
Budapest University of Technology and Economics
Faculty of Electrical Engineering and Informatics

Department of Measurement and Information Systems

Abstraction-based Trace Generation to Validate
Semantics of Formal Verifiers

Scientific Students’ Association Report

Author:

Zsófia Ádám

Advisor:

Zoltán Micskei, PhD

2022

Contents

Kivonat i

Abstract ii

1 Introduction 1

2 Background 3
2.1 Verification of Critical Embedded Systems 3

2.2 Formal Verification and Model Checking . 4

2.2.1 Abstraction in Model Checking . 4

2.2.1.1 Abstract Domains . 5

2.2.1.2 ARG . 5

2.2.1.3 Traces . 6

2.3 Using Model Checkers in Practice . 6

3 Validating Semantics of Verifiers 8
3.1 Formal Verification Process . 8

3.2 Problem Statement . 9

3.3 Challenges of Semantics in Model Transformation 10

3.3.1 Example of Ambiguous Semantics 10

3.4 An Approach to E2E Validation of the Verification Process 11

3.4.1 Another Use Case: Mitigating Modeling Mistakes 12

4 Abstraction-based Trace Generation Algorithm 13
4.1 Prerequisites of the Trace Generation Algorithm 13

4.1.1 Abstraction Capabilities . 13

4.2 Generating Traces without Abstraction . 14

4.2.1 Trace Generation without Abstraction Example 14

4.3 Utilizing Abstraction . 15

4.3.1 Inappropriate Abstraction Level . 16

4.3.2 Trace Generation with Abstraction Example 17

4.4 Analysis of the Proposed Algorithm . 19

4.4.1 Coverage Guarantees . 19

4.4.1.1 Coverage on the ARG level 20

4.4.1.2 Typical Coverages for Engineering Models 21

4.4.2 Usability and Feasibility for Validation 23

4.4.2.1 Examples of Tools with the Necessary Prerequisites 23

5 Evaluation 25
5.1 Prototype Implementation . 25

5.1.1 Gamma and Theta . 25

5.1.2 Process and Implementation . 25

5.1.2.1 High Level View of the Process 26

5.1.2.2 Implementing Abstraction-based Trace Generation in Theta 27

5.1.2.3 XSTS Specific Additions 27

5.2 Evaluation Design . 28

5.2.1 Research Questions . 28

5.2.2 Process and Goal of the Evaluation 28

5.2.2.1 End-to-End Validation . 28

5.2.2.2 Real-World Models . 29

5.3 Designing a Validation Modeling Suite for Gamma 29

5.3.1 Understanding Gamma Models and Traces 30

5.4 Results of the Case Studies . 30

5.4.1 RQ1: Quantitative Analysis of the Models and Traces 31

5.4.2 RQ2: Validation Findings . 31

5.4.2.1 Missing Default Values in XSTS 33

5.4.2.2 Order of Operations inbetween Stable State Configurations 34

5.4.2.3 Limitation of Parallel Executions 35

5.4.2.4 Visualizing Transitions Crossing Composite states with
Orthogonal Regions . 37

5.4.3 RQ3: Traces of Real-World Models 40

5.5 Discussion . 42

6 Related Work 43
6.1 The Landscape of Verification Tools . 43

6.2 Test Generation with Model Checkers . 44

6.3 V&V of Model Transformations . 44

6.4 Conformance Testing of Different Tools and Compilers 44

7 Conclusion 45
7.1 Summary of Results . 45

7.2 Future Work . 45

Bibliography 47

Appendix 52

Kivonat

A biztonságkritikus beágyazott rendszerek komplexitása folyamatosan növekszik. Ennek a
komplexitásnak a kezelésére többek között különböző mérnöki modellek (pl. állapotgépek)
tervezésben és verifikációban való használata ad megoldást. Formális verifikációs technikák
segítségével bizonyos tulajdonságok teljesülése bizonyítható vagy hibák is megtalálhatóak,
de ehhez a mérnöki modellezési nyelv pontos végrehajtási szemantikájának definiálására
van szükség.

