
 

Budapest University of Technology and Economics 
Faculty of Electrical Engineering and Informatics 

Department of Measurement and Information Systems 

 

 

 

 

 

 

Fulfilling data comprehensibility requirements 

on blockchain platforms using trusted 

execution environments 
 

 

Scientific Students’ Association Report 

 

 

 

 

AUTHOR: 

CSILLING BÁLINT 

 

 

 

 

 

 

 

 

ADVISOR: 

DR. KOCSIS IMRE 

DR. ATTILA KLENIK 

 

BUDAPEST, 2023 



 

Table of contents 

Kivonat .......................................................................................................... 3 

Abstract ......................................................................................................... 4 

1 Introduction ................................................................................................ 5 

1.1 My contributions .................................................................................................. 6 

2 Privacy and confidentiality in blockchains ................................................. 7 

2.1 Blockchains .......................................................................................................... 8 

2.2 Typical solution approaches and related work ...................................................... 9 

2.2.1 Cryptographic solutions ................................................................................. 9 

2.2.2 Architectural approaches ............................................................................. 11 

2.2.3 Trusted execution environments .................................................................. 12 

3 On-chain data under dynamic comprehensibility control ......................... 14 

3.1 Running example ............................................................................................... 14 

3.2 Requirements ..................................................................................................... 15 

3.3 Hyperledger Fabric............................................................................................. 16 

3.4 Intel Software Guard Extensions ........................................................................ 18 

3.5 Fabric Private Chaincode ................................................................................... 20 

3.5.1 Background and motivation ........................................................................ 20 

3.5.2 Modified transaction flow ............................................................................ 21 

3.5.3 Storage in FPC ........................................................................................... 21 

3.5.4 “Barriers” ..................................................................................................... 22 

3.5.5 Critical problems ......................................................................................... 22 

4 A TEE-based blockchain comprehensibility management approach ........ 24 

4.1 Proposed approach ............................................................................................. 24 

4.2 System and threat model ................................................................................... 26 

4.2.1 System model .............................................................................................. 27 

4.2.2 Assumptions ................................................................................................ 27 

4.2.3 Threat model ............................................................................................... 28 

4.3 Cryptographic primitives ................................................................................... 29 

4.3.1 ElGamal encryption .................................................................................... 29 

4.3.2 Threshold ElGamal Encryption ................................................................... 30 

4.3.3 Secured Threshold cryptosystem ................................................................. 31 

4.4 Protocol outline.................................................................................................. 32 

5 Implementation and evaluations ............................................................... 39 

5.1 Implementation .................................................................................................. 39 

5.1.1 Overview ..................................................................................................... 39 

5.1.2 Implementation details ................................................................................ 40 

5.2 Testing ............................................................................................................... 45 

5.2.1 Performance and scalability ......................................................................... 48 

5.3 Use case evaluation ............................................................................................ 50 

5.4 Requirement evaluation ..................................................................................... 51 

6 Conclusions ............................................................................................... 54 

7 Bibliography.............................................................................................. 55 

Appendix ...................................................................................................... 60 

 



Kivonat 

A blokklánc-alapú elosztott főkönyvi rendszerek által biztosított nagyfokú 

integritás mélyen gyökerezik abban a tényben, hogy a blokklánc csomópontjai 

általában mindannyian fenntartják a közös, főkönyvszerű adatbázis egy-egy 

példányát. Ez a szempont azonban közvetlenül ellentmond az alkalmazásszintű 

titkossági és adatvédelmi követelményeknek; ha a csomópontoknak képesnek kell 

lenniük a tranzakciók szemantikai validálására, akkor az olyan naiv kriptográfiai 

megközelítések, mint az egyszerű kliensoldali titkosítás, nagyrészt nem 

működőképesek. Míg erre a dilemmára kriptográfiai megoldások születnek, egy 

másik lehetőség a megbízható végrehajtási környezetek (Trusted Execution 

Environments, TEE), például az Intel SGX integrálása a blokkláncplatformokba. 

A vezető vállalati blokkláncplatformok, például a Hyperledger Fabric és a 

Hyperledger Sawtooth legalább kísérleti TEE-integrációs támogatást kaptak, 

azonban a decentralizált alkalmazások ilyen környezetbe történő tervezésének 

módszertana még kiforratlan. 

Ebben a cikkben egy reprezentatív, szervezeteken átívelő felhasználási esettel 

foglalkozom: a főkönyv "egyetlen igazságforrásként" szolgál az objektumok 

attribútumadataihoz, a tranzakciók komplex validációkat valósítanak meg, és az 

elosztott főkönyv tartalmán attribútumalapú olvasási és írási hozzáférés-

szabályozást kell érvényesíteni. További követelmény, hogy a főkönyv 

felhasználóinak és üzemeltetőinek attribútum-hozzáférési jogai dinamikusan (bár 

viszonylag ritkán) változhatnak. 

Ehhez a felhasználási esethez szisztematikusan modellezem a követelményeket, 

ismertetem egy újszerű Intel SGX-alapú megközelítés Hyperledger Fabric feletti 

tervezését, és bemutatok egy prototípus megvalósítást. Értékelem továbbá a 

megoldásom várható érzékenységét a múltban talált SGX-kihasználásokkal 

szemben, és mérséklési javaslatokat teszek. 



 4 

Abstract 

The high integrity provided by blockchain-based distributed ledger systems is 

deeply rooted in the fact that the blockchain nodes, as a rule, all maintain a copy 

of the shared, ledger-like database. However, this aspect directly contradicts 

application-level confidentiality and privacy requirements; if nodes must be able 

to validate transactions semantically, then naïve cryptographic approaches such 

as simple client-side encryption are primarily unworkable. While cryptographic 

solutions to this dilemma are emerging, another possibility is to integrate Trusted 

Execution Environments (TEEs), such as Intel SGX, in blockchain platforms. 

Leading enterprise blockchain platforms, such as Hyperledger Fabric and 

Hyperledger Sawtooth, have received at least experimental TEE integration 

support; however, the methodology for designing decentralised applications for 

this setting is still immature. 

In this paper, I address a representative cross-organizational use case: the ledger 

serves as a “single source of truth” for object attribute data, transactions are 

subject to complex validations and attribute-based read and write access control 

must be enforced on the distributed ledger contents. As an additional requirement, 

the attribute access rights of the users and operators of the ledger are subject to 

change dynamically (although relatively infrequently). 

For this use case, I systematically model the requirements, describe the design of 

a novel Intel SGX-based approach over Hyperledger Fabric and present a 

prototype implementation. I also assess the expected susceptibility of my solution 

against the kinds of SGX exploits found in the past and propose mitigations. 

 

 



 5 

1 Introduction 

The need for cross-organisational data-sharing schemes is increasing in the real 

world, which is getting more connected from a computer science point of view. 

More and more businesses and other organisations require a way to share 

information, even for daily operations. A promising technology that could 

potentially fulfil this need is blockchain technology. Distributed ledger 

technologies, but more specifically in this context, permissioned private networks 

offer many features that enable a way for organisations to collaborate. These 

features include transparency, robustness, and privacy, among other things. The 

contradiction of confidentiality and blockchains, however, is still an unresolved 

challenge, which is problematic for most use cases of enterprise blockchain 

solutions. The problem is rooted in the fact that for a blockchain to reach a 

consensus, most nodes need to validate transactions that happen on the ledger. 

The validator node needs to have access to the data to validate a transaction, but 

this can violate confidentiality requirements. One emerging technology that could 

be useful to resolve this contradiction is the use of trusted execution environments 

[1] in nodes. HyperLedger Fabric [2], the de facto standard of enterprise 

blockchains, provides an experimental extension of the framework to utilise TEEs, 

but the methodology for designing decentralised applications for this setting is 

still immature. 

This paper will be organised in the following way: First, I describe the main 

challenges and details of privacy and confidentiality in the context of blockchains, 

then give an outlook of how the problems are attempted to be solved by 

researchers, and I also provide my brief analysis on these solution approaches. 

Then, I will lay out the foundation for on-chain data comprehensibility and give 

a running example that will be used the aid the understanding of requirements. 

After which, I share my constructed requirement system for a potential system. 

Then, I explain important caveats of the technologies we can leverage. Then, 

share my proposed approach to designing such a system, explain the threat and 

system model of said approach, and give a brief introduction about the used 

cryptographical primitives. Lastly, I share my prototype implementation of the 

designed protocol and evaluate the results according to the requirements and the 

running example. 

  



 6 

 

1.1 My contributions 

In this paper, 

1. I construct a requirement system for a specific type of cross-organizational 

blockchain cooperation model, which supports dynamic data 

comprehensibility rules, which is not a solved problem yet. 

2. I also assess typical solution approaches in the literature about similar 

problems, and based on this review, I suggest the use of trusted execution 

environments to solve the challenges. 

3. I also propose an approach based on the Hyperledger Fabric Private 

Chaincode framework [3] to fulfil the complex challenges that come with 

dynamic data comprehensibility without the use of application lever 

barriers. The approach also provides many unique features, such as 

auditable reads, complex data validation, and forced access. 

4. I also implemented a prototype of the proposed solutions and evaluated 

the results with the requirement system, as well as with my running 

example. 



 7 

2 Privacy and confidentiality in blockchains 

Distributed Ledger Technology and specifically blockchains, target a very 

high level of data integrity so that the data maintained by a set of nodes, also 

called peers can be maintained without a third party as an authoritative source. 

Data is fully or partially replicated between the nodes (in most blockchain systems 

in practice this means full replication). Other extra functional aspects such as 

reliability, availability maintainability, confidentiality and privacy are usually 

secondary design targets, and their level is, in many cases, quite situational. 

Confidentiality and privacy, as a rule are contradictory requirements with 

high integrity under the design philosophy of blockchain-based distributed 

ledgers. Simply put, if many nodes maintain a copy of the ledger, then that 

enables maintaining integrity even under Byzantine fault and attack models, but 

at the same time, the number of quote “eyes” seeing the contents of the Ledger is 

also highly increased. This core challenge is present across the board, from large, 

unpermissioned public access networks accounting for cryptocurrencies to 

bespoke, permissioned consensus and closed access networks created for cross-

organizational cooperations. 

There are many existing approaches for assuring either privacy or 

confidentiality in various blockchain and distributed Ledger settings, some of 

these are cryptographic, others are system architectural and yet another family 

of approaches utilize dedicated hardware support for confidential computing. In 

this work the target setting is permissioned blockchains with permission access 

for clients. There is a consortium of organizations that operates the blockchain 

network and the data stored by the network should be readable or at the very 

least comprehensible only by subsets of organizations and their systems and 

employees determined on a attribute per attribute basis. The additional challenge 

that we also tackle here is that the data comprehensibility rules at the level of 

organizations change on the time horizon off several months, that is not very 

frequently, but frequently enough for system level overhauls of a blockchain based 

solution not to be a practically viable option. This model intentionally reflects a 

quite usual setting in the public sector and specifically for various governmental 

bodies and agencies. There are various kinds of sensitive, private, personal and 

business data to which only subsets of the organizations can have access to, as 

they determined by pertinent regulations, and the set of organizations having the 

right to access and potentially handle a specific kind of personal or business data 

does change with changes to the legal environment, and the updates of the 

respective regulations. At the same time, there would be very high value in 

maintaining a single source of truth database of personal and business-related 

data; however, it has to be guaranteed that organisations of the public sector have 

access to the data stored only as long as laws and regulations allow them to do 

so. It is also a basic requirement that access to sensitive information should be 



 8 

logged for audit purposes and preferably so that no single organisation is able to 

hide attempts. 

Most applications of blockchain platforms require some level of privacy and 

confidentiality built into them, but this is often directly in opposition to what 

distributed ledgers are trying to achieve. Even a simple scenario can become 

problematic, where three organisations are trying to work together, wherein only 

two of the participants are allowed to read a certain document on the ledger state, 

and the third participant must agree to a world state, which it cannot read, thus 

cannot verify. Problems also arise from the fact that the ownership of a certain 

document should be able to dynamically change in most cases, which further 

complicates the cryptography of said documents and opens a door for side-channel 

attacks, where the participant just feeds outdated data to its local node to gain 

access to data it should no longer have access to. 

2.1 Blockchains 

Understanding blockchains, is key to fully understand this paper. For this reason, 

I provide a short explanation of the technology. Blockchain is a distributed ledger 

technology which is essentially a database that is managed by a network of 

computers rather than a single entity. The database is decentralised, meaning 

that it is not controlled by any central authority or server. Instead, each computer 

in the network, usually called a node, maintains a copy of the database/ledger, 

and all copies are kept in sync, usually with the help of a consensus mechanism. 

The core concept behind blockchains is blocks that serve as containers for batches 

of valid transactions, which undergo the processes of hashing and encoding into a 

Merkle tree. Within each block, one can identify a set of essential components, 

including a reference to the preceding block via its hash, a timestamp, a Merkle 

Root summarising the transaction data, and an array of individual transactions. 

