily concerned with the measure-
ment and quantification of various attributes, emphasizing numerical values and statistical
techniques. It is often used to answer questions related to “how much” or “how many”
and is highly suitable for an objective verdict. Qualitative analysis on the other hand,
aims to explore and understand complex, non-quantifiable phenomena, often through the
analysis of patterns. In this context, it involves finding insights in the generated data,
which can be justified by the human eye.

5.1.1 Quantitative Evaluation Metrics

Before evaluating the results of my research, it is best to introduce the metrics used most
commonly in the generative modeling domain. This could also help the individual to have
an understanding of the capability of my approach, by comparing my results on these
common metrics to other public scores in the field.

Root-Mean-Square Error (RMSE) RMSE is the standard deviation of the predic-
tion errors. By using s for the generated data and o for the original data, the formula of
RMSE can be written in the following way:

N C—x:)2
RMSE,, = \/Z’:I(X?\‘, %o)” (5.1)
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where ¥ is summation (“add up”), (zp; — z4;)? are the differences, squared and N is the
sample size. The underlying assumption when presenting the RMSE is that the errors are
unbiased and follow a normal distribution. Thus, using the RMSE or the standard error
(SE) helps to provide a complete picture of the error distribution (Chai et al., 2014).

Structural Similarity Index (SSIM) This universal image quality assessment was
developed to measure the difference of a degraded image from the reference image. [? ]
Similarly to the human perception, changes in structural information are easily quantified
between two images. The SSIM considers three factors, which are luminance, contrast,
and structure.

From these SSIM can be formulated as

SSIM(%,x) = [I(%,x)]* * [c(%, x)]? * [s(%, x)]” (5.2)

As originally SSIM was developed for the comparison of 2-dimensional images, 1 split
the generated 3-dimensional fMRI samples along the axial dimension into 2D images and
calculate the average of the SSIMs of these slices for the whole sample.

Support Vector Machine (SVM) Support Vector Machines are supervised machine
learning models used for classification or regression problems. By training an SVM on
actual fMRI data points and their associated labels, we can achieve accurate predictions
of classes for previously unseen signals. This method serves as a means to evaluate the
performance of my conditional generation approach, as it tests whether the trained SVM
can effectively differentiate between the different conditional classes. Accuracy, precision
and recall are calculated.

Learned Perceptual Image Patch Similarity (LPIPS) LPIPS essentially computes
the similarity between the activations of two image patches for some pre-defined network.
Typically, This predefined network is a pre-trained neural network on a large and diverse
dataset. This measure has been shown to match human perception well. A low LPIPS
score means that image patches are perceptual similar, thus indicating good reconstruc-
tion, while a higher score indicates the opposite.

Inception Score (IS) The Inception Score is particularly used to assess the capabilities
of generative models, GANs most frequently. The score is calculated based on the output
of a separate, pre-trained InceptionV3 image classification model (5.1). This model was
trained on more than 30 000 image samples belonging to different genres. The Inception
Score is maximized when the following conditions are true:

e The entropy of the distribution of labels predicted by the Inceptionv3 model for the
generated images is minimized. In other words, the classification model confidently
predicts a single label for each image. Intuitively, this corresponds to the desideratum
of generated images being “sharp” or “distinct”.

e The predictions of the classification model are evenly distributed across all possible
labels. This corresponds to the desideratum that the output of the generative model
is “diverse”.
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Figure 5.1: InceptionV3 network

Frechet Video Distance (FVD) A relatively new metric to measure the performance
of generative models for video data, based on the principles of Frechet Inception Distance
(FID) that uses feature representations that capture the temporal coherence of video-
contents and taking quality into consideration of each frame [? ]. The metric is calculated
as follows:

A(I(2o), I(ws5)) = |0 — s + Tr (S0 + s — 2¢/5055) (5.3)

, where I(z,) and I(zs) are the feature representations of the original and generated
samples, respectively, while I() is a pre-trained model producing the features.

For a pre-trained network, we trained a version of the Inception3D network for binary
classification of neurological condition on the ABIDE set and used its features. When
calculating the metric on our generated ABIDE set, the image slices along the axial
dimension are considered as frames.

5.2 Evaluation results on fMRI

As presented, fMRI data is a rather complex modality, which does make the quantitative
evaluation a challenging task. Specifically, the characteristics of the ABIDE dataset, the
primary source of training samples, present certain difficulties:

1. For now, only 3 dimensional data is used, which does abandon valuable timing
information

2. The classes, which were used during class-conditioning are not fully distinguishable
by a complex neural network, as presented in 5.2.2

3. The different sites (cities) who participated in the measurement use differently set
up machines, resulting in differences in the obtained samples, which might be even
more significant, than the class label itself

4. The anatomical nature of the samples is not negligible
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5.2.1 Concerns regarding popular evaluation metrics

Since the scope of the task was primarily on the generation of images, it comes as straight-
forward to test the results against the widely acclaimed metrics, such as Inception Score
[31] or FID [37].

