
Budapest University of Technology and Economics
Faculty of Electrical Engineering and Informatics

Department of Measurement and Information Systems

Abstract Test Data Generation for
Autonomous and Distributed Systems

TDK report

Author:

Ágnes Barta
Advisors:

Zoltán Szatmári Oszkár Semeráth András Vörös
Research Associate PhD Student Research Associate

October 25, 2014

Kivonat

Napjainkban kiemelt feladat, hogy a modern szoftverrendszerek helyességét biztosítsuk, valamint
a bennük felmerülő tervezési és implementációs hibákat felderítsük. Komplex autonóm és elosz-
tott rendszerek vizsgálata sok kihívást rejt magában. Ennek egyik fő oka, hogy ezen rendszerek
és környezetük felépítése idővel változik, ami a lehetséges rendszermodellek számának jelentős
növekedését idézheti elő. A szoftvertesztelés egy olyan verifikációs módszer, amelyet széles kör-
ben alkalmaznak különféle hibák felderítésére, azonban bonyolult rendszerek ellenőrzése esetén
nehéz minden számunkra fontos konfigurációs esetet lefedni. A munkámban az autonóm rend-
szerek tesztelésének támogatását céloztam meg.

A dolgozatom célja egy olyan módszer kidolgozása volt, amely képes absztrakt tesztadatok ge-
nerálására. Az általam készített algoritmus a tesztadatok egy olyan halmazát állítja elő, ami
felhasználható konfigurációs beállításként, illetve tesztelés alatt lévő rendszerek bemeneteként
szolgál. Az általam javasolt módszer képes koncepcionálisan és strukturálisan különböző “ab-
sztrakt” tesztadatokat előállítani, amelyek lefedik a rendszer összes lehetséges felépítését. Ezen
“absztrakt” tesztadatok annyiban térnek el a hagyományos tesztadatoktól, hogy az objektumok
attribútumai nem konkrét értékeket tartalmaznak, hanem a strukturális viszonyokat fejezik ki.
A módszert egy testreszabható paraméterező nyelv támogatja, aminek a segítségével a tesztkon-
figurációk számunkra releváns részeire tudunk összpontosítani.

A dolgozatomban bemutatok egy tesztgeneráló keretrendszert, ami olyan rendszerek tesztelését
támogatja, amelyek metamodellel, példánymodellekkel és kényszerekkel definiálhatóak. A teszt-
generálási folyamat a következő lépésekből áll: 1) a rendszer definiálása és a tesztadat kiválasztási
kritériumok meghatározása, 2) “absztrakt” tesztadat-objektumok generálása, 3) az objektumok
attribútum értékeinek a konkretizálása. A tesztgenerálás támogatásához definiáltam egy nyel-
vet, amellyel a tesztleírások könnyedén specifikálhatóak. A nyelv sok paraméterezési lehetőséget
kínál, melyek segítségével az algoritmus finomhangolható. Az algoritmus bemeneteit elsőrendű
logikai problémaként formalizáltam, amely megoldását korszerű logikai következtetők szolgál-
tatják.

Az elkészült eszközt az Eclipse környezetbe integráltam, ami képes egy metamodell segítségével
definiált, OCL (Object Constraint Language) és egyéb konzisztencia kényszerekkel ellátott rend-
szermodellt, illetve a kezdeti konfigurációt logikai problémává transzformálni. A logikai prob-
lémát az Alloy Analyzer képes értelmezni, megoldani és a logikai axiómákat kielégítő mod-
ellt generálni. Az eszközöm az Alloy Analyzer által előállított modellt visszaalakítja egy olyan
példánymodellé, ami megfelel az eredeti metamodellnek és így később konkrét tesztekhez rend-
szermodellként felhasználható. A dolgozatomban a módszer egy alkalmazási lehetőségét egy au-
tonóm robotokkal és egy elosztott rendszerekkel foglalkozó esettanulmányon keresztül mutatom
be.

1

Abstract

Nowadays, complex software systems require deep analysis to ensure correctness or to find
possible design and implementation flaws. Testing is a widely used verification technique to find
these problems. However, the testing of systems like autonomous systems or distributed systems
is a challenging task, as their structure evolves with time, thus leads to a potentially infinite
number of different system configurations and structures. It is difficult to cover the relevant
settings by testing. My work focuses on the complex task of testing distributed autonomous
systems.

The first goal is a framework being able to generate abstract test data. The output of the
algorithm is a diverse set of test data which is used as possible test configuration settings and
as input data of the System Under Test (SUT). My approach is able to produce a wide range of
conceptionally different abstract test data which is highly needed to cover the full scale of the
possible system behaviours and configurations. A highly customisable parametrisation language
supports the focusing on the relevant fragment of test configurations.

In this report I introduce a test generation framework to support the testing of systems described
by metamodels, constraints and instance models. The test generation procedure is built from
the following steps: 1) the description of the system and the test data selection criteria 2) the
generation of various abstract tests 3) the concretization of the abstract tests to structurally
different models of the metamodel (interpreted as test data). I introduce a language for describing
test goals over arbitrary metamodels. In addition other parameters can also be defined to fine
tune the algorithms. I formalized the input artifacts of the algorithm as a First Order Logic
problem, which can be solved by advanced logic reasoners.

A prototype tool is successfully integrated to the Eclipse modelling tool, which is able to trans-
form the system description defined in a Metamodel, OCL (Object Constraint Language) invari-
ants, consistency constrains and the initial configurations to a logic problem, which is solved by
the Alloy Analyzer. The generated logic models are transformed back to the standard models of
the metamodel. Those models can be immediately used as test inputs. I demonstrate the use-
fulness of the approach with two case studies from the autonomous robotic and the distributed
system domains.

2

Contents

1 Introduction 6

1.1 Problem statement . 6

1.2 Research context . 6

1.3 Objectives . 7

1.4 Contribution . 7

1.5 Previous works . 8

1.6 Structure of the report . 9

2 Background 10

2.1 Test data generation workflow . 10

2.2 Mathematical logic . 11

2.2.1 First order logic . 11

2.2.2 Prover and solver techniques . 11

2.3 Modeling background . 13

2.3.1 Metamodeling . 13

2.3.2 Well-formedness constraints . 15

2.4 Partial Snapshot . 15

2.5 Related work . 17

3 Motivating scenarios and requirements 19

3.1 Test data generation for R3-COP . 19

3.1.1 Metamodel . 20

3.2 Distributed system domain . 21

3.2.1 Metamodel . 21

3

4 Overview of the approach 23

4.1 Test generation process . 23

4.2 Input for the test data generation process . 24

4.2.1 DSL specification . 24

4.2.2 Test data generation parameters . 24

4.2.3 Discriminator definition . 25

4.2.4 Test criteria description language . 26

5 Mapping DSLs to Alloy formulae 28

5.1 Foundation of the mapping . 28

5.2 Mapping metamodels . 29

5.2.1 Type mapping . 29

5.2.2 Type hierarchy . 29

5.2.3 References . 30

5.2.4 Multiplicity . 30

5.2.5 Inverse edges . 31

5.2.6 Containment . 31

5.2.7 Attributes . 32

5.3 Mapping Partial Snapshots . 32

5.4 Mapping OCL invariants . 34

5.4.1 An overview of OCL mapping . 34

5.4.2 Basic expressions . 35

5.4.3 Collections . 36

5.4.4 Collection operators . 37

5.5 Abstract test data generation approach . 39

6 Implementation 41

6.1 Architecture . 41

6.1.1 Details . 42

4

7 Case-studies 44

7.1 Test data generation for laser guided vehicles . 44

7.1.1 Description . 44

7.1.2 Initial Partial Snapshot . 45

7.1.3 Parametrization . 46

7.1.4 Generated test data . 46

7.1.5 Negative partial snapshot . 47

7.2 Model generation workflow in the distributed system domain 47

7.2.1 Description . 47

7.2.2 Initial Partial Snapshot . 49

7.2.3 Parametrization . 49

7.2.4 Generated test data . 50

7.2.5 The procedure of the leader election . 51

8 Experiments and runtime performance 53

9 Conclusions and future work 54

Bibliography 57

5

Chapter 1

Introduction

In order to be able to test a complex system, many artifacts are required. One of them is the
possible test configurations and test data. The development of different set of test data is still a
challenging task: these inputs of the testing workflow are required to be different with respect
to their structure and other characteristics.

Generative environments like the Eclipse Modeling Framework (EMF) [31] supports the devel-
opment of models extended by well-formedness constraints and design rules using for example
Eclipse OCL [38]. These environments make the specification of the abstract test criteria of the
generated test data efficient.

1.1 Problem statement

Systematic testing is a complex, time consuming and expensive task [24]. Model-based testing
provides a systematic method for representing test data in the form of models. The first step is
the development of the domain where the behaviours are interpreted. This covers the metamodel
and the corresponding constraints, which is the language of the possible test data. This way a
domain specific language is constructed, which is the input of the test data generation approach.
Based on this specification, test data can be derived as instance models of the input metamodel.
This makes it challenging to generate test cases automatically since state-of practice metamodels
are highly complex. Furthermore, a naive algorithm to generate test cases according to a given
source metamodel will produce many irrelevant or inconsistent test models; therefore, a test case
generator must be highly intelligent.

Another challenging task in this procedure is to compare the generated target model for a given
test case with the oracle. Both the oracle and the target are models. Comparing the oracle
and target can be done either (1) syntactically, in which case, the comparison algorithm must
compare two graphs. This task can be traced back to the graph isomorphism problem, which
is NP-complete, or (2) semantically in which case, the comparison algorithm must have deep
knowledge of the semantics of the target language.

1.2 Research context

Testing is an important requirement in the design of critical systems prescribed by many stan-
dards. Model-based test data generation is frequently used in the design of critical systems. The
process of the model-based test data generation is shown in Figure 1.1. The steps of model-based
test data generation [35]:

6

Requirements

Test Selection
Criteria

Model

Test Case
Specification

Test Cases SUT

Figure 1.1: The Process of Model-Based Test Data Generation

I. A model based representation of the SUT is developed according to the requirements and
the specification documents.

II. The test selection criteria are defined. Test selection criteria is used to navigate the search
during the generation procedure.

III. Test selection criteria are transformed into test case specification which formalises the
notion of test selection criteria and render them operational.

IV. With using the test case specification and the model a test suite is generated.

V. After the test cases are generated, the next step is to prepare them to be runnable. Usually
the models are more abstract than the system under test, so the generated test cases have
to be mapped to the implementation level.

My goal was automatize the stages III. and IV. of the model-based test data generation process.

1.3 Objectives

The main objective of this work was to develop an automated framework which is able to generate
abstract test data. The output of the algorithm is a diverse set of test data which is used as
possible test configuration settings and as input data of the System Under Test (SUT). The steps
of test data generation procedure are: (1) definition of the system (using metamodels, instance
models and well-formedness constraints) and the test data selection criteria (2) generation of
a set of various abstract test data (3) concretization of the abstract test data to structurally
different models of the metamodel.

1.4 Contribution

I propose an approach for the abstract test data generation of domain specific languages which
covers the handling of metamodels, well-formedness constraints and instance models. The essence
of the approach is to generate structurally different abstract test data by mapping the test
generation problem to a set of logical axioms. This logic problem can be solved by the Alloy
Analyzer [14] which uses a SAT solver as a back-end solver. I also propose powerful approxima-
tion techniques to handle the mapping of complex language constructs [26]. It is carried out by
completing a prototypical initial instance models (called partial snapshots) in accordance with
the DSL specification. The benefit of this approach is that this approach supports the use of
more than one metamodel and more instance models of the metamodels.

I implemented also a research prototype tool to demonstrate the practical feasibility of the
approach. The tool takes DSL specifications in the form of EMF models, which is an open

7

source technology widely used in the industry. Model queries are specified using the standard
Object Constraint Language (OCL) [23]. I integrated the Alloy Analyzer, which provides us
various specification language, it uses SAT solvers in the background which are removable.

The tool has been successfully applied in case studies of industrial projects which come from
the laser guided vehicle and distributed system domains.

1.5 Previous works

In this section I overview my contribution compared to my former TDK report. In Figure 1.2
the most important components of the two works are presented. In our previous work [6] we
created a Language Validation Framework which can analyse different language properties of
DSL specifications and additionally it supports concrete attribute value generation for partial
models based on different well-formedness constraints. This model generation method was used
to generate concrete test data for an existing abstract test data. For this purposes we used an
SMT solver back-end (Z3 SMT solver [8]). The DSL specification was translated to SMT axioms
and the output of the Z3 was interpreted as language properties or concrete test data.

