
Budapest University of Technology and Economics
Faculty of Electrical Engineering and Informatics

Department of Measurement and Information Systems

Abstract Data-Flow-Based Statement Reduction
for Model Checking Concurrent Software

Scientific Students’ Association Report

Author:

Csanád Telbisz

Advisors:

Levente Bajczi
Dániel Szekeres

2023

Contents

Kivonat 1

Abstract 2

1 Introduction 3

2 Preliminaries 5
2.1 Formal Verification and Model Checking . 5
2.2 Computation Model . 6
2.3 State Space of a Program . 7
2.4 Abstraction-Based Verification . 9

2.4.1 Abstraction . 9
2.4.2 Counterexample-Guided Abstraction Refinement 10

2.5 Partial Order Reduction . 12
2.5.1 Basic Idea of Partial Order Reduction 12
2.5.2 Partial Order Reduction Approaches 12

2.6 Related Work . 13

3 Statement Reduction by Dynamic Data-Flow Analysis 14
3.1 Data-Flow Graph with Precision . 14
3.2 Statement Simplification . 16

3.2.1 Using the Data-Flow Graph to Simplify Statements 16
3.2.2 Correctness of the Presented Algorithm 18

3.3 Statement Simplification in CEGAR . 19
3.4 Deciding Enabledness of Data-Flow Graph Edges 21

3.4.1 Problem Statement . 21
3.4.2 Tarjan’s Algorithm . 22

3.5 Effect on Partial Order Reduction . 24
3.6 Case Study . 25

4 Experiments and Evaluation 28
4.1 Experiment Design . 28

4.1.1 Research Questions . 28
4.1.2 Experimental Configuration . 29

4.2 Experiment Results . 29
4.3 Threats to Validity . 31
4.4 Conclusion . 32
4.5 Future Work . 32

Acknowledgements 33

Bibliography 34

Kivonat

Az utóbbi évtizedekben a többmagos processzorok és a többszálú programok egyre na-
gyobb mértékű térhódítását figyelhettük meg ipari és biztonságkritikus rendszerekben a
technológia ugrásszerű fejlődésének köszönhetően. A párhuzamos szoftverek verifikációja
ugyanakkor jelentős kihívást jelent a szálak nagyszámú lehetséges átlapolódása miatt. A
kielégítő tesztlefedettség elérése így nagy kihívást jelent, naiv modellellenőrzési technikák
pedig rosszul skálázódnak, e nagyfokú bonyolultság miatt gyakorlatilag alkalmazhatatlan-
ná válnak.

Az absztrakciós-finomítási algoritmusok hatékony technikák az állapottérben való el-
érhetőség vizsgálatára. Azonban az állapottér bejárása során a követő állapotok kiszá-
mítása, vagyis az utasítások kiértékelése költséges feladat, amely gyakran SMT-probléma
megoldását igényli. Másrészről viszont sok esetben egy utasítás kiértékelése nincs hatással
az ellenőrzött tulajdonságra. Ilyen esetekben egyszerűsíthető az követő állapotok kiszámí-
tása. Számos algoritmus létezik, amely statikusan elemzi a modellt és eltávolítja a mo-
dellből a nem releváns változókat vagy utasításokat. Párhuzamos szoftverekben azonban
gyakori, hogy egy utasítás eredményét a szálak egy bizonyos átlapolódásában használják
másik utasítások, míg egy másik ütemezés mellett nem használják. A modellt statikusan
elemző algoritmusok nem tudják kiegyszerűsíteni az ilyen utasításokat.

Munkámban egy új, dinamikus megközelítést javaslok, amely absztrakt adatfolyam-
elemzés segítségével, illetve az egyes szálak aktuális állapota alapján felismeri, hogy egy
utasítás egyszerűsíthető-e az állapottér feltárása során. Módszerem jelentősen képes csök-
kenteni a követő állapot számítására fordított időt, ezáltal pedig a verifikáció teljes idejét
is. Végezetül kiértékelem a bemutatott algoritmus teljesítményét egy nagyszámú bench-
mark programhalmazon. A mérési eredmények azt mutatják, hogy az algoritmusom képes
a nagy benchmark programhalmazon vett átlagban az utasítások több, mint 20%-ának
egyszerűsítésére, ezáltal átlagosan akár 60%-os javulást is elérve a követő állapotok kiszá-
mítására fordított idő terén.

1

Abstract

Rapid development in technology led to the increasing popularity of multi-core processors
and multi-threaded programs in industrial, safety-critical systems. The verification of
concurrent software poses significant challenges due to the inherent complexity arising
from the multitude of potential thread interleavings. Achieving satisfying test coverage
is a highly challenging task, and naive model checking techniques become practically
infeasible as a result of this complexity.
Abstraction-refinement algorithms are efficient techniques for checking reachability in a
state space. However, evaluating statements for calculating successor states during state
space exploration is a costly task that often requires solving an SMT problem. On the
other hand, in many cases, the evaluation of a statement has no effect with regard to
the verified property. Successor state calculation can be simplified in such cases. Several
algorithms exist that statically analyze the model and eliminate irrelevant variables or
statements from the model. In concurrent software, however, it is common that the result
of a statement is used in one interleaving of threads while unused in another. Algorithms
that statically analyze the model cannot simplify such statements.
In this work, I propose a novel dynamic approach using abstract data-flow analysis that
detects whether a statement can be simplified during state space exploration based on
the actual state of each thread. My method can considerably reduce the time spent on
successor state calculation and, thus, the overall time of verification. Finally, I evaluate
the performance of the proposed algorithm on a large set of benchmark programs. Eval-
uation results show that my algorithm can simplify more than 20% of all statements on
average over a large set of benchmark programs while reducing the time of successor state
calculation by up to 60% on average.

2

Chapter 1

Introduction

Rapid development in technology led to huge advancements in microprocessor systems.
Today, multi-core processors are available for various targets, from personal computers
and smartphones to safety-critical systems. In a critical system, the increased computing
capacity of a multi-core processor may add extra resources to the critical functionalities.
This reason has lead to the increasing popularity of multi-core processors and multi-
threaded programs in critical systems. Nonetheless, functionally correct behavior is still
crucial in safety-critical systems: the need for safe operation and safety requirements
remain a central element of critical systems.
Testing can efficiently find programming errors. However, even in a single-threaded ap-
plication, testing is insufficient to prove correctness due to the large number of possible
inputs. In a multi-threaded program, the number of possible executions (thread inter-
leavings) can be exponential in the number of operations and threads. Thorough testing
becomes practically infeasible when dealing with concurrency.
Formal verification can mathematically prove safety guarantees for a system. Verification
is a challenging task in itself, as the number of possible behaviors can be huge. The
verification task is often to determine whether an error location can be reached in the
program. Basically, this question can be answered by searching the program’s state space
for an error state. Unfortunately, the number of states grows exponentially with the
number of variables. This phenomenon is called the state space explosion problem [21].
Model checking has been a field of active research in recent decades as it is one of the most
powerful software verification techniques. All model checking algorithms have to face the
state space explosion problem. Furthermore, concurrency increases the complexity due to
the great number of possible thread interleavings. Various techniques have been developed
to tackle this vast complexity. Partial order reduction algorithms avoid exploring parts of
the state space when it is guaranteed that an equivalent thread interleaving is explored for
each avoided trace [35]. Abstraction-based techniques reduce the size of the state space
by ignoring some details of the original problem [19, 20]. Focusing on some parts of the
problem while ignoring other details gives us a smaller representation of the problem.
We may be able to solve the original problem by analyzing the abstract representation.
If we fail to solve the problem using this representation, we can refine our abstraction
by considering more details. Counterexample-guided abstraction refinement (CEGAR)
is a model checking algorithm that iteratively refines the abstraction until the desired
property can be verified [20]. Other abstraction-based techniques, such as the cone-of-
influence reduction or program slicing, eliminate some model elements that are irrelevant
with respect to the verified property [8, 29].

3

My approach presented in this report is also an abstraction-based technique that aims to
reduce the runtime of state space exploration by simplifying certain model elements. My
algorithm is based on a similar idea to cone-of-influence (COI) reduction and program
slicing algorithms. Whereas COI reduction simplifies the model by eliminating completely
redundant variables with respect to the verified property [8], my approach identifies and
simplifies statements that are redundant in the current state of concurrent threads with
respect to the verified property. Thus, my algorithm is more fine-grained in the sense
that it can eliminate statements in certain contexts even if the variables used by these
statements cannot be ignored entirely. My algorithm is particularly advantageous when
a statement is relevant in one interleaving of concurrent threads while it is redundant in
another: we can still eliminate it in the interleaving where it is redundant.
My statement simplification method is motivated by the considerable runtime of calculat-
ing successor states in SMT-based state space exploration algorithms [14, 28]. Satisfiability
modulo theories (SMT) is the problem of deciding whether a given mathematical formula
is satisfiable or not [7]. It is a generalization of the SAT problem, which aims to answer
the same question for Boolean formulae. In SMT-based model checking, program states
and statements are represented as first-order formulae. When exploring a transition from
a state in the state space of a program, we have to decide whether the state formula com-
bined with the transition’s statement formula is satisfiable. If it is satisfiable, a solution
of this SMT problem also provides the formula of the successor state. Many SMT solvers
have been developed since the 1970s in industrial and academic projects to solve such
problems efficiently [22, 6, 18]. However, it is still an expensive task to solve an SMT
problem. In this work, I aim to reduce the number of SMT problems that have to be
solved during state space exploration.
My goal is to identify dynamically as many redundant statements as possible in the current
state space exploration context. For this, I build a data-flow graph and update it based on
the current thread interleaving during the state space exploration to reflect the individual
states of each process. Before evaluating a statement (that is, properly calculating the
successor of the current state with respect to this statement), it is checked using the
data-flow graph whether any other statement can use the result of the statement. In the
scope of this work, I target reachability properties; thus, we are interested in whether the
result of the statement is used transitively by a conditional statement of the program since
conditionals influence whether some marked error locations are reachable in the model or
not. This can be decided with a simple traversal of the data-flow graph. Redundant
statements are eliminated, and the time of solving an SMT problem for successor state
calculation is spared in such cases. I formulate my algorithm for abstract state space
exploration and exploit information about the current abstraction to reduce the number
of edges (data dependencies) in the data-flow graph. I discuss the combination of my
algorithm with existing concurrent software verification approaches such as CEGAR and
partial order reduction.
Summarizing my contributions: I take the base idea of the cone-of-influence reduction
one step further by dynamically deciding whether the result of a statement can be used
later. I present a novel algorithm for identifying redundant statements using an abstract
dynamically updated data-flow graph. Furthermore, I discuss the necessary additions in
an iterative abstraction-refinement verification scheme as well as the possibilities of using
my algorithm together with a partial order reduction algorithm. I have implemented and
evaluated my algorithm in the abstraction-based model checking tool Theta [37].

