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Abstract 

The fast improvement of deep learning methods resulted in major breakthroughs 

in multiple fields of machine learning, including image classification. With novel deep 

learning architectures one can achieve very accurate classification performance, however 

these models often are sensitive to adversarial perturbations. The goal of Adversarial 

Attacks is to change the models output label by adding noise to the input. The attacker 

also minimizes the norm of the attack vector. 

In my paper I cover two aspects of adversarial defence, the capability of detecting 

adversarial attacks and the robust classification performance. I compare two adversarial 

defence methods, one called NULL labelling, and an own method which is based on 

NULL labelling. 

The NULL labelling method introduces one new label to the N label classification 

problem, which represents the presence of adversarial perturbation. My method, called 

2N labelling, addresses the problem by extending the N label classification problem into 

a 2N label one. In this scenario each original class has two corresponding classes in the 

extended label set, one represents the original label without perturbation, the other one 

indicates the presence of perturbation. By design, with this approach one can predict the 

original label even if adversarial noise is present. To evaluate the effectiveness of the 

methods, I also trained a substitute model that does not use any adversarial defence 

method. I conclude my paper with the results of comparative testing. 
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Absztrakt 

A mélytanulási módszerek elterjedése nagy áttörést eredményezett a gépi tanulási 

problémáknál, többek között a képosztályozás területen is. A korszerű modell 

architektúrákkal nagyon pontos osztályozó modellek taníthatóak, viszont sok esetben 

ezek érzékenyek lesznek az ún. Adversarial támadásra. Egy ilyen támadás célja, hogy a 

modell kimenetét tetszőleges (de nem a helyes) osztályba átvigye és ezzel egyidőben 

minimális változtatást keverjen csak rá a bemenetre. 

Dolgozatomban az ilyen jellegű támadások elleni védekezésnek két módját 

vizsgálom, a támadás észlelését, illetve a támadás melletti robusztus osztályozást. Erre a 

feladatra egy ismert módszer a NULL labelling. Ennek a módszernek a jóságát vizsgálom 

a TDK dolgozatomban, illetve ennek egy saját, továbbfejlesztett változatával is 

összehasonlítom. A NULL labelling módszer lényege, hogy az N osztályos osztályozási 

problémánál az osztályokat kiegészíti egy NULL osztállyal, ami azt hivatott jelezni, hogy 

a bemeneten támadó zaj található. A továbbfejlesztett saját módszer ötlete az, hogy az 

eredeti N osztályt 2N darab osztályra terjesztjük ki. Így minden eredeti osztályhoz két 

címke fog tartozni, az egyik az eredeti osztályt reprezentálja támadás nélkül, a másik 

ugyanezt támadás jelenlétével. A módszerek hatékonyságának értékeléséhez tanítok egy 

referencia modellt is, ami nem használ semmilyen Adversarial Learning módszert, az 

összehasonlító tesztelés eredményeivel zárom dolgozatomat. 
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1 Introduction 

Adversarial Learning is a machine learning technique that attempts to fool the 

trained model by introducing perturbation to the input. Most machine learning techniques 

were designed to work on a specific problem set, where the training and test data are 

sampled from the same distribution. In most cases it can be shown that it is possible to 

mislead these models by supplying input data that is not from the same statistical 

distribution as the training data. We call an (input, noise) pair Adversarial Example [5] 

for a given model if the model correctly classifies the input but fails to classify the noised 

input. 

 

Figure 1. Demonstrating effectiveness of adversarial perturbations. [2] 

In most real-world scenarios, it can be crucial to train models that are robust 

against adversarial attacks [16]. In this scientific field there are many different approaches 

to train robust networks. 

In my report I focus on image classification problems. My goal was to compare 

existing robust learning methods with my own approach. This report covers two aspects 

of adversarial defence, the capability of detecting adversarial attacks and the robust 

classification performance [10]. 

Earlier this year I was involved in writing an article [22] about a novel Adversarial 

Defence method using Gaussian pyramid [9] for noise reduction, this report is partly 

based on that paper. 
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2 Theoretical background 

2.1 Adversarial Attacks 

An adversarial attack tries to fool the classifier model by adding a carefully crafted 

noise to the input. The attacks can be divided into two groups based on the goal of the 

attacker [5]. The goal of targeted attacks is to find a noise vector (with a minimal norm) 

that it changes the models output to a specific class. In case of untargeted attacks, we 

want to change the models output to any class but the correct one. The attacks can be 

formally written as: 

𝜹𝑜𝑝𝑡 = min
𝜹
‖𝜹‖ such that 𝐶(𝒙 + 𝜹) = 𝑦∗     (targeted) (2.1) 

𝜹𝑜𝑝𝑡 = min
𝜹
‖𝜹‖ such that 𝐶(𝒙 + 𝜹) ≠ 𝐶(𝒙)     (untargeted), (2.2) 

where 𝜹𝑜𝑝𝑡 is the optimal noise vector, 𝐶(𝒙) = arg max𝐹(𝒙) and 𝐹 is the classifier 

function that returns a probability distribution over the possible labels, 𝑦∗ is the desired 

label by the attacker. The norm which we minimize can be any vector norm, in this report 

𝐿∞ was used. 

A perturbation and input pair (𝒙, 𝜹) is called an adversarial example if it 

successfully fools a given model, while a human can still correctly classify the image.  

In case of model availability there are three threat models. A white-box [11] attack 

assumes access to the whole model, a score-based threat model assumes access to the 

output probability vector and finally, the decision-based or black-box [13] threat model 

assumes access only to the predicted labels.  

 

Figure 2. Threat models. [5] 
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In my report an adversarial attack approach with untargeted attacks was used, that 

can be applied in white-box scenarios.  