For these metrics, the training of an inception network on the available fMRI training
samples was necessary, in order for the network to be useful in the evaluation of the
generated samples. This training was in fact a classification task, where the two classes in
question were the ASD and non-ASD features of the ABIDE samples. The network used
was a based on the inception network depicted on Figure 5.1, with some additional inflation
to 3 dimensional convolutional kernels, making it suitable for the ABIDE samples (checkl,
hogy le van e irva, hogy 3ds az adat). As opposed to traditional inception networks, it
contains only two output neurons for the two classes.

Accuracy metric on inception network trained on ABIDE Loss metric on inception network trained on ABIDE
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— Valid — Valid
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Figure 5.2: Inception network in training

As shown in Figure 5.2, the training converged quickly, raising interests in its generalization
capabilities.

After extracting weights from the network in different phases of the training - mainly to
check how the generalization evolves - the evaluation of the predictions on the test dataset
took place, with the help of common metrics, such as accuracy, precision and recall. On
Table 5.1, one can see that even after a few - in this case, 40 - epochs, the network was
able to perfectly classify the images into one of the classes.

Epoch | Accuracy (%) | Precision (%) | Recall (%)
40 99.5 99.5 100
140 100 100 100

Table 5.1: Inception generalization capability

Such results were neither planned nor hoped for, thus a deeper understanding of the
underlying problem was needed. Other articles about neural network based classification
of fMRI - more specifically, ABIDE - samples achieved accuracy values in the region of
60-70% [17]. The key findings from those papers were that

1. in the case of the ABIDE samples, site - or even - subject related differencies in the

data might play a bigger role than the ASD, or non-ASD feature (machine setup,
anatomy (detailed in datasets)).
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2. Thus, when constructing the different - train, validation and test - splits, it is im-
portant to have one subject only in one split, otherwise, from the network’s point of
view, it might seem like the same sample is present in multiple splits.

3. As input to the network - in the case of fMRI samples - using the region of interest
(ROI) timeseries instead of raw images might work better on the long run.

In my case, since the training of the denoising diffusion network was already done, having to
incorporate subject or ROI related information was not feasible, thus, using the inception
network based metrics, such as FID or inception score, are for future use-cases.

Non-inception based metrics Metrics, e.g. PSNR, SSIM or LPIPS can be however
calculated on the generated samples without the need for an external feature extractor.
For this experiment, I evaluated three different datasets against the training split of the
ABIDE samples. The first was its corresponding test set, meaning it contained real samples
with same characteristics. A noise dataset was formulated, in order to represent some kind
of upper - or in other cases lower - bound for the metric. This dataset was sampled from a
Gaussian normal distribution. The third set consisted of the generated samples from the
ddpm pipeline. All the inputs were normalized to [-1,1] and in image dimension, meaning
a shape of (61 x 48 x 56).

Dataset PSNR | SSIM | LPIPS
Ground Truth 20.3 0.71 0.087
Noise 7.07 0.005 0.76
Generated 19.86 0.74 0.12

Table 5.2: fMRI data metrics

5.2.2 Contrastive Encoder

After the initial difficulties regarding ASD-based image classification, I have delved into
other options to find a valuable evaluation metric, on which the fidelity of the generated
images can be tested. Recently, i have came across a paradigm called Contrastive Learning,
which showed promising approaches and ideas.

Contrastive Learning The primary objective of contrastive learning is to utilize a
neural network to construct an embedding space that effectively separates similar and
dissimilar sample pairs. This is achieved by optimizing a contrastive loss function, which
is designed to maximize the similarity between “positive” pairs (e.g., augmented versions of
the same data point) and minimize it between “negative” pairs (e.g., different data points
or classes). The form of this loss function can be adapted based on the specific requirements
of the task. This learning approach is versatile, applicable in both supervised[22] and
unsupervised[13] settings.