4

Chapter 2

Preliminaries

This report assumes that the reader is familiar with the basic concepts of concurrent soft-
ware design and formal software verification. Nevertheless, to avoid the misunderstanding
of used concepts and notions, definitions are introduced in this chapter. Furthermore, I
assume that the reader is well acquainted with graph theory: I omit such definitions (e.g.,
the definition of strongly connected components) from this report.

2.1 Formal Verification and Model Checking

Formal software verification aims to prove certain properties of a program mathemati-
cally [16]. Verified properties can be reachability criteria (whether a certain error state is
reachable with any execution of the program), memory-safety (no memory leak or other
memory handling issue), or the problem of termination (whether all executions of the pro-
gram terminate). In the scope of this work, reachability criteria are considered exclusively.
Model checking is a formal verification technique where properties are verified by analyzing
the state space of the program [26]. Generally, the input of a model checking algorithm is
a model and a formal requirement. The output of such algorithms is a verdict: the model
is either safe (mathematically proven to be safe) or unsafe (a counterexample is provided
where the requirement is violated). As for the formal requirement, specific points of the
verified program are marked as unsafe in reachability analysis. If any possible program
executions reach such a point, the reachability criterion is said to be violated.
The mathematical problem of model checking is undecidable in general. Consider any
program with an error location at its exit point. To prove that this error location is
unreachable is equivalent to answering whether this program always terminates. The
termination problem is undecidable [38]. Verification techniques have to face this problem
and provide algorithms that can be used in practical applications.

MODEL
CHECKING

ALGORITHM

MODEL

FORMAL
REQUIREMENT

SAFE

+ mathematical proof

UNSAFE

+ counterexample

Figure 2.1: Model checking in general.

5

2.2 Computation Model

Though high-level languages (such as C) are convenient for developers, their verification
would require a formal model of the language semantics, which can be quite complicated
[4]. Thus, for verifying a program written in a high-level language, its source code is
transformed into a low-level formalism that is easier to verify. For the representation of
concurrent C programs, I use an extended form of control-flow automata (CFA) [10] where
there can be multiple procedures (separate traditional CFAs). To keep the presentation
simple, I assume that processes cannot be created or terminated dynamically and that
each process has its own CFA representation (a CFA procedure).

Definition 1 (Multi-Threaded Control Flow Automaton). A multi-threaded CFA
is a tuple CFA = (V, P), where:

• V is a set of (global) variables,

• P is a set of procedures. A procedure is a tuple p = (L, l0, A, E), where:

– L is a set of control locations,
– l0 is the initial location,
– A is a set of statements. A statement can be:

∗ a deterministic assignment (v = expr),
∗ a non-deterministic assignment (havoc v), where the new value of variable

v ∈ V can be anything from its domain, or
∗ a guard condition ([cond]).

– E ⊆ L × A × L is a set of transitions. A transition is a directed edge with a
source control location, a target control location, and one statement. �

Processes communicate through shared variables. Each variable v ∈ V has a domain Dv:
the possible values for v. For the verification of reachability properties, locations can be
marked as error locations: a concurrent program is safe if none of its processes can reach
any error location in any possible thread interleaving.
Let us illustrate control flow automata of a single-threaded and a multi-threaded C pro-
gram with the following simple examples.

Example 1. The program in Figure 2.2a calculates the factorial of the given number: the
value of variable f is n! at the end of the execution of this program. Figure 2.2b depicts the
CFA of this program. The edges of the CFA correspond to the statements of the program
(including condition checks); l0 is the initial location. Note that a value from user input
is assigned to n, which translates to the non-deterministic assignment havoc n.

The source code in Figure 2.3a shows two C functions that are the functions of two different
threads1. The program has two global variables, x and y, which both threads can write.
The reach_error function means a safety violation: I could have written assert(y==1)
instead of using the if structure. However, this way, it can be easily seen how a reachability
property works. Figure 2.3b depicts the CFA procedures of the two processes. Le is an error
location of the CFA.

1In practice, in a real concurrent C program, the functions of different threads are provided to the
pthread_create function that can start new threads. On the other hand, as I have previously noted, I
assume that processes cannot be created dynamically, so I omit these details from this example as well.

6

void main() {
int n;
scanf("%d", &n);
int f = 1;
while(n > 0) {

f *= n;
n--;

}
}

(a) C source code

havoc nL0

[n > 0]

[n ≤ 0]

L2

f = f * nL3

final

n = n - 1

L4
f = 1L1

(b) CFA of the program

Figure 2.2: CFA of a single-threaded program

int x, y;

void thread1() {
x = 1;
y = 1;
if (y != 1) {

reach_error();
}

}

void thread2() {
y = x;
x = 0;

}

(a) C source code

x = 1

L0

y = 1

L1

[y = 1] [y ≠ 1]

L2

L3 Le

y = x

L4

x = 0

L5

L6

Procedure 1 Procedure 2

(b) CFA of the program

Figure 2.3: CFA of a multi-threaded program

2.3 State Space of a Program

Before introducing the state space of a (multi-threaded) program, a general definition is
given for transition systems (or state spaces).

Definition 2 (Transition System). A transition system is a tuple (S, A, T, I), where:

• S is a set of states,

• A is a set of actions,

• T ⊆ S ×A× S is a set of transitions, and

• I ⊆ S is a non-empty set of initial states. �

An action α is enabled in a state s if there is a transition (s, α, s′) ∈ T for some s′ ∈ S. I
use the notation s

α−→ s′ for such a transition, and I refer to s′ as a successor state of s with
respect to α. Note that the definition of transition systems allows non-determinism, i.e.,
there can be multiple transitions from a state with the same action (c.f., non-deterministic
assignments).

7

The state space of a program is a transition system. A state of a multi-threaded CFA
(V, P) represents the control locations of all processes and the values of all variables at a
certain point during the operation of the program: s = (l1, l2, ..., lp, d1, d2, ..., dn), where:

• lj ∈ Lpj is the current location of process pj , for 1 ≤ j ≤ p = |P |
(where Pj = (Lpj , lpj0, Apj , Epj) is the CFA procedure of process pj),

• vi = di, the current value of variable vi, for 1 ≤ i ≤ n = |V |
(where vi ∈ V , di ∈ Dvi).

I denote the control location of process p in state s by s(p), and the value of variable v
in state s by s(v). I define an expression function for a state s based on the values of
variables in s: expr(s) := ∧

v∈V (v = s(v)). A state is an error state if any of the processes
is in an error location in the state.
An initial state of a program is a state where all processes are in the initial location of
their main procedure. The values of the variables in an initial state can vary based on
the language the program is written in. Uninitialized variables either contain memory
garbage (as local variables in C [31]), resulting in several initial states per process, or are
initialized automatically to a default value (as in Java [32]), resulting in one initial state
per process.
An action of a transition is a statement that the program executes. An action is enabled
in a state if that statement can be performed in that state of the program. An action of a
transition corresponds to a statement of a single process (processes step asynchronously).
I mainly use the Greek alphabet for actions, and I write pα for the process of action α. A
transition with action α leads to a possible new state of the program after executing the
statement represented by α. The location of the process of α is the source CFA location
of α in the source state and the target location of α in the target state.
The statements of a CFA manifest in different ways in the state space:

• For an assignment s
v=expr−−−−→ s′, the value of v in s′ is the value of expression expr

evaluated in s. The location of the statement’s process is the source location of the
statement in s and the target location in s′.

• For a havoc v statement, there are several transitions, |Dv| exactly, leading to differ-
ent states. The location of the statement’s process changes with each transition as
usual (the target CFA location of the statement appears in the target states of the
new transitions). The value of v differs in each target state: the values range over
the domain of v.

• An action with a guard condition [cond] is enabled in each state s where the location
of the action’s process is the source location of the action, and the expression cond
evaluates to true in s.

I also use the following notations:

• α(s) = {s′ ∈ S : ∃(s, α, s′) ∈ T}, i.e., the successor states of s with respect to α,

• enabled(s) denotes the set of enabled actions in s,

• vars(α) denotes the set of variables referenced by α,

8

• written(α) is the set of variables written by α, and

• read(α) is the set of variables referenced but not written by α.

Note that written(α) has a single item for deterministic and non-deterministic assign-
ments, and it is an empty set for a guard condition. By w = t1...tk, I denote a transition
sequence (or trace), and I use the following for the concatenation of transition sequences
or transitions: w.v. I also refer to action sequences as traces. If there is a trace from a
state that leads to an error state, I call this trace an error trace.
Since model checking includes searching the state space, the efficiency of a verification
algorithm largely depends on the size of the state space, that is, on the number of control
locations and variables in the program and the size of their domains. To represent even a
single 32-bit integer variable, 232 states would be necessary. With more variables, it would
grow exponentially: this is called the state space explosion problem [21]. Thus, efficient
algorithms are essential to overcome this problem. One such approach is abstraction.

2.4 Abstraction-Based Verification

Using abstraction, the size of the state space of a program can be greatly reduced. First,
I define abstraction on a general level. Then I introduce an abstraction-based model
checking algorithm.

2.4.1 Abstraction

An abstraction can be defined with an abstract domain, a precision, and a transfer func-
tion [13].

Definition 3 (Abstract domain). An abstract domain is a tuple Dom = (S, expr)
where:

• S is a lattice of abstract states, and

• expr : S 7→ FOL is an expression function that maps an abstract state to a first-
order logic formula describing the state. �

I assume that CFA locations of all processes are explicitly tracked in all abstract domains,
that is, each abstract state stores the locations of processes. I refer to the location of
process p in the abstract state s by s(p). An abstract state s represents a concrete state
c denoted by c |= s if c(p) = s(p) for each process p, and expr(c) implies expr(s). An
abstract state is an error state if any process is in an error location in the state. An
abstract trace w = α1...αk from the abstract state s0 (s0

α1−→ ...
αk−→ sk) is feasible if w is

also a trace in the concrete state space (c0
α1−→ ...

αk−→ ck) with ci |= si; otherwise, w is
spurious from s0. The abstract state space over-approximates the behavior of the concrete
state space: if there is a trace w from a concrete state c, then w is also a trace in the
abstract state space from all abstract states s with c |= s [13].
The precision is the information defining which aspects are kept in the abstraction. It is
defined variously in different abstract domains. The variables of a precision vars(Π) are
the variables that appear in the abstract state expression formulae. That is, no information
is tracked about variables V \ vars(Π) in an abstraction with precision Π. The transfer

9

function calculates the successor states of an abstract state with respect to a statement
and a precision.
Two frequently used abstract domains are explicit-value abstraction [11] and predicate
abstraction [24]. In explicit-value abstraction, an abstract state is defined by the CFA
locations of processes and an abstract variable assignment. The precision is the subset
of variables Π ⊆ V that are explicitly tracked in this abstraction; vars(Π) = Π. The
values of other variables are unknown in all abstract states. The expression function of an
abstract state is defined similarly to concrete states in Section 2.3: variables whose values
are unknown in a state are simply omitted from the formula. The result of the transfer
function is based on the strongest post-operator under abstract variable assignment [11].
In predicate abstraction, an abstract state is defined by the CFA locations of processes
and a combination of first-order logic (FOL) predicates [24]. The precision is a set of FOL
predicates (e.g., x > 0, y = z) that are tracked in this abstraction; vars(Π) is the set of
variables appearing in the tracked predicates. The expression function of an abstract state
is the combination of FOL predicates that describes the state [24].