This iterative sequence of block creation serves the pivotal function of affirming 

the integrity of the preceding block and, ultimately, traces its lineage back to the 

initial genesis block. Following their incorporation into the blockchain, data 

housed within these blocks remain shielded from tampering and retain their 

auditability for the duration of the blockchain's existence. In the event of any 

modifications to a previously created block, the hash value will change, enabling 

a straightforward identification and rejection of altered blocks. 

This concept was first detailed in the famous Bitcoin whitepaper [4] by an 

unknown person or group, Satoshi Nakamoto, and it is still the foundation for 

most blockchain platforms. The decentralisation of control among participants, 

the transparency of ledger data as well as the tamper-proof nature of blockchains 

enables them to be an essential building block for complex architectural systems 

from cryptocurrencies to large-scale enterprise solution, which I am targeting in 

this paper. 



 9 

Although the categorization of blockchains take many forms, the most common 

visualization targets two specific aspect of platforms namely publicity and 

permissioning.  

 Public Private 

Permissionless 

Everybody can read and 

interact with the 

ledger*. 

Example: Bitcoin 

Everyone can interact 

with the chain, but only 

predefined entities can 

read the ledger state. 

Example: Monet 

Permissioned 

Data is publicly 

readable, but only 

predefined set of entities 

can interact with it. 

Example: Ripple 

Only predefined entities 

can read and interact 

with the ledger state. 

Example: Hyperledger 

Fabric 

1. Table Blockchain quadrant 

 

2.2 Typical solution approaches and related work 

Building a scalable, performant, robust and complex business process with high 

levels of dynamic privacy and confidentiality consideration is a difficult balancing 

act that has not been solved yet in its entirety, but let’s see how parts of the 

challenges are currently being solved. 

2.2.1 Cryptographic solutions 

The idea of having complex access control over shared data has been on 

the mind of many cryptographic researchers, and their breakthroughs enable us 

to build complex systems with purely cryptography. The most common approach 

is to use Attribute based encryption [5], [5]–[12] or some improvement thereof, to 

manage complex data accessibility requirements. 

Typical challenges of cryptographic solutions are the handling of change in read 

access, for instance a revocation, and how that affects the system. In attempt to 

handle revocation, papers like [8] use forward secrecy, which means that the user 

will not be able to see subsequent states of the data, because it will be re-encrypted 

with differently to the previous state. This is problematic for two main reasons, 

one of them is having the need to re-encrypt all data upon any changes in access 

control, which even with an efficient algorithm, is an unnecessary price the 

maintainers and the environment has to pay [13]. Second problem is having access 

to all previous states of the data, this at first might seem like an unavoidable 

problem, but upon closer inspection, we can realise that having the possibility to 

access data and reading it is different. This means that in a system where users 



 10 

are allowed to see encrypted data might privately keep a copy of this data to then 

later decrypt, even when it should no longer have access to it. 

To combat the need for re-encryption and to achieve faster revocations, 

approaches [14], [15] used a proxy, that cannot decrypt the data itself, but it is 

used in the decryption process and enforces revocation constraints. Even though 

this addresses some of the problems, data is still stored in centralized way, and 

to access data, we must rely on a third party. Denial of service attacks, as well as 

having single points of failure is not ideal, and unfortunately most approaches use 

a cloud to store the data. 

What has not been discussed yet, is modifying, or using the data without 

decrypting it first. In a distributed data storage where multiple parties keep a 

record of the shared state for the sake of robustness and to make tampering more 

difficult, it is a challenging task to compute with the data without first decrypting 

it. In a use case where a party wants to do a modification on a shared data, 

without giving the ability for parties to gain information about this sensitive data 

was a difficult challenge, but recent innovations in Fully Homomorphic 

Encryptions [16] enable us to maintain confidentiality and data integrity on date 

in use. According to a recent systematic review of FHE [16], the most common 

application for the concept is cloud computing, but they also noted that most 

papers that are being developed aim to “enhance efficiency and to reduce noise”, 

that is because currently the technology is not highly efficient nor can it handle 

complex operations yet. 

Zero-Knowledge Proofs [17] are also a promising new cryptographical solution 

that is being used to aid decentralized and transparent data systems with 

efficiency and privacy. To understand how ZKPs can help a system, consider a 

private data that a person owns, and dependent on this data, another party allows 

or denies an action. With the use of ZKPs, the person can prove to the other 

party that he is eligible for that action based on the state of its private data, 

without providing any information about the actual data. Recent approaches used 

client side ZKP generation and a blockchain to store and manage data. [18], [19] 

The problem with ZKPs is partially the computation inefficiency, as it is 

computationally expensive to calculate the proofs. [20] The other notable problem 

is the fact that if a computations depends on several sensitive data, that we do 

not have access to, ZKPs don’t offer general way to handle this. (I imagined a 

scenario where a participant wants to calculate the average height of the people, 

and requests this secret from everyone, there is no way to share even a simple 

data like this with a party while maintaining confidentiality. This problem can be 

solved however with the combination of FHE, ZKP and a trusted third party, but 

we still cannot be sure that the submitted heights are not tampered with.) 

In summary, cryptographic solutions provide useful approaches to data dynamic 

confidentiality, data integrity, verifiable computation, but often at a cost of 

intense computations, trusted proxies, single points of failure and they often lack 

capabilities for real-life use cases which need very complex data validation. 



 11 

 

2.2.2 Architectural approaches 

In recent years, the most common approach for solving privacy and confidentiality 

problems in a practical way usually consisted of using trusted third party [14], 

[15]. As mentioned earlier, pure cryptographic solutions usually lack practicality 

due to requiring large amounts of computation, as well as lots of communication 

between the parties. 

Depending on the blockchain architecture used, there can be ways to segment the 

storage and access of data at the architectural level. 

One important example is Hyperledger Fabric [2], which follows a much more 

sophisticated architectural model then the blockchain platforms primarily geared 

at the public space, notably Etherium. In a Hyperledger Fabric network, a set of 

organizations form a consortium by participating in securing the whole network. 

However, that network is actually comprised of multiple blockchain-based ledgers. 

These are called channels. While under the proper circumstances smart contracts-

in Hyperledger Fabric can issue read requests from a channel to another, channels 

essentially partition the data stored and maintained by the network to various 

subsets of the organizations. This essentially architectural method facilitates the 

control of data visibility without resorting to cryptographic methods. 

Additionally, Hyperledger Fabric also offers so-called private data facilities; a 

subset of the data stored on a (channel) ledger can be declared to be visible only 

by a subset of the parties maintaining that channel. Private data is persisted on 

ledger, only its hashes, and the channel peers who do have to see it exchange it 

through a dedicated peer-to-peer mechanism. In contrast to ledger-persisted data, 

private data can be also declared to have a time to live property; if that time 

elapses, the peers storing it delete the data. 

The requirements tackled in this paper can be fulfilled in many practical scenarios 

using a combination of data storage partitioning with channels and private data 

objects. However, from an operational management point of view, reflecting 

changes in data access permissions at the organizational level through 

rearchitecting or reconfiguring a channel setup is problematic from the effort and 

service outage point of view. Additionally, the non-ledger stored nature of private 

data objects can be, and is many times a serious drawback. Lastly, the basic 

Fabric model is not amenable to creating solutions where the strong auditing of 

data access is to be enforced. 

R3 Corda would be another important example. Corda is a DLT, but not a 

blockchain; there is a sophisticated approach for globally ordering transaction 

requests in a Corda network, but data is only stored by the network nodes that 

are actually pertinent to performing various transactions. For instance, when a 

network node creates an asset and hands it over to another one, the related data 

will be exchanged between these two nodes using the common network level 



 12 

transaction ordering services. For the use cases targeted in this work this model 

is suboptimal, as it is ill-equipped to support distributed ledger usage as a common 

root of trust for a community of organizations. Additionally, Corda, at least for 

production deployments, is only partially open-source software (specifically, 

components enabling high performance are not free and open). 

2.2.3 Trusted execution environments 

An emerging way to ensure privacy and confidentiality on data in use is with 

trusted execution environment. This approach is fairly new, the technology first 

become truly recognized when Intel released its Intel SGX processors in 2015 [21]. 

TEEs promise to provide complete confidentiality, privacy, and integrity of data 

that is being used by the TEE. Having a completely trusted part of a computer 

can be utilised in diverse ways from cloud computing, to digital rights 

management (DRM). 

TEEs use hardware-based isolation of components to differentiate the trusted and 

untrusted part of the system. This means that sensitive data can be stored and 

handled differently. The key components that enable rooting the trust in the 

hardware are called the Trusted Computing Base [22]. The TCB includes all of 

the hardware and software components that are required to establish a secure 

environment, for instance a secure processing unit, secure memory, the TEEs 

runtime or its cryptographic implementations. We can use these trusted 

components to create enclaves, which are generally a more specific uses of TCBs, 

to establish an environment to run software with high levels of confidentiality and 

privacy requirements. 

The three main player in the TEE space is Intel with its Software Guard 

Extensions [21], ARM with the TrustZone [23] and finally AMD with its Secure 

Encrypted Virtualization [24]. The most widely used of the three is Intel SGX, 

which offers a way to fix vulnerabilities, after the processor has been bought with 

using remote attestation, among other things. ( Discussion about Intel SGX is 

further extended later in the paper.) 

Use of the technology is not wide-spread, but it is gaining traction [Appendix]. 

First use cases included digital content management, largest example being 

PowerDVD [25], which is a software that enables Intel SGX enabled computers 

to play Blu-ray content, using TEE to manage the disk decryption keys. 

Although this is argumentative, it is often the case, that during the design process 

of an application, security is unfortunately only an afterthought, even in large 

scale enterprise solutions [26]. This is rarely the case at blockchain related 

solutions, as robustness, integrity, security and transparency is often the main 

reasons architectures consider using blockchains [27]. There is however and 

underlying issue between traditional blockchains and confidentiality. If we want 

to achieve transparency confidentiality and validity, we hit a hypothetical 

roadblock, which is that it is a challenging thing to verify and validate a data on 



 13 

all of the nodes of a network (or at least enough nodes to reach consensus) and 

at the same time keep the confidentiality of said data. It is easy to see that TEE 

enclaves are more than useful to clear this roadblock, because they enable us to 

verify data on mostly untrusted nodes. 

The most well-known technology is the Hyperledger Fabric Private Chaincode 

[28], which is an extension of the Hyperledger Fabric [3] blockchain framework. It 

uses Intel SGX as a trusted execution environment and enables smart contracts 

to be run in an enclave, which can access the ledger state opening the door for a 

large variety of use cases. ( HF and FPC are both discussed in more detail later 

in the paper. [Section 3]) 

In the Rust and Substrate ecosystem, there has been a few attempts to create 

something similar to the FPC, but they did not gain significant attention [29]–

[32] as of writing this paper. SubstraTEE [33] is a notable development that 

enables the use of Intel SGX in the Polkadot [34] ecosystem. 

A very recent paper proposed a system where we can leverage TEE and 

blockchains for a privacy reserving divisible auction. [8] This paper also uses 

Hyperledger Fabric to experimentally test their approach, but they did not use 

Fabric Private Chaincode, nor evaluated and mitigate the effects of an untrusted 

ledger, an a compromised TEE. 

Unfortunately, to this day, people have found vulnerabilities in every mainstream 

TEE implementation. A great review of Intel SGX and its vulnerabilities was 

released in 2022 with the title: “SoK: SGX. Fail: How stuff get eXposed” [35], 

which systematically reviews applications that used SGX and got their integrity 

compromised with vulnerabilities, as well list the most common vulnerabilities 

and what mitigation strategies we can do to regain confidentiality. One of the 

victims of a vulnerability was the Secret blockchain [36], which promises privacy-

preserving smart contract execution, but through the use of a vulnerability called 

xAPIC and MIMO [37], [38].  

To conclude this section, it is important to highlight that TEEs enable the 

possibility of many use cases, especially regarding confidentiality and 

computation, and blockchain system can benefit from these massively. 

Unfortunately, TEE technologies are not without problems, there are 

vulnerabilities found (and fixed) day to day, which can impact the usability of 

these systems, but this paper uses this technology as a black box to explore what 

is possible to create. A few vulnerabilities and mitigation strategies can be found 

in the Appendix. 

 

 



 14 

3 On-chain data under dynamic 

comprehensibility control 

In this section, I will introduce a realistic scenario where organisations need to 

collaborate and manage data in an organised way. This example will be used to 

explain the requirements of a system I are trying to construct. 

3.1 Running example 

I introduce a simple, hypothetical running example which is nevertheless 

representative for my purposes. Let’s imagine a scenario where at least four 

organizations must work together. Firstly, a state-governed entity responsible for 

administering born people, giving them an ID number, SNN number, etc. 