In this report I introduce a new abstract test data generation process, where abstract test data
is defined by structural requirements. I implemented a Test generation framework to overcome
this problem since it is much more complex task than formalizing “simple” attribute constraints
based on integer values (concretization). To solve this, the DSL specification is now translated to
Alloy models and axioms which can be solved by the Alloy Analyzer [14]. The Alloy Analyzer
uses different SAT solvers as back-end solver: this way I could fully exploit the efficiency of
modern SAT solver algorithms and technology.

I also extend the abstract test data generation methodology with feed back loop which is im-
plemented in the Multiple Model Generator component. This means that the submodels of the
generated result can be fed back to the model generation process and based on this I can gener-
ate structurally different models in the upcoming iterations. In this work the equivalence of the
generated test data is also formalized with which I can define the structurally difference of the
models (equivalence classes).

Additionally, in this report I present a Test Criteria Description language which is used to specify
a logical combination of the elements of the DSL specification and that way the requirements of
the abstract test data generation can be fine-tuned.

The goal of the two work was different, while the combination of them provides an integrated
test data generation framework (e.g. the generated abstract test data can be concretized and
finally ready-to-use test data can be produced).

Reasoning Context

Testygeneration
framework

Language validation
framework

Multiple Model Generator

BackyEndyReasoner:y
Alloy Analyzer

BackyEndyReasoner:y
Z3ySMT-Solver

Current Contribution

Previous work

Figure 1.2: Differences of the TDK reports

8

1.6 Structure of the report

The rest of the report is structured as follows. In Chapter 2 I summarize the most important
technical and theoretical background of my work. In Chapter 3 the motivating scenarios are
presented. Then in Chapter 4 I give a brief overview of the proposed abstract test data generation
approach. The features of the mapping are presented in Chapter 5, then Chapter 6 introduces the
details of the implementations. The Chapter 7 presents the details of the industrial case-studies.
Then in Chapter 8 I examine the scalability issues. Finally, I conclude my work in Chapter 9.

9

Chapter 2

Background

In this chapter the most important theoretical concepts are presented which are necessary for
understanding the proposed approach. First the abstract test data generation workflow and the
definitions of modeling, the properties of the metamodels and instance models are introduced.
Afterwards the well-formedness constraints and components (OCL rules) are presented which
can represent additional rules on the models. Finally the mathematical problem solvers, the
problem classes (SAT, CSP, SMT) are shown then the related work is presented.

2.1 Test data generation workflow

The goal of my work is to create a test data generation framework for supporting the automatic
generation of abstract test data. In this approach test data is constructed in the form of models,
that represent the input for the testing processes (e.g., represents a context of an autonomous
agent or distributed system). Abstract test data in my approach is a test data, which focuses
only on the structural properties and do not take care on concrete attribute values.

The process of the abstract test data generation is shown in Figure 2.1. Test data generation is
based on the artifacts that define the domain-specific modeling language (DSL) of the abstract
test data models (metamodel and constraints) and the required partial snapshot patterns. All
of these inputs are translated to a constraint solving problem in the Model generator component
and based on different type of back-end solvers (e.g. SAT, SMT solver) the axioms are solved.
The solver process can be parametrized additionally by the information of the Parametrization
component. The solver produces a set of logical axioms which can be translated to a valid
instance model, that can be interpreted as abstract test data.

Parametrization

Generated Models

DSL Specification

Valid ModelModel Generator

Metamodels ConstraintsPartial Snapshots

Figure 2.1: Test data generation workflow

10

2.2 Mathematical logic

In this part the formalism of the FOL, the classes of problem and their provers are presented.

2.2.1 First order logic

First order logic (FOL) is a formal language used in mathematics, philosophy and computer
science. In FOL the domain of the model is a set of individuals which names are domain elements.
The objects are in relations each other. So the FOL contains objects, relations and symbols
which represent functions. The types of symbol are: (1) constant symbol which symbolizes the
object, (2) predicate symbol which signs the relation and (3) function symbol which refers to the
functions. All predicates and function symbols have arity. The semantics connect the sentences
to the model which is able to determine the truth. To do this an interpretation is needed which
link the real objects and the symbols.

The syntax of the FOL in Backus-Naur Form:

| (Sentence Connector Sentence)
| Quantifier Variable, . . . Sentence
| ¬Sentence

Atomic Sentence → Predicate(Term) | Term=Term

Term → Function(Term, . . .)
| Constant
| Variable

Connector → =⇒ |
∧

|
∨

| ⇔
Quantifier → ∀ | ∃
Constant → A | X
Variable → a | x

Predicate → T | isAbstract | . . .
Function → att() | parent() | . . .

The sentences are connected to the model by the semantics, which is able to evaluate the truth
value of a sentence on a model. The syntax elements are introduced in the following. The term
is a logic expression which refer to an object. The terms and the predicate symbols are the
components of the atomic sentences. To create complex sentences, logical connectives are used.
In the FOL the sets of the objects can be formulated logical expressions thanks to the quantifiers.
It has two types: the universal quantifier (∀) and the existential quantifier (∃). Variable is followed
by quantifier, which symbolizes the objects. The ∀ x P(x) means that P is true for every object
x. The ∃ x P(x) means that exists x which makes P true. In the FOL equality symbol can be
used to create statement.

2.2.2 Prover and solver techniques

In this part the problem classes (SAT, SMT, CSP) and their solvers are introduced.

11

Satisfiability Problem (SAT)

To define the SAT language the Boole-formula should be introduced. The Boole-formula is built
up from 0, 1 logical constants, 0-1 valued variables (x1, x2, . . .xn), their negated expressions,
the

∧
(“and”) and the

∨
(“or”) operators. The variables and their negated expressions are the

literals. The result of an evaluated formula is 0 or 1. The Boole-formula is satisfied if their
variables have an evaluation where the value of the formula is 1. The SAT is the language of
the satisfiable Boole-formulae. The SAT language is in the NP class: a good evaluation is the
witness of satisfiability of the formula. The SAT has subsets which the conclusion is effective e.g.
the 2-SAT is polynomial. Generally, the SAT is an NP-complete language, which is evidenced
by S.A. Cook and L. Levin. The SAT solver searches substitution values which make the Boole
functions true, an example SAT solver is the MiniSat [22].

Constraint Satisfaction Problem (CSP)

The formal definition of the CSP problem are formulated by the set of variables (X1, X2 . . .Xn)
and constraints (C1, C2, . . .Cm). All Xk variables have a Di domain which defines the possible
values. Every Cl constraint restrict the subset of variables which define the value combination
of the subset. A problem state is defined by the variable-value assignment. The assignment is
complete if every variable is in the subset. This is a solution of the CSP. Usually CSPs have
finite domain and its variables are discrete. The Boole CSP is the special case of NP-complete
problems. For example the eight queens puzzle is a CSP. CSP solver is e.g. the Sugar [2].

Satisfiability Modulo Theories (SMT)

The SMT problem is a decision problem for logical formulae with combinations of background
theories expressed in classical first order logic with equality. It is different from the SAT because
predicates over suitable set of non-binary variables are used to. SMT formulae provide richer
language than is possible with the SAT formulae.

SMT is used to software verification, planning, model checking and automated test data gen-
eration. The interest theories in these applications include formalizations of arithmetic, arrays,
algebraic data types and functions. The SMT solvers use the standard SMT-LIB [3] language.
SMT solvers are e.g. the Alt-Ergo [20], Barcelogic [30], Beaver [16], CVC4 [1], Mistral [33],
SONOLAR [12], Yices [4], Z3 [8].

Alloy Analyzer

The Alloy language is a simple but expressive logic based language which is inspired by the Z
specification language and Tarski’s relational calculus [14]. Alloy’s syntax is designed to make
it easy to build models. The Alloy model is a collection of constraints that describes the set of
structures.

The Alloy language is interpreted by the Alloy Analyzer software. This is a solver which takes
the constraint of the model and finds the structures which are satisfy them. It is reduce the code
to SAT problem which can be resolved by different SAT solvers e.g. Kodkod [34] which is a new
model finding engine that optimizes the reduction.

The Alloy provides a logic language for describing graph-structures and constraints using high
order logic and relation algebra. The language of Alloy contains various language elements,

12

paragraph ::= factDecl | enumDecl | sigDecl
sigDecl::= sigQual* “sig” name + [“extends ref”]“{” decl,* “}” [block]

sigQual ::= “abstract” | “lone” | “one” | “some” | “private”
enumDecl ::= “enum” name “{” enumLiteralName ("," enumLiteralName)* “}”
factDecl ::= “fact” “[”name“]” block

block ::= “{“ expr* “}”
expr ::= | quant decl + blockOrBar

| unOp expr
| expr binOp expr
| expr arrowOp expr
| expr [“!”|“not”]compareOp expr
| expr (“=>”|“implies”) expr “else” expr
| expr “[” expr,* “]”
| number
| “-” number
| “none”
| “Int”
| “(” expr “)”
| block
| “{” decl,+ blockOrBar “}”

quant ::= “all” | “no” | “some” | “lone” | “one” | “sum”
decl ::= { “private” } { “disj” } name,+ “:” { “disj” } expr

unOp ::= “!” | “not” | “no” | “some” | “lone” | “one” | “set”| “#” | “∼” | “*” | “∧”
binOp ::= “||” | “or” | “&&” | “and” | “&” | “<=>” | “iff” | “=>” | “implies” | “+”

| “-” | “.”
compareOp ::= “=” | “in” | “<” | “>” | “=<” | “>=”
blockOrBar ::= block
blockOrBar ::= “|” expr

Figure 2.2: Language elements of Alloy

but in this report only a subset of these elements are used. The most important elements are
presented in Figure 2.2. The generated Alloy code has to be completed with a run command,
with which the number of the generated objects can be defined.

2.3 Modeling background

The inputs of the test data generation framework are metamodels and instace models. To create
an advanced modeling environment, the metamodel can be augmented with well-formedness
constraints, which capture additional restrictions any well-formed instance model needs to re-
spect. Such constraints can be defined as OCL invariants. In order to illustrate my abstract
test data generation technique, I use an autonomous robotic and a distributed system domains
which are defined with EMF metamodels, OCL constraints over the EMF metamodel.

2.3.1 Metamodeling

Metamodels define the main concepts, relations and attributes of the target domain to specify
the basic structure of the models. In this report, the Eclipse Modeling Framework (EMF) [31]
is used for domain modeling.

13

Figure 2.3: Metamodel of the R3Cop project

A simplified metamodel for an autonomous robotic domain is shown in Figure 2.3. The Layout
element represents the root of a model, which contains each Station and it has a xSize and
ySize attributes which are defined the size of it. Stations have a x and a y attributes which
represents the coordinates of the Station, a connected and a required references. The Station
contains PlacedObjects which is the supertype of the Forklift, Package and Obstacle. The Package
has a size attribute which value should be Big or Small. The Package has a server and a target.
The Forklift is the supertype of StrongForklift. The Forklift has tasks and with its references the
distances between the Forklift and the PlacedObject are represented.

The formal definition of the EMF model elements [26]:

� Classes (CLS): In this formalism the concepts are represented by EClasses (which are
simply referred as classes) that can be instantiated to EObjects (or objects). The meta-
model can specify finite types with predefined set of {l1, . . . , ln} literals by EEnums. For
both classes and enums, if an e is instance of a T type it is denoted as T(e).

� Generalization (GEN) can be specified between two classes to express that a more
specific (child) class has every structural feature of the more general (parent) class. From
a typing perspective, for all metamodel classes abst, spec with super(abst, spec), we have
∀e : spec(e) =⇒ abst(e).

� Abstract (ABS): If a class is defined as abstract, it is disallowed to have direct instances,
i.e. for all abstract class abs and an instance o with isAbstract(abs)∧ abs(o), there exists a
non-abstract subclass cls of abs with o with ¬isAbstract(cls) ∧ cls(o)

� References (REF) EReferences defined between classes capture the relations of the do-
main. When two o and t objects are in a relation r, an EReference (or an EAttribute) is
instantiated leading from o to t denoted as r(o, t).

� Attributes (ATT) EAttributes enrich the expressiveness of classes with values of prede-
fined primitive types like integers, strings, etc. Each attribute of a class needs to have a
valid value, thus ∀o, att∃¬v : att(o, v). Metamodels may also define the default value def of
an attribute.

� Type compliance (TC) Type compliance requires that for any relation r(o, t), its source
and target objects o and t need to have compliant types.

� Multiplicity (MUL) The multiplicity of structural features can be limited with upper
and lower bound in lower..upper form, i.e. for any relation r leading from o, we have
lower ≤ |{t : r(o, t)}| ≤ upper.

14

� Containment (CON) EMF instance models are arranged into a strict containment
hierarchy, which is a directed tree along relations marked in the metamodel as con-
tainment. Any non-root model element has exactly one parent as container. Formally,
∀t∃¬o : nonRoot(t) =⇒ parent(t, o).