2.4.2 Counterexample-Guided Abstraction Refinement

Counterexample-Guided Abstraction Refinement (CEGAR) is an abstraction-based model
checking algorithm [20]. It uses abstraction to handle the problem of state space explo-
sion. CEGAR starts from a coarse abstraction of the problem and iteratively refines the
abstraction until the abstraction can prove or disprove the analyzed property. The more
coarse the abstraction is, the more details are ignored. This way, there is a chance to
answer the original problem by solving a much simpler abstract problem. If the abstract
problem is too generic to provide an answer, the abstraction must be refined.
The core of the algorithm is the CEGAR-loop, which consists of two main parts: the
abstractor and the refiner (see Figure 2.4).
The abstractor builds the abstract state space (or abstract reachability graph, ARG [12])
over an abstract domain with a precision. The abstractor tries to prove that no abstract
error state is reachable in the abstract state space. Since the abstract state space is
an over-approximation of the original concrete state space, if no abstract error state is
reachable, the concrete model is safe as well: the algorithm terminates with a safe verdict.
On the other hand, when an abstract error state is reachable, the abstractor provides an
abstract counterexample to the refiner.

Expand

Abstract counterexample

Abstractor Prune

Refined precision

RefinerARG

Safe Unsafe

+ counterexample

Initial precision

Figure 2.4: The CEGAR-loop.

10

s0

s2

s1

s3

(a) Abstract state space S with an abstract counterexample

s0 s1

s2 s3

c1

c0 c2

c3

c4

c5 c6

c7

(b) Feasible counterexample in S1

s0 s1

s2 s3

c1

c0 c2

c3

c4

c5 c6

c7

(c) Spurious counterexample in S2

Figure 2.5: CEGAR counterexamples

The refiner checks whether the given counterexample is feasible (a concrete error state is
reachable, indeed) or spurious (a concrete error state is not reachable, and the abstract
counterexample was the result of the abstraction) [27]. In the first case, the algorithm
terminates with an unsafe verdict and the found counterexample. In contrast, in the
latter case, the abstraction (the precision) is refined, and the unnecessary abstract states
are removed (pruned) from the abstract state space. The abstract state space is built with
the refined precision in the next iteration.

Example 2. Consider the example from Figure 2.5. We have the abstract state space
S from Figure 2.5a with the abstract error state s3. The abstractor finds the abstract
counterexample highlighted in Figure 2.5a. This counterexample leads from the abstract
initial state s0 to the abstract error state s3 in the abstract state space S: s0 −→ s2 −→ s1 −→
s3. The abstract state space is an over-approximation of the concrete state space. So the
refiner has to decide whether the abstract counterexample is feasible or spurious.

First, let us assume that the concrete state space abstracted by S is S1 from Figure 2.5b.
In this case, the counterexample is feasible since we can find a transition sequence for the
abstract counterexample in the concrete state space starting from the initial concrete state
c0 leading to the error state c7: c0 −→ c4 −→ c3 −→ c7 with c0 |= s0, c4 |= s2, c3 |= s1, and
c7 |= s3.

However, C2 from Figure 2.5c can also be the concrete state space whose abstraction is S.
The counterexample is spurious now, as there is no trace from c0 to c7 in S2.

11

2.5 Partial Order Reduction

Generally, the execution order of operations from different threads is unspecified in a multi-
threaded program. Thus, when such a program is verified, it is obviously insufficient to
check only a single randomly chosen thread interleaving since the verified property may
be violated in one interleaving of threads while it is not violated in another one.

2.5.1 Basic Idea of Partial Order Reduction

Unfortunately, checking every trace is too expensive as the number of possible thread
interleavings can be huge. Partial Order Reduction (POR) is a well-known technique for
avoiding the exploration of redundant thread interleavings during the verification of a
multi-threaded program [25]. Its key idea is to define an equivalence relation on traces
and explore a single representative (or as few as possible) from each equivalence class.
Traces are defined to be equivalent if they can be obtained from each other by successively
swapping adjacent independent actions. An equivalence class is called a Mazurkiewicz
trace [34]. Intuitively, if adjacent independent actions are swapped, the outcome will
remain the same: by exploring a single trace from each equivalence class, we still cover all
behaviors of the system. For the above interpretation of equivalence, we need a definition
of independence.
Dependency plays a key role in partial order reduction. Generally, we have two conditions
for the independence of two actions [25]. The first condition is that independent actions
can neither disable nor enable each other. The second property is that independent actions
commute. Since the goal of POR is to avoid exploring multiple traces leading to the same
state, these conditions cannot be used directly for determining dependency (two actions
should be explored in both orders to decide whether they commute). Instead, practically,
we can say that two actions are independent if they are from different processes, and they
do not access the same shared variable. This practical interpretation satisfies the original
conditions [25].

2.5.2 Partial Order Reduction Approaches

Partial order reduction methods construct a reduced transition system and explore only
this smaller reduced state space instead of the original one. For the correctness of such
an algorithm, it has to be guaranteed that at least one thread interleaving from each
equivalence class is completely included in the reduced transition system. In practice,
the reduced state space is "constructed" by calculating a sufficient subset of outgoing
transitions for exploration from a state. When exploring the state space, we only proceed
through transitions in the calculated subset. This way, only part of the state space is
explored: the reduced state space.
There are two main approaches to partial order reduction: static and dynamic POR [3]. In
the static version, the model (i.e., the CFA of the program) is analyzed, and the sufficient
subset of outgoing transitions is precomputed before any transition is explored from the
state. The dynamic approaches add transitions to these sufficient subsets on the fly. In
this work, I will deal with a static POR algorithm similar to the one presented in [1].

12

2.6 Related Work

Model checking has been a field of active research since the early 1990s to this
day [26, 19, 3]. Various techniques have been developed that are practically applica-
ble even though these techniques have to face the state space explosion problem [21], such
as iterative abstraction-refinement-based techniques [20] or partial order reduction [35].
These approaches reduce the size of the state space of the program in different ways.
Several approaches, such as the cone-of-influence reduction or program slicing, aim to
simplify the model by eliminating redundant model elements [8, 33, 30, 29]. Some of them
also use data-flow analysis for model checking [23]. I briefly introduce cone-of-influence
and program slicing techniques below. These techniques typically only statically analyze
and simplify the input model, which is limited compared to my dynamic data-flow analysis.
These static algorithms have the advantage of being executed only once before the state
space exploration, while my algorithm is performed at each successor state calculation.
On the other hand, my experiments in Chapter 4 show that my algorithm does not have
a significant runtime overhead.
Cone-of-influence reduction. Cone-of-influence algorithms statically analyze the data-flow
of the program. Data dependency is determined for each variable. That is, for each variable
v of the program, the set of variables is collected such that these variables are calculated
from the value of v [8, 33]. This way, a data-flow graph is constructed where variables
depend on other variables. Variables of interest that directly affect the verified property
are marked first. Then, each variable v is marked if an already marked variable depends
on v. This is repeated until no more variables can be marked. The unmarked (irrelevant)
variables are removed from the model as they cannot affect the verified property, even
indirectly. More precisely, each statement using an irrelevant variable is removed.
Program slicing. Program slicing techniques identify statements or blocks of code that
can potentially affect certain variables of interest and focus on these selected aspects
of semantics during the analysis [29]. In fact, the cone-of-influence reduction can be
considered as a special case of program slicing. Program slicing is widely used beyond
the scope of model checking: essentially, in any software engineering process where it is
useful to extract parts of the program based on arbitrary semantic criteria (e.g., static
code analysis or fault localization).
There are dynamic program slicing techniques; however, this means that concrete val-
uations of variables of interest are used for slicing [29]. None of these techniques take
advantage of the interleaving of threads for further reduction, which is the base of my
approach presented in this report.
Some partial order reduction works perform dynamic data-flow analysis in different ways
to reduce the dependency between actions of different processes [17, 2], though they only
use the results of data-flow analysis to reduce the number of explored thread interleavings
and not to simplify the statements.

13

Chapter 3

Statement Reduction by Dynamic
Data-Flow Analysis

This section presents a method for simplifying the statement of an action before calculating
the successors of the current state with respect to the action. Basically, when there is no
possible interleaving of threads from the current state where the value of a written variable
is accessed by any other statement relevant regarding the verified property, the expression
writing the variable is not evaluated.

3.1 Data-Flow Graph with Precision

First, I present how a data-flow graph is built with a given precision. Intuitively, a data-
flow graph represents dependencies between actions of a program: a directed edge points
from one action to another if the latter uses the values produced by the first action. Let
us formalize the connection between actions when one action uses the result of another
action.

Definition 4 (Observation relation). Let α, β be actions, and Π be the precision of
the abstraction. The action β observes α with precision Π if the following condition holds:
written(α) ∩ read(β) ∩ vars(Π) ̸= ∅.
An action α is transitively observed by an action β in a trace w = w1...wn if there are
indices i1, ..., im (1 ≤ i1 < ... < im ≤ n) such that wij is observed by wij+1 for each
1 ≤ j < m, and wi1 = α, wim = β. �

Note that each action α transitively observes itself as the trace w = α fulfills the conditions
of the definition, so the transitive observation relation is reflexive; this relation is naturally
transitive but not symmetric. Also note that this is an over-approximation of possible
data-flow between α and β since it is possible that a variable is rewritten by another
action before it is observed (e.g., actions x = 1, x = 2, y = x in this order). However,
these situations are relatively rare, so I will refrain from further refining the observation
relation.
My algorithm builds an abstract data flow graph whose nodes are actions (statements) of
the program, and a directed edge represents an observation between the connected nodes,
i.e., the target action observes the source of the edge. There are two types of edges:
in-process (Direct) and inter-process (Indirect) observation. Formally:

14

x = 1

L0

y = 1

L1

[y = 1] [y ≠ 1]

L2

L3 Le

y = x

L4

x = 0

L5

L6

x = 1

y = 1

[y = 1] [y ≠ 1]

y = x

x = 0

x = 1

y = 1

[y = 1] [y ≠ 1]

y = x

x = 0

Procedure 1 Procedure 2

Figure 3.1: CFA of two procedures and data-flow graphs with vars(Π) = {x, y} (above),
and vars(Π) = {y} (below)

Definition 5 (Abstract Data-Flow Graph). An abstract data-flow graph is a tuple
G = (A, D, I, Π) where:

• A is the set of actions of the program (the nodes of the data flow graph),

• D ⊆ A×A is the set of direct observation edges: (α, β) ∈ D if β observes α with Π,
pα = pβ, and β is reachable from α in the CFA procedure of their process, and

• I ⊆ A×A is the set of indirect observation edges: (α, β) ∈ I if β observes α with Π
and pα ̸= pβ.1 �

The data-flow graph can be precomputed for the abstract state space exploration. For
collecting direct observation edges, the CFA is traversed from each action α, and for
each action β reachable from α, (α, β) is added to D if β observes α. For inter-process
observation, the algorithm simply iterates over the actions of all other procedures and adds
an indirect observation edge wherever necessary. So, the data-flow graph can be built in
polynomial (quadratic) time in the number of CFA edges.