Secondly, a medical institution that is allowed to conduct medical examinations 

and register these results to the private, shared ledger. Thirdly, a life insurance 

company that can issue a life insurance for people. Lastly, one more state-

governed entity, that can issue work permits to certain people. 

In this hypothetical scenario, the medical institution can only conduct 

examinations, if it can verify the person's identity, requiring the input of the state 

governed entity, which should not share any information about the person with 

the medical institution, apart from the necessary information that the person is 

valid. Validity in this scenario means that the provided SSN and ID number are 

matching a real person in the shared private database. The life insurance entity 

requires applicants to have a recent medical examination, that checks whether 

the person has a healthy vascular system, where normal blood pressure numbers 

could be a great proxy for assessment, if the person is not healthy, the life 

insurance company should not be able to issue insurances. Similarly, the work 

permit related institution also requires people to have life insurance, to issue a 

work permit. Important aspect to highlight is the fact that the organizations are 

handling sensitive data, so upon a validation, no unnecessary data should be 

gained by the using party. (In the case of the work permit organization, the only 

information they should gain is the fact that the person has a life insurance.  

These organizations all create document like data regularly, and these data are 

usually highly sensitive. Yet, these entities must share some of these documents, 

or parts of the documents with each other to function properly. This also means 

that they must have complete trust in the other party, that it will not corrupt or 

modify the data because of financial or other incentives. We also have to assume, 

that upon a change in the accessibility of a data, or just a hierarchical change in 

an organization, pervious accessors and handlers of the data, that could access 

information suddenly “forget” and not retain access or copies of previous 

information. 



 15 

 

1. Figure Simple data model of the use case 

According to dynamically changing permission scheme, organizations should have 

the ability to read out a certain information from the ledger in its entirety. This 

should be only allowed, if the preconfigured number of participants agree on the 

legitimacy of the read request. 

To aid legal and compliance matters, it is also required by the organizations, that 

any access to sensitive information must be auditable, and trackable, without the 

possibility of forgery, or unlawful access.  

 

3.2 Requirements 

My system design targets the following functional, integrity, confidentiality 

maintainability and audibility requirements: 

F1. The system should follow the distributed ledger pattern in the context of a 

consortium of organizations; that is, incoming transactions should be validated, 

ordered and executed through an appropriate consensus mechanism, ran by 

members of the consortium. 



 16 

F2. The system should handle personal data, where persons have a set of 

attributes, documents of which they are the unambiguous subject of, and there 

can be relationships between the documents pertaining to a person. 

F3. The system should support domain-specific validation logic for person, 

attribute and document creations, updates and deletes. 

F4. The system should also host a dynamically updateable authoritative data 

access and handling control list, which defines that which organization, as a 

member of the consortium, is allowed to create, read update or delete which 

attribute and document(s) of any given person. 

I1 – DLT integrity: The tolerance of the system against organizations with 

Byzantine fault/attack behavior should be maximized in the context of 

maintaining distributed ledger integrity. 

C1 – read protection: Without the collusion of multiple organizations, it should 

not be possible for an actor at an organization to query data on-ledger to which 

it currently has no access right. 

C2 – operation attempt based information leakage: a malicious actor at 

an organization should not be able to infer any information about the data it does 

not have currently access right to through attempting (ultimately unsuccessful) 

operations on the data. 

C3 – observation-based information leakage: a malicious actor at a 

participating organization should not be able to infer any information about the 

data it does not have currently access right to through observing the changes 

performed on such parts of the ledger which are replicated at it. 

M1 – minimally disruptive changes to control list: changing the data 

access permissions should lead to minimal disruptions in operations – ideally, it 

should not require any maintenance downtime. 

AU1 – In the absence of collusion between multiple organizations, every 

successful read access by any member of a participating organizations should be 

logged irrepudiably. 

3.3 Hyperledger Fabric 

To understand my approach, there are certain technologies and concepts that 

need to be understood. I analysed and assessed the usability and security aspects 

of technologies, to understand problems are already solved, and how we can utilize 

and combine concepts to fulfil the complex set of requirements.  

Hyperledger Fabric [2] is an enterprise blockchain platform framework from 

the Linux Foundation. It’s modular architecture and open-source code base 

enables developers to quickly build secure, performant, and customized 

blockchains for a wide range of use cases. 



 17 

Fabric is mainly used to build permissioned networks, meaning that the 

participants of the system are known, and trusted, anonymous participants are 

not allowed to participate or interact with the blockchain in a meaningful way. 

Hyperledger Fabric is also built on distributed ledger technology, which means 

that participants of the network keep a “copy” of the state of the ledger, and any 

modifications or manipulation of data must reach a consensus among the members 

to be considered permanent. This makes the forgery and the unwanted 

manipulation of data extremely difficult. Participants of the network can create 

complex privacy controls, so confidential data can only be seen or manipulated 

by agreed-upon parties. 

Complex business processes can be implemented using smart contracts, which can 

automatically execute program codes and create transactions on the distributed 

ledger state. The transactions are trackable and nearly impossible to 

retrospectively manipulate the history of thereof. 

I now give an outline to how a Hyperledger Fabric blockchain typically operates. 

(Fabric is highly customisable, this process could be different) The following 

section will be based on [2], [39] pg.291. 

There are organizations that established a Hyperledger Fabric network, by 

settling on configuration parameters, as well as physically creating the network. 

A Fabric client, which is not a computing resource of the network creates a 

transaction proposal to reflect a change in the world or achieve some goal. After 

creating the proposal, it has to send it to peers. Peers are nodes that execute, 

validate and commit transactions. After a peer received the proposal, it can 

execute the transaction on condition that it has the required Chaincode locally 

on the peer. The execution happens based on the current state of the local 

blockchain, and it generates a read-write set as an output. Any changes that 

might have happened as a result of the transactions are not yet persisted on the 

local blockchain, the results are now only signed and sent back to the initial client. 

The client receives this data, called an endorsement, and depending on the 

endorsement policy, it has to receive this from multiple peers, multiple 

organisations. Once it has enough endorsement that fulfilles the policy, it creates 

an endorsed transaction and sends it to the ordering service. The ordering service 

is also consisting of computing nodes (or just a single one), that essentially 

determine the order of the blocks by collecting transactions into a single block, 

than broadcasting this block to other nodes. After receiving a block, peers validate 

the transaction by conducting policy, syntax and read-write set validation. If it 

has passed all types of validation, its result can be committed to the world state, 

and the initial client can be notified of the change in the world state. 

 



 18 

 

2. Figure H igh level transaction flow Source: [2] Fg.4 

 

 

3.4 Intel Software Guard Extensions 

Intel’s Software Guard Extensions [21] is a trusted execution environment 

technology first introduced in 2015. It adds a hardware-enforced layer of security 

to the regular computing platform by extending Intel’s CPU architecture. It aims 

to provide integrity and confidentiality in computation, even when the rest of the 

architecture is compromised.  

Based on a hardware-rooted trust, the architecture ensures that only trusted code 

can run in the enclave, and only trusted code can access certain parts of the 

memory. Communication with this isolated trusted component can be conducted 

thorough and interface, but the enclave has no direct access to I/O. Although the 

memory of the physical enclave is limited, it can use a process called sealing to 

store confidential data outside the enclave by encrypting the data with its sealing 

key.[40] 



 19 

 

3. Figure Code execution with SGX Source: [1] 

 

 

Another important feature of SGX is its ability to provide remote attestation, 

which allows a third party to verify the integrity of an SGX enclave without 

having access to its contents. With its remote attestation protocol [41] an enclave 

can prove its identity, that it is running a genuine platform with Intel SGX 

enabled, that is has not been tampered with, that it is running at the latest 

security level. This feature is particularly useful in scenarios where multiple 

parties need to verify the integrity of an SGX enclave, such as in a distributed 

system where each node needs to verify the identity of its peers.  

 

4. Figure Remote Attestation at a glance Source: [41] 

At the beginning, Intel provided SGX capabilities to its consumer CPUs for a few 

generations, but in 2021, it phased out the inclusion of enclaves in these consumer 

products such as the 12th Generation Intel Core processors [42]. Luckily as of 

2023, Intel SGX is still being provided, and developed in enterprise hardware such 

as the Intel Xeon series. This is crucial for the usability of the technology, since 

vulnerabilities are often found by researchers and attackers, and fixing these issues 



 20 

usually requires either providing guidelines for users, software or even hardware 

fixes. 

In recent times, Cloud providers such as Microsoft Azure or Alibaba Cloud have 

started to provide Intel SGX enabled hardware to be used by costumers, further 

improving the adaptability and usability of the technology. 

 

3.5 Fabric Private Chaincode 

3.5.1 Background and motivation 

Even in private blockchains, the state of the ledger is by nature public to 

its predefined user entities. This is essential for the blockchain to work because 

nodes that validate transaction data from other nodes must have access to the 

date they are validating. This is not the say that all blockchains are uncapable of 

storing application layer encrypted data, but when multiple participants of a 

blockchain must work together based on a predefined set of agreed upon rules, 

data generally cannot be kept private. To illustrate this differently, let’s imagine 

a simple auction, where participants make bids for a certain item, but we want 

to keep the identity of the bidder, as well as the actual bid private. Normally, it 

is not possible for all participants of the blockchain to come to the same conclusion 

of who the winner is, since they have no way of assessing other participants’ bids. 

This is the reason why blockchain and this type of private data is a difficult 

challenge. Lot of non-decentralized solutions would call for an external trusted 

party, which would then collect the bids then announce the winner, but this 

introduces a lot of problems. Apart from being a single point of failure, 

participants of the network would need to not only trust this party with their 

private data, but also assume that no other party will collide with the mediator. 

Another aspect worth mentioning is that this approach would also require 

participants to share the evaluation algorithm with this third party, which could 

also be problematic. 

To solve this complex problem, trusted computing was introduced into the 

Hyperledger Fabric blockchain platform [3], [43]. The motivation behind this 

development and research is three fold, according to the Fabric RFC [44]. I only 

focus on the main reason for now, which was to enable new use cases for 

Hyperledger Fabric with strong privacy requirements. They described the problem 

perfectly in the RFC [44]. 

“FPC is primarily motivated by the many use cases in which it is desirable to 

embody an application in a Blockchain architecture, but where in addition to the 

existing integrity assurances, the application also requires privacy. This may 

include privacy-preserving analytics on sensitive data such as regulated medical 

or genomic data, supply chain operations requiring contract secrecy, private 

voting or sealed bid auctions. With Fabric's current privacy mechanisms, these 



 21 

use cases are not possible as they still require the endorsement nodes to be fully 

trusted. For example, the concept of channels and Private Data allows to restrict 

chaincode data sharing only within a group of authorized participants, still when 

the chaincode processes the data it is exposed to the endorsing peer in clear. In 

the example of a voting system, where a government may run an endorsing peer 

it is clear that this is not ideal.” 

3.5.2 Modified transaction flow 

In FPC if a client wants to create a transaction proposal, it can encrypt the 

arguments of the invocation with the public encryption key of the enclave, more 

specifically the Chaincode’s enclave, and send this to a peer. To access this public 

key, the client must request this from the peer, and with the result, query the 

attestation result of corresponding enclave. This is critical to ensure that the 

enclave is running a legitimate Intel SGX hardware, as well as to make sure that 

it is running the intended Chaincode, that it wanted to invoke. The peer will 

transfer these arguments to the enclave, process it and return the result to the 

client. Even if the peer is malicious, it cannot gain access to the contents of the 

arguments or the execution of the Chaincode.  

 

5. Figure FPC Transaction Flow Source:[44] 

 

3.5.3 Storage in FPC 

Without diving deep into the storage model of Hyperledger Fabric, I will describe 

how an application would use it. Fabric’s world state is essentially stored in a 

key-value storage on peers. This key value storage is generally public to the 

participants of the network, not just the keys, but also the values can be seen by 

any participant. Off course it is common to use application layer encryption to 



 22 

make date private, but it is not mandatory. While reading of data can be done 

without necessary invoking transactions, any modification to data has to go 

through the transaction flow detailed earlier. This architecture alone does not 

support advanced privacy and confidentiality use cases. The FPC was built on 

this as an extension. Compared to a regular Chaincode, where we can manipulate 

and read the world state with getState(key) and putState(key,value) as well as 

with getStateByPartialCompositeKey(partialKey) developers can use the same 

commands, but they work differently. 

In FPC chaincodes, we can also access and modify the public key value storage, 

but by default, these functions will use the state encryption of the enclave, 

meaning all the stored data will be only comprehensible for the enclaves. 

Chaincode developers must make sure that they do not write faulty chaincodes, 

that leak confidential data in the results, because that is not encrypted for the 

client. Problems with the FPC storage will be detailed in [Section 4.4.5]. 

3.5.4 “Barriers” 

From the previous sections, one might jump to the conclusion, that essentially 

every building block is given to create a complex enterprise solution, that handles 

private and confidential data with dynamic comprehensibility and complex 

validation logic. This is unfortunately not the case. The original FPC [3] paper 

titled “Blockchain and Trusted Computing: Problems, Pitfalls, and a Solution for 

Hyperledger Fabric” shows us the problems with blockchain applications and 

confidential computing.  