� Inverse (INV) Two parallel but opposite directional inverse reference can be defined as
inverse of each other to specify that they always occur in pairs. This means that for all pairs
of references forw and back that inv(forw, back) we have ∀o, t : forw(o, t) ⇐⇒ back(t, o).

A model M is a valid instance of a metamodel META (denoted with M |= META) if all the
corresponding constraints above are satisfied, i.e.

M |= CLS,GEN,ABS,REF,ATT,TC,MUL,CON,INV.

2.3.2 Well-formedness constraints

The Object Constraint Language (OCL) [10] [9] [23] is a declarative language, that extends the
structural metamodels using extra constraints. In this report I deal with the subset of invariants,
which are logical expressions that need to be satisfied at anytime during the lifecycle of an object.
These expressions represent constraint over the model and a constraint solving technology can
be used to add extra constraints to the metamodels and based on the semantic, unspecified
missing attributes could get a value, relations or objects can be added to the model. The queries
and the other types of the OCL expressions are not suitable for purpose, because they cannot
be used as constraints and support model or attribute value generation.

Structural well-formedness (WF) constraints (aka design rules or consistency rules) complement
metamodels with additional restrictions have to be satisfied by a valid instance model, so with
these we can accurately specify the test data. Such constraints can be defined by query languages
like OCL invariants, in fact, my approach supports this formalism. In many practical cases, well-
formedness constraints are defined by queries which capture ill-formed model structures that are
disallowed to have a match in a valid model. In the presence of a set WF of well-formedness
constraints, a model M is called valid if M |= META ∧WF.

Example 1 A WF constraint captures that size of the Layout object is bigger than 0. This
OCL constraint is: context Layout: self.xSize>0 and self.ySize>0.

2.4 Partial Snapshot

I argue in this report that traditional (instance) models are not sufficiently flexible means to
serve as inputs and outputs of the test data generation process. For instance, an abstract class
is not allowed to have instances in a regular domain model (e.g. the model editor may prohibit
to construct such an instance). However, allowing the use of an abstract instance can highly
abbreviate many test data specification retrieved by a solver. Similarly, a small model frag-
ment, which highlights one special property of the problem may still violate other constraints.
Therefore, in the work, I use a more permissive instance level formalism called partial snapshots
(PS) as an additional input or output of DSL validation where certain language constraints are
relaxed. During a typical validation run, such a partial snapshot will be extended with further
information to obtain a compliant instance model (called completed model) [26].

15

Definition 1 (Partial snapshot) A partial snapshot PS is a valid instance of a meta-
model META (denoted as PS |= META) when all the following (typing-specific) constraints
above are satisfied: PS |= CLS,GEN,REF,TC.

I briefly describe below which constraints are dropped of the definition of regular instance models.

1. Undefined attributes: In a normal EMF instance object each attribute has a value (or
presented default value), while a partial snapshot may contain attributes with undefined
values.

2. Abstract objects: Partial snapshots allow to instantiate abstract EClasses. Such instances
are handled similarly to regular objects thus they can have attributes and references. When
completing a PS into a valid instance model, the type of a non-concrete object has to be
refined in to a concrete subtype.

3. Unconnected partitions: While EMF requires that an instance model is arranged in a strict
containment hierarchy, PSs allow to define instance models that are unconnected and
consist of multiple model fragments. Such model fragment will be completed during the
run by linking the partitions to a well-formed hierarchical containment tree.

4. Missing / extra edges: PSs may not contain references without their inverse relation coun-
terparts. Similarly, PSs may also violate multiplicity constraints.

5. New objects: A PS defines only an initial model structure which can be extended with
additional objects.

Example 2 Figure 2.4 shows four PSs generalized from instance models by removing certain
model elements.

architecture negative pattern

Figure 2.4: Partial snapshots with semantic modifiers

� architecture: This PS defines a core structure of an warehouse architecture. The instance
models must contain this PS.

� negative pattern: This PS contains two Forklifts which are positioned side by side. This PS
prohibit this structure.

16

Multiple PSs will be passed as an input parameter to the test data generation process (see in
Section 4.1) and the solver will try to construct a valid instance model which satisfies each of
them. However, there are multiple semantic modifiers for combining these PSs into a single valid
completed model which are discussed below (default modifier values are underlined).

1. Positive / Negative: A positive PS is an incomplete model that every output model has to
contain as a submodel. Formally, a model M satisfies a positive snapshot POS if there is a
match m along which POS can be matched as a query: M |= POS(m).
A negative PS has the opposite effect: if a model contains it as a submodel then it is invalid.
Thus a model M satisfies a negative snapshot NEG if there is no match m along which
NEG can be matched as a query: M 6|= NEG(m).

2. Injective / Shareable: In case of an injective PS, the objects of the snapshot have to be
mapped to different instance objects in the output model. Formally, M |= INJ(m) when
m is a query match with ∀o1, o2 ∈ INJ : INJ(m/o1) = INJ(m/o2) =⇒ o1 = o2 (where
INJ(m/oi) denote the match of query element oi in M).
In a shareable PS, multiple PS elements can be mapped into the same model object if it
satisfies the local conditions prescribed by each mapped PS element. Note, however, that
each PS is evaluated independently from each other, thus different injective PSs may share
objects in the output model.

3. Modifiable / Unmodifiable: A modifiable PS means that the reasoning process can add extra
objects and links or fill empty (undefined) attributes in the output model to satisfy the
PS.
An unmodifiable PS means that the reasoning process can only change the context of the
match of the PS (by adding/removing objects, links and setting attributes) but not in the
match itself. For instance, if two objects in the PS are not linked by a certain relation, they
need to remain unlinked in the result model. However, embedding the PS into a context
with newly created incoming or outgoing relations (where their source or target model
element is not in the match) is still allowed.

Example 3 Figure 2.4 contains several semantic modifiers for the partial snapshots:

� architecture: This PS can be embedded into an output model in accordance with modifiers
positive, injective and modifiable, which is the default semantics: arbitrary extensions are
allowed, but the instance model needs to contain at least three Station, a Layout and a
Forklift objects.

� negative pattern: This PS should be treated as negative, injective andmodifiable. A successful
match of this PS invalidates the output model.

2.5 Related work

Testing autonomous systems has become a very hot topic in recent years. As stated in a recent
paper [37], testing of these systems is still an open problem. My approach combines context-
based (model-based) testing and test data (instance model) generation algorithms. Here I show
the most important approaches for both of these two areas and present the main differences
compared to my integrated solution.

17

Testing approaches Most of the existing testing approaches lack of easy-to-use mechanisms
to express and formalize context-aware behaviour (although these mechanisms are a prerequisite
of requirements-based automated test generation and test evaluation). Most noticeably, in ex-
isting standard test description languages there is no support to express changes in the context
[36]. To overcome this problem of capturing test requirements, I defined a language which is
based on context models and scenario based behaviour specification.

Model generation approaches Model-driven frameworks provide different approaches to
define and generate model instances.

Formula[15] is tool for DSL validation and instance model generation. Based on a metamodel,
a partial instance model and a set of constraints and fixed rewriting rules, it aims to extend
the partial instance model. The basic ideas of my model generation approach are similar, but I
implemented multiple test data generation related features, like combination of partial instance
models. The technological difference is that it uses their own modelling language, while I support
the standard Eclipse technology, that is used in the industry.

There are several approaches and tools aiming to find a valid instance model for a specifica-
tion enriched with OCL constraints and SAT-based technologies [28, 5, 7, 19, 29]. While these
approaches provide instance model generation for an OCL enriched metamodel, my approach
supports initial partial models (see in Section 2.4) and an iterative framework of optimisation
purposes.

The idea of using partial models, which are extended to valid models also appears in [27, 15, 18].
These initial hints are provided manually to the model generation process. In my approach, these
models can be combined and also assembled from a previous run in an iterative test generation
algorithm. Partial models also share certain similarity with uncertain models [11], which are
used by the Alloy Analyzer [25] same as my approach.

There are also mappings from programming languages extended with OCL constraints to rea-
soners such as Testera [17] (from Java to Alloy) and Pex [21] (from C# to Z3).

18

Chapter 3

Motivating scenarios and
requirements

3.1 Test data generation for R3-COP

Figure 3.1

The industrial motivating scenario is the Artemis R3-COP Eu-
ropean Union research project that aims to support automated
test data generation for autonomous robots. The main goal of
this project to develop a model-based test data generation ap-
proach, that provides relevant test data for the industrial part-
ners (e.g. Elettric80).

The Elettric80 [?] company produces laser guided automatic
forklifts (Laser Guided Vehicle, LGV), which should operate in
a warehouse and fulfill safety and security requirements. The
goal is to test these LGVs using a black box testing method:
environments are generated (test data), during test execution
the test trace is recorded and finally the trace is evaluated based
on the requirements. The environment of the truck is modeled using a domain specific modeling
language. Test data refers here an environment of the autonomous agent (environment objects
including dynamic objects that may appear, disappear or move).

Figure 3.2: Test generation scenario

19

A high-level overview of the test data generation is depicted in Figure 3.2. The approach uses the
environment metamodel of the system under test constructed by domain experts, and represents
test data as model instances conforming to this metamodel. On the basis of the metamodel the
additional well-formedness constraints are captured using OCL invariants. Based on this context
description language a test data should be generated in the form of valid instance models, which
conform the metamodel and satisfy the constraints.

The test data generation algorithm is based on constraint satisfaction problem, where the con-
straints originate from the metamodel (e.g. type hierarchy, associations, multiplicity) and the
well-formedness constraints. The result of this should be a valid instance model.

The test data generation process is divided in two phases to support different test data gen-
eration strategies and deal with the problem complexity. First, only the structural constraints
are satisfied and an abstract test data is generated. Here abstractions are used in the model to
avoid the use of concrete attribute values (e.g., two objects can be far or near (association),
but the exact position is not given with coordinates). In the second, post-processing step, these
abstractions are resolved and concrete attribute values are generated. This post-processing step
was presented last year in my TDK report [6].

Due to the two phased test generation, not all the input constraints are taken into account
in every step (e.g. first an abstract test data is constructed, where some constraints can be
violated or abstract model elements can be used). The support of the selection of the relevant
constraints during each step is also important. A domain expert should choose (or formalize
using some logical expression) which constraint should be included or not in the given test data
generation step.

This report is motivated by the previously mentioned abstract test data generation step. Addi-
tionally I prepared the logical language that is used to define which constraints are affected in
the given test data generation step.

3.1.1 Metamodel

The metamodel of the R3-COP industrial project domain is shown in Figure 3.3. The detailed
descriptions of the model elements are shown in Section 2.3.1. The warehouse which the model
is presented contains layouts which have size. The layout contains stations which have got
coordinates. The stations should be placed to each other. The stations contain different type of
warehouse fixtures (PlacedObject), which should be Obstacle, Forklift and Package. The package
should be small or big. In the warehouse the big packages can be transported by strong forklift
and the small one can be transported by forklift.

Figure 3.3: Metamodel of the R3-COP project

20

Figure 3.4: Metamodel of the distributed system domain

3.2 Distributed system domain

Distributed systems are widely used by the industry from small-scale to up to huge cloud systems.
In this section I introduce an example based on a real case study, a distributed cloud system,
however I reduced the size of the metamodel and also the number of constraints to fit here. The
structure of distributed systems usually evolves with time, where many algorithms run parallel
to maintain the consistency and reactivity of the systems. For this purpose these systems have
a layered architecture, where each layer uses the services of the underlying layers and provides
services for the upper layers. The analysis of such systems is a complex task where testing can
provide a solution. However, to be able to produce the inputs of the testing procedure needs
manual development of the test data and configurations, or requires automatic techniques being
able to work on the structural description of the system. In this section I show the metamodel of
a simple distributed system enriched with well-formedness constraints. The test data generation
approach is able to produce different configurations from the input metamodel, which serves as
test input data or possible test layout, configuration.

3.2.1 Metamodel

In cloud systems virtualization is widely used which is also a key element in our example: the
physical resources are the Nodes in a Network, where the network connections are represented
by the references connectedNodes. These elements define the physical layout of our system. The
logic layer of the system is represented by the DataStorageGroups, which provides data storage
services. Fault tolerant behaviour is provided by the applied redundancy: in each DataStorage-
Group there are multiple Databases. There is a distinguished Database at each DataStorageGroup,
the Master. If there is a problem with the Master Database, then a master election procedure is
initialized and the next Master is elected. There is also a monitoring system, a Monitor can be
isMonitor or isLeader. Monitors monitor the Databases and collects data of their behaviour which
is then sent to the Leader. Each DataStorageGroup has one Leader, which is the siteLeader of the
DataStorageGroup. Each Component is allocated to a physical Node. Components are connected
through the connected relation if the Nodes which are allocated to are same.