Example 3. Let us have two processes with the CFA procedures from Figure 3.1. The
figure shows two abstract data-flow graphs: one with a precision where some information
is tracked about both x and y (vars(Π) = {x, y}) and another where we have no information
about x (vars(Π) = {y}). Therefore, no edges start from actions assigning x in the second
graph. Solid edges are direct observation edges, while dashed edges represent inter-process
observations.

1On the implementation side, where processes can be created and terminated dynamically, several
processes can have the same CFA procedure. In that case, inter-process observation edges can exist
between actions of the same CFA procedure.

15

3.2 Statement Simplification

This section describes how the abstract data-flow graph can be used to simplify or com-
pletely eliminate statements. After presenting the algorithm in Section 3.2.1, I prove its
correctness in Section 3.2.2.

3.2.1 Using the Data-Flow Graph to Simplify Statements

Let Π be the precision of the abstraction and G = (A, D, I, Π) the computed abstract
data-flow graph. Let s be a state, α ∈ enabled(s): our goal is to decide whether α can be
transitively observed later during the program execution in a relevant way. In this work,
I target reachability properties, so relevant actions are the actions with guard conditions
since the reachability of error locations of the CFA can only be blocked by conditional
statements. I will refer to these relevant actions as real observers. Real observers are
colored in Figure 3.1. Thus, the evaluation of the action α can be skipped if there is
no trace from the current state where a real observer transitively observes α. Based
on the reflexivity of the transitive observation relation, conditional statements are never
simplified. Whether an action is transitively observed by a real observer can be decided
using the data-flow graph. For this, I introduce the following definition:

Definition 6 (Reachable Actions). Let s be an abstract state, and p be a process. Let
reachable(s, p) denote the set of actions such that α ∈ reachable(s, p) if there is a trace
w from s with α ∈ w and pα = p. �

If α is transitively observed by an action β in a trace starting from the current state
s, then there is a path in the data-flow graph from α to β only passing through graph
nodes (actions) which can still be reached from s by a process. In fact, formally, we have
conditions for the enabledness of the data-flow graph edges (different conditions for direct
and indirect observation edges):

Definition 7 (Enabled Edges of an Abstract Data-Flow Graph). Let s be an ab-
stract state, and G = (A, D, I, Π) an abstract data-flow graph.

• An edge (a1, a2) ∈ D is enabled in s if a1, a2 ∈ reachable(s, p) for some process p.

• An edge (a1, a2) ∈ I is enabled in s if a1 ∈ reachable(s, p1) and a2 ∈ reachable(s, p2)
for some processes p1 ̸= p2. �

Rephrasing my statement from the previous paragraph: if there is a trace from s where α
is transitively observed by an action β, then there is a sequence of actions a1, ..., an such
that a1 = α, an = β, (ai, ai+1) ∈ D ∪ I for each 1 ≤ i < n, and (ai, ai+1) is enabled in s.
That is, this sequence of actions a1, ..., an represents the data-flow between α and β.
Therefore, the data-flow graph G is traversed from s for each action α ∈ enabled(s) to
check if there is a path from α to a real observer. During the traversal, we only use enabled
edges of the data-flow graph. All direct observation edges reachable in G from an action
α ∈ enabled(s) are enabled based on Definition 7. However, deciding whether an inter-
process observation edge is enabled is not a trivial task. Fortunately, using an adequate
data structure, it can be decided in constant time during the verification. Section 3.4
presents the details of an efficient method for deciding the enabledness of data-flow graph
edges.

16

If a real observer is reached from α in the data-flow graph, then the value produced by
α is used (or at least may be used, c.f., the applied over-approximations), so we evaluate
α properly to calculate the successor states α(s). However, if no real observer is reached,
then the value of α is unused, so it is unnecessary to evaluate α. Instead, the successor
state s′ can be the state that only differs from the current state s in the location of the
process of α: s′(pα) is the target location of α.
In fact, the following method is used to determine the successor states. Let v be the
single variable v ∈ written(α). Note that written(α) has exactly one item when α is not
transitively observed by a real observer because α must be an assignment then (conditional
statements are real observers, hence, they are transitively observed).

• If v ∈ vars(Π), the original statement assigning a new value to v is replaced by a
havoc v statement.

• If v /∈ vars(Π), the original statement is simply removed (more exactly replaced with
a no operation statement that has no effect).

Using the havoc statement on the variables tracked in the current abstraction is necessary
for the refinement step of CEGAR (see more details in Section 3.3).

Example 4. Let us take the example of two processes from Figure 3.1 again with a preci-
sion such that vars(Π) = {x, y}. Let us have a state s where the processes are in locations
L0 and L5. Since the statement y = x cannot be reached by any process from s, the inter-
process observation edge (x = 1, y = x) of the data-flow graph is disabled (as well as some
other edges of the data-flow graph): Figure 3.2 shows the data-flow graph with disabled
edges. Thus, there is no path from the action x = 1 to a real observer, so the evaluation
of this statement can be skipped in s. Since the written variable x is in the precision, the
assignment will be replaced by a havoc statement, in fact.

Xx = 1

y = 1

[y = 1] [y ≠ 1]

X X

y = x

x = 0

Figure 3.2: Abstract data-flow graph with disabled edges

Algorithm 1 summarizes the presented method of statement simplification based on dy-
namic data-flow analysis. The initial state and the precision of the current abstraction are
the inputs of the algorithm. The output is a verdict: unsafe if an error state is reachable,
safe otherwise. The algorithm is a modified state space exploration. The waitlist variable
is used as an abstraction of the state space traversal strategy (e.g., BFS, DFS, or some
heuristic A* search); that is, the search strategy is independent of my algorithm, and it can
be customized. The body of the foreach loop formulates how the statement simplification
presented in this section works.

17

Algorithm 1: State Space Exploration with Statement Simplification
Input: s0, Π /* s0: initial state, Π: precision */
Output: verdict /* safe/unsafe */

1 G← construct abstract data-flow graph with Π
2 waitlist← {s0}
3 while waitlist ̸= ∅ do
4 s← remove an item from waitlist
5 if s is an error state then
6 return unsafe
7 end
8 foreach α ∈ enabled(s) do
9 if ∃ path in G of enabled edges in s from α to a real observer then

10 successors← α(s)
11 else
12 if written(α) = {v} and v ∈ vars(Π) then
13 α′ ← havoc v
14 successors← α′(s)
15 else
16 s′ ← s
17 s′(pα)← target location of α
18 successors← {s′}
19 end
20 end
21 waitlist← waitlist ∪ successors

22 end
23 end
24 return safe

3.2.2 Correctness of the Presented Algorithm

Theorem 1 proves that using Algorithm 1 for state space exploration yields correct results,
that is, it reaches an error state whenever an error state is reachable with a feasible trace
in the original state space. By the original state space, I mean the abstract state space
explored without the introduced statement simplification (i.e., for each α ∈ enabled(s),
the successor states α(s) are added to the state space).

Theorem 1. Algorithm 1 returns an unsafe verdict whenever an error state is reachable
in the concrete state space. �

Proof. A reachable error state in the concrete state space means that the original abstract
state space contains a feasible abstract error trace. I prove that if we take successors
instead of α(s) in a step of the algorithm, then if there is a feasible abstract error trace from
s starting with α, there is a feasible abstract error trace from at least one s′ ∈ successors,
as well. We have the following cases:

1. α is transitively observed by a real observer.
Then α is not simplified, so successors = α(s). Naturally, if there is a feasible
abstract error trace from s in the form α.w, then w is a feasible abstract error trace
from at least one element of successors = α(s).

18

2. α is not observed transitively by a real observer, and v /∈ vars(Π) for the single item
v ∈ written(α).2

In this case, α practically has no effect since no information is tracked about v in the
current abstraction. So, an assignment of v does not modify anything in the state
except for the location update for pα. This is exactly how s′ is defined in lines 16-17,
so successors = α(s) in this case, as well. Similarly to case 1, there is a feasible
abstract error from at least one element of successors = α(s).

3. α is not observed transitively by a real observer, and v ∈ vars(Π).
A feasible abstract error trace α.w from s implies that there is a concrete state c
with c |= s such that α.w is a trace from c to a concrete error state. Note that an
unobserved α can be a deterministic or non-deterministic assignment. However, in
the latter case, we are back in the previous case since, practically, α is not replaced
(a havoc statement replaced with a havoc statement on the same variable). So we
consider α as a deterministic assignment, that is, α(c) = {c′}. Thus, w is an error
trace from c′. Now, if we take α′ instead of α, then c′ ∈ α′(c) since a havoc statement
means that v can get any value from its domain, including the value c′(v) originally
assigned by α. Based on the abstraction, for each concrete state ĉ ∈ α′(c), there
is an abstract state ŝ ∈ α′(s) such that ĉ |= ŝ. Therefore, for c′ ∈ α′(c), there is
an abstract state s′ ∈ α′(s) with c′ |= s′. This way, w being an error trace from c′

implies that w is a feasible abstract error trace from s′ ∈ successors = α′(s).

As the property proven above is preserved in each step when an action is explored from an
abstract state, it follows by induction that if a feasible abstract error trace is available from
the initial state, then there is a feasible abstract error trace in the state space explored by
Algorithm 1, as well, which proves the theorem. □

3.3 Statement Simplification in CEGAR

My dynamic data-flow analysis-based state space exploration algorithm presented in the
previous section could be used in other formal verification algorithms than CEGAR, as
well. In such a case, it may be possible to forget lines 12-15 of Algorithm 1 and simply
use lines 16-18 to define the successor state when the action α is not observed transitively
by a real observer. However, I focus on CEGAR as the base verification algorithm in this
work.
CEGAR is an iterative algorithm, and it refines the abstraction when a spurious counterex-
ample is found during the exploration of the abstract state space [20]. The counterexample
provided by the abstractor is a trace: an alternating sequence of abstract states and (orig-
inal, not simplified) actions from the initial abstract state to an abstract error state. The
refiner checks whether this trace is feasible or not, that is, whether there is a concrete
variable assignment for each state of the trace that does not contradict the abstract state
expressions and the actions of the trace.
It is important that the counterexample provided to the refiner must contain the original
actions, even if they were simplified by my algorithm during the state space exploration.
Consider a program with a single process whose CFA is the one from Figure 3.3 where
Le is an error location. Let us have a precision where we only track information about x:

2Note that written(α) has exactly one item when α is not transitively observed by a real observer
because α must be an assignment then.