As mentioned earlier, Hyperledger Fabric uses a execute-order-validate paradigm, 

which means that an attacker might gain sensitive information about the world 

state by executing a lot of transactions. The paper uses the example of a private 

auction. In this instance a malicious participant could potentially close the auction 

locally to reveal the highest current bid, then to submit a slightly higher bid. This 

would technically possible since the transaction could be built on top of valid 

blocks. To combat this, they proposed the idea to adapt applications to include 

barriers. Barrier in the auction example would be to require open and close 

transaction during the auction, and logically bids could only be submitted during 

the open phase, and the result cannot be seen until the auction is closed. This 

application-level mitigation combined with the FPC-s solution eliminates very 

critical attack vectors. The solution is to only allow transaction to happen upon 

committed block chain state. This restricts the attacker from placing the barrier 

itself, but this method still does not address many issues with data confidentiality 

and privacy. 

 

3.5.5 Critical problems 

In the paper [3] they formalize the information leakage with a simple model [pg.6]. 



 23 

„…we model a blockchain as stateful functionality F : S × T → S. At any time 

the state of the chaincode is an element of S. The clients invoke transactions in 

T, which may contain operations with arguments according to F , but these are 

subsumed into the different t ∈ T. Given s ∈ S, applying a transaction t ∈ T of 

F means to compute s ′ ← F (s, t), resulting in a subsequent state s ′ ∈ S….” 

The goal was to achieve “security against up to resets” which means that a 

malicious peer might only obtain sk+1* = F(sk, t*) for any k ∈ {0,1…,m}. 

Informally, this means that with the use of roll-back attacks, they might get access 

to every state that could happen in one transaction. They acknowledge, that this 

is a problem, because what this essentially means, is that we can not build 

applications with it that release sensitive data based on the ledger state. In my 

example use case, this could mean that an organization might be able to read 

sensitive information that is should not have access to, or it just might get 

information it should no longer have access to. Important to mention here that 

my protocol also requires auditability for every data access, which would also be 

violated. 

There has been plans (GitHub Issue: [45]) to extend FPC with the Roll-Back 

protection and thus Trusted Ledger, but this is not yet implemented.  

Another problematic aspect of the current FPC implementation, is that it does 

not support multiple private keys to be used by a chaincode. This combined with 

not having the capability to use composite keys, the possible data structures 

become impractical and even inefficient. To illustrate this, consider looking at the 

use case data structure and then the prototype implementation [Figure 1, 17], 

where instead of using a constant time look up for unique keys, we must create a 

large structure to store every private data used by the smart contract, then parse 

this on every read. Which could have been a very efficient key-value lookup turned 

into parsing every data, a key-value lookup, modification, marshalling the entire 

data and storing it. ( This also comes with a few beneficial side-effects, explained 

in [Appendix]) According to the developers, this only a limitation of the so called 

FPC Lite, so we will hopefully see an extension of this in the future. 

Continuing with other FPC Lite limitations, it is not possible to invoke another 

chaincode from an enclave. This is not necessarily a use-case breaking problem, 

but we should consider that implementing complex applications into one 

chaincode can become unmaintainable. The full list of FPC Lite limitations can 

be read studied in the shim interface code [46].  

Lastly, I wanted to note that the only TEE platform that the Hyperledger Fabric 

Private Chaincode supports at the moment is the Intel SGX platform.  

 



 24 

4 A TEE-based blockchain comprehensibility 

management approach 

Now that I assessed the state of the art technologies, methodologies and its 

potential problems in the context of our goals, I propose an approach to fulfil the 

above-mentioned complex requirements. 

4.1 Proposed approach 

 

6. Figure H igh level view of the approach 

We can utilise confidential computing with the Hyperledger Fabric Private 

Chaincode implementation to have a permissioned blockchain architecture with 

trusted execution environments. The actual protocol will manifest in the 

implementation of a chaincode (smart contract) running in the enclaves (Trusted 

execution environments of the FPC), as well as an external program to run 

cryptographical algorithms outside the blockchain ecosystem. The protocol relies 

on threshold cryptography to enable high levels of security and mitigate the risk 

of a single point of failure. Assuming that the used TEE is safe to use, and that 

the used cryptographic algorithms are hard [47] to solve the approach can fulfil 

every stated requirement. 

Organisations of the network establish a set of rules about interacting with the 

system. These rules only represent the permissions of an organisations, and how 

they can interact with the public chaincodes they constructed for cooperating 

with each other. After establishing this public machine-readable document, one 

of the participants uploads this document through a transaction, which if parties 



 25 

agreed upon this document, everyone should accept. Every following transaction 

will first be validated by this permission scheme. The permission scheme validator 

must be a function A: S × T → R ∈ {0,1}, which for every state s ∈ S  and 

transaction t ∈ T it results in either true or false, representing whether a ledger 

state, which has the current permission scheme allows the transaction to happen 

(transaction includes the identity of the caller) 

Next to access control, parties also establish a validator function, that represent 

whether a transaction invocation is valid in terms of the need of the business 

process/application. This validator function formally V: S × T → R ∈ {0,1}, checks 

for meaningful arguments, and notably the configured validation. To use my 

example, use case, the previous function would check whether a medical 

institution has the right to issue a work permit(no), and this V function would 

validate whether the transaction was called with valid arguments, and that a 

work permit is being issued to person with valid life insurance (which is a 

requirement in this scenario). 

Now that we have a chaincode and blockchain that conforms to the above 

description, the participants can start to invoke transactions to store confidential 

data on the ledger. Invocation happens trough a safe channel (FPC client) with 

the use of asymmetric cryptography, so the contents of the transaction remain 

unknown to other participants, only the enclaves are capable of decrypting and 

validating the transaction with the chaincode functions. Important to note that 

fact of something changing in the key value storage does not remain unknown to 

other participants. For instance, a node receives a transaction proposal it needs 

to execute, it uses its enclave to execute the transaction, sends back the proposal, 

and if the transaction is committed to the ledger, it will be publicly available 

information, that the key-value storage of the blockchain has changes. This is not 

a concern for my use case, but in the Appendix, I propose a simple solution to 

handle this. 

To expose confidential data to a participant that has the right to view data is 

complex task, if we want to achieve auditable reads and mitigate risk of TEE and 

blockchain related attack vectors. Before users can read data from a system that 

conforms to this protocol requires an initialization process. This initialization 

process uses a trusted third party for a one-time key generation, which results in 

a public encryption key stored on public ledger, and private decryption key shares 

that are shared among the network participants. This is done by using the 

participants’ public keys to encrypt their share of the secret. This cryptosystem 

(ElGamal Threshold Encryption [48], [49]) enables the enclaves to use the public 

key to encrypt the confidential data within the enclave with the configured 

threshold parameters, and then return the encrypted response. This is essentially 

the only data that comes out of the enclave apart from status messages. Now the 

participant can request partial decryptions of the data from other participants 

using secure channels, and participants after validation the request, can send the 



 26 

partial decryptions to the participant, who can combine the shares to get access 

to the data. 

Depending on the configuration of threshold parameters, different number of peers 

would be needed to decrypt the data. If in a (t,n) threshold cryptosystem where 

n is the number of participants and t is the threshold number of decryption shares 

needed for decryptions, denial of services attacks are possible, if the number of 

malicious peers m > n-t.  

Although the approach uses a trusted third party to generate encryption 

parameters, it is important to highlight that for the reading of data to being, the 

blockchain must reach a consensus on the state of the public encryption 

parameters. If a participant challenges the “validity” of the third party, it can 

refuse to endorse the initializing transaction, or refuse to provide partial 

decryption. 

To achieve audibility on the data reads, we can notice that no reading of sensitive 

data can go unnoticed, since at least the threshold number of participants need 

to validate and participate in the process. To physically persist an account of data 

access to the blockchain, we could forbid the use of blockchain queries to read 

this encrypted data, which means that one participant’s endorsed transaction is 

enough to persist this information. We can assume that it is in the interest of at 

least one participant of the network to maintain audibility. 

Lastly, I wanted to highlight the validation functions A and V do not provide any 

information about why a certain invocation failed, this is to make it hard, if not 

impossible to obtain sensitive data from attempting to invoke a lot of speculative 

transactions. Since the validation logic, as well as permission scheme is public, if 

a participant has no access to a resource, it cannot gain sensitive information 

about it. (If the developers of the prototype implementation are careless, it is 

technically possible to have a data model and validation logic that could leak 

some information about data) 

 

4.2 System and threat model 

I identified two main potential adversaries to the system. 

Firstly, a participant of the network, meaning a party that actively participates 

in the consensus mechanism, validating changes to the shared data, even reading 

some data through the reading protocol. This type of attacker could have different 

goals, but the three main attacking goals could be to  

1. Disrupt the service, hindering the participants of the network to reach a 

consensus.  

2. Attempt to gain access to confidential data 

3. Attempt to forge and share faulty data 



 27 

Secondly, an external party, that is not part of the network, therefore not having 

access to data shared in the system. This party could benefit from stealing and 

potentially selling the confidential data. 

4.2.1 System model 

Here is a very high-level view of the system components that interact with each 

other during the operation of the system. 

Event Submitter: A user creating an event invocation to achieve some goal 

with the system (submit data, request data ect...), and using it’s credentials to 

interact with a client. The interaction is private by the nature of the interaction. 

Submitting Client: A client of the blockchain system using the credentials by 

the submitter and its identity to forward to invocation requests of a submitter to 

an endorsing peer. The data of the request is encrypted with the public key of the 

processing enclave, so the Endorsing Peer cannot read the arguments of the 

request.  

Endorsing Peer: An endorsing peer is a node of the network responsible for 

execution, validation of transaction requests. It receives a transaction request 

encrypted, which it cannot decrypt, and it forwards this request to the enclave 

that resides in the Peer itself. After the enclave return a response, it safely returns 

the response. A Peer contains a database, which the state of the ledger.  

Enclave: The enclave is the trusted execution environment of the system, it 

receives encrypted transaction request, which it decrypts then processes. After 

processing it encrypts the response with the public key of the client, then returns 

a response. 

Ordering Service: A node of the network that receives endorsed transactions, 

verified by signatures of the validators, then its goal is to batch these transactions 

into blocks that will be sent to other participants. The order of the transactions 

is defined by this component, and participants of the network learn the newly 

agreed upon ledger state from this component. 

Observing Participant: This is an entity that receives the new proposed world 

state and after validating it, it can observe what it is. If another participant 

request data from it, it might refuse to answer. 

Key Generator Agent: A trusted third party responsible for privately 

generating and uploading the public key for the encryption, as well as encrypting 

the key-shares with the corresponding person’s public key. 

4.2.2 Assumptions 

To understand the context in which the threat model is defined, it is crucial to 

state assumptions I have about the system’s environment and the behaviour of 

its users. It is reasonable to assume that the participants of the system do not 

want their confidential data to be exposed. I also assume that the computer nodes 



 28 

of the network have some way of communicating with each other in a way that 

is sufficient for a HyperLedger Fabric network to work. I assume that participants 

of the network can create, store, and use their cryptographic private keys in a 

secure way, and most notably, that the used cryptographic primitives guarantee 

confidentiality by being hard to break computationally. 

In this system we also assume that the used trusted execution environments work 

as intended and their secret keys are never exposed. I am aware that they are 

side-channel attacks and other vulnerabilities regarding TEEs and Intel SGX, but 

the proposed protocol does not rely on any specific implementation, but rather 

the concept of confidential computing. 

 

4.2.3 Threat model 

Speculative transactions: A malicious Event Submitter can use a Client to invoke 

speculative transactions on a malicious Peer. By doing so, it can observe what the 

Peer responds, and potentially extract information about system. Since 

validations don’t output any information about the problem, it is difficult to 

extract information this way, but not impossible, based on the implementation.  

Timing attacks: Analogous to the previous threat, Event Submitters might 

measure the response times of enclaves to assess which validation could have 

failed. This attach is very unlikely to work, since large enterprise software like 

HyperLedger Fabric networks are known to be hard to benchmark, and 

extractable information is very limited. Solution to the problem could be 

randomize the execution order of the validating function within the enclave.  

Client leaking credentials: A potential threat to the integrity of the ledger 

state is a Client application that was modified to be malicious, recording and 

leaking the credentials of the owner Participant, or acting on its behalf.  

Eavesdropping: This attack is only possible, if the chaincodes have application-

level security issues, but as this is not unlikely, it is worth noting. To illustrate 

this, I construct a scenario where among other organizations an organization only 

has permission to do one thing, let’s say to flip a binary bit stored on the ledger. 

Since the genesis state of the ledger is known, parties can essentially know the 

value of this variable just by observing whether an action by a participant resulted 

in a ledger state change. This can be mitigated by nonces in these extreme 

scenarios, but this is an application layer issue. 