2.1.1 Fast Gradient Sign Method (FGSM)  

With FGSM [2], we can search for adversarial perturbation in a given 𝐿∞ 

bounding space of the original input. This means that the attack noise vectors norm can’t 

be higher than a given threshold. 

To understand the idea behind FGSM, first assume that the classification function 

is linear. In this case the model output for an adversarial input can be written as: 

𝐹(𝒙) = 𝒘𝑇𝒙̃ = 𝒘𝑇𝒙 + 𝒘𝑇𝜹, (2.3) 

where 𝒘 is the model parameter vector and 𝜹 is the noise vector. The output of the model 

changes by 𝒘𝑇𝜹 compared to 𝐹(𝒙). We can maximize the change subject to the norm 

constraint by choosing 𝜹 = sign(𝒘). This results in a change equal to the sum of absolute 

values of the model weights. We can see that linear models can have adversarial examples 

with norm lower than the resolution if the dimensionality of the problem is high enough 

(the resolution of the images in our case). 

 It turns out linear attacks are quite efficient against non-linear functions (such as 

a neural network). The reason behind this is that activations (non-linearities) are designed 

to work close linearly in order to make optimization easier (for example ReLU or non-

saturated logistic sigmoid). This suggests that these models are also vulnerable to linear 

attacks at small scale [2]. 

The cost function can be linearized around the current value of the model 

parameters, and we can get an optimal max-norm constrained perturbation as:  

𝜹 = 𝜀 sign(∇𝒙𝐽(𝜽, 𝒙, 𝑦)) (2.4) 

Here 𝜹 is the adversarial perturbation, 𝜀 is the amplitude of the attack and 𝜽 is the model 

parameter vector. 𝐽 is a cost function which penalizes the divergence from the desired 

class. In this report I used cross-entropy as a measure of divergence: 

𝐻(𝑝, 𝑞) = −∑𝑝𝑖 log 𝑞𝑖

𝑛

𝑖=1

 (2.5) 
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If 𝑦 is the correct class and 𝑦∗ is the desired class for the targeted attack, the cost 

function can be written as follows: 

𝐽(𝜽, 𝒙, 𝑦) = {
− log 𝐹𝑦∗(𝒙)  (targeted)

log 𝐹𝑦(𝒙)   (untargeted)
 (2.6) 

Note that the negative sign disappears for the untargeted attack, this is because we want 

to maximize the entropy for this type of attack. 

 There are extensions to this method which use an iterative approach for generating 

adversarial noise, for example Iterative Fast Gradient Sign Method [8] or Projected 

Gradient Descent [19]. With these methods one can get a noise vector closer to optimal 

at the cost of computing gradients multiple times. 

2.1.2 Smooth Targeted Attack Based on Gradient Method (STG) 

With Smooth Targeted Attack Based on Gradient Method (STG) method [4], one 

can generate adversarial noise for a given 𝐿0 constraint. Minimizing the attack’s 𝐿0  norm 

means that we only want to modify the minimal number of elements in the input vector 

not bothering the magnitude of each modification. 

This attack is an iterative approach for finding adversarial examples, meaning that 

it modifies one input feature at a time. A detailed description of the algorithm can be 

found in the Hosseini’s paper [3].  

2.2 Defence against adversarial attacks 

In the scope of this research, I addressed two different existing techniques for 

robust model learning.  

2.2.1 Adversarial training 

Adversarial training (or adversarial learning) [2] is an adversarial defence method 

for 𝐿∞ bounded adversarial attacks. Using adversarial learning one can train a robust 

classifier as we will see in 5.3. Adversarial training uses an extended loss function to learn 

a robust model. The extended loss function is defined as follows: 

𝐽(𝜽, 𝒙, 𝑦) = 𝛼𝐽(𝜽, 𝒙, 𝑦) + (1 − 𝛼)𝐽(𝜽, 𝒙 + 𝜀 sign(∇𝒙𝐽(𝜽, 𝒙, 𝑦)) , 𝑦), (2.7) 
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where 𝐽 is the original, 𝐽 is the extended loss function and 𝛼 is the importance of the 

original sample against the adversarial sample. With this we can prepare the model to 

classify images correctly even with adversarial noise present, but this method does not 

allow us to detect adversarial attacks. 

2.2.2 NULL labelling 

2.2.2.1 Extending label set 

NULL labelling [4] extends the N label classification problems label set with a 

new label (NULL), which represents the presence of adversarial noise. 

𝑆𝑁𝑈𝐿𝐿 = {𝐶1, 𝐶2, … , 𝐶𝑁 , 𝐶𝑁𝑈𝐿𝐿}, (2.8) 

where {𝐶1, 𝐶2, … , 𝐶𝑁} is the original N label classification problem’s label set and 𝑆𝑁𝑈𝐿𝐿 

is the extended label set for NULL labelling. 

2.2.2.2 Training Strategy 

 The technique also defines a training strategy. First the model is pre-trained on 

the original dataset, without any perturbations until the model achieves a certain accuracy 

in the N class classification problem. 