19

x = 1
L0

y = x
L1

[y = 1]

[y ≠ 1]

L2

L3

Le

Figure 3.3: CFA of a single process

vars(Π) = {x}. An abstract error state is reachable in the abstract state space with the
trace (x = 1, y = x, [y ̸= 1]), which is clearly spurious (the value of y must be 1 after
the first two statements, even if the current abstraction does not realize it). However, my
algorithm simplifies x = 1 as well as y = x since they are not observed by a conditional
action with this precision. If the refiner only sees the simplified actions in the trace, i.e.,
(havoc x, no operation, [y ̸= 1]), then the contradiction cannot be spotted. The refiner
would conclude that the counterexample is feasible. Thus, a wrong unsafe verdict would
be given as the result of the verification.
It is also necessary to use the havoc statement when the assignment of a variable in the
precision is simplified. If the successor state is simply defined as in lines 16-17 instead of
using a havoc statement, then the refiner may see a contradiction. As an example, let us
assume that the value of variable x is explicitly tracked in an iteration of CEGAR, and
the abstractor has found a counterexample trace. The trace contains a state s where the
value of x is 0, and the next action α assigns 1 to x. However, my algorithm noticed
that α cannot be transitively observed by any real observer, so it skipped the evaluation
of the statement of α for calculating the successor states α(s). Based on lines 16-17 of
the algorithm, the value of x would be the same (namely 0) in the state s′ after α in the
trace (we have seen in the previous paragraph that the counterexample must contain the
original actions). The refiner finds a contradiction here as the value of x cannot be 0 after
an action that assigns 1 to x. On the other hand, the precision could not be refined based
on this misleading contradiction, and the CEGAR algorithm would probably get stuck in
endless iterations.
This problem is overcome by applying a havoc statement instead of the unevaluated assign-
ment expression since the havoc statement covers the behavior of the original assignment,
whatever value it would assign. Going back to the previous example, the havoc statement
would erase the value of x from s′, so it is not a contradicting state after α. Furthermore,
the evaluation of the havoc statement is still a simple task, so it is still worth replacing
the original assignments with a havoc statement.
It is also worth mentioning that my algorithm cannot introduce new spurious counterex-
amples in certain abstract domains and degrade the performance of the verification by
increasing the number of CEGAR iterations due to new spurious counterexamples. For
example, in explicit-value abstraction, intuitively, guard conditions cannot get enabled as
a result of applying my algorithm since Algorithm 1 only simplifies statements that are not
observed transitively by any real observer, i.e., by any conditional statement. Thus, the
evaluation of guard conditions is not affected, so completely new (spurious) counterexam-
ples cannot emerge as a result of my algorithm. As for originally feasible counterexamples,
they remain feasible with my algorithm as well since feasible traces are always available in
the abstract state space explored by my algorithm based on the proof of Theorem 1. On
the other hand, new spurious counterexamples may emerge in certain abstract domains,
such as the predicate abstract domain where there can be a predicate about a variable
of a simplified statement and another variable appearing in a guard condition: then, my
previous reasoning does not work.

20

3.4 Deciding Enabledness of Data-Flow Graph Edges

When the abstract data-flow graph is traversed from a state, only enabled data-flow graph
edges can be used. Using an adequate data structure, the enabledness of an edge in the
data-flow graph can be decided (or at least over-approximated) in constant time during
the verification. Finding the right data structure and algorithm is not trivial, though.

3.4.1 Problem Statement

To formulate the traversal of the data-flow graph, let us have a state s. Based on Defi-
nition 7 of enabled data-flow graph edges, we need the set reachable(s, p) to decide the
enabledness of a data-flow graph edge. First, note that reachable(s, p) cannot be de-
termined without exploring the state space from s. However, we can easily compute an
over-approximation of it based on the CFA procedure of p: the actions reachable in the
CFA of p from the location s(p). Naturally, this way, we may get redundant actions, since
an action with a guard condition may not be enabled in the state space, and this fact
is ignored if we simply over-approximate reachable(s, p) based on the control-flow graph.
In this section, I use may_reachable(s, p) to refer to this over-approximated form of the
reachable(s, p) set; similarly, I say that a data-flow graph edge is may_enabled if we use
may_reachable in Definition 7 instead of reachable. The over-approximation means that:

• α ∈ reachable(s, p) implies α ∈ may_reachable(s, p), and

• if the data-flow graph edge (a1, a2) is enabled in a state s, then (a1, a2) is
may_enabled in s.

Let us have a path a1, ..., an in the abstract data-flow graph G that we have already
explored during the traversal of G from s. For this path, a1 ∈ enabled(s) and the data-
flow graph edge (ai, ai+1) is may_enabled in s for each 1 ≤ i < n. Note that since we
only use may_enabled edges for the traversal of the data-flow graph, these edges must be
may_enabled, indeed. We have to check whether a potential new edge (an, an+1) of the
data-flow graph from the final node an of the path is may_enabled or not.
Now, if (an, an+1) is a direct observation edge, it is always may_enabled. Since (an−1, an)
is may_enabled, an ∈ may_reachable(s, p) for some process p (based on Definition 7
using the over-approximations). Then, (an, an+1) being a direct observation edge implies
that an+1 is reachable from an in the CFA procedure of process p based on Definition 5.
Therefore, an+1 ∈ may_reachable(s, p) as well, so (an, an+1) is may_enabled, indeed.
The case of indirect observation edges is more complex. To decide their may_enabledness,
we have to check whether an+1 ∈ may_reachable(s, p) for any process p ̸= pan . A trivial
solution would be to traverse the CFA from s(p) for each process p and collect the set
may_reachable(s, p). However, this would mean that we have to traverse the CFA from
each state during the state space exploration which would be a huge overhead that we
certainly do not want to have.
A better approach is to cache the set of actions reachable from each CFA location: thus
we have to traverse the CFA only once from each location. On the other hand, deciding
whether an+1 ∈ may_reachable(s, p) would still require checking the existence of an item
in a set. On the implementation side, this means that either we iterate over the elements
of the collection or we use a hashed set3 to "quickly" get based on the hash of the item

3https://docs.oracle.com/javase/8/docs/api/java/util/HashSet.html

21

https://docs.oracle.com/javase/8/docs/api/java/util/HashSet.html

whether it is in the set. In the first case, nothing is gained: the iteration is linear in the
number of CFA edges. In the latter case, seemingly, we can get the answer to our question
in constant time. However, hash calculation for classes with complex data structures also
has a computational overhead: if we calculate hashes for each data-flow graph node in
each state of the abstract state space, we end up with an overhead that is not negligible.
Therefore, I have chosen another approach based on strongly connected components of
the control-flow graph. The strongly connected components are calculated for the CFA
procedure of each process once prior to the model checking using a linear time algorithm
such as Tarjan’s algorithm [36]. Then, as we will see in the next section, we simply have
to compare integers to decide the may_enabledness of a data-flow graph edge.

3.4.2 Tarjan’s Algorithm

Tarjan’s algorithm partitions the vertices of a directed graph in a way that for each pair of
vertices u and v in the same partition, there is a directed path from u to v and from v to
u. These partitions are called strongly connected components (SCC). Each SCC contains
at least one directed cycle covering all of its vertices. Each vertex belongs to exactly
one SCC: Tarjan’s algorithm assigns a number scc(v) to each vertex v, which is a unique
identifier of the SCC of v. If a vertex v does not belong to any directed cycle of the graph,
then v forms a SCC alone.
Tarjan’s algorithm is an extended DFS search that produces a DFS spanning tree (or
forest) [36]. Each SCC is a subtree of the DFS tree. The algorithm aims to find the head
of each SCC, that is, the vertex from which all other vertices of the SCC are reachable
in the DFS tree. The basic idea of the algorithm is the following: if we find a back edge
during the DFS search (i.e., an edge that points to a visited but unfinished vertex), then
it forms a cycle with the edges of the DFS tree. This cycle is either a cycle on all vertices
of an SCC, or at least all vertices of the cycle are part of the same SCC. The head of the
SCC can only be the target of the found back edge or one of its ancestors.
In this report, I do not aim to give a detailed description of Tarjan’s algorithm, as it can
be found on many websites. However, I briefly explain how the algorithm works. The
algorithm defines the attributes discover(v) and lowest(v) for each vertex v. Tarjan’s
algorithm works as follows: any unvisited vertex v is selected, and the extended DFS is
run from v; this is repeated until there are no unvisited vertices.
The extended DFS performs the following steps on a vertex v: it initializes discover(v) to
a new value (based on an incremental counter) and sets lowest(v) to the same value, and
puts v on a stack. Then, it iterates over the neighbors of v, and invokes DFS recursively
for each unvisited neighbor u. After the recursive call has returned, it updates lowest(v)
to lowest(u) if lowest(u) < lowest(v). For each visited but unfinished neighbor u, we have
a back edge, and we update lowest(v) to discover(u) if discover(u) < lowest(v) (that is,
u may be the head of the SCC of v). After all neighbors of v have been processed, if
lowest(v) < discover(v), then v is not the head of its SCC, so the DFS simply returns
(but keeps v on the stack). However, if lowest(v) = discover(v), then v is the head of its
SCC: the items currently on the stack are the vertices of this SCC. The found SCC gets
an incremental ID number, and it is assigned to each vertex on the stack. Then, the stack
is emptied, and the DFS returns from processing v.

22

Tarjan’s algorithm finds the strongly connected components in a reversed topological order
of the condensation4 of the original graph. So, the associated incremental IDs of SCCs are
in a reversed order compared to the direction of edges: if scc(u) < scc(v) for two vertices
u and v, then v cannot be reached from u.
Getting back to control flow automata, Tarjan’s algorithm is executed for each procedure
of a multi-threaded CFA, which assigns a value scc(l) to each location l of the procedure.
If scc(l1) < scc(l2) for locations l1 and l2 of the same procedure, then l2 cannot be reached
from l1; otherwise, l2 is considered as being reachable from l1. Naturally, this is an over-
approximation of location reachability: locations of parallel branches (without a loop) get
different scc numbers, and none can be reached from the other.

Example 5. Figure 3.4 shows the scc numbers associated to each graph vertices (CFA
locations). CFA locations with the same number belong to the same SCC. That is, any
location of an SCC can be reached from all other locations of the same SCC. The head of
each SCC is the vertex of the SCC that is closest to the initial CFA location. It is clearly
visible that if we have a path from l1 to l2, then scc(l1) ≥ scc(l2). Note that we have an
over-approximation indeed, as the location whose number is 4 cannot be reached from the
location with 5.