Denial of service: On of the most potent mode of attack for any component of 

the system is to use denial of service. Peers can refuse to endorse other 

transactions, the ordering service can become unreactive, halting the creation of 

blocks, Participants can refuse to send partial decryptions to other Participants, 

this way not helping anyone get access to sensitive data. This issue is critical, but 



 29 

it can be mitigated using a correct endorsement policy, choosing good1 threshold 

encryption parameters, and using multiple ordering service nodes. 

Corrupt third party: If the trusted third party that generates the keys is 

corrupt, the threshold encryption scheme is broken. This is only a problem 

however, if the corrupt party is also colliding with one of the network participants, 

since in the context of a permissioned network, there access for the corrupt agent 

to read the encrypted data.  

Wrong public key third party: When generating the the keys for the trehsold 

encryption scheme, the trusted third party uses the public key of each user to 

encrypt their share of the secret key. If the public key, that the third party uses 

for encryption is not correct, this would mean that the user won’t have access to 

its private key share.  

 

4.3 Cryptographic primitives 

I now discuss the essential cryptographic primitives used in the proposed protocol. 

Important to note that a lot of trust is being rooted in the security of these 

cryptographic algorithms and cryptosystems. On a high level, the protocol can 

still be secure and function if the underlying cryptosystem is changed to a different 

one, but I made efforts to find the most optimal, state of the art specific 

cryptosystem to aid to protocol. 

In the context of blockchains, the use of cryptography is essential from the 

tamperproof linearity of blocks to simply using the internet to privately 

communicate between the nodes. The cryptography of blockchains and its 

environment such as how parties can securely communicate with each other will 

not be discussed in detail as it is not in scope of this paper. 

4.3.1 ElGamal encryption 

In the core of confidentiality and privacy, there needs to be a way to encrypt and 

decrypt data, before storing it on the ledger or making it available to be read 

again. A simple way of doing this is using ElGamal Encryption [48]. This is a 

public-key asymmetric cryptosystem that is based on the Diffie-Hellman problem, 

and its difficulty to break them is as hard as to find discrete logarithms over finite 

fields. To describe the cryptographic bases of the algorithm, I quote Christian 

Cachin [50] pg:1 

“The discrete logarithm problem (DLP) means, for a random y ∈ G, to compute 

x ∈ ℤ𝑞 such that y = gx. The Diffie-Hellman problem (DHP) is to compute gx1x2 

from two random values y1 = gx1 and y2 = gx2. It is conjectured that there exist 

groups in which solving the DLP and DHP is hard, for example, the multiplicative 

 

1 Good: Meaning that a minority of malicous peers can not halt the system. 



 30 

subgroup G ⊂ ℤ𝑃 ∗ of order q, for some prime p = mq + 1 (recall that q is prime). 

For example, |p| = 2048 and |q| = 256 for 2048-bit discrete-logarithm-based 

cryptosystems, which is considered secure today. Using the language of complexity 

theory, to say that a problem is hard means that any efficient algorithm solves it 

only with negligible probability.” 

Although ElGamal encryption is not explicitly used in the protocol, improvements 

of the algorithm are, and highlighting the basis of the cryptosystem is useful to 

have a deeper understanding of the used algorithms.  

Here are the outlines of ElGamal based encryption algorithms. 

 

Algorithm outline 1 ElGamal key generation 

1: procedure GENERATEKEYS 

2: Choose a large prime p such that p = 2q+1 where q ∈ ℙ 

3: Find a generator function g of order q 

4: Choose a random x ∈ ℤq  

5: Compute ß = gx 

6: return public key  < p,g ß >, secret key <x> 

4: end procedure 

 

Algorithm outline 2 ElGamal Encryption 

1: procedure ENCRYPTION(m, p, g ß) 

2: Choose a random k ∈ ℤq  

3: Compute c1 = gk mod p 

4: Compute c2 = mßk mod p 

5: return ciphertext c =< c1, c2 > 

4: end procedure 

 

Algorithm outline 3 ElGamal Decryption 

1: procedure DECRYPTION(c, p, x) 

2: Compute m = c2 c1
-x mod p 

5: return m 

4: end procedure 

 

 

4.3.2 Threshold ElGamal Encryption 

To make the decryption of an encrypted data extremely difficult for malicious 

party, we can leverage threshold cryptography. In essence, a ElGamal threshold 



 31 

encryption (t, n) is a public key encryption schemed that enables the parties to 

have an encrypted data that only the cooperation of at least t parties can decrypt. 

This is a great way to ensure, that even if most of the system is compromised and 

somebody gets ungranted access to a file, it still needs at least t-1 other corrupt 

participants to get sensitive data. 

Threshold ElGamal encryption is a modification on ElGamal encryption, where 

we use a secret sharing scheme to distribute the secret x among n participants. A 

common approach of doing so is using Shamir’s secret sharing algorithm [51]. 

In my approach, a trusted third party generates the private keys and the key 

shares. It is possible to use distributed key generation [50], [52], but to implement 

the algorithm in a blockchain environment, where there is no trusted ledger is 

challenging. Computational and communicational overhead of such solutions is 

also something to consider.   

 

4.3.3 Secured Threshold cryptosystem 

The before mentioned algorithm is based on the Diffie-Hellman problem, but it is 

only secure against passive adversaries [50]. The way in which an active adversary 

can exploit this is quite simple. With the use of chosen ciphertext attack [53], if 

the attacker can have access to the decrypting oracle, and get the partial 

decryption of chosen cyphertext, it can gain information about the encryption. In 

the context of blockchains, every node of the network is technically a decrypting 

oracle, so even if I introduce a software solution by only allowing transactions to 

take place (to slow down attempt and introduce another barrier to brake), it will 

still be a potential threat to our system. To make the algorithm secure against an 

active adversary, we can use the work of Victor Shoup and Rosario Gennaro [49] 

which provides an improvement to algorithm, making it proven to be secure 

against chosen cyphertext attacks. They propose two cryptographic schemes, 

Threshold Diffie-Hellman 1 and 2. The algorithms are similar, but to quote [49] 

“The first scheme, which we call TDH1 (for Threshold Diffie-Hellman), is secure 

assuming the hardness of the computational Diffie-Hellman problem [DH76]. The 

second scheme, TDH2, is secure under the stronger assumption of the hardness 

of the decisional DiffieHellman problem, but is more efficient than TDH1.” 

(In the prototype implementation, I use TDH2) 

Algorithm outline 5 TDH2 Cryptosystem Encryption [49] Simplified 

1: procedure ENCRYPT(m, h, g, L) 

 m: message 

 h: public key 

 g: generator 

 L: label 

2: Generate random r ∈ ℤq  



 32 

3: Generate random s ∈ ℤq  

4: Compute c = H1(hr) ⨁  m 

5: Compute u = gr 

6: Compute w = gr 

7: Compute 𝑢̅ = g -r 

8: Compute 𝑤̅ = g -s 

9: Compute H2(c, L, u, w, u̅, w̅) 

10: Compute f = s + re 

11: return <c, L, u, 𝑢̅, e, f> 

12: end procedure 

4.4 Protocol outline 

I know discuss the protocol in more detail, by examining the processes and 

sequences that happen during the operation of a network. Some of the sequence 

diagrams are not conventional in the sense that the lifetime of entities might seem 

strange at first. What these sequence diagrams are attempting to signal, is that 

in a blockchain environment, every valid transaction is eventually validated and 

executed on the nodes, and these components are also constantly “active”. 

  



 33 

 

Flow of the chaincode invocation 

 

7. Figure Flow of the chaincode invocation  

On this figure, we can observe how a chaincode invocation happen, and how the 

components of the chaincode interact with each other. This sequence starts with 

the action of a user, that wants to invoke a transaction on the blockchain. When 

the encrypted request reaches the enclave, it can use its enclave decryption key 

to decrypt the arguments of the request. After which the SDK will forward the 

arguments to our chaincode, which is done by invoking the invoke function of the 

chaincode with the arguments. My protocol describes that there should be an 

access control scheme implemented in the chaincode that strictly only returns the 

information, whether the invocation is allowed to happen based on the current 

access control scheme and the invoking user. If this validation fails, the error is 

returned to the user. ( Note that the error message  does not travel within the 

enclave to the user, but first to the SDK, then the message is forwarded from the 

SDK to the user, but this does not happen in an enclave) If the validation 



 34 

succeeds, the chaincode parses the invocation arguments and the actual function 

that is being called, and if the called function exists, it calls a validator function, 

that returns whether the requested transaction can happen or not, based on the 

predefined domain specific validation. If the invoked function does not exsist, or 

the domain specific validation fails, it returns the message “error” to the user. If 

the validation succeeds, the chaincode executes what the original invocation 

requested, then returns the result to the SDK, then the client. Important note 

that the Users don’t directly interact with the SDK, but rather though the use of 

a Client and a Peer node, but this is purposefully omitted from the diagram for 

the sake of illustrating the transaction flow. 

 

Initializing encryption 

For the users of the system to gain the ability to read out sensitive data from the 

blockchain, it needs to go trough an initialization process. The process starts with 

the users privately generating a public and a secret key, that they store on the 

public ledger (only the public key). After every participant shared their public 

key, they can agree on using a trusted third party, that will use a centralized key 

generation scheme to create a threshold cryptographic system with the 

preconfigured threshold parameters, then split the keys using secret sharing 

algorithm [4.3.2], then use the participants public key to encrypt their share of 

the secret key, then finally share these encrypted key shares on the public ledger 

and also share the public encryption parameters publicly. The initialization 

process is done here, users can either start using the network, or refuse to 

participate, if they assume that the third party was corrupt. 



 35 

 

 

8. Figure Initialize encryption 

Storing confidential data 

Submitting a valid transaction that extends the ledger state with new data is 

simple. Note that the initialization of the encryption is not a requirement for data 

to be stored and handled, the encryption initialization is only requirement for 

reading out sensitive data from the ledger. This sequence diagram abstracts away 

the low-level details of the chaincode invocation, and it aims to show how storing 

of data works on a high level. After a User submits a request to store a data on 

the network, it uses a Peer that it has access to invoke a transaction. The Peer 

will use its enclave to validate the request in ways that was detailed previously, 

and then store the data privately. The only information the User receives from 

the enclave whether the transaction was successful, or not. 



 36 

 

9. Figure Store data 

Reading confidential data 

To read out sensitive from the ledger, a user needs to collaborate with other 

participants of the network. On a high level, threshold decryption has to be used 

by the user to gain access to the data. The number of collaborating participants 

needed for the decrypting the data entirely depends on the configuration of the 

threshold cryptography. This sequence diagram displays the reading process with 

a threshold parameters (t, n) = (2,2). The user begins the process by request data 

from its local Peer1. It uses its enclave to validate the read request, and if the 

validation succeeds, it uses the public encryption key of the threshold 

cryptosystem to encrypt the data. The encrypted data is then returned to the 

Peer who reads out the publicly available encrypted key share of Peer1, and after 

decrypting the secret share, it can use this secret to partially decrypt the data. 

After this is successfully done, (or in parallel, the order of data requests are not 

relevant) the User can repeat the read request with Peer2, that is from a different 

organization (not displayed on the diagram). Peer2 will use Peer1’s public key to 

safely transfer the partial decryption by itself to Peer1. After our user gathered 



 37 

at least the threshold number of partial decryptions, it can combine these to get 

gain access to the encrypted sensitive data. 

 

10. Figure Read data 

High level view of interaction with the blockchain: 

 

11. Figure A user interacts with the ledger  



 38 

 

 

12. Figure Full example using 2 parties. 

 



 39 

5 Implementation and evaluations 

5.1 Implementation 

5.1.1 Overview 

The prototype implementation targeted the proposed protocol, as well as the 

example use case detailed in the running example section. The prototype consists 

of a  

1. Hyperledger Fabric Private Chaincode, which implements the protocol as 

well as the example use case, written in C++ relying on the Intel SGX 

C++ interface and the FPC shim. 

2. CLI client written in Go to interact with the network. 

3. Integration testing scripts to automate testing of functionality, also used 

for regression testing. (Using the Hyperledger Fabric integration testing 

library) 

The majority of the implementation is the chaincode that implements the 

protocol. The FPC shim is the interface that we can use to interact with the 

blockchain ledger as well as the enclave. The starting point of every FPC 

chaincode from the developer’s point of view is the invoke function. Which 

has the following signature: 

 

The argument names are verbose, what needs to be noted is that the 

transaction data can be extracted from the ctx struct, which is also our way 

of interacting with the blockchain. 

The written prototype is a functional style C++ implementation, and 

essentially stateless. The structure of the code can be well illustrated with a 

diagram. 

 

13. Figure Component and program flow  



 40 

To understand the program flow from a different view, take a look at the sequence 

diagram [Figure 7]. 