 In the next phase the model is trained on clean samples with α probability, and on 

adversarial examples (generated with STG method) with 1- α probability. We assign the 

desired NULL label probabilities for each adversarial example as follows:  

𝑃(𝑐 = null for attack 𝜹) = 𝑓(𝜹) =
|{𝝉: ‖𝝉‖0 < ‖𝜹‖0 | 𝝉𝜖∆}|

|∆|
, (2.9) 

where ∆ is the set of perturbations for adversarial examples on the validation set. The 

desired probability distribution used to calculate the cross-entropy loss for the samples 

without perturbation: 

𝑃(𝑐 = 𝑖) = {

𝑞, if 𝑖 = 𝑐𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙
0,             if 𝑖 = NULL
1 − 𝑞

N − 1
,                  else

 (2.10) 

By setting the value of 𝑞 less than 1, this method is called label smoothing [12] which 

prevents the model from learning to give overconfident predictions [14]. The probabilities 

for the samples with perturbation are calculated as follows: 
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𝑃(𝑐 = 𝑖) =

{
 
 

 
 𝑞(1 − 𝑓(𝜹)), if 𝑖 = 𝑐𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙
𝑓(𝜹),                            if 𝑖 = NULL

(1 − 𝑞)(1 − 𝑓(𝜹))

N − 1
,               else

 (2.11) 

By using pre-training, the overall learning process can be sped up, since initially 

the adversarial examples generated with the model with randomly initialized parameters 

do not resemble those of the final classifier. 

2.3 Multi-Task learning 

Multi-Task learning [15] means that the model is trained to solve multiple tasks 

simultaneously. This can result in improved learning efficiency and accuracy for the 

models trained this way if the tasks are correlated. 

NULL labelling can be considered as Multi-Task learning: the model learns to 

label the samples with the original labels set and to calculate the probability of the attack 

at the same time. 

2.4 Measuring robustness 

2.4.1 Robust classification performance 

It turns out that different models trained to solve the same problem tend to be 

vulnerable to similar perturbations. If we have two models, 𝑀𝑎 and 𝑀𝑏, and 𝑋𝑎 is a set of 

adversarial examples on 𝑀𝑎, the ratio of |𝑋𝑏| / |𝑋𝑎| is called transferability of 𝑋𝑎 to 𝑀𝑏 

(𝑋𝑏 is a subset of 𝑋𝑎 and each element in 𝑋𝑏 is an adversarial example for 𝑀𝑏). If a model 

has significantly lower transferability, we expect it to be more robust against adversarial 

attacks [3], thus transferability can be a good measure of robustness. 

Similarly, we can calculate accuracies for both models for a given attack norm, 

the higher the accuracy, the more robust the model is considered against the attack. 

Accuracy can be calculated as follows: 

accuracy =
TP+TN

P+N
, (2.12) 

where TP and TN are the number of true positive/negative samples, P and N 

are the number of positive/negative samples. 
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2.4.2 Measuring attack detection performance 

One other aspect of adversarial defence is detecting attacks. In this scenario the 

goal is to decide whether a particular input contains adversarial perturbation. This is a 

binary classification problem. 

2.4.2.1 Receiver Operating Characteristic and Area Under Curve (ROC-AUC) 

A Receiver Operating Characteristic curve is a graphical plot that illustrates the 

performance of a binary classifier as its decision threshold value is varied. The curve is 

created by plotting the true positive rate against the false positive rate at various threshold 

settings. 

 

Figure 3. Receiver Operating Characteristic curve.1 

The area under the ROC curve (also called AUC – Area Under Curve) is equal to 

the probability, that the given classifier will rank a randomly chosen positive sample 

higher than a randomly chosen negative one. It can be calculated as follows: 

AUC = ∫ TPR(FPR−1(𝑥))
1

0

𝑑𝑥, (2.13) 

where TPR(𝑥) and FPR(𝑥) are the true positive and false positive rates with a 

classification threshold 𝑥. 

For an ideal classifier the AUC value would be 1. This would mean that the 

classifier can label each input perfectly. On the other end, a classifier that randomly 

assigns positive or negative labels to each input would result a 0.5 AUC value.  

 

1 https://en.wikipedia.org/wiki/Receiver_operating_characteristic 
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2.5 Techniques used in evaluation 

To ensure that the evaluated models were trained near convergence, and the 

experimental results were valid I used the following two techniques: 

2.5.1 K-fold Cross Validation (CV)  

Cross Validation [1] is a machine learning technique for assessing the 

effectiveness of a model. K-fold CV splits the data into K folds and performs training K 

times (on different model instances). Each training round uses a different subset of the K 

fold as training data and the remaining fold will be the test data as Figure 4 presents. 

 

Figure 4. Visualization of 5-fold cross validation.2 

2.5.2 Early stopping 

Early stopping [18] is a regularization method used to avoid overfitting. In Early 

stopping, during training after each epoch the model performance is measured 

(particularly on a validation set), and if it’s better than the previous best, a model 

checkpoint is created. If the validation loss does not decrease for a certain number of 

consecutive epochs, the training is stopped. After the training is stopped, the latest 

checkpoint (which contains the best performing model parameters) is returned.  

 

2 https://drzinph.com/nested-cross-validation-cross-validation-series-part-2a/ 
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Figure 5. Visualization of early stopping regularization method. [23] 
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3 New defence method with extending class label set 

3.1 NULL labelling variant for 𝑳∞ bounded attacks 

In this report I focused on 𝐿∞ bounded attacks, thus the NULL labelling training 

strategy had to be modified in order to support 𝐿∞ instead of 𝐿0 bounded attacks. I 

achieved this by replacing the STG method to FGSM for generating adversarial inputs. I 

used to sample the 𝜀𝐹𝐺𝑆𝑀 attack amplitude from a uniform distribution. I also had to define 

my own function to assign NULL label probabilities for the FGSM perturbations: 

𝑓(𝜹) =
‖𝜹‖∞

max{‖𝝉‖∞|𝝉𝜖∆}
 (3.1) 

This function normalizes the attack amplitude for each sample by dividing with the largest 

𝜀𝐹𝐺𝑆𝑀 used for generating the perturbations. 