Having sampled N random samples {mk}{c\le from the original dataset, one can construct
the training dataset required for the contrastive framework, which features the proposed
positive and negative pairs, in the following way:

« Create two random augmented! versions of z},, here denoted as &3, and Fxo

'In my experiments, I used random flipping, cropping and affine transformation as augmentation on
the fMRI data
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o Assemble the dataset out of the augmented pairs, so that the training dataset will
consist of 2N pairs

o If labels are available, make sure that §x1 = Jr2 = yi

For unsupervised framework, the following objective function was used.

self = Zl eXp Zi ( )/T) (54)

icl aeA(z) exp(z; - 24/T)

Where i € I = {1,...2N} denotes the index of an arbitrary augmented sample, j(7) is the
index of the other augmented sample originating from the same source sample, z is the
output of the neural network (presented in 5.2.2), the - symbol denotes the inner (dot)
product, 7 is a scalar temperature parameter, and A(i) = I\ {i}. The index i is called the
anchor, index j(i) is called the positive, and the other 2(N — 1) indices (k € A(3) \ {j(i)})
are called the negatives. For each anchor i, there is 1 positive pair and 2N — 2 negative
pairs.

For a supersived setup, the number of positive pairs can - and will - exceed only 1, so in
order to incorporate this information into the loss function, it is rephrased as

Lowp = Z Z log — P(Zi /) (5.5)

zel EaeA(i) exp(z; - Za/T)

Here, P(i) = {p € A(3) : Jp = Ui} is the set of indices of all positives in the training
dataset distinct from 4, and |P(7)]| is its cardinality.

Through my experiments, I have applied both supervised, and unsupervised contrastive
learning on the ABIDE dataset, in the latter case neglecting the normally present ASD,
non-ASD labels. My conducted trials were

1. Supervised training with ASD, non-ASD labels using Lqup

2. Unsupervised training with Lget

Encoder In the contrastive representation learning domain, the choice of the neural
network can greatly affect the results of the process. One common architecture choice
is the usage of an encoder model, which is designed to transform raw data into a lower-
dimensional, compressed representation, often referred to as an “embedding”. The primary
goal of an encoder is to capture the essential features or characteristics of the input data
in this compressed form, which - in the domain of contrastive learning - is in fact, very
useful.

I opted for an variational autoencoder based encoder network (presented in [28], used
for latent denoising generation), which takes 3 dimensional input vectors - images - and
transforms those, into a smaller, but still 3 dimensional embedding. I placed an additional
projection MLP? (projection head) on top of the encoder’s output, to create a smaller,
flattened version of the embedding, which is helpful in loss convergence during training,
but is discarded during testing.

2Multi Layer Perceptron
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Experiments The previously mentioned two trials were both performed on the ABIDE
dataset, using the second type of data-splitting technique detailed in 3.1.1. The input
data was augmented to have a shape of (56 x 56 x 56) (CxHxW) and was fed into the
network with a batch size of 40 - after augmentation. The encoder network produced an
output of size (56 x 56 x 56) with the projection head resizing it to a length of 128. The
training was carried out on a NVIDIA 3090 with 24 gigabytes of VRAM.
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Figure 5.3: Supervised, and unsupervised loss of the contrastive
learning algorithm

The representation ability of a contrastive encoder can be validated through a number of
methods. One of those is by the reduction of the dimensionality of the encoder output -
in this case (14 x 14 x 14) - to an arbitrary number, in most cases 2. By doing this, the
embeddings of the tested dataset can be represented on a plot, with the two dimensions
being the X and Y value.

t-Distributed Stochastic Neighbor Embedding (t-SNE)[38], is an algorithm designed for
dimensionality reduction and visualization of high-dimensional data, and is particularly
effective at preserving local structures and revealing clusters. I chose this, since the number
of sites and subjects in the data is huge, thus hoping for the t-SNE to represent these
connections in the embeddings.

After training, contradictory to Figure 5.3 - where it seems, that the supervised setup
might work better, given that its loss function converged to better optima - the testing
and the usage of the t-SNE algorithm reveals that the unsupervised learning setup was
able to seperate the input fMRI samples in the latent space, while the supervised setup
could not.

Figure 5.4 reveals the output of the t-SNE algorithm applied on the test fMRI samples,
highlighting the classes (ASD vs non-ASD feature) of the data. This plot reinforces that
the statement - made in 5.2.1 - is true, namely that the most prominent features in this
dataset are not the ASD vs non-ASD nature, rather the differences or site - or subject -
level.

Following this, extracting the site feature from the test dataset was done, and Figure 5.5
clearly shows that on site-level, the embeddings do separate more precisely. Selecting two
distinct sites, namely Caltech (California Institute of Technology) and Yale, Figure 5.6
depicts the embeddings of the subjects at each site, having no overlap between each other.
This means, that without the need for any kind of previous information about the classes
or the sites, this contrastive learning approach is able to “classify” the samples.
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Figure 5.5: Site-wise highlight of the contrastive embeddings us-
ing t-SNE

These two dimensional latent space vectors were also acquired from the generated fMRI
samples, and from an arbitrary number of noise samples?, and plotted on the same figure.
On Figure 5.7 both the generated samples, and the noise samples form a “subject” cluster,
meaning they exhibit characteristics which previously were not fed into the encoder.