A formális verifikációs eszközökben szükség van ezen szemantikák formalizálására a be-
meneti modell formális reprezentációra transzformálása során. Ez egy komplex elméleti és
implementációs feladat, mivel a szemantika sokszor fél-formális és alulspecifikált. Ennek
köszönhetően bizonyos hibák, például a koncepció félreértése (mely gyakran az alulspeci-
fikált részek kiegészítésére adott ad-hoc döntésekben nyilvánul meg), gyakoriak. Ezen
problémák később a felhasználó zavarodottságát vagy az eszköz által adott eredmények
észrevétlen érvénytelenségét is eredményezhetik.

Ennélfogva a szemantikát implementáló modell-transzformáció validálása egy
nélkülözhetetlen lépés. A jelenlegi gyakorlat teszt modellek készítése az adott modellezési
nyelven majd érvényes lefutások megadása (általában manuálisan). Ezeket ezután a
verifikációs eszköz vagy szimulátor által visszaadott lefutásokkal hasonlítják össze a
konformancia bizonyítására. Ez a módszer hibákra hajlamos és nem hatékony, mivel
bizonyos érvényes lefutások könnyen kihagyásra kerülhetnek.

A teszt lefutások automatikus generálása egy aktív kutatási terület. Minden lehetséges
lefutást legenerálni egyszerű modellekre és modellezési nyelveken könnyű feladat. Azon-
ban a feladat nehézsége könnyen megnövekedhet: például ha a modell nem csak vezérlési
folyamot ír le, de adatokat is tartalmaz vagy ha az állapottere végtelen. Ilyen esetekben a
lefutásokat legtöbbször valamilyen fedettségi kritérium teljesítésére korlátozzák. Azonban
a probléma specifikus eseteiben precízebb megoldások is adhatóak.

A formális verifikációs eszközök egy gyakori típusa az absztrakció-alapú model checker.
Munkámban ezen eszközök absztrakció alapú technikáit kihasználó automatikus lefutás
generálási módszert javaslok. Egy olyan absztrakció alapú lefutás generáló algoritmust
alkottam meg, mely sokszor képes a végtelen állapotterek kezelésére. Az absztrakciót
konfigurálható módon képes alkalmazni és nem generál olyan lefutásokat, melyek szük-
ségtelenül ismétlik a modell már korábban lefedett állapotait. A dolgozatomban megvizs-
gálom az algoritmus garanciáit, erősségeit és gyengeségeit, beleértve különböző elérhető
fedettségeket és a skálázhatóságot.

Az algoritmust egy esettanulmány során ki is értékeltem reaktív állapotgépekhez készült
eszközökön. A validált eszközök saját modellezési nyelvet alkalmaznak, mely megfelelően
összetett ahhoz, hogy validálása szükséges legyen. A bemutatott elsődleges felhasználás
mellett ismertetem, hogy az algoritmus milyen más felhasználásokra ad lehetőséget, mint
például modellezési hibák azonosítása.

i

Abstract

Safety-critical embedded systems are becoming increasingly complex. To handle this com-
plexity, various engineering models are used for design and verification during development
(e.g. state machines). Formal verification techniques can automatically prove some prop-
erties or find errors in these models, but necessitate the precise definition of execution
semantics of the engineering modeling language.

Formal verification tools need to formalize semantics when transforming the engineering
model to a formal representation. This is a complex theoretical and implementation task,
as these semantics are usually only semi-formal and underspecified. Thus different errors,
e.g. conceptual flaws, such as unexpected decisions on underspecified semantic rules, are
common. Such undetected flaws cause either confusion or silently invalidate the results of
formal verification.

Therefore the validation of model transformations implementing semantics is a crucial
task. The current state of practice recommends creating test models in the engineering
language, defining valid execution traces for them (mostly manually), and later comparing
these traces to the ones returned by verifiers or simulators to check conformance. This is
an inefficient and error-prone method as valid traces can be easily missed.