3.2 2N labelling defence method 

My idea for a new defence method is similar to NULL labelling, but instead of 

extending the original label set with one (NULL) label, the proposed method duplicates 

each original label (𝑆2𝑁 denotes the set of labels for 2N labelling).  

𝑆2𝑁 = {𝐶1, 𝐶2, … , 𝐶𝑁 , 𝐶𝑁+1, 𝐶𝑁+2, … , 𝐶2𝑁} (3.2) 

Here 𝐶𝑖 is the original label (at index i) and 𝐶𝑁+𝑖 stands for the same label but with 

adversarial perturbation present. 

In higher amplitude adversarial attacks, the output distribution of the NULL 

labelling model shifts towards the NULL label, making it harder to determine the original 

label of the input. In contrast my method directly learns to classify these high amplitude 

attacks correctly. 

This technique also allows us to detect the presence of adversarial noise. If we 

calculate the sum of the second N labels, we get the probability whether noise is present.  

𝑃(attack) = ∑ 𝐹𝑖(𝒙)

2𝑁

𝑖=𝑁+1

, (3.3) 
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where 𝐹𝑖(𝒙) is the value at index i of the output probability distribution vector of the 

model. 

 I also used pre-training and label smoothing for the 2N labelling technique. The 

label smoothing was performed as follows: 

𝑃(𝑐 = 𝑖) = {
𝑞, if 𝑖 = 𝑐̂
1 − 𝑞

2N − 1
,    else

 (3.4) 

where 𝑐̂ = 𝑐𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 if there is no perturbation, otherwise 𝑐̂ = 𝑐𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 + N. 

3.3 Proving that filtering can increase predictive performance 

In this research I evaluate the performance of defence methods with filtering out 

adversarial inputs. By filtering we have an extra opportunity to prevent the attack to be 

successful even if we must discard the input. In real-world scenarios it can be more 

important to not let attacks succeed than to evaluate each input. 

Let us denote the ratio of the perturbed inputs, the number of all inputs, the 

accuracy on original instances, the accuracy on perturbed instances for the attack by 𝑝𝑎, 

N, 𝑎𝑐𝑐𝑜𝑟𝑖, 𝑎𝑐𝑐𝑎𝑡𝑡 respectively. 

If there is no attack, the number of the true positive original instances (𝑇𝑃𝑜𝑟𝑖) can 

be calculated from the accuracy: 

𝑇𝑃𝑜𝑟𝑖 = 𝑎𝑐𝑐𝑜𝑟𝑖 ∙ 𝑁 ∙ (1 − 𝑝𝑎) (3.5) 

In case of the attack, the number of the true positive perturbed instances (𝑇𝑃𝑎𝑡𝑡) 

also can be calculated from the accuracy: 

𝑇𝑃𝑎𝑡𝑡 = 𝑎𝑐𝑐𝑎𝑡𝑡 ∙ 𝑁 ∙ 𝑝𝑎 (3.6) 

Before the filtering the accuracy on the mixed data (original and perturbed 

instances) is equal to sum of true positive instances divided by the number of all instances: 

𝑎𝑐𝑐𝑏𝑒𝑓𝑜𝑟𝑒 =
𝑇𝑃𝑜𝑟𝑖 + 𝑇𝑃𝑎𝑡𝑡

𝑁
= 𝑎𝑐𝑐𝑜𝑟𝑖 ∙ (1 − 𝑝𝑎) + 𝑎𝑐𝑐𝑎𝑡𝑡 ∙ 𝑝𝑎 (3.7) 

The filtering process discards some perturbed instances (the ratio of the discarded 

inputs is the recall of the perturbed class in the binary classification, we denote this by 

𝑅𝑎𝑡𝑡), the ratio of the not detected (i.e. not discarded) perturbed instances and all 

perturbed instances is equal to  1 − 𝑅𝑎𝑡𝑡; and the filtering process passes original 
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instances, the ratio of them denoted by 𝑅𝑜𝑟𝑖, because this is the recall of the original 

instances. After the filtering the accuracy can be expressed by the recall of the perturbed 

and original classes: 

𝑎𝑐𝑐𝑎𝑓𝑡𝑒𝑟 =
𝑇𝑃𝑜𝑟𝑖 ∙ 𝑅𝑜𝑟𝑖 + 𝑇𝑃𝑎𝑡𝑡 ∙ (1 − 𝑅𝑎𝑡𝑡)

𝑁 ∙ (1 − 𝑝𝑎) ∙ 𝑅𝑜𝑟𝑖 + 𝑁 ∙ 𝑝𝑎 ∙ 𝑅𝑎𝑡𝑡
 (3.8) 

After simplification, we can write 𝑎𝑐𝑐𝑎𝑓𝑡𝑒𝑟 as follows: 

𝑎𝑐𝑐𝑎𝑓𝑡𝑒𝑟 =
𝑎𝑐𝑐𝑜𝑟𝑖 ∙ (1 − 𝑝𝑎) ∙ 𝑅𝑜𝑟𝑖 + 𝑎𝑐𝑐𝑎𝑡𝑡 ∙ 𝑝𝑎 ∙ (1 − 𝑅𝑎𝑡𝑡)

(1 − 𝑝𝑎) ∙ 𝑅𝑜𝑟𝑖 + 𝑝𝑎 ∙ (1 − 𝑅𝑎𝑡𝑡)
 (3.9) 

If we examine when will the 𝑎𝑐𝑐𝑏𝑒𝑓𝑜𝑟𝑒 < 𝑎𝑐𝑐𝑎𝑓𝑡𝑒𝑟 inequality be true, we can get 

to the following inequality: 

0 < 𝑝𝑎 ∙ (1 − 𝑝𝑎) ∙ (𝑎𝑐𝑐𝑜𝑟𝑖 − 𝑎𝑐𝑐𝑎𝑡𝑡) ∙ (𝑅𝑜𝑟𝑖 − 𝑅̅𝑎𝑡𝑡), (3.10) 

where 𝑅̅𝑎𝑡𝑡 is the ratio of not discarded perturbed instances: 𝑅̅𝑎𝑡𝑡 = 1 − 𝑅𝑎𝑡𝑡. The step-

by-step derivation can be seen in the Appendix. 