6 3

3

1

34 2

1

5

0

Figure 3.4: Strongly connected components of a CFA procedure

This way, when the data-flow graph G is traversed from a state s, we can easily check
whether the edges of the data-flow graph are may_enabled or not. An action β may be
reached in the future if the source location of β can be reached from the current location
of pβ in s. This can now be easily decided by comparing the scc values assigned to the
CFA locations. Formally, a data-flow graph edge (a1, a2) ∈ I is may_enabled in s if
scc(s(pa2)) ≥ scc(l2) where l2 is the source location of a2; that is, if l2 is reachable from
s(pa2) in the CFA.
For performance reasons and to avoid stack overflow in the case of large models, I have
implemented an iterative form of Tarjan’s algorithm instead of using the recursive DFS
presented in this section. On the other hand, it would be more complicated to present
the iterative form of the algorithm in an easily understandable way, so I opted for the
presentation of the recursive form.
As we have seen, using the concept of strongly connected components, it is possible to
decide the may_enabledness of a data-flow graph edge by simply comparing integers
instead of often traversing the CFA or computing complicated hashes.

4The condensation of a directed graph is a directed acyclic graph where each strongly connected com-
ponent of the original graph is represented by a single vertex. If there is a directed path from one SCC
of the original graph to another, then the condensation contains a directed edge between the respective
vertices.

23

3.5 Effect on Partial Order Reduction

For the practical applicability of model checking for concurrent software, it is inevitable to
use some reduction techniques to reduce the number of explored thread interleavings. One
of the most common reduction techniques is partial order reduction (POR) introduced in
Section 2.5. Therefore, when developing an algorithm for the verification of concurrent
systems, as I do in this work, it is worth considering the interaction of the developed
algorithm with partial order reduction.
Partial order reduction algorithms identify equivalent thread interleavings based on the
interaction of threads: two actions are dependent if they belong to the same process, or
they access the same shared variable (see Section 2.5 for more details). Since dependency
plays a key role in partial order reduction algorithms, its performance heavily depends on
the size of the dependency relation of actions. An important side effect of my statement
simplifying algorithm presented in this paper is that it reduces dependency between the
actions of the program. By simplifying or completely eliminating statements, variable
accesses are also reduced, so the size of the dependency relation of actions is decreased
by my method. Therefore, it is motivated to examine how my novel algorithm affects the
performance of POR algorithms. In this work, I investigate a static POR algorithm, where
the explored actions from a state are precomputed when the state is reached during the
exploration; for dynamic POR algorithms, there is already a method in the literature to
reduce dependency based on an observation relation between actions [2].
By default, I reduce the abstract state space first with POR, and then I apply my statement
simplification algorithm. This way, POR is not affected by my algorithm as POR is
performed first.
To observe the effect of my algorithm on POR, we could compose the two algorithms in
the reverse order, i.e., first simplifying statements with my novel approach, then applying
POR. This way, my algorithm eliminates some variable accesses from the statements which
reduces the size of the dependency relation for POR. However, my algorithm is applied
on a larger state space, which means that the abstract data-flow graph must be traversed
more often, imposing a more significant computational overhead on the verification. To
have our cake and eat it too, I propose the composition of the algorithms in a way that
first POR is applied, then my algorithm is used to simplify statements, and then POR is
applied again. This way, my algorithm is performed on the reduced state space, and POR
is also applied with the smaller dependency relation. Naturally, this way, POR has to be
applied two times, which also means a computational overhead compared to the first way
of composition. However, it is reapplied on a smaller state space that has already been
reduced by POR. Furthermore, this way, we can analyze the pure effect of my algorithm
on POR, that is, what further reduction can be achieved when using my algorithm.
The correctness of these different compositions is not trivial (that we never reduce the
state space in a way where we remove all reachable error states), though it is not too
complicated either. However, I will not get into the formal details in this report. As for
applying my algorithm after POR, based on the proof of Theorem 1, for each abstract error
trace present in the POR-reduced abstract state space, my algorithm will also explore
an abstract error trace, so correctness is preserved. When performing POR after my
algorithm, intuitively, we only reduce parts of the state space that are irrelevant with
respect to the verified property anyway (further POR reduction can happen when my
algorithm simplifies statements, which means that such statements are irrelevant).
In the evaluation chapter (Chapter 4), I evaluate the extra reducing effect of a static
partial order reduction applied after my statement simplification algorithm.

24

int x, y;

void thread1() { // process p1
x = 1;
y = 1;
if (y != 1) {

reach_error();
}

}

void thread2() { // process p2
y = x;
x = 0;

}

x = 1

L0

y = 1

L1

[y = 1] [y ≠ 1]

L2

L3 Le

y = x

L4

x = 0

L5

L6

Procedure 1 Procedure 2

Figure 3.5: Example program for the case study

3.6 Case Study

In this section, the presented algorithm is illustrated on a small multi-threaded program.
Let us follow the verification of our previous example step-by-step. Figure 3.5 shows the
program with two concurrent threads and the CFA of the program with the two CFA
procedures for the two threads, respectively. We have to check whether the error location
Le can be reached by process p1.
Let us use explicit-value abstraction in CEGAR and let the precision be Π = {y} in the
first iteration, so only the value of variable y is tracked. Figure 3.7 depicts the abstract
state space of the first iteration. Rectangles are states, and arrows are transitions. The
locations of the active processes are shown in a state along with the value of the tracked
variables (which is only y in this iteration). The labels of transitions indicate the simplified
action, i.e., the action used for successor state calculation. Where the original statement
is replaced by another statement (a havoc statement or an empty action denoted by
NOP), the transition is highlighted with green; an action that is not enabled in a state
only because its guard condition is false in the state is displayed with grey, and an "X"
indicates that it is not enabled. For visual consistency, transitions going downwards belong
to process p1, while transitions going right belong to process p2. To be concise, I will use
si,j as a reference to the state where the locations are Li and Lj for processes p1 and p2,
respectively. Unknown values are represented by the ⊤ (top) symbol.

x = 1

y = 1

[y = 1] [y ≠ 1]

y = x

x = 0

Figure 3.6: Abstract data-flow graph with vars(Π) = {y}

25

y = x

NOP

L0, L4

y = 0

NOP

NOP

L0, L5

y = ⊤

NOP

y = 1

L1, L5

y = ⊤

NOP

L0, L6

y = ⊤

y = x

y = 1

L1, L4

y = 0

y = 1

L1, L6

y = ⊤

NOP

[y = 1] [y ≠ 1]

L2, L5

y = 1

L2, L6

y = 1

NOPL3, L5

y = 1

L3, L6

y = 1

[y = 1] [y ≠ 1]

NOP

[y = 1]

L2, L5

y = ⊤

NOP

L3, L5

y = 1

y = x

[y = 1]

L2, L4

y = 1

havoc yL3, L4

y = 1

[y ≠ 1][y ≠ 1]

X X X
[y = 1] [y ≠ 1]

L2, L6

y = ⊤

L3, L6

y = 1

Le, L6

y = ⊤

NOP

Le, L5

y = ⊤

Figure 3.7: State space of the program

Based on our precision, the abstract data-flow graph used in this iteration is the one visible
in Figure 3.6, that is, actions assigning x are not observed by any other action. The initial
state is s0,4 as all processes are in their initial locations, and the value of the tracked
variable y is the default 0. There are two enabled actions in s0,4: x = 1 and y = x. We
apply the introduced statement simplification method for each enabled action. There are
no observation edges starting from the action x = 1, and it is not a conditional statement,
so it can be simplified: since x is not in the precision, this statement is completely reduced
(replaced by an empty action). On the other hand, there is a path of enabled edges from
the action y = x in the data flow graph to a conditional statement, so it is transitively
observed by a relevant action: it cannot be simplified. The successor state of s0,4 with
respect to y = x is s0,5, where the value of y is unknown (⊤) since an unknown value (x)
is assigned to y.
Proceeding further with the state space exploration, we can always eliminate the assign-
ments of x since x /∈ vars(Π); see the NOP labels in Figure 3.7. In most cases, statements
using y cannot be simplified. However, from s3,4, the assignment of y can also be sim-
plified. In s3,4, the abstract data-flow graph has no enabled observation edges based on
the locations of processes; thus, y = x is not observed transitively by any conditional
statement (in fact, no conditional action can be reached from s3,4), so it can be simplified.
Since y ∈ vars(Π), we cannot completely eliminate this statement: we have to use the
havoc statement on y.
Using this abstraction, there is an abstract error trace from the abstract initial state since
[y ̸= 1] is enabled in states s2,5 and s2,6 due to the unknown value of y in these states. Let
us assume that we have found the following abstract counterexample: s0,4

x=1−−→ s1,4
y=1−−→

s2,4
y=x−−→ s2,5

[y ̸=1]−−−→ se,5. Naturally, this is a spurious counterexample since the value of y
is always 1 after the first three actions, so [y ̸= 1] cannot be executed after them. Note
that if we had used the simplified statements (i.e., NOP instead of x = 1) for checking the
feasibility of the counterexample, we could not have spotted the contradiction (since the
initial value of x is 0 which is assigned to y, and 0 ̸= 1).

26

Also, note that my algorithm may be able to simplify a statement in one interleaving of
threads even if it cannot simplify that statement in another interleaving: see for example
the statement y = x from s3,4 versus from s0,4. Existing cone-of-influence algorithms
would say that the variables x and y are both important if we want to prove the safety of
this program, so those algorithms would not be able to eliminate any statement from this
program.
In the next iteration of CEGAR, we can use a precision where both variables are explicitly
tracked. This way, we are able to prove that the program is safe since p1 can never reach its
error location Le. In this iteration as well, my algorithm could simplify some statements
though less than in the previous iteration: e.g., x = 1 is observed from the initial state,
so it cannot be simplified.
This case study demonstrates that my proposed algorithm can simplify a significant pro-
portion of program statements. Evaluation results in Chapter 4 confirm that my algorithm
is capable of a considerable reduction over a large set of benchmark programs as well.

27

Chapter 4

Experiments and Evaluation

In this section, I evaluate the efficiency of my algorithmic contributions. First, I introduce
my plans for the experiment with the research questions in Section 4.1. Then, I present
and evaluate the results in Section 4.2. Finally, I discuss the threats to the validity of my
experiments in Section 4.3.

4.1 Experiment Design

The goal of my experiment is to evaluate the performance of my novel dynamic data-
flow-based statement simplification algorithm presented in the previous section. Though
I have explained the differences between my method and cone-of-influence techniques in
Chapter 1, I still refer to my algorithm as cone-of-influence-based statement simplification
algorithm (or COI for short) in this evaluation section.
The presented algorithm has been defined independently of concrete abstract domains,
therefore I investigate the effect of my proposed algorithm in two frequently used abstract
domains: explicit-value abstraction (later EXPL) [11] and (Cartesian) predicate abstraction
(later PRED) [5].
I also investigate the effect of my proposed algorithm on partial order reduction as de-
scribed in Section 3.5. The default implementation (where my algorithm is applied after
POR and POR is not affected by my algorithm) is referred simply as COI. The configura-
tion where POR is reapplied after my algorithm is POR-COI.
I have implemented my algorithm as an open-source extension of the Theta verification
framework [37], which already had a built-in CEGAR algorithm and had prior support for
multi-threaded C programs, including a partial order reduction algorithm (partial order
reduction was my work at last year’s TDK conference). I will refer to the existing Theta
algorithm as NO COI, that is, the baseline configuration where my new algorithm is not
enabled.