The metamodel of the distributed system domain is shown in Figure 3.4. The metamodel rep-
resents the connection between the physical and logical elements. The System contains the
DataStorageGroup through the storage reference. The DataStorageGroup contains the Component

21

elements which are referred by the storageComponent reference. The Component is an abstract
class which symbolizes the logical components of the distributed model. The Component should
be connected by each other through the connected reference. The subtype of the Component are
the Database and the Monitor. The Monitor has type attribute which type is the MonitorType
enum which value should be isMonitor or isLeader. The Database has a role attribute which type
is the DatabaseRole enum which value should be Master or Slave. The DatastorageGroup has a
siteLeader reference which is referred to the leader Monitor. The System contains Network, it is
referred by the network reference. The Network contains Node through the nodes reference. The
Node represents the physical components of the system. The Node elements should be connected
each other with the connectedNodes reference. The logical components have to be assigned to
the physical nodes. The components and nodes which are assigned to each other are connected
by the node and components references which are the opposite of each other.

22

Chapter 4

Overview of the approach

4.1 Test generation process

In this section I summarize the high level view of the proposed test data generation approach
and then I describe also the most important building blocks of the algorithms. Test data ge-
neration (Figure 4.1) is started by the description of the data domain of the tests, this is the
input metamodel of the algorithm. Additional parameters are defined with the help of the
Test Description Language: initial model fragments are provided as partial snapshots and also
OCL constraints are used for the definition of well-formedness requirements. The approach is
capable of generating multiple different test data, in this case the discriminator property should
be provided to help the algorithm find structurally different instance models i.e. abstract test
data. The number of required output test data can also be defined in the approach. The model
generator transforms the problems into the input language of the Alloy tool, which is able to
traverse the state space of the possible models and constructs valid models. These output models
servers as abstract test data for the testing of complex systems.

The definition of Test Criteria Description Language is presented in Section 4.2.4 which defines
the logical connection between the partial snapshots and constraints. The mapping of the Meta-
models, Partial Snapshots and Constraints to Alloy formulae is formalised in Chapter 5. With
the Discriminator Property the structurally difference of the output valid models can be defined
which is presented in Section 4.2.3. In this approach the number of the models and the size of
the output test data can be defined which is introduced in Section 4.2.2.

Multiple Model GenerationTestACriteria Description Language

ValidAModel

Model GeneratorMetamodels

ConstraintsPartial Snapshots

ValidAModel

ValidAModel

…

Discriminator
Property

Number ofA
Models

~/

#

Alloy

Figure 4.1: Functional overview of the approach

23

4.2 Input for the test data generation process

In this section the required input parameters of the abstract test data generation approach are
presented.

4.2.1 DSL specification

Parameters in the DSL Specification refer to the actual target of the generation process. It is
important to note that the input elements are fully functional standard artifacts of the tool.

Metamodel The metamodel contains the main concepts and relations of the test data and
defines the graph structure of the instance models. To enrich the expression power of the language
attributes are added to the concepts. By doing this, the language can be extended with predefined
domains of data types (like integers, strings) that supported by the metamodeling language.
Additionally, some structural constraint might be specified with the elements like multiplicity.

To more precisely specify the range of valid instance models, different constraints might be added
to the test data generation input. Those constraints can be included to the Constraints of the
reasoning phase.

Constraints The goal of the well-formedness constraints is to define rules that have to be
satisfied in a valid model, with this the test data can be more precisely specified.

The search should be controlled by some practical preconditions.

Partial Snapshot (PS) By adding an initial structure to the Instance the reasoning process
will be more directed as the tool checks only the cases that contains this initial structure as a
submodel.

The tool is capable of deriving a PS from any EMF model, and a valid PS can be automatically
transformed back to a normal instance model. So if the user does not need any of the previous
options, standard instance models also can be used.

4.2.2 Test data generation parameters

The parameters in the Generation allows to customise the reasoning process. To more precisely
control the generation process many more logic-dependent options can be added to the tool.
Some of them might cut down the search space (like a fixed model size), others adjust the
transformation tool to be more efficient for special tasks.

Model size In Alloy the size of the generated model has to be explicitly defined. With the
parametrization language the model size and the number of the int elements can be defined.

Number of structurally different generated models This approach supports the generation
of the structurally different test data. With the parametrization language we can specify the
number of the generated models if exists enough different model.

24

Discriminator Definition By Defining the discriminator property the test engineer is able to
specify the required difference between the test cases in order to generate diverse set of test
cases.

Test Criteria Description Test Criteria Description is used to define the input combination of
the artifacts in the DSL Specification that should be used in the generation process. This allows
the parametrization of the test data generation process with variously defined test criteria.

4.2.3 Discriminator definition

The goal of the approach is to generate multiple test input models which are not similar to
each other. In this report, similarity between the output models are defined by an equivalence
relation. First, in order to define the equivalence between model structures the formal definition
of the equivalence relation is introduced:

Definition 2 (Equivalence relation) ∼ in an equivalence relation on a set H if ∼⊆
H ×H and satisfies the following criteria:

� it is reflexive, so ∀a ∈ H : a ∼ a.

� it is symmetric, so ∀a, b ∈ H : [a ∼ b] =⇒ [b ∼ a].

� it is transitive, so ∀a, b, c ∈ H : [a ∼ b ∧ b ∼ c] =⇒ [a ∼ c].

In order to differentiate the output models and support the generation of structurally different
models the model equivalence should be also defined. During the generation process models are
needed that are not isomorphic. Two models are isomorphic if between their objects, references
and attributes exists an f bijective function.

Definition 3 (Partial snapshot isomorphism) The partial snapshot isomorphism is
an equivalence relation on partial snapshots (and thus it is also applicable to instance
models). Two partial snapshots PS1 and PS2 are given which are defined with their objects
(OBJ), references (REF) and their attributes (ATTR). The partial snapshots are isomorphic
if there is a bijective function f : PSOBJ

1 → PSOBJ
2 that satisfies the following constraints:

� for each type T ∈ Class the each object o is same typed as the image: T(o)⇔ T(f(o))

� for each reference R ∈ Reference an o1 object refers to o2 when the image does:
R(o1, o2)⇔ R(f(o1), f(o2))

� for each attributes A ∈ Attribute an o object has the value v when the image does:
A(o, v)⇔ A(f(o), v)

To work with the structurally different models a representation function is introduced.

Definition 4 (Representation function) There is a H set and the ∼⊆ H ×H equiv-
alence relation is defined on it. The rep : H → C function is the representation function,
the elements of C are the representations, if the statement is satisfied:
∀a, b ∈ H(a ∼ b⇔ rep(a) = rep(b))

25

Initial model Specification of abstraction Created model

Figure 4.2: Abstraction of the feedback model

The representation function in this case is a text which specifies which elements are similar in
the two model. The example of the definition of it is shown in Figure 4.2. The defined elements
with the abstraction language should be similar in the structurally different models. If from the
two structurally different model the elements which are presented in Figure 4.2 example are
emphasized from the PS1 and the PS2 models then the result is PS11 and PS21 where the
rep(PS11) = rep(PS22) is satisfied. If from two models the elements which are defined with
abstraction language are left then the remaining subgraphs are not isomorphic. So the goal of my
work is to find structurally different models on which the rep(PS1) = rep(PS2) is not satisfied.

I defined an abstraction function A in the following way

� Attribute and reference removing The attributes, references of the instance model can be
left. With parametrization language the name of the references and attributes are referred.

� Type removing The objects which specified with their types can be left.

� Object type abstraction The object type can be changed to the one of the supertypes of it.
With parametrization language the name of the actual type and the new type are referred.
If the type is abstracted then the latter type specified attributes and references are removed
too.

Example 4 In Figure 4.2 an abstraction of a model is presented. The initial model contains
a Layout, a Station and a Package. The attributes of the objects are filled so it is a complete
and valid instance model. With the parametrization language I specify that the x and the y
attributes are omitted and the Package type is changed to PlacedObject. As the result the x and
y attributes are deleted and the type of the o2 object is PlacedObject. The attribute of the o2 is
deleted because it was a Package specific element.

4.2.4 Test criteria description language

An other goal of my work is to support the definition of the different test criteria and to
support that the test data generation process should be parametrized arbitrarily with input
parameters. To reach this goal a test criteria description language (TCDL) is defined with which
the requirements of the test data generation can be formalized.

For this task predicates are introduced that are commonly understood to be a Boolean-valued
functions P : X → {true, false}. Each constraint has been annotated with a unique label which

26

can be used as a predicate in the TCDL. If the value of the predicate is true, then the criteria
has to be satisfied, else it has to be violated.

Just to give a small example, let expect test data satisfying an OCL constraint: OCL1. This
OCL invariant describes a desired structural behaviour of the system (detailed examples are in
Chapter 7). In the introduced TCDL language the following holds: we can define a property
by simply writing P , which refers to the OCL invariant OCL1. This means that the predicate
P (OCL1) is satisfied and then the generated model satisfies the OCL constraint (OCL1).

The test criteria description language contains predicates which are assigned to the input param-
eters like partial snapshots and constraints. The goal of the test data generation can be specified
with the predicates of the inputs and with the defined boolean operators between them. The
TCDL enables the using of the ∧, ¬, ∨, =⇒ ,⇔ operators. With this language the test engineer
can specify the test descriptions and the logical operators between them.

The grammar of the TCDL:

TCDL → < Label > | ¬ < TCDL > |
< TCDL > ∧ < TCDL > |
< TCDL > ∨ < TCDL >|
< TCDL >⇒< TCDL >|
< TCDL >⇔< TCDL >|

Label → [OCL constraints] | [PS]

The Label should be OCL constraint or partial snapshot, between the predicates of them can
be defined logical connections.

Example 5 A metamodel (M), two partial snapshots (PS1, PS2), and an OCL constraint
(OCL1) are defined as input parameter of a test data generation process.
The TCD = P(PS1) ∧ (¬P(PS2)) ∧ P(OCL1) test criteria description means that the generated
test data has to satisfy the first PS (PS1) and the OCL constraint (OCL1) and it must not satisfy
the second partial snapshot (PS2).

27

Chapter 5

Mapping DSLs to Alloy formulae

I discuss in this section the details of mapping DSLs artifacts to Alloy formulae to be processed
by SAT solvers. First I present some theoretical foundations and the detailed mapping of meta-
models and partial snapshots in Section 5.2 followed by mapping of the OCL constraints into
Alloy in Section 5.4.

During the description of the mapping I use the following form: the metamodel, partial snapshot
and the OCL mapping are isolated, the mapping of the language elements are separated. I
formalize and introduce the previously unused elements then the equivalent Alloy expression is
presented. In complicated cases I demonstrate the mapping method on an example, which is
derived from the R3-COP LGV case study.

5.1 Foundation of the mapping

The mapping takes a DSL context as input to create a set of axioms called DSLF as output
(where F denotes that this is a set of logic formulae), which is satisfiable if and only if the
original DSL context was consistent. If the DSLF is satisfiable then by definition there is an
interpretation MF that satisfies DSLF . Additionally, I back-annotate the logic structures MF

derived as a result of the test data generation process to an actual instance model (or partial
snapshot) of the DSL, formally:

if forward(DSL) = DSLF and backannotation(M) = M then

1. MF |= DSL ⇔ M |= DSL
2. DSLF unsatisfiable ⇔ DSL inconsistent (5.1)

Function forward consists of different transformation steps each of which takes certain DSL
artifacts and yields a set of corresponding logic axioms:

� The metamodel transformation creates the formulae METAF from the metamodel (detailed
in Section 5.2).

� The instance model transformation derives the formulae PSF from the partial snapshots
(discussed in Section 5.3).

� Finally, OCL transformation creates formulae OCLF for OCL constraints (Section 5.4).

28

So the mapping of DSL into Alloy is partitioned in the following way:

DSLF = METAF ∧ Critery(PSF ∪OCLF) (5.2)

where the Critery function compose the constraints derived from OCL constraints and partial
snapshots.

5.2 Mapping metamodels

In this section the mapping of the metamodel is presented.

5.2.1 Type mapping

The objects of the domain specific language are mapped to the elements of a newly crated
Object Alloy signature, so I included the abstract Object class to the hierarchy with which is the
explicit superclass of the classes. One benefit of the introduction of the Object is that in Alloy
we have to specify the number of the generated elements. In this case we only have to specify
the number of Object elements and the reasoner automatically identifies the concrete type of
the model elements. Additionally, some generic, type-independent property can be defined on
the Object, like the containment hierarchy. The objects are arranged in a containment hierarchy
which is modelled by contains relation between the objects which represents the union of the
containment edges in the model. The contains edge make easier the definition of the containment
hierarchy which is presented in the latter section. The model is automatically completed with
this object which only appears in the Alloy code. The input metamodel is not changed and the
generated test data does not contain unknown typed elements.