 Here 𝑝𝑎 ∙ (1 − 𝑝𝑎) is always positive, and we can assume that the 𝑎𝑐𝑐𝑜𝑟𝑖 − 𝑎𝑐𝑐𝑎𝑡𝑡 

expression is also positive (for the 2N and NULL models this can be observed to be true 

in 0). Then the inequality can be reduced to: 

𝑅𝑜𝑟𝑖 < 𝑅̅𝑎𝑡𝑡 (3.11) 

This means that we get an increase in accuracy when the ratio of discarded non-perturbed 

samples is less than the ratio of the NOT discarded perturbed samples. 

3.4 Used model architecture 

In this research I used the VGG-19 model architecture [17] to evaluate the defence 

methods in question. The VGG architecture consists of convolutional and pooling layers. 

There are multiple configurations of VGG which differ in the number of weight layers. 

For this research I used 19 layers.  

 

Figure 6. VGG architecture. [3]  
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In the used implementation each model layer consists of a convolutional layer 

followed by a batch normalization layer and a ReLU (Rectified Linear Unit) activation. 

To support NULL and 2N labelling the model architecture had to be modified 

only at the final layer. In case of NULL labelling the length of the final layer’s output 

vectors is N+1 (since the dataset has N classes), and for the 2N model this is 2*N, where 

N is the number of classes. 

3.5 Training the models 

The models were trained for 200 epochs with early stopping. I used cross entropy 

as a loss function and trained the models with Stochastic Gradient Descent [20] with 

Cosine Annealing learning rate [21]. 

 When training the adversarial learning (ADV) model, I set alpha=0.5, and for the 

NULL and 2N labelling models I added noise to 50% of the images. Since I used 50% 

perturbed to non-perturbed ratio during evaluation as well, this can lead to better results 

as if I had no knowledge about the ratio of adversarial samples in the evaluation set, 

however I did not include other ratios in the scope of this report.  

During training the epsilon value of the FGSM perturbations was drawn from a 

uniform distribution with parameters 0 and 0.3 for each training sample.  
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4 Evaluation plan for filtering and N class classification 

The goal of using adversarial defence methods is to prevent accuracy decrease 

while lowering the transferability of models in an environment where the models can be 

exposed to adversarial attacks. 

We can protect our systems by training robust models and/or by detecting and 

discarding adversarial inputs. As shown in section 3.3, filtering inputs can increase the 

overall predictive performance in adversarial setting. 

I will show that is possible to achieve higher accuracy on adversarial inputs with 

filtering (see in 5.3) than without filtering, by leveraging the multi-task learning effect. 

To generate adversarial perturbations a substitute model (with VGG-19 

architecture) was used. The substitute model was trained on the whole training set with 

early stopping using the validation set. 

4.1 Filtering 

4.1.1 Calculating attack probabilities 

The filtering is a binary classification task, each model must predict whether the 

input was perturbed or not. More precisely, we need to calculate the probability whether 

a given input contains adversarial perturbation. By defining a threshold probability, we 

can assign labels (perturbed or not perturbed) to each input. The inputs predicted as 

perturbed are excluded from the following classification task. 

The NULL and 2N labelling techniques are able to calculate attack probabilities 

by design, however for the adversarial learning (ADV) model I had to train a separate 

binary model (BIN) specifically for the filtering task. For the BIN model I used VGG-11 

architecture (the shallower network worked out best for me). The BIN model was trained 

by adding adversarial perturbations with various amplitudes to the inputs, generated with 

5 different VGG-19 models (these models were also trained to solve the N class 

classification problem). 
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Now for each model we can calculate attack probabilities as follows: 

Method Output transformation to attack probability 

BIN 𝑃(attack) = 𝐹(𝒙)  

NULL 𝑃(attack) = 𝐹𝑁𝑈𝐿𝐿(𝒙) 

2N 𝑃(attack) = ∑ 𝐹𝑖(𝒙)

2𝑁

𝑖=𝑁+1

 

Table 1. How the probability of the attack was calculated with each method. 

Capability of each model can be evaluated on the binary classification task by 

comparing the ROC-AUC values. 

4.1.2 Determining threshold probability 

Selecting a threshold value for the binary decision of filtering is a domain specific 

task. Depending on the use-case we can define a maximum ratio of discarded inputs. On 

a calibration dataset we can calculate the optimal threshold (𝑇𝑂𝑃𝑇) by finding that 

threshold value for which the accuracy is maximal and satisfies the maxima constraint for 

the ratio of discarded inputs. Note that on other datasets the actual discard rate can be 

different, but with sufficient amount of calibration points the calibration discard rate is a 

good estimate for the actual discard rate.  

4.2 N class classification 

The next task is to predict the label for inputs which the filter model did not 

discard with the original N labels. For this task I had to transform the output of the NULL 

and 2N models to a probability distribution over the original N labels. 

Method Output transformation to N class probabilities 

ADV 𝑃(𝑐 = 𝑖) = 𝐹𝑖(𝒙) 

NULL 𝑃(𝑐 = 𝑖) =
𝐹𝑖(𝒙)

∑ 𝐹𝑗(𝒙)
𝑁
𝑗=1

 

2N 𝑃(𝑐 = 𝑖) = 𝐹𝑖(𝒙) + 𝐹𝑖+𝑁(𝒙) 

Table 2. How the probability distribution over the original N labels were obtained for each model. 
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5 Experimental Results 

In this section I present and explain the results of the evaluation of the adversarial 

defence methods. 