5.1.2 Implementation details 

Now I discuss the implementation more in detail, with examples from the code 

base. The repository with all the chaincodes, clients and tests with bootstrapping 

instructions can be found at the GitHub repository created for this project. 

Chaincode 

The chaincode is invoked by a participant of the network, and the invoke C++ 

function will be called. In this function, my implementation parses the transaction 

arguments as well as the function, that it tries to invoke. After this, it checks 

whether the invoking entity has the permissons to use that function. In this 

implementation and use case, the functions that the entites try to invoke are 

called events, which essentially are the endpoints of the application. The access 

control checking component uses the public ledger state to get the current 

permisson scheme, parses this information, then return a boolean representing 

whether the caller has the permissions to invoke that event. If this function 

returns false, the enclave returns to the caller with no information, apart from the 

text: ERROR. This is not due to a lack of effort in returning verbose error 

messages, but to make speculative execution attack ineffective. 

 

14. Figure Access control code fragment 

If the access control component validates that the user has the right to invoke an 

event, the program continues by parsing the function arguments, and running 

complex validation to check whether this operation is allowed or not. This 

validation first checks whether the invocation arguments are valid, for instance 

whether a personBorn event was called with a valid SNN number, a valid date, 

and then it uses the chain state to validate more complex business logics. For 

instance, for the life insurance entity has the requirement for issuing a life 

insurance, that the person in question has a health examination result, that states 

that the person is healthy. (Notice here that the life insurance entity does not 

gain any more information about the person’s confidential record than what is 

necessary, and already agreed upon, by creating the chaincode) 

 



 41 

 

15. Figure Validation function for an event 

 

 

16. Figure Stateful validation 

In this example, the blood pressure measurement of a person is used as a proxy 

for being „healthy” 2. If these validation functions fail, only the text: ERROR is 

return the invoking client. 

If the validation was successful, the program continues by actually doing what 

the user wanted to achieve, like issuing a life insurance to the ledger privately. 

For storing data the implementation uses a data model represented by diagram 

below. This is done by creating a struct for the data, initializing its fields, than 

getting the current state of the ledger, inserting the newly created data to the 

ledger state, then using marshalling to turn the ledger state into a text format, 

then privately storing it on the ledger. 

 

2 This is not medical advice. 



 42 

 

17. Figure Prototype's data model 

 

The create and read functions follow a similar path to how one might save a new 

work permit. 

 

18. Figure Save data 

First I obtain the data map holding the ledger state, convert it from a json to a 

cpp structure, inserting the new object, then privately save the modified json 

string to the ledger. 

 



 43 

One of the functionalities of my system is the ability to securely extract sensitive 

data from the blockchain, if the entity has the right to do so, and at least the 

threshold number of participants allow the read. To read a sensitive data, the 

requester invokes the chaincode as a regular transaction, and if the usual 

validations pass, the enclave will use the stored and initialized public threshold 

encryption key to encrypt the data and return it to the user. 

One of the most challenging parts of the implementation was to implement the 

TDH2 encryption algorithm in a C++ chaincode. Normally, a developer that is 

not educated on the highest level should not attempt to implement cryptographic 

protocols, since this is poses high security risk. Even if somebody had to 

implement cryptographic algorithms, the person should rely on using audited and 

tested cryptographic libraries for the cryptographic primitive implementation. 

This unfortunately was not entirely possible in my case, since the enclave code 

compilation is not a standard C++ program compilation, we can not have access 

to default libraries, some of the standard libraries ect…, which means that most 

cryptographic libraries are not integratable with the chaincode, especially not 

C++ implementations of the TDH2 [50] encryption scheme. In the end, I 

implemented the TDH2 cryptosystems encryption part on the ledger while using 

the OpenSSL C++ library, and porting a Python implementation of the algorithm 

[54] to C++. The resulting encryption algorithm is functional, but it has not been 

externally audited for security, and it serves as demonstration tool for the 

prototype implementation, as the algorithm can be easily followed and understood 

while reading the code. 

For illustration purposes, here is a fragment of the encryption algorithm. 

 

19. Figure Fragment of TDH2 implementation  

The implementation of the algorithm, as well as the entire project can be found 

on GitHub [55]. 

Other parts of the chaincode implementation included creating JSON marshal 

and unmarshal functions, that can be used to transform C++ structures into 



 44 

plaintext JSON representation, and vice versa. Writing these codes could have 

been automatized. 

 

20. Figure M arshalling code of a person  

Lastly in the chaincode implementation, there are the functions that are 

responsible for parsing the access control scheme that a user provides to initialize 

said scheme, and some utility functions to make to code more readable like the 

function that prepares the enclave to return a result. 

Go Client 

To interact with the blockchain, we can use the interface of the Smart Client 

made by the Hyperledger Foundation. This makes the encryption of the 

invocation arguments and the decryption of the results hidden from the user and 

the developer. The use of the Client was to aid the process of automated testing, 

where the Go client makes the connection with the channel, then invokes the 

transactions. 

 

21. Figure Initialize connection with the chaincode  



 45 

 

22. Figure Code fragment to automate transaction invocation  

Bootstrapping scripts 

I used the integration testing libraries of FPC to bootstrap a Hyperledger Fabric 

network with private chaincodes enabled, then invoke the Go clients to submit 

transaction, to finally tear down the network. The testing bash script can also be 

invoked with arguments to selectively run the testing suites. 

5.2 Testing 

To accelerate development as well as to protect functionality I implemented a 4 

different automated testing scripts. These are essentially bash scripts that build 

on top of the integration testing framework of the Hyperledger Fabric integration 

testing framework. Bootstrapping a Hyperledger Fabric network, especially with 

Private Chaincode enabled, installing the Chaincode, then manually invoking the 

now fully working blockchain with my test cases could take upwards of 30 

minutes, and I also had to verify the results. Apart from being impractical, it is 

also a common way people introduce bugs into existing code base, by omitting 

regression testing, because it simply takes too much time. For this reason, I 

decided early in the development, that I will utilize a test-driven development 

inspired approach of writing integration tests first, then the Chaincode. 

Luckily the integration testing framework is also well equipped to handle Fabric 

Private Chaincode enabled blockchains, and apart from helpful bash scripts, we 

can also use the Fabric Smart Client [56] written in Go. With these tools, I created 

the following testing suites. 

Functionality testing suite: In this testing suite, the so called happy path of 

the system is being tested. In this example use case of the protocol 

implementation, we have to entities interacting with the blockchain by essentially 

submitting events to the blockchain. For instance the state governed entity makes 

a Chaincode invocation to register that a new person was just born. Even for this 

simple event to be successfully accepted to the ledger state, a significant amount 

of validation have to be made. In the person born example, we have to validate 

that the invoking entity has the rights to invoke this Chaincode function, that 

the arguments are valid, like age of birth is a valid date, ID number is not already 



 46 

existent, the name is valid ect. A person being born is one of the simplest 

invocation validation wise, when a work permit is being issued, we also have to 

check whether the person has a life insurance, to name a complication. 

The aim of the functionality testing suite is to provide valid argument data, that 

will not fail any of the validations, therefore testing the end functionalities of the 

Chaincode. By end functionalities, I refer to data being stored on the ledger, in 

the context of the person being born event. 

 

23. Figure The results of the function testing suite  

To verify that the threshold encryption work, we can utilize an already ready 

implementation [54] of the algorithm, to decrypt the data. 

In another test run, the enclave return the response: 

 

Inputting this result into the decryption algorithm ( where we have artificially 

compute partial decryptions, we successfully get the original message back. 

 

24. Figure Successful threshold decryption  

 

Validation testing suite: In this testing suite, the tested components of the 

architecture are the ones implementing the validation logic. Not to be confused 

by access control, validation logic is at the core, a predicate that determines 

whether a Chaincode invocation with its arguments are valid or not in the void 

of entities and permissions. To continue the example from the previous testing 

suite, validation logic only tests whether an issue health examination function 



 47 

invocation was invoked to an existing person, with a valid date, and that the 

result of the health examination, namely the systolic and diastolic??? 

measurements of the person was in a medically acceptable range. Important to 

mention that this aspect of the protocol implementation is critical to well-

functioning system. Zooming out of the details, these validation functions will 

determine the state of the ledger by enabling or denying transactions to happen. 

Since users may not be able to read confidential data on the ledger, they must 

root their trust in the publicly agreed upon chaincodes as well as the security of 

the protocol. 

 

25. Figure Validation testing suite 

Although it does not test every combination of valid and invalid arguments and 

ledger state, it verifies that the most important validation functionalities are at 

place. The enclave only return error messages,  to demonstrate the cause of the 

error for development purposes only, this must be turned off for a production use 

case. 

By reading the output line by line, we can read what the client attempts to do, 

and the result of the attempt. 

Access control testing suite: In the access control testing suite, the tested 

components decide whether the entity making a transaction invocation or query 

has the rights to the action. This happens before validating arguments of the 

invocation, meaning if a life insurance entity attempted to register an invalid 

health examination result for a non-existing person to the ledger (which it does 

not have rights to do so) the invocation would be first rejected for not having 

permissions to invoke certain Chaincode function.  



 48 

 

26. Figure The acces control tests 

The results clearly show that whenever there was not sufficent permissions for a 

user, the transaction was rejected. (The access control scheme is initialized with 

a chaincode call at the beginning.) 

5.2.1 Performance and scalability  

Performance testing suite: Performance and scalability is usually an 

important requirement, so it was essential for the testing suite to reliable and 

consistently measure response times from the system. The implementation is 

efficient in the sense that the change in access control scheme does not result in 

the need re-encrypt any data, which is a common drawback of cryptographic 

solutions [Section 2.2.1] Critical point to mention that the tests were run in a 

simulated SGX mode, this was done for multiple reasons, but one these reasons 

is that Intel SGX is no longer provided in consumer, and as mentioned earlier, 

bootstrapping an SGX enabled Hyperledger Ledger Fabric network is resource 

and time intensive, and not practical for testing. Since I am trying to measure the 

scalability of the algorithms, as long as we provide a fixed hardware and software 

environment (blockchain configuration) for the tested software, we can get useful 

insights. The performance testing suite includes the use of the functionality 

testing, by invoking all Chaincode functions, and measuring response times. It 

also includes invoking a person being born transaction several times to assess the 

effect of more data in the system to transaction speeds, but as shown in the data, 

there seem to be no slowing down of the system. (The prototype implementation 

uses a linearly scaling algorithm for storing and retrieving the data, but this is 

due to the limitation of the FPC Lite, and therefore of this prototype 

implementation.) Results of testing is shown here. 

Invoking the main functions of the system results in a consistent ~2000ms 

transaction. 

 

 



 49 

 

27. Figure Speed of invocations 

 

Next, I tested how the encryption of an object in the chaincode translates to 

transaction times. To test this, I invoke the encryption query 1000 times, and 

average out how much time it takes for the queries to finish. 

 

28. Figure Benchmarking the encryption 

The results showed a very consistent 10 ms execution time for the on chain 

validation and encryption. Note that invocations require more time queries in the 

Fabric ecosystem, because the unlike the invocations, the queries do not have to 

reach a consensus or get included in a block. The protocol suggests against 

enabling queries for the encryption process, because this might damage the 

audability requirement. 

Finally, I tested how the data model reacts to the growing size of the data 

structure. For this, I invoked 100 transactions to create 100 persons on the ledger, 

and measured the response time of the system. Our assumption is that the 

prototype implementation’s algorithm scales linearly with the amont of data in 

the system, because it has to parse longer and longer data structures as the system 

grows. During the testing, since we are using standard C++ code doing 

computationally non-expensive operations, I could not detect a worsening of 

performance. First transaction took 2056 ms and the last 2058 ms, but the longest 

transaction was the 6th one, with the duration of 2066 ms. 

 

29. Figure Invoking 100 transactions 

 



 50 

 

 

Testing environment: The testing was done in a Docker container without 

resource restrictions running on a Windows 10.0.19045, with 16GB of DDR3 

RAM, an Intel® Core™ i7-9700K CPU, and minimal to no background activities 

and simulated enclaves. 

5.3 Use case evaluation 

After discussing the prototype implementation and the testing of my approach, I 

now evaluate the results based on the informal running example I detailed in 

[Section 3.1]. 

The example starts with a list of organizations that have different responsibilities, 

potentially conflicting interests, and the need to collaborate. This paper suggests 

the use of HyperLedger Fabric to manage the identities of different organizations 

and its participants. There are more than a hundred Fabric based applications[57] 

in the real world that require this functionality on a day-to-day basis, proving 

that it is usable for this purpose. Continuing with the example, there needs to be 

a way for the organizations to execute a domain specific logic, like validating data, 

which can also be handled by HF. What is also needed, is a shared data among 

participants, that they can append data to, for instance the result of a health 

examination, but only if the business logic allowed that to happen, this is also 

enabled by HF, and the blockchain nature of the framework, to serve as the shared 

database. The concept of the use case that requires more than the use of HF is 

the need for organizations to use others’ data without actually having the ability 

to read that data. In other words, verify something that they have no access to. 