The Object signature is defined in the following way:
abstract sig Object { contains : set Object }

In Alloy the equivalent formula of the class is the sig language element. For example, the Layout
class is mapped to sig Layout {}. If the class is abstract or interface the signature is extended
with the abstract keyword.

Enum types are also mapped to their Alloy equivalent. The following example shows the result
of the mapping of the Size enum which has the Big and the Small literals:
enum Size { Big , Small }

5.2.2 Type hierarchy

EMF metamodels define generalisation between classes. The Alloy language supports single
inheritance which is expressed with the extends keyword. Mapping generic inheritance hierarchy
og the EMF to Alloy can be implemented in the multiple ways:

1. First, the most trivial solution is to simply not support metamodels with multiple inheri-
tance. The inheritance between two class is implemented as follows:
sig A extends B

29

EMF

Alloy
PlacedObject abstract sig PlacedObject extends Object {}

Obstacle sig Obstacle extends PlacedObject {}

Layout sig Layout extends Object {}

Figure 5.1: Mapping type hierarchy

2. Instead of the using of built-in types I should define every objects with Object type, and
type-predicates should be use to define the concrete type of the object. The disadvantage
of this approach is that the possible combinations of the predicate have to be defined by
a complex constraint. The
sig Object { type: set Type }
enum Type{A,B,C}
fact { /* each object has correct type */ }

3. Each attribute and reference is copied to the subclasses, the inheritance is solved directly.
The difficulty with this approach that the elements of a type cannot be selected simply. A
possible solution for referring a type is unioning each subclass like the following example:
(A + B + C)

This report uses the first option because it is handled by the solver the most effectively. Addition-
ally, further contributions can be presented more easily with simple type mapping. An example
of the transformation of class hierarchy is shown in Figure 5.1. This example shows an abstract
PlacedObject class, the Obstacle class which is subtype of the PlacedObject and the Layout class
are mapped. In Alloy the appropriate sig element and the extends and abstract modifiers are
used.

5.2.3 References

The references of the metamodels define the directed edges between the instance objects. For
EMF models, we allow directed loops but disallow parallel edges of a certain type between the
same objects. In such a case, edges can be treated as relations (in the mathematical sense).

The definition of the server reference is translated to the following relation in Figure 5.2 (REF).
Since an edge can lead between properly typed objects, such type information needs to be
attached to the two relation ends (see Package(o) and Task(t)).

The references are be treated as relations in Alloy which are automatically type correct. The
source signature contains the reference which type is equivalent to the type of the reference.

5.2.4 Multiplicity

By default, references with 0..* multiplicity are modeled with relations in FOL. However, with
explicit multiplicity restrictions, further constraints are required. With an n..m multiplicity, the
lower bound n means that every object is in relation with n different to one, which is checked
using an existential quantifier (if n > 0).

30

EMF

FOL

REF: server : Package × Forklift 7→ {true, false}
TC: ∀o, t ∈ Object : (tasks(o, t)⇒ (Package(o) ∧ Forklift(t))

MULT: ∀src ∈ Object : Package(src)⇒ |{trg ∈ Object|server(srv, trg)}| = 1
INV: ∀o, t ∈ Object : (server(o, t)⇔ tasks(t, o))

Alloy REF: sig Package { server : one Forklift }
INV: fact{ server = ~tasks }

Figure 5.2: Mapping references

EMF multiplicity Alloy multiplicity
0..* set

1..* some

0..1 lone

1..1 one

Figure 5.3: Mapping multiplicities

References with 0..*, 1..*, 0..1 and 1..1 multiplicities are supported in Alloy. However, with
explicit multiplicity restrictions, further constraints are required. The transformation of the
supported references are visible in Figure 5.3.

In Alloy the cardinality operator # should be used to define lower and upper bounds. The
definition of the lower bound (n) (if n > 1):
all o: Forklift | # o.tasks >= number

The definition of the upper bound (m):
all o: Forklift | # o.tasks <= number

5.2.5 Inverse edges

Inverse edges in metamodels express in FOL that if there is a relation rel form the object o to
the target t then there has to be an inverse relation inv from t to o, formally, ∀o, t : rel(o, t) ⇐⇒
inv(t, o).

In Alloy the inverse edges should be expressed by “∼” language element which means the inverse
of the marked element.

The inverse relationship between tasks and server references is illustrated in Figure 5.2 at line
INV.

5.2.6 Containment

The objects of an EMF model are arranged in a directed tree hierarchy along the containment
edges. This relationship is formalized by multiple formulae. First the FOL formalization of the
problem is presented.

31

1. The containment relation is defined as the union of the containment-edge relations:

FOL contains : Object ×Object 7→ {true, false}
∀p, c ∈ Object : contains(p, c)⇔ (subElement(p, c) ∨ . . .)

Alloy sig Object { contains : set Object }
fact { contains = containsTask + containsPackage + ... }

2. Exactly one root object does not have parent, every other object has exactly one parent:

FOL ∃!root ∈ Object∀parent ∈ Object : ¬contains(parent, root)
∀o ∈ Object : (o = root) ∨ ∃p ∈ Object : (p 6= o) ∧ (contains(p, o))

Alloy one root : Object | (root .~ contains = none) and
(all other : Object | other != root => # other. contains = 1)

3. The tree hierarchy also requires acyclicity which means that any object is unreachable
from itself along a path of containment edges.
FOL ∀o ∈ Object : ¬contains+(o, o)
Alloy no o: Object | o in o.^ contains

Alloy does not support the containment but the directed tree hierarchy can be expressed.

5.2.7 Attributes

The attributes of a metamodel are the properties of the classes with built-in type. My mapping
support the single valued attributes with predefined types such as integer attributes (which have
an appropriate type in Alloy), and an enum type constructed of user-defined literals. The FOL
formalisation of the attribute is same as the references but the second parameter (i.e. the range)
of the relation defines the value of the attribute. In Alloy the EMF attribute is transformed to
relation same as the reference, but the type of the reference is a built-in primitive type.

For example, three attributes are defined in Figure 5.4, where the mapping of the Size enum
with Big and Small literals, the mapping of the size attribute which type is Size and the mapping
of the id which type is Int are presented.

EMF

FOL
Size = {Big, Small}

size : Object × Size 7→ {true, false}
id : Object × Z 7→ {true, false}

Alloy
enum Size{ Big , Small }

size: one Size

id: one Int

Figure 5.4: Mapping attributes

5.3 Mapping Partial Snapshots

The basic approach of mapping instance models into Alloy is to create a statement to express that
the output model needs to contain the partial snapshot. Therefore PS objects are transformed
into existentially quantified correct typed variables, and the structure of the PS is defined over

32

PS

FOL

Containment: ∃o1 , o2 ∈ object : [. . .]
Distinct: o1 6= o2
Types: Forklift(o1) ∧ ¬StrongForklift(o1) ∧ Station(o2)

References: props(o2 , o1)
Attributes: x(o2 , 2) ∧ y(o2 , 0)

Alloy

Containment: fact {some o1 , o_2 , ... : Object | /* structure */ }
Distinction: some disj o1 , o2 , ...
References: o1 in o2.props
Attributes: 2 in o2.x and 0 in o2.y

Figure 5.5: Example: mapping a partial snapshot

those variables. When every feature of the PS is transformed, the generated statement is added
to the set of axioms derived for a DSL context to express the occurrence or the absence of the
PS structure. The partial snapshots are transformed independently to Alloy, each of them has
to be satisfied separately, and traceability information needs to be produced for each of them.

The mapping of a PS with two objects, attributes and references between them in accordance
with the Positive, Injective, Unmodifiable semantics is illustrated in Figure 5.5, and discussed in
details in the sequel.

The type of the object must also be specified in the statement of the partial snapshot. Note
that abstract classes can be instantiated in a PS, and thus they are transformed to a structural
constraint. For example, if the type of on is PlacedObject but it has a concrete type in the
generated test data.

The objects are transformed to typed variables, which are the attributes of some expression.
The references between the objects can be defined by expressing that the pair of the source and
the target object is in a given relation. The mapping of reference props is depicted in Figure 5.5
(see label References), which states that o1 is contained by o2. Attributes in PSs are defined
similarly, see the corresponding Attributes line in Figure 5.5. Additionally the equivalent of
the objects should be banned if I want to extort Unmodifiable property of the partial snapshot.

Semantic modifiers

In the previous section, I defined the mapping of partial snapshots according to the Positive,
Injective, Unmodifiable semantics, which defines the most complete (restrictive) specification of a
PS. Other semantic modifiers can be handled by simply relaxing (removing) certain constraints
from this complete set derived for the Positive, Injective, Unmodifiable case.

This section shows how different configurations of partial snapshots with respect to a Positive,
Injective, Unmodifiable one.

� Shareable: If the PS is configured to be shareable, the Distinct constraint have to omitted
from the formula, so multiple variables can be bound to the same object variable of the
PS.

33

PS

FOL

Containment: ∃o1 , o2 ∈ object : [. . .]
Distinct: o1 6= o2
Types: Station(o1) ∧ Station(o1)

References: ¬connect(o2 , o1)∧ ¬connect(o1 , o2)
Attributes: x(o1 , 1) ∧ y(o1 , 0) x(o2 , 2) ∧ y(o2 , 0)

Alloy

Containment: fact {some o1 , o_2 , ... : Object | /* structure */ }
Distinction: some disj o1 , o2 , ...
References: not o2 in o1. connected and not o1 in o2. connected
Attributes: 2 in o2.x and

(no other:Int | other != 2 and other in o2.x

Figure 5.6: Example: mapping an unmodifiable partial snapshot

� Modifiable: If the PS is unmodifiable then the absence of a reference or attribute is cap-
tured as a negated predicate. By omitting the negative predicates from References and
Attributes, it is allowed to add new references to the model, an example is shown in
Figure 5.6. If we use only instantiated types in the PS then the model is unmodifiable.
With the usage of abstract types the type changing is automatically guaranteed. As a
result, even abstract objects can be used in a PS, and they will be matched to a concrete
one.

� Negative Depending on that the PS is configured as positive or negative, the expression of
the generated statement or its negation is inserted to the axioms.

5.4 Mapping OCL invariants

OCL constraints (invariants) are widely used means to express well-formedness rules of meta-
models and DSLs which has to be satisfied by all valid instance models. Here I present a mapping
of (from a subset of) OCL invariants to Alloy and I also formalize the OCL expressions in FOL.
The combined use of the rich partial snapshot language and OCL invariants also allows to specify
precisely the requirement of the generated test data.

5.4.1 An overview of OCL mapping

The syntax of an OCL invariant expression is presented in the template below, where context
specifies the environment (e.g. class) on which the constraint is interpreted, the name of the
constraint can be given after the inv keyword and finally the expression is specified.

context〈classifier〉inv[〈constraint_name〉] : 〈expression〉

My mapping takes an OCL invariant as input and synthesizes Alloy fact formulae as output.
Certain OCL language elements are too expressive to be expressed using in FOL, but they can
be approximated. Each supported language element is presented in this subsection.

34

The OCL semantics defines a four valued logic (with true, false, null and undefined values), while
I mostly restrict my mapping to a two-valued logic, while the null is also supported as input of
the comparison operators.

The structure of an OCL invariant is similar to its Alloy counterpart, so the mapping algorithm
transforms the elements explicitly, one-by-one to Alloy formulae.

The mapping algorithm traverses the abstract syntax tree (AST) of the OCL invariant recursively
and applies the corresponding mapping rules to each subexpression element. However, there are
some special cases which require pre- or post-processing the result, e.g. for comparison functions,
null references and collection operators. The mapping also handles a restricted set of higher-order
structures (like sets).

5.4.2 Basic expressions

The mapping rules of the basic expressions (primitive-types, simple arithmetic and bool ex-
pressions and variables) of OCL are depicted in Table 5.1. In OCL, I cover the primitive types
Integer while the String, Boolean and Real types are not supported, because the Alloy is not
supported them, but it can execute operations on expressions which returns with boolean value.
The logical and mathematical operators are directly mapped to Alloy, since they have their
equivalent counterpart in the Alloy if they are interpreted on Integers.

OCL Alloy
variable variable

a+b a+b

a-b a-b

a*b a*b

a/b a/b

a=2 a=2

a and b a and b

a or b a or b

a implies b a implies b

not a not a

Table 5.1: Mapping of basic OCL expressions

Objects, as complex structures require special transformation rules. Single-valued attributes of
objects are translated to relations. The example shows the mapping of the size reference.