Generating test traces from models automatically is an active research area. All possible
traces can be easily generated for simple models and modeling languages. However, it
gets increasingly difficult when the modeling language contains data and not just control
flow, or the model’s state space is infinite. Limiting traces to satisfy some kind of coverage
criteria is the general solution, but for specific scenarios, more precise solutions can be
recommended.

A common type of formal verification tools is abstraction-based model checkers. I propose
utilizing the abstraction-based techniques of these tools for automatic trace generation. I
designed an abstraction-based trace generation algorithm, which is able to handle several
cases where the state space is infinite. It utilizes the abstraction in a configurable way and
generates traces that do not unnecessarily repeat already covered states of the model. In
this report, I consider the guarantees, strengths, and weaknesses of this algorithm, such
as coverage possibilities and scalability.

I evaluated the algorithm through a case study on tools for reactive state machines. The
validated tools include their own modeling language, which is complex enough that the
need for validation of the transformation arises. Besides this presented main use case, I
show that this algorithm also opens up the possibility for more features, such as mitigating
modeling mistakes.

ii

Chapter 1

Introduction

With the increasing complexity of safety critical systems, both verification techniques and
model driven development are experiencing a growing importance. Models play a central
role in the design and development of these systems and thus the verification of design
models is a crucial step [42, 47]. There are several complementary verification techniques
available, such as testing, simulation or formal verification.

Formal verification techniques offer the capability of not only being able to find (error)
property violations, but also the absence of them [27], proving the system safe for the given
property. One of the best known formal verification techniques is model checking [5, 39].

Model checking [26] utilizes exhaustive state space traversal. But naive state space traver-
sal is computationally expensive and often made infeasible due to state space explosion
(i.e. the exponentially growing number of possible states). Many techniques were proposed
and are in use to mitigate state space explosions, such as bounded model checking [18],
symbolic methods [20] or abstraction-based techniques [25, 26].

There are many different model checking tools in different application domains [43, 10],
implementing these algorithms and enabling their users to automatically check different
models (e.g. software code [10], hardware models [43] and so on). But these tools imple-
ment much more than a single algorithm: they execute complex processes including the
transformation of the input model to an unambiguous formal representation, optimization
on this formal model and the backannotation of the results to the original model [6].

Formal representations are necessary for an algorithm to reason upon the model with
mathematical precision. However there is a large semantic gap between engineering design
models and formal models, as design models tend to be semi-formal and ambiguous. This
makes the mapping between the two a non-trivial and complex task. Although model
checking algorithms are typically proven to be correct [25], this is often not the case for
the model transformation and optimization steps preceding the model checking algorithm.

Problem Statement Due to this semantic gap and the complexity of the verification
process, subtle semantic and implementation issues might be introduced in the model trans-
formation and optimization steps and these issues can easily remain hidden. If the formal
model is syntactically correct, but semantically inaccurate, i.e. it has different behaviour
from the original model, then the results of the model checker should be invalidated.

For example the tool might not find issues that are present in the input model, but absent
from the formal counterpart causing a missed bug, which will most likely go unnoticed.
So the question arises: when can we trust the results of a formal verification tool?

1

Solution Proposal I propose the end-to-end (E2E) validation of verification processes
to find issues in the semantics implemented by the model transformation process.

Engineering modeling language semantics are typically not fully formalized and therefore
the validation process needs to include manual checks. An intuitive and typical method for
validation of model semantics is to check what executions the model is capable of through
execution traces of a conformance test suite [53].

I propose the automatic generation of execution traces using the model checker under
validation itself. Although the validation approach is partially manual, it can be assisted by
automated tools. The scope of the algorithm proposed in this work are mainly abstraction
based model checkers.

Generating test cases through counterexample traces of model checkers is an already widely
used approach [33], but it typically suffers from issues mainly caused by the blackbox usage
of model checkers [32].

The proposed novel algorithm utilizes lower level features of model checkers. The abstrac-
tion and state space traversal capabilities can be utilized for generating execution trace
sets with unique coverage guarantees for states, transitions and data variables as well.