4.1.1 Research Questions

To evaluate the presented algorithm, I aim to answer the following research questions
concerning important metrics with respect to my novel algorithm and the above-listed
configurations.

28

RQ1 What is the proportion of statements that can be simplified or completely reduced
using the presented algorithm?

RQ2 How is the time of successor state calculation affected by the introduced algorithm?

RQ3 How is the overall performance of the verification affected by my algorithm?

RQ4 How does the proposed algorithm affect the performance of partial order reduction?

4.1.2 Experimental Configuration

In my experiments, I executed different configurations of Theta over a set of input pro-
grams written in C from the concurrency safety benchmark suite1 of SV-COMP [9] that
is parsable by Theta. I executed 4 configurations: both abstract domains (EXPL, PRED)
with my algorithm enabled and disabled. The benchmark tests were executed on virtual
machines with Intel Core (Haswell) processors; 5 dedicated CPU cores were allocated to
each task. Each verification task had a time limit of 900 seconds and a memory limit of
15GB. I used a sequence interpolation-based refinement strategy for the refinement step of
CEGAR and a depth-first state space exploration strategy with thread-safe large-block en-
coding [28] in the abstraction phase. I used atoms as the basis of predicate splitting for the
predicate domain; I used a maximum number of enumerated successor states (maxenum)
of 1 for the explicit domain [28].

4.2 Experiment Results

In the concurrency safety benchmark suite, Theta was able to parse 266 programs. No
configuration provided any wrong results. Table 4.1 shows the results of different metrics
aggregated by configuration. For a fair comparison, the aggregated values are calculated
over the common subset of correctly solved tasks by abstract domain: out of the 266
tasks, a common subset of 242 tasks was solved with the configurations using explicit-value
abstraction, and 224 with predicate abstraction. The simplified ratio column stands for the
average proportion of simplified statements (including completely eliminated statements)
compared to all statements. The successor state calculation and CPU time columns are
the sum of successor state calculation times and CPU times of the commonly solved tasks,
respectively.

domain coi simplified
ratio

successor state
calculation (s)

CPU
time (s)

solved
tasks

EXPL
NO COI 0 1057 4770 242

COI 0.218 435 4095 243
POR-COI 0.221 660 4734 243

PRED
NO COI 0 17338 27506 231

COI 0.224 12802 25192 234
POR-COI 0.227 11388 23497 234

Table 4.1: Different metrics for the evaluation of benchmark results
1https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/-/tree/

2fa025c8cb683e5991b2bbdb057e4cb328700dc0

29

https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/-/tree/2fa025c8cb683e5991b2bbdb057e4cb328700dc0
https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/-/tree/2fa025c8cb683e5991b2bbdb057e4cb328700dc0

0 50 100 150 200 250
Tasks

10 1

100

101

102

tra
ns

fu
nc

 ti
m

e
(s

)

EXPL, NO COI
EXPL, COI

(a) Explicit-value abstraction

0 50 100 150 200
Tasks

10 1

100

101

102

103

tra
ns

fu
nc

 ti
m

e
(s

)

PRED, NO COI
PRED, COI

(b) Predicate abstraction

Figure 4.1: Successor state calculation on quantile plots

The results visibly confirm the reduction potential of my proposed algorithm: COI con-
figurations greatly outperform NO COI configurations in terms of both successor state
calculation and overall verification performance. Let us have the answers to the research
questions:

RQ1 The proportion of simplified statements is more than 20% of all statements on aver-
age, see Table 4.1. In more detail, 17.0% of all statements are completely eliminated,
while 4.8% of all statements are replaced with havoc statements with explicit-value
abstraction; 17.3% and 5.1% for the same metrics when predicate abstraction is used.
This confirms the relevance of my algorithm, i.e., a significant subset of statements
is unnecessary in the sense that their result is unused in certain thread interleavings
for the verification of the given property.

RQ2 The time of successor state calculation is greatly reduced by my algorithm. It is
reduced by 58.9% with explicit abstraction and 26.2% with predicate abstraction.
Figure 4.1 shows the successor state calculation time on quantile plots for the two
abstract domains: the horizontal axes represent the tasks sorted by successor state
calculation time, while the vertical axes show the overall successor state calculation
time used to verify the corresponding problem. A significant part of successor state
calculation is taken by SMT solvers solving SMT problems (especially when using
predicate abstraction). Thus, the overall system load is significantly decreased by
reducing the SMT problem-solving time.

RQ3 The overall verification performance is also considerably improved by the proposed
algorithm: COI reduces the overall CPU time by 14.2% using explicit-value abstrac-
tion and by 8.4% using predicate abstraction. However, the number of solved tasks
is only slightly increased, probably because the complexity of input tasks is not lin-
early increasing. The computational overhead of my algorithm is not huge, though
not completely negligible: 164 seconds and 241 seconds aggregated for the tasks of
explicit and predicate abstraction, respectively, which is a mere 4.0% and 1.0% of
all CPU time.

30

RQ4 Interestingly, applying POR after my algorithm behaves differently in different ab-
stract domains. Though the proportion of simplified statements is slightly increased
compared to the COI configurations, successor state calculation and overall CPU time
have been negatively affected with the explicit domain while further improved with
predicate abstraction (see Table 4.1). The following factors may lead to a decrease
in performance of the POR-COI configuration:

• the POR reduction has to be executed twice for each state (though on a smaller
input for the second time);

• the implemented POR algorithm aims to explore the smallest sufficient subset
of enabled actions which may often be a simplified statement (as they are inde-
pendent with most of the other actions). However, from another perspective,
this means that the POR algorithm prefers the exploration of irrelevant model
elements in some cases: this way, finding a counterexample is hindered. Indeed,
for safe tasks in the benchmark set (i.e., where there is no feasible counterex-
ample), POR-COI is able to achieve similar performance to the COI configuration
(the overall CPU time of COI being only 2.8% better than POR-COI), whereas
the performance of POR-COI on unsafe tasks suffers a considerable overhead
(COI overall CPU time is 14.9% less in this case).

As a summary of my findings, my algorithm greatly improved the verification performance
of concurrent software in all measured metrics. Applying partial order reduction again
after the proposed simplification algorithm yields various results in different abstract do-
mains: it can further improve the performance in certain cases.

4.3 Threats to Validity

The validity of my experiments may be influenced by the following factors.
Internal validity. Consistency and accuracy of the experiments were ensured by using the
BenchExec framework [15]. I executed my experiments on virtual machines in the cloud
computing platform of our university. Therefore, external factors such as loads on other
virtual machines of the host environment and shared resources (such as disks) may have
slightly influenced the results. On the other hand, to moderate the cloud performance
interference, I performed the experiments in low utilization periods.
External validity. As my experiments were performed on benchmark programs of SV-
COMP, results might not be generalizable to real-life industrial programs. However, the
SV-COMP benchmark suite is considered to be a de facto standard for academic bench-
marking of software verification tools. Furthermore, Theta can only parse a limited subset
of SV-COMP concurrent benchmark programs, which further reduces generalizability. On
the other hand, there are typically more redundant model elements in a real-world verifi-
cation task than in the stripped, simplified programs of the SV-COMP benchmark suite
that Theta is currently able to parse. Thus, my algorithm may achieve even greater
reduction in industrial applications.
Construct validity. The metrics of the evaluation were carefully chosen to accurately de-
scribe the performance of my algorithm: both end-user statistics (such as overall CPU
time or the number of solved tasks) and backend-related information (such as the propor-
tion of simplified statements or successor state calculation time) were used. Therefore,
these metrics accurately represent the expected outcomes of the executions.

31

4.4 Conclusion

In this report, I have presented a novel statement reduction algorithm based on dynamic
data-flow analysis to aid abstract state space exploration of concurrent programs. My
method is based on a similar idea to cone-of-influence algorithms. However, my algorithm
performs a more fine-grained analysis, resulting in a more extensive reduction of model
elements. I have proven its correctness and discussed its integration into the abstraction-
based verification algorithm CEGAR as well as some low-level algorithmic optimizations,
and the effects of my algorithm on partial order reduction.
With my work, I contributed to an open-source verification tool, Theta. My contributions
enable Theta to verify a wider range of concurrent programs.
The evaluation of the algorithm shows that my approach can simplify or completely elim-
inate a great proportion of statements, which leads to a significant improvement in both
successor state calculation time and overall verification time. Therefore, the presented
algorithm is worth implementing in a state-of-the-art model checking tool that verifies
concurrent software.

4.5 Future Work

Benchmark tests have raised several questions that still have to be properly investigated.
Most notably, why is the performance affected differently in different abstract domains?
I plan to carry out a more profound benchmark test and analyze the results to get a
deeper insight into the effects of my proposed algorithm. Based on what I may learn from
a thorough analysis, I may be able to specialize my algorithm on some specific abstract
domains to further improve the performance.
Though the proposed algorithm takes its advantage of considering the current interleaving
of concurrent threads, theoretically, the algorithm can also be used to simplify the state-
ments of a single-threaded program. I plan to perform benchmark tests on single-threaded
programs as well, to see what improvements can be achieved by the presented algorithm
on such tasks.
Software verification, especially the verification of concurrent software, remains a hard
problem. I hope to find new solutions and optimize the algorithms presented in this work
to make concurrent software verification feasible for safety-critical systems of larger scale.

32

Acknowledgements

Project no. 2019-1.3.1-KK-2019-00004 has been implemented with the partial support
provided from the National Research, Development and Innovation Fund of Hungary,
financed under the 2019-1.3.1-KK funding scheme.

33

Bibliography

[1] Parosh Aziz Abdulla, Stavros Aronis, Bengt Jonsson, and Konstantinos Sagonas.
Comparing Source Sets and Persistent Sets for Partial Order Reduction. volume
10460 of Lecture Notes in Computer Science, pages 516–536. Springer, 2017. DOI:
10.1007/978-3-319-63121-9_26.

[2] Stavros Aronis, Bengt Jonsson, Magnus Lång, and Konstantinos Sagonas. Op-
timal Dynamic Partial Order Reduction with Observers. volume 10806 of
Lecture Notes in Computer Science, pages 229–248. Springer, 2018. DOI:
10.1007/978-3-319-89963-3_14.

[3] Christel Baier and Joost-Pieter Katoen. Principles of Model Checking. MIT Press,
2008. ISBN 978-0-262-02649-9.

[4] Levente Bajczi, Zsófia Ádám, and Vince Molnár. C for Yourself: Compar-
ison of Front-End Techniques for Formal Verification. IEEE, 2022. DOI:
10.1145/3524482.3527646.

[5] Thomas Ball, Andreas Podelski, and Sriram K. Rajamani. Boolean and Cartesian Ab-
straction for Model Checking C Programs. volume 2031 of Lecture Notes in Computer
Science, pages 268–283. Springer, 2001. DOI: 10.1007/3-540-45319-9_19.