OCL package .size
FOL size(package, Big)
Alloy package .size

Navigation along references with at most one multiplicity is compiled into a relation call, the
example represents the mapping of the target reference.

OCL package . target
FOL ∃s : station(package, s)
Alloy package . target

35

The equal operator of OCL (=) is mapped similarly to other mathematical operators unless
objects need to be compared. The mapping of such equality expressions are divided into two
cases: (1) if a variable is placed on the right hand side, then the equal operator is used to avoid
undefined values, (2) if the comparison is to value null, then the expression is mapped using the
equal operator and the equivalent expression of the null is none.

OCL package . target =s
FOL ∃s : target(package, s)
Alloy package . target =s

OCL package . target =null
FOL ¬∃s : target(package, s)
Alloy package . target =none

The mapping of the not equal operator of OCL (<>) uses the dual counterparts of equal oper-
ation by adding a negation to the corresponding Alloy expressions or use the not equal (! =)
operator.

5.4.3 Collections

OCL collections are special sets in the mathematical aspect obtained mostly by specific language
constructs (e.g. allInstances) or navigation along references.

Every collection is represented by a predicate P(x) captured in FOL, but in Alloy there are
built-in language elements and methods with which collection can be treated so I used that in
my approach.

The OCL operation allInstances() refers to all instances of a certain type, that way, the corre-
sponding FOL formula collects the objects with the referred type. In Alloy I can refer to same
type elements with a correct typed variable. I also can refer to the set of elements with a certain
type as defined by the context of the invariant using self keyword, which is handled exactly as
the allInstances construct. The example show how can refer to Station typed elements.

OCL context Station inv: self ...

OCL Station . allInstances ()
FOL P(x) ≡ Station(x)
Alloy x: Station

A set of instances can be also referred by a reference with more than one multiplicity. The
predicate of the reference and the predicate of the variable is included in the FOL expression
during the mapping. In the example the expression is referred to the objects which is connected
to the station named object trough the connected reference.

OCL station . connected
FOL P(x) ≡ connected(station, x) ∧ Station(station)
Alloy station . connected

Navigation along references (see next example) with more than one multiplicity is also allowed
in OCL (first line), but it is a shorthand of the collect() operator and is mapped to this operator

36

directly by the OCL parser (second line). The equivalent FOL expression contains the predicates
of the references included in the path and a temporary variables with universal quantifier for
the intermediate points. The predicates of the intermediate- and endpoints are not needed, since
the predicates of the references include them. In Alloy the references can be concatenated with
the join operator (.).

OCL layout . stations . connected

OCL layout .stations -> collect (v|v. connected)
FOL P(x) ≡ ∀v : stations(layout, v) ∧ connected(v, x)

∧Layout(layout)
Alloy layout . stations . connected

The select() and reject() operators are used to define a special subset of the collection by an
expression. The select() is used to select, which elements should be included, while the reject()
defines the elements that should be excluded from the collection. The transformation of these
operators adds the mapping of the expression to end of the expression. The equivalent of the
references and the attribute is connected by and operator.

OCL l.stations -> select (s|s.x >10)
FOL P(s) ≡ Layout(l) ∧ stations(l, s)∧

x(s) > 10
Alloy s in l. stations and s.x >10

OCL l.stations -> reject (s|s.x >10)
FOL P(s) ≡ Layout(l) ∧ stations(l, s)∧

¬(x(s) > 10)
Alloy s in l. stations and not(s.x >10)

5.4.4 Collection operators

I now overview the mapping of different OCL operators which are applied on collections.

The OCL operation includes() is evaluated to true if the collection contains at least one element
satisfying the argument expression of the function. I search an element which is equivalent to
the expression of the includes. The includes() is transformed to an expression which is tested
that the marked object is contained by the collection on which the includes() is interpreted. The
excludes() OCL function is the dual of includes(), so it is transformed to the negated expression
of includes(). This expression is satisfied if the elements of the collection do not satisfy the
formulated condition.

OCL station .connected -> includes (s)
FOL connected(station, s)
Alloy s in station . connected

OCL station .connected -> excludes (s)
FOL ¬connected(station, s)
Alloy not(s in station . connected)

OCL operation forAll() is an iterator over a collection to state that certain conditions hold for
each member of the collection. The Alloy equivalent of it is the all language element and it can be

37

represented by the universal quantifier in FOL. The exprAlloy and exprFOL refers to the mapping
of the exprOCL in the next examples, which is defined by other mapping rules.
The OCL operation exists() implements an iterator and the Alloy equivalent is the some and in
FOL it is equivalent to the existential quantifier.

OCL Station . allInstances () ->forAll (station | expr_OCL)
FOL ∀station : Station(station) =⇒ exprFOL
Alloy all station : Station | expr_Alloy

OCL Station . allInstances () ->exists (station | expr_OCL)
FOL ∃station : Station(station) ∧ exprFOL
Alloy some station : Station | expr_Alloy

The OCL function notEmpty() is applied on collections and it is satisfied if the collection is not
empty. This operation is transformed to an existentially quantified predicate which means that
there is at least one object in the given set or collection. The OCL function isEmpty() is the dual
of notEmpty() handled with an additional negation or with the no Alloy language element.

OCL station .connected -> notEmpty ()
FOL ∃s : connected(station, s)
Alloy some s: Station |s in station . connected

OCL station .connected -> isEmpty ()
FOL ¬∃s : connected(station, s)
Alloy no s: Station |s in station . connected

The OCL function size() returns the size of the collection. The mapping of the less than (<),
greater than (>) an equal (=) operators provides the basis for the mapping of the equality
and inequality operators. In Alloy with the cardinality operator (#) can query the size of the
collection.

OCL context Station inv:self.connected ->size () >=2
FOL ∀self ∈ Object : Station(self)⇒ |{s ∈ Object|connected(self , s)}| >= 2
Alloy all self: Station | #(self. connected) >=2

The handling of equality and inequality operators has specific rules if two collections are passed
as input. Two collections are equal if and only if neither of them contains an element which is
not in the other set. In Alloy it can be expressed by the equal (=) operator.

OCL s1. connected =s2. connected
FOL ¬∃s : (connected(s1 , s) ∧ ¬connected(s2 , s))∨

(¬connected(s1 , s) ∧ connected(s2 , s))
Alloy s1. connected =s2. connected

Passing two collections as input, the inequality operator evaluates to true if there exists at least
one element which is not common in both of them.

OCL s1.connected <>s2. connected
FOL ∃s : (connected(s1 , s) ∧ ¬connected(s2 , s))∨

(¬connected(s1 , s) ∧ connected(s2 , s))
Alloy s1. connected !=s2. connected

38

Parametrization

TestFCriteria
Description

PreviousFResults

GeneratedFModels

DSLFSpecification

+ ValidFModel
✔

Discriminator
Property

Model Generator

Metamodels Constraints

✔� PreviousFResults

Abstraction Function
�

+
:FAbstraction

:FMergingFreqs.

Partial Snapshots

Model Size andF
Number

Figure 5.7: Functional overview of the approach

5.5 Abstract test data generation approach

The current section introduces a model generation algorithm that aims to generate valid instance
models that can be used as abstract test data. The approach supports the output of language
development tools like EMF as input. These frameworks are able to produce metamodels to
define the types and the basic structure of the generated test model elements. To constraint
the range of the valid instance models the metamodel can be supplemented with additional
constraints: our approach supports well-formedness rules developed in OCL. The output of the
test data generation process is a diverse set of valid instance models of this language that
satisfy all required constraints. The generation process can be further constrained using (1)
partial snapshot that defines an initial submodel that have to be contained (at least once) in the
resulting instance models and (2) parameters that define global boundaries for the generation
process. These task specific parameters can be defined by the (1) Test Criteria Description
Language: it defines the logical connection between the components of the DSL specifications
and (2) Model Size and Number input parameters to define the required model size and the
number of the structurally different models which have to be generated.

Based on these inputs the Model Generator maps the metamodel, partial snapshots and all its
constraints to the Alloy language and applies a reasoning tool (SAT solver) to generate a valid
instance model of the metamodel that fulfills all constraints and parameters. This instance model
represents an abstract test data. If the input is unfeasible then the model generator confirms
the unsatisfiability.

An important feature of the presented algorithm is that it is able to generate structurally different
test data. The implementation uses the following algorithm to generate the New model from the
inputs and the formerly generated “Previous” set of Prev models:

New |= MM ∧ Critery(PS ∪OCL) ∧
[∧

Prev ∈
Previous

¬A(Prev)
]

The following equation holds for the abstraction function:

M1 6∼M2 ⇔M1 |= ¬A(M2)

The novel part of my approach is that each result is persisted along the iterations by the
Abstraction Function component: it feeds back relevant information about the previous models

39

to ensure that the model generator will generate diverse models. To achieve this behaviour, the
proposed generation workflow (depicted in Figure 5.7) extends the classic generation process with
two conceptually new steps: (1) the abstraction (depicted by “A” symbol) step that transforms
the instance models to represent an equivalence class to increase its expressive power, and (2)
a loop to feed back and reuse the previous results in the model generation in order to generate
structurally different instance models.

Additionally, to support the efficient definition of partial snapshots the user can generalise them
from example instance models by a simple manual abstraction technique. This way representa-
tion of equivalence classes can be defined also manually.

40

Chapter 6

Implementation

In this chapter the most important implementation questions, decisions and steps are presented.

6.1 Architecture

The architecture of the tool is presented in Figure 6.1 The architecture and the processing of
the statements are divided four sections. First the input parametrization is introduced that:

I. The metamodels are given as EMF Ecore model by DSL specification.

II. The constraints add extra rules to the problem, they can be OCL invariants. It helps to
specify the problem more precisely.

III. The partial snapshots which are derived from the EMF instance models.

IV. It contains the special requirements (e.g. the size of the generated model) of the output
EMF instance models.

The partial snapshot is created by the reflective editor of the EMF instance model, which is
shown in Figure 6.2.

The tool is executed using the defined test data generation parametrization. The Transforma-
tion handler gets the input which calls the transformation components: first the metamodel
transformer, then the instance model transformer and finally the constraint transformer. If the
transformation is successful then an Alloy model and special set of axioms is generated which
contains the collected outputs of the previous components.

Processing the
Result

Input
Parametrization

Orchestration of the Transformation Abstract test data generation process

Transformation
handler

Metamodel

Partial snapshot

Constraints

Transformation
customization

Constraint
transformer

Metamodel
transformer

Instance
transformer

alloy
axioms

in
Alloy handler

Configuration

Alloy Analyzer

alloy
axioms

out

Representation
handler

EMF yEd

Abstraction
handlerParametrization

Figure 6.1: Architecture of the tool

41

Figure 6.2: The created editor of
the partial snapshot

The generated axiom system is passed to the Alloy handler which
parametrize the Alloy Analyzer and run the background SAT
solver (in this special case the Kodkod). The output of it is an
Alloy Solution which contains axioms then it is parsed by the
reasoner handler and it builds the extended partial snapshot by
processing of the Alloy Solution.

The results are structurally different abstract test data. The re-
sults can represented by different visualization tools. The rep-
resentation handler represents the result, if the instance model
is valid it can visualize the result as EMF model in EMF editor
or yED [39] visualizer.

6.1.1 Details

In this section the details of the implementation, the most important components are presented.

Parametrization language

The test data generator parametrization language is a simple language to support the definition
of the inputs of the algorithm. To do this I constructed a grammar with the tool Xtext [32].
The language is defined by a generative grammar, which means a list of applicable rules that
produce all elements of the language. During the transformation the defined symbols are used,
text is not generated in the test data generation process. I can refer to the language element
easily.

OCL transformation

The OCL rules and their contexts are given as a string. They must be read, parsed and finally
their AST is built [13]. To achieve the goal the OCLHelper class is used which provides an API
for parsing constraints and query expressions. The context can be identified by name which
defines the place of the constraint in the model. Its createQuery(String s) function (1) parses the
string, (2) connects the elements of the constraints to the metamodel, (3) defines the type of
the OCL elements, (4) creates the AST and (5) checks the syntax of the expression. The built
AST has to be visited recursively by using a visitor class and it guess the type of the language
element and it call the appropriate function of the OCL transformation component.

Alloy API

The metamodel, partial snapshot and OCL transformator components have to produce Alloy
axioms. The production of this code is made by using Alloy API. This API provides Java
methods with which the appropriate language elements can be produced.

Visualization

The visualization of the results is very important because the result can be validated by the user.
Different type of representations are realized because they can have different goals. yEd give a

42

nice solution which the user can edit in the yEd editor that contains a lot of built-in arrangement
algorithm. Figures of the model can be saved and used for presentation, documentation. The
EMF advantages is that the Eclipse modelling edition contains it. The advantage of the tool is
that the visualisation components are isolated, the output is only transformed to the language
of the installed visualization plugins.