My approach uses trusted execution environments and FPC to establish a 

database that is encrypted for everyone, apart from the trusted enclaves. This 

makes sure that while trusted business processes implemented as chaincodes can 

use other organizations’ data in a predefined way (only chaincodes that were 

agreed upon by all parties can be executed), general, ad-hoc access to sensitive 

date is not possible. In our example, the life insurance company needs a way to 

verify that a customer is “healthy” according to medical organization, without 

having sharing any specific sensitive data about the persons medical record. Since 

the medical record had to be put on the blockchain with a transaction, that 

validated domain specific aspects of the data, the life insurance company can be 

sure that what it reads out from the blockchain, as a result of a transaction has 

not been tampered with. With this, we also touched on the point of not having 

the ability to tamper data on the shared state, provided by the blockchain nature 

of the system as well as the fact that the only way to modify the blockchain is 

with commonly agreed upon chaincodes. What is critical to this use case, is the 

ability to dynamically change the access control of the organization. For instance 

the insurance company is sold to another owner, therefore the rights of the 

previous owner has to be revoked, and the rights should be transferred to the new 



 51 

owner. My approach can easily handle this situation, by modifying the ledger data 

that stores the access control scheme. Upon changing this data, the users can not 

influence the state of the blockchain, since even if they refuse to acknowledge the 

new access control scheme, the blockchain nature of the architecture does not 

allow their version of the ledger state to be created, and data can not be extracted 

by them anymore, because every output of sensitive data requires other 

organizations to participate. To solve the issue of participants wanting to read 

data from the blockchain occasionally, we provided a chaincode implementation 

concept to only allow threshold encrypted data to ever leave the enclave, therefore 

no participant can read out data by itself, only if other parties collaborate to 

handle the read. This means that if an organization wants to read out a sensitive 

data like whether a participant has a work permit in the country or not, this can 

only be done with collaborating with other parties. This also achieves the 

challenge of aiding legal and compliance matters, because if the only way to read 

data is for participants to collaboratively use the blockchain, it is not possible to 

not leave a trace either on the blockchain, or elsewhere about the event. Unless 

every participant of the encryption process is malicious, this use case remains 

fulfilled. 

My implementation of the approach provides an example for how all of these 

informal requirements that is the “running example” can be fulfilled. 

5.4 Requirement evaluation 

After informally evaluating the running example, I will continue with systematic 

assessment of the constructed requirement system [Section 3.2]. 

Fulfilling functional requirements 

F1: The proposed approach uses HF detailed earlier, which verifiably follows a 

distributed ledger pattern, with the support for transaction validation and a 

ledger state managed by the consortium, with the use of a consensus mechanism. 

F2: To handle personal data, we use HF’s key values storage to store document 

like data to store attributes about a person, and its relationship with other data. 

F3: The handle domain specific validation logic for the creation, update, and 

deletation of data, we use chaincodes with the design explained in [Section 4.1]. 

Since we are using one HF channel in the approach, the key value storage can 

only be modified/read by verified FPC chaincodes, if we require implementation 

to only allow validated access, there is no way for the data to be edited in different 

ways, which is a guarantee of the FPC. 

F4: To allow the dynamically updatable authoritative data access, we build on 

the guarantee, that if the implementation satisfies F3, the access control scheme 

should also be only modified if a validation logic is satisfied, manifesting in form 

of a chaincode. More specifically, if we established, that we can store data that 

has to undergo a validation process, we can confidentially use this in the context 



 52 

of the blockchain to store authoritative data access schemes, and the machine 

parsable descriptions thereof. 

Confidentiality requirements 

C1 - read protection: The reading of sensitive data is multi-party collaborative 

process in my approach. For a party to read out sensitive data without colluding 

with other parties is not possible in our architecture, because the only way 

sensitive data can leave the enclave, is in an encrypted state, encrypted by a 

threshold encryption schemes. It is provided, that transaction may only happen 

on top of committed ledger state, meaning a participant can not insert their own 

public key to later use this for the encryption, because this ledger state can not 

be committed (unless multiple organizations collide). We come to the conclusion, 

that only  encrypted data can leave the enclave, so even if an attacker uses out-

dated access control scheme to read out a sensitive data, it can only view that 

data in an encrypted form. This satisfies the requirement, unless the participant 

breaks well established encryption schemes. ( As mentioned earlier, it is advised 

to use large primes in the cryptosystems to ensure computational difficulty) 

C2 – operation attempt based information leakage: My approach describes a way 

for implementing validation logic, that reveals minimal information amid 

attempting transaction invocations. If there are possible chains states (s), this 

chain state also includes the authoritative data access scheme (ac). If participants 

of the network agreed upon chain codes that use certain validations, we can easily 

see that if a participant speculatively attempts transaction on the current ledger 

state s, it might only extract information that is already available to it, by the 

“contract” of the chaincodes. This is ensured by the fact the approach prohibits 

the use of returning information about the source of an invalid request, as well as 

the fact that chaincode can only run on ledger states, that were committed. 

[Section 3.5.4] 

C3 – observation-based information leakage: In our approach, since we are using 

a distributed ledger, every node of the network has a copy of the ledger, this 

requirement states that a participant should gain no sensitive information about 

the ledger state by using techniques to observe its local encrypted ledger state. 

Since the approach uses the enclaves state encryption key to store data on the 

ledger, nodes cannot understand what is being changed or modified on the ledger. 

However, the proposed FPC technology does not encrypt keys of the stored data 

(in the key value storage), so observers could gain information about system if 

keys contain meaningful data. The reason why this is not a problem at the 

moment, is the fact that the approach uses one key for its private storage, which 

means that apart from the fact that the state of the ledger “has changed”, 

observers cannot infer any meaningful information about the ledger state. 

Other requirements 

M1 – minimally disruptive changes to control list: An important 

maintainability requirement of my system is to efficiently handle changes in the 



 53 

access control scheme. Purely cryptographic solution often require the entire re-

encryption of the private data to maintain confidentiality, but this is very 

inefficient. Since my approach uses my multiparty reading process, as soon as the 

new access scheme is committed to the nodes, there is nothing else left for the 

nodes to do. Changes to the access control scheme are just regular transactions, 

that change the behaviour of dependent chaincode functions. 

AU1: For every read access to be auditable, similarly to M1, since a predefined 

threshold number of parties need to collaborate to read a data from the ledger, 

unless all of these parties are corrupt, we can assume that either one of the 

participants will a submit a transaction to the ledger with the partial decryption 

invocation (queries are not allowed by the chaincode design description), or keep 

another record of the request from the other party. If all parties collide, this 

requirement can be broken, even with by following my approach. 

I1: To maintain the integrity of distributed ledgers, the system has to be resistant 

to Byzantine [58] fault/attack behaviour, since this is not entirely possible, my 

approach has to maximize the tolerance against attacks. To ensure this I advise 

the operators of the system to deploy as many nodes as they need. Proving that 

this is a mitigation to the problem is out of scope of this paper. 



 54 

6 Conclusions 

Emerging technologies like blockchains and trusted execution environment 

are opening the possibility of infinitely complex and useful possibilities. However 

as they are fairly new, their research is only in its early stages, in the grand scheme 

of things. To aid the exploration of the new possibilities, we need to first construct 

requirement models that could be useful in our world, then examine, analyse and 

test these technologies and concepts to gain insight about them. Finally, we can 

work with the now clear “puzzles pieces” that we have collected and combine them 

in new, exiting ways, and create protocols and restrictions to mitigate the effects 

of technological or conceptual limitations that we learned about. 

In the paper, I attempted to do the previously described abstract process. 

Researched the emerging technologies deeply, constructed a requirement system 

for a useful unsolved use case, and then created a system/protocol to fulfil the 

requirements of the use case.  

I conclude that trusted execution environments are promising way to handle data 

comprehensibility on blockchains, with minimal use of cryptography and following 

a protocol, we can construct a system that is sufficiently complex and secure 

according to my knowledge. Only large limitation is the trust that we offset to 

the developers of TEE technologies like Intel SGX. By breaking the integrity of 

the enclave, this solution can no longer promise confidentiality and privacy. 

 



 55 

7 Bibliography 

[1] S. Chakrabarti, T. Knauth, D. Kuvaiskii, M. Steiner, and M. Vij, ‘Chapter 8 

- Trusted execution environment with Intel SGX’, in Responsible Genomic 

Data Sharing, X. Jiang and H. Tang, Eds., Academic Press, 2020, pp. 161–

190. doi: 10.1016/B978-0-12-816197-5.00008-5. 

[2] E. Androulaki et al., ‘Hyperledger fabric: a distributed operating system for 

permissioned blockchains’, in Proceedings of the Thirteenth EuroSys 

Conference, in EuroSys ’18. New York, NY, USA: Association for Computing 

Machinery, prilis 2018, pp. 1–15. doi: 10.1145/3190508.3190538. 

[3] M. Brandenburger, C. Cachin, R. Kapitza, and A. Sorniotti, ‘Blockchain and 

Trusted Computing: Problems, Pitfalls, and a Solution for Hyperledger 

Fabric’, arXiv, May 2018, doi: 10.48550/arXiv.1805.08541. 

[4] S. Nakamoto, ‘Bitcoin: A Peer-to-Peer Electronic Cash System’. 

[5] M. Chase, ‘Multi-authority Attribute Based Encryption’, in Theory of 

Cryptography, S. P. Vadhan, Ed., in Lecture Notes in Computer Science. 

Berlin, Heidelberg: Springer, 2007, pp. 515–534. doi: 10.1007/978-3-540-70936-

7_28. 

[6] S. J. De and S. Ruj, ‘Efficient Decentralized Attribute Based Access Control 

for Mobile Clouds’, IEEE Trans. Cloud Comput., vol. 8, no. 1, pp. 124–137, 

2020, doi: 10.1109/TCC.2017.2754255. 

[7] V. Goyal, O. Pandey, A. Sahai, and B. Waters, ‘Attribute-based encryption 

for fine-grained access control of encrypted data’, in Proceedings of the 13th 

ACM conference on Computer and communications security, in CCS ’06. New 

York, NY, USA: Association for Computing Machinery, Október 2006, pp. 

89–98. doi: 10.1145/1180405.1180418. 

[8] H. Qian, J. Li, Y. Zhang, and J. Han, ‘Privacy-preserving personal health 

record using multi-authority attribute-based encryption with revocation’, Int. 

J. Inf. Secur., vol. 14, no. 6, pp. 487–497, Nov. 2015, doi: 10.1007/s10207-014-

0270-9. 

[9] X. Liu, Y. Xia, S. Jiang, F. Xia, and Y. Wang, ‘Hierarchical Attribute-Based 

Access Control with Authentication for Outsourced Data in Cloud 

Computing’, in 2013 12th IEEE International Conference on Trust, Security 

and Privacy in Computing and Communications, Jul. 2013, pp. 477–484. doi: 

10.1109/TrustCom.2013.60. 

[10] M. Li, S. Yu, Y. Zheng, K. Ren, and W. Lou, ‘Scalable and Secure Sharing of 

Personal Health Records in Cloud Computing Using Attribute-Based 

Encryption’, IEEE Trans. Parallel Distrib. Syst., vol. 24, no. 1, pp. 131–143, 

2013, doi: 10.1109/TPDS.2012.97. 

[11] A. Sahai and B. Waters, ‘Fuzzy Identity Based Encryption’. 2004. Accessed: 

Oct. 29, 2023. [Online]. Available: https://eprint.iacr.org/2004/086 

[12] A. Shamir, ‘Identity-Based Cryptosystems and Signature Schemes’, in 

Advances in Cryptology, G. R. Blakley and D. Chaum, Eds., in Lecture Notes 



 56 

in Computer Science. Berlin, Heidelberg: Springer, 1985, pp. 47–53. doi: 

10.1007/3-540-39568-7_5. 

[13] U. Gupta et al., ‘Chasing Carbon: The Elusive Environmental Footprint of 

Computing’, in 2021 IEEE International Symposium on High-Performance 

Computer Architecture (HPCA), 2021, pp. 854–867. doi: 

10.1109/HPCA51647.2021.00076. 

[14] S. Jahid, P. Mittal, and N. Borisov, ‘EASiER: encryption-based access control 

in social networks with efficient revocation’, in Proceedings of the 6th ACM 

Symposium on Information, Computer and Communications Security, in 

ASIACCS ’11. New York, NY, USA: Association for Computing Machinery, 

Március 2011, pp. 411–415. doi: 10.1145/1966913.1966970. 