5.1 Dataset 

For this report I used the CIFAR-10 [7] dataset to evaluate the mentioned 

adversarial defence methods. The dataset consists of 60000 32x32 RGB in 10 classes, 

with 6000 image per class. 

 

Figure 7. Sample images from the CIFAR-10 dataset from each class. 

The dataset was split into training (consists of 50000 images) and validation 

(consists of 10000 images) sets. There were 3 models in this comparison, for each model 

I trained 5 different instances (for the 5-fold CV): 
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Notation Defence method 

ADV Adversarial learning 

NULL NULL labelling 

2N 2N labelling 

Table 3. Notation of compared methods in the following diagrams. 

5.2 ROC-AUC in binary classification task 

Here I show experimental results for the filtering subtask of the decomposed 

filtering and N class classification complex task. 

 

Figure 8. Block diagram of the evaluation pipeline for the binary classification (filtering) task. 

In this section I calculated the mean ROC-AUC values for each defence method. 

The attack probabilities used for the ROC curve were calculated as shown in Table 1. I 

used the validation set to evaluate models, 50% of the samples contained adversarial 

perturbation (generated with FGSM algorithm using the substitute model) with 𝜀 drawn 

from a uniform distribution with parameters 0, 0.5. 

Model ROC-AUC 

2N 0.879 

NULL 0.934 

BIN 0.941 

Table 4. Mean ROC-AUC values for each binary classification method detailed in 4.1. 

 In Table 4 we can observe that the BIN model achieves the highest binary 

classification performance. However, in the following sections we will get a closer look 

on the overall N class filtered accuracy and transferability, which will unveil that there 

are more aspects in filtered classification than only good filtering. 

5.3 Accuracy 

In this and the following (5.4) sections I used an evaluation pipeline shown in the 

next diagrams to measure robust classification performance (Figure 9) and the 

performance using filtering (Figure 10). 



 23 

 

Figure 9. Block diagram showing the evaluation pipeline for the robust classification task. 

 

Figure 10. Block diagram showing the evaluation pipeline for the filtering and N class classification 

task. 

I calculated the mean accuracy for each method against various attack amplitudes 

as can be seen in Figure 11. The vertical lines indicate the minimal and maximal accuracy 

values for each method (since there were multiple model instances that resulted in 

different accuracy due to cross validation). 

In 3.3 I explored the possibility of filtering to increase accuracy from an analytical 

point of view, here I will show empirical evidence that this really can be achieved. 

 

Figure 11. Mean accuracy for each method with and without using filtering. 

As we can see in Figure 11, the increase in accuracy for 2N and NULL labelling 

with filtering is conspicuous, however for the ADV models this effect was much smaller. 
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The cause for this phenomenon can be Multi-Task learning; while we train the 2N and 

NULL model instances to solve the original N label classification problem and detect 

adversarial noise simultaneously, the ADV models and BIN filter model were trained 

completely separately (having no chance for one task to improve performance for the 

other).  

 

Figure 12. Mean accuracy of defence methods with filtering. 

In Figure 12 we can see that for lower attack amplitudes NULL labelling can 

achieve higher accuracy, however only with the 2N labelling method can we observe that 

the accuracy is not sensitive to the amplitude of the attack. This means that models trained 

with 2N labelling technique can operate on a nearly constant accuracy level regardless 

the presence or amplitude of the attack. In a real-world scenario this would be the desired 

behaviour, if an attacker has feedback on the attacks success rate from the attacked 

system, he could find out which amplitudes work best against the system. If the 

performance of the system is independent from the attack amplitude, it is much harder for 

the attacker to find adversarial perturbance that can mislead our system. 

To further investigate the ability of each method to learn an attack amplitude 

insensitive model, I also calculated the correlation between the amplitude of the attack 

and the corresponding accuracy, and the maximal absolute difference (range) for 

accuracy. 
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Method Correlation Range 

2N 0.748 0.023 

NULL -0.792 0.121 

ADV -0.95 0.231 

Table 5. Correlation: Mean correlation between the attack amplitude and accuracy. Range: 

maximal absolute difference of accuracy over the whole range of attack amplitudes (this is also 

averaged for each model instance). 

From Table 5 we can observe that for NULL and ADV methods the correlation is 

negative, meaning that increasing the amplitude makes a decrease in accuracy. Also, the 

range is much higher for these methods than with 2N labelling.  

By using 2N labelling, the resulted models show a positive correlation between 

the attack amplitude and accuracy. Considering the significantly lower range in accuracy, 

this confirms my theory that my method is not only less sensible against adversarial 

attacks, but the accuracy also tends to increase with the amplitude of the attack (a non-

negative correlation means that the defence is efficient). 

 

Figure 13. Mean accuracy of defence methods without filtering. 

In Figure 13 we can observe that if filtering is not an option, model trained with 

adversarial learning are the most robust in the original N label classification problem. 

Also, 2N labelling slightly outperforms NULL labelling in the original task, without 

filtering. It is surprising, that even if the ADV model is the most robust from all and the 
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BIN filtering model is also almost as good as NULL labelling in the filtering task, the 

combination of these two models does not even get close in terms of performance in the 

complex filtering and classification task (as a possible result of Multi-Task learning). 

Model Accuracy 

2N 0.859 

NULL 0.867 

ADV 0.756 

Table 6. Mean accuracy for each method using filtering if the attacks are sampled from an uniform 

distribution with parameters 0 and 0.5. 