43

Chapter 7

Case-studies

In this chapter the approach is illustrated on the R3-COP project and the distributed system
domain. The different cases and the proposed solutions are presented in two case studies. Each
scenario contains the requirements, the initial model fragments representing desired structural
properties and the given solutions. The test data generation algorithm extends the initial model
fragments with additional references, attributes, relations and model elements to produce the
proper test data.

7.1 Test data generation for laser guided vehicles

In this section a scenario from the laser guided vehicle domain is presented.

7.1.1 Description

The project deals with the structure of a warehouse. The main concept of this scenario is to
define the coordinates of the Station objects, so the Forklifts, Obstacles and the Packages have to
be paled on the layout. The Alloy Analyzer is weak in the treatment of the numerical data but
this scenario shows that the tool can still be efficient if the model contains numerical constraints.
The metamodel of the project is presented in Section 3.1.1.

The constraints of the scenario are defined by OCL constraints:

I. The coordinates of the Station objects are different.
Station . allInstances () ->forAll (s1 , s2| (s1.x=s2.x and s1.y=s2.y) implies
s1=s2)

II. The Station objects are in the area of the Layout.
Layout :self.stations -> forAll (s| s.x>0 and s.x<self.xSize and s.y>0 and
s.y<self.ySize)

III. The Station objects are neighbours of each other then they are connected with the connected
reference.
Station . allInstances () ->forAll (s, s1| not(s1=s) and ((s.x=s1.x) or
(s.y=s1.y) or (s.x-s1.x=s.y-s1.y) or (s.x-s1.x=s1.y-s.y)) implies
s1.connected -> includes (s))

44

IV. The connected reference is symmetric.
Station . allInstances () ->forAll (s1 , s2| s1.connected -> includes (s2) implies
s2.connected -> includes (s1)

V. A PlacedObject and a Forklift are connected by inDangerousRange if their distance is smaller
than 2 units.
Forklift . allInstances () ->forAll (f| PlacedObject . allInstances () ->forAll (p|
((f. placedOn .x-p. placedOn .x) * (f. placedOn .x-p. placedOn .x) +
(f. placedOn .y-p. placedOn .y) * (f. placedOn .y-p. placedOn .y) < 4) implies
f. inDangerousRange -> includes (p)))

VI. A PlacedObject and a Forklift are connected by inWarningRange if their distance is bigger
than 2 units and it is smaller than 5 units.
Forklift . allInstances () ->forAll (f| PlacedObject . allInstances () ->forAll (p|
((f. placedOn .x-p. placedOn .x) * (f. placedOn .x-p. placedOn .x) +
(f. placedOn .y-p. placedOn .y) * (f. placedOn .y-p. placedOn .y) <= 25 and
(f. placedOn .x-p. placedOn .x) * (f. placedOn .x-p. placedOn .x) +
(f. placedOn .y-p. placedOn .y) * (f. placedOn .y-p. placedOn .y) >= 4) implies
f. inWarningRange -> includes (p)))

VII. A PlacedObject and a Forklift are connected by inClearRange if their distance is bigger than
5 units.
Forklift . allInstances () ->forAll (f| PlacedObject . allInstances () ->forAll (p|
((f. placedOn .x-p. placedOn .x) * (f. placedOn .x-p. placedOn .x) +
(f. placedOn .y-p. placedOn .y) * (f. placedOn .y-p. placedOn .y) >25) implies
f. inDangerousRange -> includes (p)))

VIII. The StrongForklift transports the Packages with Big size.
StrongForklift . allInstances () ->forAll (f| f.tasks -> forAll (p| p.size=
Size :: Big))

7.1.2 Initial Partial Snapshot

The initial partial snapshot of the case study explains the expected fragment structure of the
test data which is shown in Figure 7.1. The initial snapshot contains two separated components.
One of them is a Layout object which size is 5x5 units. The other component contains 3 Station
objects, the stations are connected by the Forklift, the Obstacle and the Package objects. The
forklift is referred to the obstacle with an inWarningRange and it is connected to the package
with the inDangerousRange reference.

Figure 7.1: Initial partial snapshot

45

7.1.3 Parametrization

5

4

3 H F F

2

1

1 2 3 4 5

FP

:Forklift

:Package

:Station

:Obstacle

F

O

P
O

Figure 7.2: The layout of the
warehouse

The parametrization of the abstract test data generation pro-
cess:

� Metamodel: the metamodel of the Laser Guided Vehicle
Domain.

� Constraints: the extra constraints are formalised by well-
formedness constraints by using OCL. The OCL constraint
are specified in Section 7.1.1.

� Partial Snapshot: An initial partial snapshot is used which
is presented in Section 7.1.2.

� Model size: The size of the model should be 7. This can
be an arbitrary value chosen by the user.

� Structurally different models: Now, only one example is
generated.

� Abstraction: As now only one output is shown an abstrac-
tion function is not specified.

7.1.4 Generated test data

After the parameterization of the test data generator the process is executed. The generated
instance model is depicted in Figure 7.3. The missing attributes, coordinates are filled according
to constraints. The model is extended by the algorithm with additional edges , for example
connected references. The layout of the warehouse is shown in Figure 7.2.

Figure 7.3: Generated abstract test data

46

7.1.5 Negative partial snapshot

Figure 7.4: Negative partial snapshot

5

4

3 H F F

2

1

1 2 3 4 5

F P

:Forklift

:Package

:Station

:Obstacle

F

O

P

O

Figure 7.5: The layout of the
warehouse - with neg-
ative PS

In this section I will show the effect of adding a negative partial
snapshot to the input and I would like to generate an other
instance model in which the obstacle and the package are not
in the neighbourhood of each other. So I define a negative par-
tial snapshot which prohibits the adjacency of them. The PS is
depicted in Figure 7.4.

With the earlier defined constraints and parametrization the
test data generation process is executed, the result is shown in
Figure 7.6. The layout of the warehouse is shown in Figure 7.5.

Figure 7.6: Generated instance model

7.2 Model generation workflow in the distributed system domain

In this section a scenario from a distributed system domain is presented, where our goal is to
generate different configurations. These configurations can be used as input test data for a cloud
controller.

7.2.1 Description

The project defines the connections between the logical and physical components of the dis-
tributed system model. The main concepts of this scenario is to assign the logical components

47

to the physical nodes and specify the most important connections between the elements and
define the properties of the logical components. The metamodel of the industrial project is
presented in Section 3.2.1.

The goal of the test data generation is to find configurations, where:

� the system is in the correct configuration,

� the procedure leader election should be initialized.

The constraints of the scenario are formalized by OCL rules:

I. The connectedNodes reference is symmetric.
Node. allInstances () ->forAll (n| n. connectedNodes -> forAll (n2|
n2. connectedNodes -> includes (n)))

II. The endpoints of connectedNodes are different.
Node. allInstances () ->forAll (n| not(n. connectedNodes -> includes (n)))

III. The type of the Monitor is isLeader if it is the site leader of the DatastorageGroup.
DataStorageGroup . allInstances () ->forAll (d| d. siteLeader .type=
MonitorType :: isLeader)

IV. The type of the Monitor is isMonitor if it is not the site leader of the DataStorageGroup.
Monitor . allInstances () ->forAll (m| m. dataStorage -> isEmpty () implies
m.type= MonitorType :: isMonitor)

V. If nodes of the Component elements are equivalent then the components are connected by
the connected reference.
Component . allInstances () ->forAll (c1 , c2| (not(c1=c2) and c1.node=c2.node)
implies c1.connected -> includes (c2))

VI. The endpoints of connected are different.
Component . allInstances () ->forAll (c1| not(c1.connected -> includes (c1)))

VII. The connected reference is symmetric.
Component . allInstances () ->forAll (c| c.connected -> forAll (c2|
c2.connected -> includes (c)))

VIII. If the role of the Database is Master then it must not be connected by the other Database
whose role is Master.
Databse . allInstances () ->forAll (d1 , d2| not(d1.role= DatabaseRole :: Master) or
not(d2.role= DatabaseRole :: Master) or d1=d2 or d1.connected > closure () ->
includes (d2))

IX. In every case a Database exists whose role is Master.
Database . allInstances () ->exists (d| d.role= DatabaseRole :: Master)

48

7.2.2 Initial Partial Snapshot

The initial partial snapshot of the case study is shown in Figure 7.7. The initial snapshot
contains three separated components. One of them contains two nodes which are connected
by the connectedNodes references. Other one contains a separated node. The model contains a
DataStorageGroup which has 4 components, there are 2 monitors, a database and a component.
The m1 Monitor is the site leader of the DataStorageGroup. The role of the database and the
type of the monitors are not specified. This can be regarded as the minimum size configuration
of a working system, so it is the initial model fragment i.e. partial snapshot of my algorithm.

Figure 7.7: Initial partial snapshot

7.2.3 Parametrization

The parametrization of the abstract test data generation process:

� Metamodel: the metamodel of the distributed system domain.

� Constraints: the extra constraints are formalised as well-formedness constraints by using
OCL. The OCL constraints are specified in Section 7.2.1.

� Partial Snapshot: An initial partial snapshot is used which is presented in Section 7.2.2.

� Model size: The size of the generated model is 10.

� Structurally different models: I would like to generate 2 different models i.e. test data.

� Abstraction: In this case, structural difference means that the generated Monitor object and
their connection to the Node objects are different. So, the algorithm keeps the Node and
Monitor objects with their references and attributes from the first iteration, and constructs
a partial snapshot from them. This PS will then be fed back to the generation algorithm
as a negative partial snapshot. Note that other objects, attributes and references other
than Node and Monitor are deleted.

49

7.2.4 Generated test data

Figure 7.8: Test data generation example

After the parametrization of the test data generator process the generation is started. The first
generated model is shown in Figure 7.8. The example shows that the Alloy Analyzer concludes
the necessity of the Network component. It adds the missing edges, e.g nodes, connected, node.
The missing attributes are filled. The generated instance model satisfies the constraints.

Figure 7.9: Abstraction description

Before the generation of the second model the abstraction steps are executed on the previous
output model. The partial snapshot resulted from the abstraction is shown in Figure 7.10. During
the abstraction (see in Section 4.2.3) objects and attributes are removed which is specified
with the parametrization language. The concrete abstraction code is shown in Figure 7.9 which
produced the mentioned partial snapshot. The model was fed back appropriately, so it is added
to the axioms of the input of Alloy.

Figure 7.10: Model fragment describing the required structural differences

50

Then the second test data generation process is executed. The result is shown in Figure 7.11. In
the example we can observe that the connectedNode edges which connects the Node1 and Node2
objects disappeared and the monitors allocated to different nodes (different endpoints of their
references).

Figure 7.11: Test data generation example - with feedback

7.2.5 The procedure of the leader election

In order to show the usefulness of the TCDL (see in Section 4.2.4) and the potential of the test
data generation approach, now I show an example aiming the generation of test data representing
the state of the distributed system, where a leader election should be initialized. So after the
first test data generation process is finished I show how to use the OCL constraints in order to
generate new test date. The used OCL constraint describes the consistent state of the leader
selection process (III. constraint in Section 7.2.1). I negate this constraint and I set the number
of the structurally different model in the parametrization to 1. With TCDL the requirements
can be easily defined, the formal definition of the test case is: P (Meta) ∧ P (PS) ∧ P (OCL1) ∧
P (OCL2) . . . ∧ P (OCL9) ∧ ¬P (OCL3), where P (OCLI) is returns true if the generated test
data satisfies the constraint which are expressed by the TCDL expression. The defined TCDL
expression means that the generated test data have to satisfy the constraints of metamodel,
initial partial snapshot, the OCL rules except the III. constraint which must not be satisfied.

Then the test data generation process is executed, the result model is shown in Figure 7.12. The
example test data shows that the leader selection is failed which caused by the negated OCL
constraint. It is easy to see that the generated configuration is inconsistent: the view of the system
is different from the DataStorageGroup and the participants point of view. DataStorageGroup
has the siteLeader reference to Monitor0, however Monitor0 is not set to be a SiteLeader. This
test data can be used to analyse the correctness of the leader election procedure by checking if
this situation will initialize a leader election process.

51

Figure 7.12: Failure of leader selection process

52

Chapter 8

Experiments and runtime
performance

At the end of the work I evaluated the runtime performance of the presented implementation.

The runtime tasks of the framework can be separated into the following groups:

� transformation to the Alloy language,

� execution of Alloy Analyzer,

� resolution of the output Alloy Solution,

� visualization.