[6] Haniel Barbosa, Clark W. Barrett, Martin Brain, Gereon Kremer, Hanna Lachnitt,
Makai Mann, Abdalrhman Mohamed, Mudathir Mohamed, Aina Niemetz, Andres
Nötzli, Alex Ozdemir, Mathias Preiner, Andrew Reynolds, Ying Sheng, Cesare Tinelli,
and Yoni Zohar. cvc5: A versatile and industrial-strength SMT solver. volume
13243 of Lecture Notes in Computer Science, pages 415–442. Springer, 2022. DOI:
10.1007/978-3-030-99524-9_24.

[7] Clark W. Barrett and Cesare Tinelli. Satisfiability modulo theories. pages 305–343.
Springer, 2018. DOI: 10.1007/978-3-319-10575-8_11.

[8] Sergey Berezin, Sérgio Vale Aguiar Campos, and Edmund M. Clarke. Compositional
Reasoning in Model Checking. volume 1536 of Lecture Notes in Computer Science,
pages 81–102. Springer, 1997. DOI: 10.1007/3-540-49213-5_4.

[9] Dirk Beyer. Competition on Software Verification and Witness Validation: SV-COMP
2023. volume 13994 of Lecture Notes in Computer Science, pages 495–522. Springer,
2023. DOI: 10.1007/978-3-031-30820-8_29.

[10] Dirk Beyer and M. Erkan Keremoglu. CPAchecker: A Tool for Configurable Software
Verification. volume 6806 of Lecture Notes in Computer Science, pages 184–190.
Springer, 2011. DOI: 10.1007/978-3-642-22110-1_16.

[11] Dirk Beyer and Stefan Löwe. Explicit-Value Analysis Based on CEGAR and Inter-
polation. CoRR, abs/1212.6542, 2012.

34

http://dx.doi.org/10.1007/978-3-319-63121-9_26
http://dx.doi.org/10.1007/978-3-319-89963-3_14
http://dx.doi.org/10.1145/3524482.3527646
http://dx.doi.org/10.1007/3-540-45319-9_19
http://dx.doi.org/10.1007/978-3-030-99524-9_24
http://dx.doi.org/10.1007/978-3-319-10575-8_11
http://dx.doi.org/10.1007/3-540-49213-5_4
http://dx.doi.org/10.1007/978-3-031-30820-8_29
http://dx.doi.org/10.1007/978-3-642-22110-1_16

[12] Dirk Beyer, Thomas A. Henzinger, Ranjit Jhala, and Rupak Majumdar. The software
model checker Blast. Int. J. Softw. Tools Technol. Transf., 9(5-6):505–525, 2007. DOI:
10.1007/s10009-007-0044-z.

[13] Dirk Beyer, Thomas A. Henzinger, and Grégory Théoduloz. Configurable Software
Verification: Concretizing the Convergence of Model Checking and Program Analysis.
volume 4590 of Lecture Notes in Computer Science, pages 504–518. Springer, 2007.
DOI: 10.1007/978-3-540-73368-3_51.

[14] Dirk Beyer, Matthias Dangl, and Philipp Wendler. A Unifying View on SMT-
Based Software Verification. J. Autom. Reason., 60(3):299–335, 2018. DOI:
10.1007/s10817-017-9432-6.

[15] Dirk Beyer, Stefan Löwe, and Philipp Wendler. Reliable benchmarking: require-
ments and solutions. Int. J. Softw. Tools Technol. Transf., 21(1):1–29, 2019. DOI:
10.1007/s10009-017-0469-y.

[16] Per Bjesse. What is Formal Verification? SIGDA Newsl., 35(24):1–es, dec 2005. ISSN
0163-5743. DOI: 10.1145/1113792.1113794.

[17] Nicolas Blanc and Daniel Kroening. Race analysis for systemc using model check-
ing. ACM Trans. Design Autom. Electr. Syst., 15(3):21:1–21:32, 2010. DOI:
10.1145/1754405.1754406.

[18] Alessandro Cimatti, Alberto Griggio, Bastiaan Joost Schaafsma, and Roberto Sebas-
tiani. The mathsat5 SMT solver. volume 7795 of Lecture Notes in Computer Science,
pages 93–107. Springer, 2013. DOI: 10.1007/978-3-642-36742-7_7.

[19] Edmund M. Clarke, Orna Grumberg, and David E. Long. Model Checking and
Abstraction. ACM Trans. Program. Lang. Syst., 16(5):1512–1542, 1994. DOI:
10.1145/186025.186051.

[20] Edmund M. Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith.
Counterexample-guided abstraction refinement for symbolic model checking. J. ACM,
50(5):752–794, 2003. DOI: 10.1145/876638.876643.

[21] Edmund M. Clarke, William Klieber, Milos Novácek, and Paolo Zuliani. Model
Checking and the State Explosion Problem. volume 7682 of Lecture Notes in Com-
puter Science, pages 1–30. Springer, 2011. DOI: 10.1007/978-3-642-35746-6_1.

[22] Leonardo Mendonça de Moura and Nikolaj S. Bjørner. Z3: an efficient SMT solver.
volume 4963 of Lecture Notes in Computer Science, pages 337–340. Springer, 2008.
DOI: 10.1007/978-3-540-78800-3_24.

[23] Matthew B. Dwyer and Lori A. Clarke. Data Flow Analysis for Verifying Properties
of Concurrent Programs. pages 62–75. ACM, 1994. DOI: 10.1145/193173.195295.

[24] Cormac Flanagan and Shaz Qadeer. Predicate abstraction for software verification.
pages 191–202. ACM, 2002. DOI: 10.1145/503272.503291.

[25] Patrice Godefroid. Partial-Order Methods for the Verification of Concurrent Systems
- An Approach to the State-Explosion Problem, volume 1032 of Lecture Notes in Com-
puter Science. Springer, 1996. ISBN 3-540-60761-7. DOI: 10.1007/3-540-60761-7.

[26] Orna Grumberg, Edmund M. Clarke, and Doron A. Peled. Model checking. 1999.

35

http://dx.doi.org/10.1007/s10009-007-0044-z
http://dx.doi.org/10.1007/978-3-540-73368-3_51
http://dx.doi.org/10.1007/s10817-017-9432-6
http://dx.doi.org/10.1007/s10009-017-0469-y
http://dx.doi.org/10.1145/1113792.1113794
http://dx.doi.org/10.1145/1754405.1754406
http://dx.doi.org/10.1007/978-3-642-36742-7_7
http://dx.doi.org/10.1145/186025.186051
http://dx.doi.org/10.1145/876638.876643
http://dx.doi.org/10.1007/978-3-642-35746-6_1
http://dx.doi.org/10.1007/978-3-540-78800-3_24
http://dx.doi.org/10.1145/193173.195295
http://dx.doi.org/10.1145/503272.503291
http://dx.doi.org/10.1007/3-540-60761-7

[27] Ákos Hajdu. Effective Domain-Specific Formal Verification Techniques. Thesis, Bu-
dapest University of Technology and Economics, 2020.

[28] Ákos Hajdu and Zoltán Micskei. Efficient Strategies for CEGAR-based Model
Checking. Journal of Automated Reasoning, 64(6):1051–1091, 2020. DOI:
10.1007/s10817-019-09535-x.

[29] Mark Harman and Robert M. Hierons. An overview of program slicing. Softw. Focus,
2(3):85–92, 2001. DOI: 10.1002/swf.41.

[30] Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, and Grégoire Sutre. Software
Verification with BLAST. volume 2648 of Lecture Notes in Computer Science, pages
235–239. Springer, 2003. DOI: 10.1007/3-540-44829-2_17.

[31] ISO/IEC 9899:201x. Programming languages — C. International standard, Interna-
tional Organization for Standardization, International Electrotechnical Commission,
December 2010.

[32] Java SE 8 Edition. The Java Language Specification. Language specification, Sun
Microsystems, May 2015.

[33] Carmelo Loiacono, Marco Palena, Paolo Pasini, Denis Patti, Stefano Quer, Stefano
Ricossa, Danilo Vendraminetto, and Jason Baumgartner. Fast cone-of-influence com-
putation and estimation in problems with multiple properties. pages 803–806. EDA
Consortium San Jose, CA, USA / ACM DL, 2013. DOI: 10.7873/DATE.2013.170.

[34] Antoni W. Mazurkiewicz. Trace Theory. volume 255 of Lecture Notes in Computer
Science, pages 279–324. Springer, 1986. DOI: 10.1007/3-540-17906-2_30.

[35] Doron A. Peled. Ten Years of Partial Order Reduction. volume 1427 of Lecture Notes
in Computer Science, pages 17–28. Springer, 1998. DOI: 10.1007/BFb0028727.

[36] Robert Endre Tarjan. Depth-First Search and Linear Graph Algorithms. SIAM J.
Comput., 1(2):146–160, 1972. DOI: 10.1137/0201010.

[37] Tamás Tóth, Ákos Hajdu, András Vörös, Zoltán Micskei, and István Majzik. Theta: a
Framework for Abstraction Refinement-Based Model Checking. pages 176–179, 2017.
ISBN 978-0-9835678-7-5. DOI: 10.23919/FMCAD.2017.8102257.

[38] Alan M. Turing. On computable numbers, with an application to the Entschei-
dungsproblem. Proc. London Math. Soc., s2-42(1):230–265, 1937. DOI:
10.1112/plms/s2-42.1.230.

36

http://dx.doi.org/10.1007/s10817-019-09535-x
http://dx.doi.org/10.1002/swf.41
http://dx.doi.org/10.1007/3-540-44829-2_17
http://dx.doi.org/10.7873/DATE.2013.170
http://dx.doi.org/10.1007/3-540-17906-2_30
http://dx.doi.org/10.1007/BFb0028727
http://dx.doi.org/10.1137/0201010
http://dx.doi.org/10.23919/FMCAD.2017.8102257
http://dx.doi.org/10.1112/plms/s2-42.1.230

	Kivonat
	Abstract
	Introduction
	Preliminaries
	Formal Verification and Model Checking
	Computation Model
	State Space of a Program
	Abstraction-Based Verification
	Abstraction
	Counterexample-Guided Abstraction Refinement

	Partial Order Reduction
	Basic Idea of Partial Order Reduction
	Partial Order Reduction Approaches

	Related Work

	Statement Reduction by Dynamic Data-Flow Analysis
	Data-Flow Graph with Precision
	Statement Simplification
	Using the Data-Flow Graph to Simplify Statements
	Correctness of the Presented Algorithm

	Statement Simplification in CEGAR
	Deciding Enabledness of Data-Flow Graph Edges
	Problem Statement
	Tarjan's Algorithm

	Effect on Partial Order Reduction
	Case Study

	Experiments and Evaluation
	Experiment Design
	Research Questions
	Experimental Configuration

	Experiment Results
	Threats to Validity
	Conclusion
	Future Work

	Acknowledgements
	Bibliography