During trace generation, the model transformations and optimizations typically executed
during verification are also used. Thus the resulting trace set will reflect the semantic map-
ping applied by the model checker. This makes the generated execution traces appropriate
for E2E validation.

Evaluation To evaluate the algorithm and the validation approach, I created a proto-
type implementation to validate the verification process of Gamma [50] and Theta [58], a
toolchain for state machine based reactive systems.

The case study includes the design of a validation model suite, quantitative analysis of the
resulting traces and detailed examination of the findings of the validation process. The
models and traces are available as an artifact [1]. Based on the results, the approach was
deemed successful, as the compact trace set made manual validation feasible and multiple
issues and limitations were found in the toolchain.

Furthermore, trace generation was also executed on several real-world models as another
case study. This illustrates another use case of trace generation: assisting the understand-
ing of semantics on the concrete model itself and possibly detecting modeling mistakes,
i.e. human error. Though it has some limitations, this approach also proved to be feasible.

Contributions

• I propose an E2E validation approach for semantics of model transformations in
abstraction based model checkers (Chapter 3),

• I propose, formalize and analyze the coverage guarantees and usability of a novel trace
generation algorithm utilizing the state space traversal and abstraction capabilities
of model checking tools (Chapter 4),

• I created a prototype implementation of the algorithm and systematically design a
validation model suite (Chapter 5),

• I provide the evaluation of the validation approach through two case studies: 1) a
case study of the validation process, 2) a case study examining trace generation on
real-world models (Chapter 5).

2

Chapter 2

Background

This chapter provides the necessary background and context for this report: first, the
role of formal verification in developing safety critical systems is described in Section 2.1.
Then formal verification and model checking is introduced with focus on abstraction-
based techniques (Section 2.2). Lastly, the different models throughout model checking
and formal verification processes are explained (Section 2.3).

2.1 Verification of Critical Embedded Systems

With the rising number of application domains and growing complexity of critical embed-
ded systems, design processes are also becoming more and more complex. A common way
to handle complexity is to utilize techniques of model-based systems engineering by cre-
ating different design models throughout the whole process. These design models capture
the structure and behaviour of the system under development.

When models are extensively used during design, verification of such engineering models
is a crucial part of these processes. Different project goals and types of models require
different techniques, such as testing [36] or simulation. These are often complementary
techniques used with different goals in mind, as each has their own set of strengths and
weaknesses. Some typical examples are as follows.

Simulation is capable of executing the models, usually on the main scenarios to let the
user examine the behaviour of the model through execution traces. Simulation is
widely used in practice to check software, hardware, mechanical etc. design.

Model-Based Testing in general test cases are often created manually, following a given
test design approach. However when utilizing model-based testing, models can be
used for automatic test case generation following pre-defined coverage criteria. Ex-
tensive research work and many different methods exist in this topic [19, 40].

Conformance testing is a specific problem in testing, which aims to uncover whether
the model and the implementation of the system has the same observable behaviour.
Conformance test suites can be created manually [41], or generated based on models
(e.g. with the W or Wp method [19]).

Formal Verification stands for methods that are capable of automatic reasoning upon
a formal model to prove violation or correctness regarding a given property.

3

Init

Err

Abstract State 1 Abstract State 2

(a) Improper abstraction level causing a
false positive result.

Init

Err

Abstract State 1
Abstract
State 2

Abstract
State 3

(b) Proper abstraction level proving Err
unreachable.

Figure 2.1: Model checking with abstraction: the circles are concrete states of the model,
while the rectangles are abstract states. The goal is to prove reachability of the Err state.

Testing and simulation is a typical technique for many systems. But when a system is
critical enough to require additional proofs of correctness, formal verification techniques
also have to be utilized.

2.2 Formal Verification and Model Checking

Formal verification techniques utilize mathematically precise reasoning over the formal
model of a system to prove the violation or satisfaction of given properties.

Model checking [27] is a formal verification technique utilizing automated and exhaustive
state space traversals to give counterexamples or proofs of correctness regarding different
properties, such as reachability of a given state, termination, variable overflows and so on.