My analysis shows that the runtime of the transformation is proportional with the size of meta-
model, partial snapshots and the number of constraints, the resolving of the Alloy Solution is
proportional with the size of the solution and the visualization code generator is proportional
with the size of the generated output partial snapshot. I conclude that the runtime of these
components is predictable, only the time of the execution of Alloy Analyzer step cannot be
approximated.

Using an average personal computer (Core i3 processor, SSD, 8GB RAM) I executed runtime
performance measurements of the execution of Alloy Analyzer step, I used the DSL specification
and parametrization without feed back of the distributed system domain (see in Section 7.2.1).
Before the test I had to set the parameters of Alloy. I provided 4 GB of memory (this is the
maximum which the Alloy is able to handle) and 8 GB of stack.

An example result is shown in Figure 8.1. The Alloy Analyzer could generate the models which
contains 30 objects less than 1 minute. The generation process was a little bit longer than 1 hour
if I would like generate a model which contains 80 objects. The upper bound of the number of
generated objects was 80, because later the Alloy Analyzer was run out from the memory.

10 objects 20 objects 30 objects 50 objects 70 objects 80 objects

1. 1.07 5.68 27.67 307.06 1622.92 3655.95

2. 1.85 5.64 32.46 315.55 1923.22 3587.21

3. 1.27 4.74 34.37 285.87 1821.32 3708.56

Avg.: 1.4 5.4 31.5 302.8 1789.2 3650.6

Figure 8.1: Performance test

53

Chapter 9

Conclusions and future work

The testing of distributed and autonomous systems is a challenging task. According to their
complex structure which evolves with time the automatic derivation of the possible test data is
a computationally complex task, where traditional approaches can not be used. The focus of my
paper is the challenging task of abstract test data generation for such systems. I developed a
framework to support the automatic derivation of a diverse set of abstract test data from domain
specific specifications. The theoretical results of my paper are the following. I formalized the
problem of abstract test data generation in order to be able to use logic solvers. The mapping is
defined to work on arbitrary metamodels, partial snapshots and a subset of OCL invariants used
for the specification of the test generation problem. They are mapped to the first-order-logic to
provide mathematical soundness, and then I defined their mapping into the input language of
Alloy. I gave a specification language called “Test Criteria Description Language” to support the
test engineer in the precise definition of the required test data. I also show an algorithm which
is able to construct structurally different test data from the input discriminator property. This
input parameter is also used for multiple test data generation: from the discriminator property
the algorithm is able to derive equivalence classes of the test data and the approach can produce
different test data regarding these equivalence classes.

I implemented the algorithms in a prototype tool in Eclipse on top of the Eclipse Modeling
Framework. I prove the efficiency and usefulness of my approach on a research case study and
also an industrial case study from the distributed cloud system domain.

In the future I plan to combine my algorithm with concretization approaches to further refine the
generated test data. This way I would expect to get a scalable test generation framework being
able to handle arbitrary arithmetical and other constraints in the test data generation. As the
basis of the test generation is a model generation framework, I also plan to use the algorithms
to support the development of DSLs by providing interesting instance models automatically.

54

Bibliography

[1] CVC4, May 2013. http://cvc4.cs.nyu.edu/web/.

[2] Sugar, October 2013. http://bach.istc.kobe-u.ac.jp/sugar/.

[3] The Satisfiability Modulo Theories Library, July 2013. http://www.smtlib.org/.

[4] The Yices SMT Solver, January 2013. http://yices.csl.sri.com/index.shtml.

[5] Kyriakos Anastasakis, Behzad Bordbar, Geri Georg, and Indrakshi Ray. On challenges of
model transformation from UML to Alloy. Softw. Syst. Model., 9(1):69–86, 2010.

[6] Ágnes Barta and Oszkár Semeráth. Consistency analysis of domain-specific languages.
2013.

[7] Fabian Büttner, Marina Egea, Jordi Cabot, and Martin Gogolla. Verification of ATL trans-
formations using transformation models and model finders. In 14th International Conference
on Formal Engineering Methods,ICFEM’12, pages 198–213. LNCS 7635, Springer, 2012.

[8] Leonardo De Moura and Nikolaj Bjørner. Z3: an efficient SMT solver. In Proceedings of the
Theory and practice of software, 14th international conference on Tools and algorithms for
the construction and analysis of systems, TACAS’08/ETAPS’08, pages 337–340. Springer-
Verlag, 2008.

[9] The Eclipse Project. MDT OCL. http://www.eclipse.org/modeling/mdt/?project=
ocl.

[10] Eclipsepedia. MDT/OCLinEcore, 2013. http://wiki.eclipse.org/MDT/OCLinEcorel.

[11] Michalis Famelis, Rick Salay, and Marsha Chechik. Partial models: Towards modeling and
reasoning with uncertainty. In Proceedings of the 34th International Conference on Software
Engineering, ICSE ’12, pages 573–583, Piscataway, NJ, USA, 2012. IEEE Press.

[12] Florian Lapschies. SONOLAR. http://www.informatik.uni-bremen.de/~florian/
sonolar/.

[13] Miguel Garcia. How to process ocl abstract syntax trees. 2007.

[14] Daniel Jackson. Alloy: a lightweight object modelling notation. ACM Trans. Softw. Eng.
Methodol., 11(2):256–290, 2002.

[15] Ethan K. Jackson, Tihamer Levendovszky, and Daniel Balasubramanian. Reasoning about
metamodeling with formal specifications and automatic proofs. In Proc. of the 14th Int.
Conf. on Model Driven Engineering Languages and Systems, volume 6981 of LNCS, pages
653–667, 2011.

55

http://cvc4.cs.nyu.edu/web/
http://bach.istc.kobe-u.ac.jp/sugar/
http://www.smtlib.org/
http://yices.csl.sri.com/index.shtml
http://www.eclipse.org/modeling/mdt/?project=ocl
http://www.eclipse.org/modeling/mdt/?project=ocl
http://wiki.eclipse.org/MDT/OCLinEcorel.
http://www.informatik.uni-bremen.de/~florian/sonolar/
http://www.informatik.uni-bremen.de/~florian/sonolar/

[16] Susmit Jha, Rhishikesh Limaye, and Sanjit Seshia. Beaver: Engineering an efficient smt
solver for bit-vector arithmetic. In Computer Aided Verification, pages 668–674. 2009.

[17] Sarfraz Khurshid and Darko Marinov. Testera: Specification-based testing of java programs
using sat. Automated Software Engineering, 11(4):403–434, 2004.

[18] Mirco Kuhlmann and Martin Gogolla. Strengthening SAT-based validation of UML/OCL
models by representing collections as relations. In European Conf. on Modelling Foundations
and Applications, volume 7349 of LNCS, pages 32–48, 2012.

[19] Mirco Kuhlmann, Lars Hamann, and Martin Gogolla. Extensive validation of OCL models
by integrating SAT solving into use. In TOOLS’11 - Objects, Models, Components and
Patterns, volume 6705 of LNCS, pages 290–306, 2011.

[20] Laboratoire de Recherche en Informatique, Inria Saclay Ile-de-France and CNRS. Alt-Ergo
SMT Solver, October 2013. http://alt-ergo.ocamlpro.com/.

[21] Microsoft Research. Pex. http://research.microsoft.com/projects/pex/.

[22] Niklas Eén, Niklas Sörensson. MiniSAT. http://minisat.se/.

[23] The Object Management Group. Object Constraint Language, v2.0, May 2006. http:
//www.omg.org/spec/OCL/2.0/.

[24] Lukman Ab Rahim and Jon Whittle. A survey of approaches for verifying model transfor-
mations. Software & Systems Modeling, pages 1–26, 2013.

[25] Rick Salay, Michalis Famelis, and Marsha Chechik. Language independent refinement using
partial modeling. In Juan de Lara and Andrea Zisman, editors, Fundamental Approaches to
Software Engineering, volume 7212 of Lecture Notes in Computer Science, pages 224–239.
Springer Berlin Heidelberg, 2012.

[26] Oszkár Semeráth, Ágnes Barta, Ákos Horváth, Zoltán Szatmári, and Dániel Varró. For-
mal validation of domain-specific languages. Software and Systems Modeling, 2014. The
paper was submitted and is under review process. The draft is available for revewers in the
following URL http://mit.bme.hu/~szatmari/Sosym-DSL-2014-submitted.pdf.

[27] Sagar Sen, Jean-Marie Mottu, Massimo Tisi, and Jordi Cabot. Using models of partial
knowledge to test model transformations. In 5th Int. Conf. on Theory and Practice of
Model Transformations, volume 7307 of LNCS, pages 24–39, 2012.

[28] Seyyed M. A. Shah, Kyriakos Anastasakis, and Behzad Bordbar. From UML to Alloy and
back again. In MoDeVVa ’09: Proceedings of the 6th International Workshop on Model-
Driven Engineering, Verification and Validation, pages 1–10. ACM, 2009.

[29] Mathias Soeken, Robert Wille, Mirco Kuhlmann, Martin Gogolla, and Rolf Drechsler. Ver-
ifying UML/OCL models using boolean satisfiability. In Design, Automation and Test in
Europe, (DATE’10), pages 1341–1344. IEEE, 2010.

[30] Technical University of Catalonia. Barcelogic for SMT, November 2005. http://www.lsi.
upc.edu/~oliveras/bclt-main.html.

[31] The Eclipse Project. Eclipse Modeling Framework. http://www.eclipse.org/emf.

[32] The Eclipse Project. Xtext. http://www.eclipse.org/Xtext/.

56

http://alt-ergo.ocamlpro.com/
http://research.microsoft.com/projects/pex/
http://minisat.se/
http://www.omg.org/spec/OCL/2.0/
http://www.omg.org/spec/OCL/2.0/
http://mit.bme.hu/~szatmari/Sosym-DSL-2014-submitted.pdf
http://www.lsi.upc.edu/~oliveras/bclt-main.html
http://www.lsi.upc.edu/~oliveras/bclt-main.html
http://www.eclipse.org/emf
http://www.eclipse.org/Xtext/

[33] Thomas Dillig, Isil Dillig, Ken McMillan, Alex Aiken. Mistral SMT Solver, December 2012.
http://www.cs.wm.edu/~tdillig/mistral/index.html.

[34] Emina Torlak and Daniel Jackson. Kodkod: A relational model finder. In Orna Grumberg
and Michael Huth, editors, TACAS, volume 4424 of Lecture Notes in Computer Science,
pages 632–647. Springer, 2007.

[35] Mark Utting, Alexander Pretschner, and Bruno Legeard. A taxonomy of model-based
testing. 2006.

[36] Hélène Waeselynck, Zoltán Micskei, Minh Duc Nguyen, and Nicolas Riviere. Mobile systems
from a validation perspective: a case study. In 6th International Symposium on Parallel
and Distributed Computing (ISPDC 2007), Hagenberg, Austria, July 5-8, 2007, pages 85–92,
2007.

[37] Lora G Weiss. Autonomous robots in the fog of war. Spectrum, IEEE, 48(8):30–57, 2011.

[38] E. D. Willink. An extensible OCL virtual machine and code generator. In Proc. of the 12th
Workshop on OCL and Textual Modelling, pages 13–18. ACM, 2012.

[39] yEd Graph Editor. yED. http://www.yworks.com/en/products_yed_about.html.

57

http://www.cs.wm.edu/~tdillig/mistral/index.html
http://www.yworks.com/en/products_yed_about.html

	Introduction
	Problem statement
	Research context
	Objectives
	Contribution
	Previous works
	Structure of the report

	Background
	Test data generation workflow
	Mathematical logic
	First order logic
	Prover and solver techniques

	Modeling background
	Metamodeling
	Well-formedness constraints

	Partial Snapshot
	Related work

	Motivating scenarios and requirements
	Test data generation for R3-COP
	Metamodel

	Distributed system domain
	Metamodel

	Overview of the approach
	Test generation process
	Input for the test data generation process
	DSL specification
	Test data generation parameters
	Discriminator definition
	Test criteria description language

	Mapping DSLs to Alloy formulae
	Foundation of the mapping
	Mapping metamodels
	Type mapping
	Type hierarchy
	References
	Multiplicity
	Inverse edges
	Containment
	Attributes

	Mapping Partial Snapshots
	Mapping OCL invariants
	An overview of OCL mapping
	Basic expressions
	Collections
	Collection operators

	Abstract test data generation approach

	Implementation
	Architecture
	Details

	Case-studies
	Test data generation for laser guided vehicles
	Description
	Initial Partial Snapshot
	Parametrization
	Generated test data
	Negative partial snapshot

	Model generation workflow in the distributed system domain
	Description
	Initial Partial Snapshot
	Parametrization
	Generated test data
	The procedure of the leader election

	Experiments and runtime performance
	Conclusions and future work
	Bibliography