Finally, I compare the overall mean accuracy for each method. From Table 6 we 

can see that the best overall accuracy was achieved by NULL labelling (however the 

difference in accuracy is less than 1% for 2N labelling). 

Overall, we can say that based on the accuracy, from these methods 2N and NULL 

labelling are the best options to choose if we want to retain accuracy in an adversarial 

setting. However, the fact that only 2N labelling was able to learn an attack amplitude 

insensitive model makes it the best choice by far. 

In a scenario where discarding samples is not feasible, using adversarial learning 

can give us the best robust performance. 

5.4 Transferability 

Transferability for all 3 defence methods were calculated and presented in this 

section. Similarly to accuracy, the 2N method is capable of training a model that can 

operate on a nearly constant transferability regardless the attack amplitude as can be seen 

in Figure 14. 

 

Figure 14. Mean transferability for each method with and without using filtering. 
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In Figure 14 we can see a significant improvement in transferability with 2N and 

NULL labelling. Using the BIN model (with ADV as the N class classifier) to filter 

samples also helped to reduce the transferability, however the effect is not that 

conspicuous. 

For 2N labelling the filtered transferability is almost 0 in all cases, for every attack 

amplitude. This means that even when an attack surpasses the filter, our model will be 

misled by the attack with a very low probability. This shows that with 2N labelling we 

can achieve a defence that is almost ideal/optimal. 

Since the ROC-AUC for the attack detection task is not 1 in case of 2N labelling, 

we were not able to perfectly classify each sample as attack or non-attack. The only 

possible thing that can cause the transferability to be nearly constant zero is to discard the 

samples that would be misclassified by the model (but not necessarily all attack samples!).  

By discarding not all attacked inputs, but only the ones which would mislead the 

model, we can achieve at least the same accuracy (see derivation in 8.2), but with fewer 

discarded inputs. This can be useful in a situation where the ratio of the discarded inputs 

is crucial. 

Model Transferability 

2N 0.007 

NULL 0.029 

ADV 0.117 

Table 7. Mean transferability for each method using filtering if the attacks are sampled from an 

uniform distribution with parameters 0 and 0.5. 

In Table 7 we can observe that by far the best transferability was achieved by 2N 

labelling. The differences in transferability are conspicuous, with 2N labelling it is 4x less 

than with NULL labelling, and 16x less than with adversarial learning and using the BIN 

model as filter. 
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6 Conclusion 

I worked out new adversarial defence methods, the 2N method and a variant of 

NULL labelling. In my report I compared them with a third approach, the adversarial 

learning. In this setting the methods were allowed to discard samples considered to 

contain adversarial perturbation, because I theoretically proved that filtering can increase 

the accuracy. To measure the effectiveness of each technique, I calculated accuracy and 

transferability on a malicious validation dataset. 

My results show that Multi-Task learning makes a huge improvement in the 

filtering and classification task, despite the models that were trained separately (without 

Multi-Task learning) performed better in the decomposed filtering or classification only 

tasks. 

Another important aspect of adversarial defence is to learn a model that can 

operate with a constant classification performance regardless the presence or amplitude 

of adversarial attacks. I experienced attack amplitude insensitive phenomenon (with 

measuring accuracy and transferability) for only models trained with 2N labelling. 
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7 Future work possibilities 

The subject of this report has many aspects of evaluation, I was only able to 

overview only some of them in this report. Here are some of my ideas to continue this 

research: 

• It would be worth examining the effectiveness of each method against different 

kinds of attacks, for example in 𝐿0 bounded adversarial attacks.  

• Determining the classification thresholds itself is a very wide topic, here I only 

included one strategy to obtain thresholds.  

• There are many different approaches for adversarial defence, it would be great to 

compare my method with some of them. 

• It would be interesting to see the performance on different model architectures, 

such as ResNet [24], EfficientNet [25], GoogLeNet [26], etc. 

• CIFAR-10 is an easy dataset, a more complex dataset for example the ImageNet 

[27] dataset could be more suitable to evaluate and compare defence methods.  

• Repeat the experiments with different ratio of adversarial samples on the 

validation set to get a wider picture on the goodness of the defence method. 

• It would also be interesting to see how the methods perform when the maximal 

discard ratio constraint is varied (which is the minimal ratio of discarded samples 

where the model becomes attack amplitude insensitive).  
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8 Appendix 

8.1 Derivation 1 

We can investigate the effect of the filtering, i.e. the situation when after the 

filtering the accuracy is larger than before can be written as follows.  

𝑎𝑐𝑐𝑏𝑒𝑓𝑜𝑟𝑒 < 𝑎𝑐𝑐𝑎𝑓𝑡𝑒𝑟 

𝑎𝑐𝑐𝑜𝑟𝑖 ∙ (1 − 𝑝𝑎) + 𝑎𝑐𝑐𝑎𝑡𝑡 ∙ 𝑝𝑎 <
𝑎𝑐𝑐𝑜𝑟𝑖 ∙ (1 − 𝑝𝑎) ∙ 𝑅𝑜𝑟𝑖 + 𝑎𝑐𝑐𝑎𝑡𝑡 ∙ 𝑝𝑎 ∙ (1 − 𝑅𝑎𝑡𝑡)

(1 − 𝑝𝑎) ∙ 𝑅𝑜𝑟𝑖 + 𝑝𝑎 ∙ (1 − 𝑅𝑎𝑡𝑡)
 

The denominator is not negative; thus, we can multiply both sides: 