It does not come as a surprise, that while the embeddings of the noise samples are con-
centrated strictly in one place, the embeddings from the generated samples do overlap
with some other subjects and sites, meaning that the generation did pick up some subject-
specific features.

3sampled from Gaussian normal distribution
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Figure 5.6: Subjects on Caltech and on Yale site

With the class-conditioned generated samples not fully aligned with their corresponding
real classes, it is right to say that conditioning on ASD and non-ASD classes are not
the best features to choose in this ABIDE dataset, rather the conditioning on ROI or
subject /site is advised.
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Figure 5.7: Generated and noise samples on the plot
Certainly, the objective here was also to be able to measure the generating power of the

denoising neural network, however even without that, this experiment was more than
useful regarding the future directions.

5.2.3 SVM

Support Vector Machines - as mentioned - are also present in the evaluation of the gener-
ated samples. They gained prominence for their robustness and efficacy in both classifi-
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cation and regression tasks. In my case, after all the preceding metrics, the goal was also
to check the class-conditional generating power of the DPM.

Learning from previous failures - namely that, there are underlying artifacts in the data,
related to subjects and sites - the training set only consisted on samples from one site.
This chosen site was the one with the most samples in it, NYU.

I conducted two trainings with multiple SVM kernels*. These trainings featured 3000 real
fMRI samples, and 500 generated samples, flattened out to a 163968-long vector (originally
61 x 48 x 56).

1. Training on real fMRI images, testing on real images, and generated images

2. Training on real and generated images, testing on real images. This approach is to
“measure” the augmentation power of the generated samples.

In both cases, three different SVM kernels were used, linear, polynomial and rbf kernels.
The predicting power of the machines are tested on different metrics, such as accuracy,
F1 score, specificity® and an additional confusion matrix is also present for visualization
purposes.

Dataset Accuracy (%) | F1 Score (%) | Specificity (%)
Real test 66.0 75.6 31.7
Generated test 55.8 58.4 50.0

Table 5.3: First SVM tested on real and generated data

Table 5.3 contains the results from the first training, in every case the best performing
SVM was selected. In both cases, the SVM with the best results was the polynomial kernel
based machine, with a parameter set detailed in Table 5.4. The term C corresponds to an
inverse-regularization term, while degree is the degree of the polynomial kernel.

Kernel | C | Degree
poly 100 3

Table 5.4: Parameter set of the best performing SVM

Surprisingly, the model achieves better specificity on the generated dataset than on the
real dataset. This means, that in the case of real dataset, the false positive ratio is more
significant (also shown on Figure 5.8). The cause of this is unknown at the momemt,
worth checking - but important to mention, that the number of class labels were balanced
during training and testing, so label-imbalance, which is typically the root cause of this
issue, is not present here. For accuracy and F1 score, the results are better on the real
test dataset - as one would imagine.

Dataset | Accuracy (%) | F1 Score (%) | Specificity (%)
Real test 82.4 85.1 75.9

Table 5.5: Second, augmented SVM tested on real data

In the second case, after augmenting the dataset used in the first training, the results
presented in Table 5.5 exceeded its corresponding metric scores shown in the first training,
by a considerable margin.

4the scikit-learn python package was used

5 oo TN _ I J
Specificity = 1x7pp: F'1 = 2 X 557p1rp1rN
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Confusion matrix on real test data (augmented SVM)
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Figure 5.9

This improvement across all the evaluated metrics (as well as in Figure 5.9) shows that the
augmentation power of the generated samples is significant. This can be further optimized
by incorporating more stable conditioning.
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Chapter 6

Conclusions

As demonstrated, my efforts have yielded successful generation of synthetic fMRI sam-
ples in both two and three dimensions. These samples have been rigorously evaluated
against established metrics, delivering encouraging outcomes in the augmented SVM as-
sessment. Moreover, this work has shown potential ideas for development that have not
been previously reported in the literature.

Research in this field is ongoing, and throughout the experimental process, various ques-
tions and ideas have emerged regarding possible enhancements in both the generation and
evaluation stages. These ideas include:

o Extending the generation to 4-dimensional domain, including the timing information
in the process as well

¢ Introducing reconstruction guidance-based sampling, to enhance the fidelity of the
generated samples [20]

e Condition the generation on more prominent features in the ABIDE dataset, namely
on subject or site level

o In addition to the aforementioned evaluation metrics, site/subject-based training of
the Inception network might produce valuable results, facilitating the application of
FID and IS metrics.
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