[15] R. Shraddha and T. Bharat, ‘Enhancing Flexibility for ABE through the Use 

of Cipher Policy Scheme with Multiple Mediators’, in Proceedings of the 3rd 

International Conference on Frontiers of Intelligent Computing: Theory and 

Applications (FICTA) 2014, S. C. Satapathy, B. N. Biswal, S. K. Udgata, and 

J. K. Mandal, Eds., in Advances in Intelligent Systems and Computing. Cham: 

Springer International Publishing, 2015, pp. 457–464. doi: 10.1007/978-3-319-

11933-5_50. 

[16] H. Yousuf, M. Lahzi, S. A. Salloum, and K. Shaalan, ‘Systematic Review on 

Fully Homomorphic Encryption Scheme and Its Application’, in Recent 

Advances in Intelligent Systems and Smart Applications, M. Al-Emran, K. 

Shaalan, and A. E. Hassanien, Eds., in Studies in Systems, Decision and 

Control. , Cham: Springer International Publishing, 2021, pp. 537–551. doi: 

10.1007/978-3-030-47411-9_29. 

[17] ‘Zero knowledge proofs of identity | Proceedings of the nineteenth annual 

ACM symposium on Theory of computing’. Accessed: Nov. 01, 2023. [Online]. 

Available: https://dl.acm.org/doi/abs/10.1145/28395.28419 

[18] W. Li, H. Guo, M. Nejad, and C.-C. Shen, ‘Privacy-Preserving Traffic 

Management: A Blockchain and Zero-Knowledge Proof Inspired Approach’, 

IEEE Access, vol. 8, pp. 181733–181743, 2020, doi: 

10.1109/ACCESS.2020.3028189. 

[19] A. E. B. Tomaz, J. C. D. Nascimento, A. S. Hafid, and J. N. De Souza, 

‘Preserving Privacy in Mobile Health Systems Using Non-Interactive Zero-

Knowledge Proof and Blockchain’, IEEE Access, vol. 8, pp. 204441–204458, 

2020, doi: 10.1109/ACCESS.2020.3036811. 

[20] J. Boyar and R. Peralta, ‘On the concrete complexity of zero-knowledge 

proofs’, in Advances in Cryptology — CRYPTO’ 89 Proceedings, G. Brassard, 

Ed., in Lecture Notes in Computer Science. New York, NY: Springer, 1990, 

pp. 507–525. doi: 10.1007/0-387-34805-0_45. 

[21] V. Costan and S. Devadas, ‘Intel SGX Explained’. 2016. Accessed: Oct. 28, 

2023. [Online]. Available: https://eprint.iacr.org/2016/086 

[22] J. M. Rushby, ‘Design and verification of secure systems’, ACM SIGOPS 

Oper. Syst. Rev., vol. 15, no. 5, pp. 12–21, Dec. 1981, doi: 

10.1145/1067627.806586. 



 57 

[23] A. Ltd, ‘TrustZone for Cortex-M – Arm®’, Arm | The Architecture for the 

Digital World. Accessed: Nov. 01, 2023. [Online]. Available: 

https://www.arm.com/technologies/trustzone-for-cortex-m 

[24] ‘AMD Secure Encrypted Virtualization (SEV)’, AMD. Accessed: Nov. 01, 

2023. [Online]. Available: https://www.amd.com/en/developer/sev.html 

[25] ‘PowerDVD - Award-Winning Blu ray & 8K Media Player for Windows’. 

Accessed: Nov. 01, 2023. [Online]. Available: 

https://www.cyberlink.com/products/powerdvd-ultra/spec_en_US.html 

[26] ‘SAP : Security vulnerabilities, CVEs’. Accessed: Nov. 01, 2023. [Online]. 

Available: https://www.cvedetails.com/vulnerability-list/vendor_id-

797/SAP.html?page=1&order=1&trc=1395&sha=e62d8a2c3b36760650ea919

de531215046da3593 

[27] A. S. Rajasekaran, M. Azees, and F. Al-Turjman, ‘A comprehensive survey 

on blockchain technology’, Sustain. Energy Technol. Assess., vol. 52, p. 

102039, Aug. 2022, doi: 10.1016/j.seta.2022.102039. 

[28] ‘Fabric Private Chaincode | IBM Research’. Accessed: Sep. 21, 2023. [Online]. 

Available: https://research.ibm.com/projects/fabric-private-chaincode 

[29] ‘Complete Your Web3 Journey With Decentralized Storage’. Accessed: Nov. 

01, 2023. [Online]. Available: 

https://crust.network/?ref=cms.polkadot.network 

[30] ‘Zondax: Secure Blockchain R&D Solutions’. Accessed: Nov. 01, 2023. 

[Online]. Available: https://zondax.ch 

[31] ‘Automata - Modular attestation layer for Web3’. Accessed: Nov. 01, 2023. 

[Online]. Available: https://www.ata.network/ 

[32] A. Brenzikofer, ‘Have a TEE with Polkadot’, Polkadot Network. Accessed: 

Sep. 21, 2023. [Online]. Available: https://medium.com/polkadot-

network/have-a-tee-with-polkadot-7ea052e4d69a 

[33] ‘integritee-network/substraTEE’. Integritee Network, Feb. 04, 2023. 

Accessed: Nov. 01, 2023. [Online]. Available: https://github.com/integritee-

network/substraTEE 

[34] D. G. Wood, ‘POLKADOT: VISION FOR A HETEROGENEOUS MULTI-

CHAIN FRAMEWORK’. 

[35] S. van Schaik et al., ‘SoK: SGX.Fail: How Stuff Gets eXposed’. 

[36] S. Network, ‘Secret Network’. Accessed: Nov. 01, 2023. [Online]. Available: 

https://scrt.network 

[37] ‘Stale Data Read from xAPIC / CVE-2022-21233 / INTEL-SA-00657’. 

Accessed: Nov. 01, 2023. [Online]. Available: 

https://www.intel.com/content/www/us/en/developer/articles/technical/sof

tware-security-guidance/advisory-guidance/stale-data-read-from-xapic.html 

[38] ‘INTEL-SA-00615’, Intel. Accessed: Nov. 01, 2023. [Online]. Available: 

https://www.intel.com/content/www/us/en/security-center/advisory/intel-

sa-00615.html 

[39] A. Klenik and I. Kocsis, ‘Porting a benchmark with a classic workload to 

blockchain: TPC-C on hyperledger fabric’, in Proceedings of the 37th 



 58 

ACM/SIGAPP Symposium on Applied Computing, in SAC ’22. New York, 

NY, USA: Association for Computing Machinery, Május 2022, pp. 290–298. 

doi: 10.1145/3477314.3507006. 

[40] ‘Introduction to Intel® SGX Sealing’, Intel. Accessed: Oct. 28, 2023. [Online]. 

Available: 

https://www.intel.com/content/www/us/en/developer/articles/technical/int

roduction-to-intel-sgx-sealing.html 

[41] ‘Code Sample: Intel® Software Guard Extensions Remote Attestation...’, 

Intel. Accessed: Oct. 28, 2023. [Online]. Available: 

https://www.intel.com/content/www/us/en/developer/articles/code-

sample/software-guard-extensions-remote-attestation-end-to-end-

example.html 

[42] ‘Deprecated Technologies - 001 - ID:655258 | 12th Generation Intel® CoreTM 

Processors Datasheet, Volume 1 of 2’. Accessed: Oct. 28, 2023. [Online]. 

Available: https://edc.intel.com/content/www/us/en/design/ipla/software-

development-platforms/client/platforms/alder-lake-desktop/12th-generation-

intel-core-processors-datasheet-volume-1-of-2/001/deprecated-technologies/ 

[43] M. Brandenburger, C. Cachin, R. Kapitza, and A. Sorniotti, ‘Trusted 

Computing Meets Blockchain: Rollback Attacks and a Solution for 

Hyperledger Fabric’, in 2019 38th Symposium on Reliable Distributed Systems 

(SRDS), 2019, pp. 324–32409. doi: 10.1109/SRDS47363.2019.00045. 

[44] ‘fabric-rfcs/images/fpc/full-detail/fpc-key-dist.png at main · 

hyperledger/fabric-rfcs’, GitHub. Accessed: Oct. 31, 2023. [Online]. Available: 

https://github.com/hyperledger/fabric-rfcs/blob/main/images/fpc/full-

detail/fpc-key-dist.png 

[45] ‘Rollback protection Extension (aka Trusted Ledger) · Issue #484 · 

hyperledger/fabric-private-chaincode’, GitHub. Accessed: Oct. 31, 2023. 

[Online]. Available: https://github.com/hyperledger/fabric-private-

chaincode/issues/484 

[46] ‘fabric-private-chaincode/ecc_enclave/enclave/shim.h at main · 

hyperledger/fabric-private-chaincode’, GitHub. Accessed: Oct. 31, 2023. 

[Online]. Available: https://github.com/hyperledger/fabric-private-

chaincode/blob/main/ecc_enclave/enclave/shim.h 

[47] D. P. Bovet and P. Crescenzi, Introduction to the theory of complexity. GBR: 

Prentice Hall International (UK) Ltd., 1994. 

[48] T. Elgamal, ‘A Public Key Cryptosystem and a Signature Scheme Based on 

Discrete Logarithms’, IEEE Trans. Inf. THEORY, no. 4, 1985. 

[49] V. Shoup and R. Gennaro, ‘Securing threshold cryptosystems against chosen 

ciphertext attack’, in Advances in Cryptology — EUROCRYPT’98, K. 

Nyberg, Ed., in Lecture Notes in Computer Science. Berlin, Heidelberg: 

Springer, 1998, pp. 1–16. doi: 10.1007/BFb0054113. 

[50] C. Cachin, ‘Distributed Cryptography’. 2012. 

[51] A. Shamir, ‘How to share a secret’, Commun. ACM, vol. 22, no. 11, pp. 612–

613, Nov. 1979, doi: 10.1145/359168.359176. 



 59 

[52] R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin, ‘Secure Distributed Key 

Generation for Discrete-Log Based Cryptosystems’, J. Cryptol., vol. 20, no. 1, 

pp. 51–83, Jan. 2007, doi: 10.1007/s00145-006-0347-3. 

[53] M. Naor and M. Yung, ‘Public-key cryptosystems provably secure against 

chosen ciphertext attacks’, in Proceedings of the twenty-second annual ACM 

symposium on Theory of Computing, in STOC ’90. New York, NY, USA: 

Association for Computing Machinery, prilis 1990, pp. 427–437. doi: 

10.1145/100216.100273. 

[54] N. Schmid, ‘noahschmid/threshold_elgamal_python’. Oct. 26, 2023. 

Accessed: Nov. 01, 2023. [Online]. Available: 

https://github.com/noahschmid/threshold_elgamal_python 

[55] ‘squishytiramisu/DCBTEE: Fulfilling Data Comprehensibility on Blockchain 

with Trusted Execution Environments prototype implementation’, GitHub. 

Accessed: Nov. 01, 2023. [Online]. Available: 

https://github.com/squishytiramisu/DCBTEE 

[56] ‘hyperledger-labs/fabric-smart-client: The Fabric Smart Client is a new Fabric 

Client that lets you focus on the business processes and simplifies the 

development of Fabric-based distributed application.’ Accessed: Nov. 01, 2023. 

[Online]. Available: https://github.com/hyperledger-labs/fabric-smart-client 

[57] ‘Use Case Tracker – Hyperledger Foundation’. Accessed: Nov. 02, 2023. 

[Online]. Available: https://www.hyperledger.org/learn/use-case-tracker 

[58] K. Driscoll, B. Hall, H. Sivencrona, and P. Zumsteg, ‘Byzantine Fault 

Tolerance, from Theory to Reality’, in Computer Safety, Reliability, and 

Security, S. Anderson, M. Felici, and B. Littlewood, Eds., in Lecture Notes in 

Computer Science. Berlin, Heidelberg: Springer, 2003, pp. 235–248. doi: 

10.1007/978-3-540-39878-3_19. 

 



 60 

Appendix 

Benefits of using blob storage under one key: As mentioned earlier, there 

are not just drawbacks to using one key pair to store the entire private state of 

our application. One might argue that in a strict confidentiality application, the 

key management of storage objects could also create spots where information 

could unwantedly leak. Since keys are unencrypted even in the privately stored 

objects, a participant could just look at the key-value storage, and notice that 

another object has appeared with a certain key. If we are not careful, we might 

leak sensitive information. For instance, let’s imagine that an organization stores 

a person’s organization related data with the key to the persons ID, since we have 

access to the chaincodes, we obtain this information, and a certain transaction 

happened that resulted in the person’s data changed. This solution completely 

hides any relationships between keys and data from the view of the key-value 

storage. 

Handling ledger state change visibility: In a model where I only store one 

key-value pair on the encrypted key-value store, I could simply use a nonce, given 

as an encrypted argument, or a hash generated from the transaction arguments 

to modify this unreadable nonce value in the data structure. If we require every 

transaction to modify this value, a change in the network would not be visible. 

 

 

30. Figure Google searches for the term confidential computing 

Intel SGX Vulnerability mitigation strategies: I recommend [35] Section 3 