(𝑎𝑐𝑐𝑜𝑟𝑖 ∙ (1 − 𝑝𝑎) + 𝑎𝑐𝑐𝑎𝑡𝑡 ∙ 𝑝𝑎) ∙ ((1 − 𝑝𝑎) ∙ 𝑅𝑜𝑟𝑖 + 𝑝𝑎 ∙ (1 − 𝑅𝑎𝑡𝑡))

< 𝑎𝑐𝑐𝑜𝑟𝑖 ∙ (1 − 𝑝𝑎) ∙ 𝑅𝑜𝑟𝑖 + 𝑎𝑐𝑐𝑎𝑡𝑡 ∙ 𝑝𝑎 ∙ (1 − 𝑅𝑎𝑡𝑡 

0 < 𝑎𝑐𝑐𝑜𝑟𝑖 ∙ (1 − 𝑝𝑎) ∙ 𝑅𝑜𝑟𝑖 + 𝑎𝑐𝑐𝑎𝑡𝑡 ∙ 𝑝𝑎 ∙ (1 − 𝑅𝑎𝑡𝑡)

− (𝑎𝑐𝑐𝑜𝑟𝑖 ∙ (1 − 𝑝𝑎) + 𝑎𝑐𝑐𝑎𝑡𝑡 ∙ 𝑝𝑎) ∙ ((1 − 𝑝𝑎) ∙ 𝑅𝑜𝑟𝑖 + 𝑝𝑎 ∙ (1 − 𝑅𝑎𝑡𝑡)) 

0 < 𝑎𝑐𝑐𝑜𝑟𝑖 ∙ (1 − 𝑝𝑎) ∙ {𝑅𝑜𝑟𝑖 − (1 − 𝑝𝑎) ∙ 𝑅𝑜𝑟𝑖 − 𝑝𝑎 ∙ (1 − 𝑅𝑎𝑡𝑡) } + 𝑎𝑐𝑐𝑎𝑡𝑡 ∙ 𝑝𝑎

∙ {(1 − 𝑅𝑎𝑡𝑡) − (1 − 𝑝𝑎) ∙ 𝑅𝑜𝑟𝑖 − 𝑝𝑎 ∙ (1 − 𝑅𝑎𝑡𝑡) }  

0 < 𝑎𝑐𝑐𝑜𝑟𝑖 ∙ (1 − 𝑝𝑎) ∙ {𝑝𝑎 ∙ 𝑅𝑜𝑟𝑖 − 𝑝𝑎 ∙ (1 − 𝑅𝑎𝑡𝑡) } + 𝑎𝑐𝑐𝑎𝑡𝑡 ∙ 𝑝𝑎

∙ {(1 − 𝑝𝑎) ∙ (1 − 𝑅𝑎𝑡𝑡) − (1 − 𝑝𝑎) ∙ 𝑅𝑜𝑟𝑖 }  

0 < 𝑎𝑐𝑐𝑜𝑟𝑖 ∙ (1 − 𝑝𝑎) ∙ 𝑝𝑎 ∙ {𝑅𝑜𝑟𝑖 − (1 − 𝑅𝑎𝑡𝑡) } + 𝑎𝑐𝑐𝑎𝑡𝑡 ∙ 𝑝𝑎 ∙ (1 − 𝑝𝑎)

∙ {(1 − 𝑅𝑎𝑡𝑡) − 𝑅𝑜𝑟𝑖 }  

0 < 𝑎𝑐𝑐𝑜𝑟𝑖 ∙ (1 − 𝑝𝑎) ∙ 𝑝𝑎 ∙ {𝑅𝑜𝑟𝑖 − (1 − 𝑅𝑎𝑡𝑡)} − 𝑎𝑐𝑐𝑎𝑡𝑡 ∙ 𝑝𝑎 ∙ (1 − 𝑝𝑎)

∙ {𝑅𝑜𝑟𝑖 − (1 − 𝑅𝑎𝑡𝑡)}  

0 < 𝑝𝑎 ∙ (1 − 𝑝𝑎) ∙ (𝑎𝑐𝑐𝑜𝑟𝑖 − 𝑎𝑐𝑐𝑎𝑡𝑡) ∙ {𝑅𝑜𝑟𝑖 − (1 − 𝑅𝑎𝑡𝑡)}  

8.2 Derivation 2 

Proving that the accuracy increases or does not change for a sample set when a 

new sample is added to the set which is correctly classified. 

The accuracy for a sample set can be written as the ratio of the number of correctly 

classified samples in the set (C) and the number of elements in the sample set (N): 
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𝑎𝑐𝑐0 =
𝐶

𝑁
 

If a new sample is added to this set (for example an attacked image which is 

correctly classified by the classifier model is not discarded in the filtering and 

classification scenario by the filter), which is correctly classified, the accuracy for the 

new set will be: 

𝑎𝑐𝑐1 =
𝐶 + 1

𝑁 + 1
 

If we write the inequality for the case when 𝑎𝑐𝑐1 ≥ 𝑎𝑐𝑐0, we get: 

𝐶 + 1

𝑁 + 1
≥
𝐶

𝑁
 

We multiply both sides with 𝑁 ∗ (𝑁 + 1) (which is positive), we get: 

𝐶 ∗ 𝑁 + 𝑁 ≥ 𝐶 ∗ 𝑁 + 𝐶 

By subtracting 𝐶 ∗ 𝑁 from both sides we arrive to: 

𝑁 ≥ 𝐶 

This means that the 𝑎𝑐𝑐1 ≥ 𝑎𝑐𝑐0 inequality is true, when the number of samples is greater 

or equal to the number of correctly classified samples. This is always true, since the set 

of correct samples is a subset of all the samples, thus 𝐶 cannot be higher than 𝑁. 𝑁 = 𝐶 

equality is true when each sample is classified correctly. 

 