State space traversal, in general, cannot be done efficiently due to the issue of state space
explosion: the state space can easily grow exponentially with the number of variables, i.e.
a single 32 bit integer can represent 232 values, adding a multiplier of 232 to the number
of possible states.

Tackling state space explosion is one of the main problems of model checking algorithms.
There are many well-known techniques, e.g. bounded model checking [18], symbolic meth-
ods [20] or abstraction [25, 26].

2.2.1 Abstraction in Model Checking

Various abstraction techniques found a common use in many different model checking al-
gorithms. Abstract states can cover several, if not an infinite amount of concrete states.
With the right abstraction level the abstract state space becomes small enough for exhaus-
tive traversal, while also proving a violation or correctness, as illustrated in Figure 2.1.

Finding the right abstraction level requires further techniques to be used, e.g.
Counterexample-guided Abstraction Refinement (CEGAR) [25], where abstraction and
refinement are combined in a loop alternating the two.

4

2.2.1.1 Abstract Domains

Implementing abstraction requires an abstract domain, a precision and a transfer function
to be defined. Informally an abstract domain defines the domain of abstract states, the
current precision shows the level of abstraction, while the transfer function defines how
the successors of abstract states.

Formally they can be expressed the following way:

Definition 1 (Abstract Domain [14]). An abstract domain is a tuple D = (S,⊤,⊥,
⊑, expr) where

• S is a (possibly infinite) lattice of abstract states,

• ⊤ ∈ S is the top element,

• ⊥ ∈ S is the bottom element,

• ⊑ ⊆ S × S is a partial order conforming to the lattice and

• expr : S 7→ FOL is the expression function that maps an abstract state to its meaning
(the concrete data states it represents) using a first order logic (FOL) formula. �

Definition 2 (Transfer Function [14]). Let π be the precision defining the current
precision of the abstraction.

Then the transfer function is T : S × Ops × Π 7→ 2S , calculating the successors of an
abstract state with respect to an operation and π. �

There are many possible abstract domains, e.g. Cartesian predicate abstraction [37],
boolean predicate abstraction [7], explicit-value abstraction [12] or even combinations of
these and others [4]. However, this work will focus on the explicit-value domain.

Explicit-value Abstraction [12] The explicit-value domain introduces a fairly sim-
ple method of abstraction, which tries to directly remedy state space explosions by only
tracking the value of a subset of the variables.

Thus the precision is defined by adding which variables should be tracked and the abstract
states contain value assignments to all of the variables, which are made abstract by the
capability to assign the value “unknown” (⊤) to untracked or unassigned variables.

2.2.1.2 ARG

Abstraction based model checkers traverse an abstract state space building an Abstract
Reachability Graph (ARG) [13].

Definition 3 (Abstract reachability graph). An Abstract Reachability Graph is a
tuple ARG = (N, E, C) where

• N ⊆ S is the set of nodes, each corresponding to an abstract state in some domain.

• E ⊆ N × N is the set of directed edges. An edge (s1, s2) ∈ E is present s2 is a
successor of s1 with regards to the transfer function T .

5

C

/ x++

A

[x>1]

[x<1]
B

input:
int x = 0

(a) An extended finite-state
machine (EFSM) with a sin-
gle variable.

A

assume x<1

B
x := x+1

C

assume x>1

A

(b) The ARG for the EFSM,
where x is excluded from the
precision. The dashed edge is
a covered-by edge.

A, x=0

B, x=1
x := x+1

C, x=1

assume x>1

(c) Concretized trace from
the ARG.

Figure 2.2: Example of an ARG and concretized trace in the explicit domain.

• C ⊆ N ×N is the set of covered-by edges. A covered-by edge (s1, s2) ∈ C is present
if s1 ⊑ s2. �

The model checker builds the ARG by expanding already existing nodes with their suc-
cessors and adding directed edges. A covered-by edge will be used where possible instead
of expanding the node. This is done on a given abstraction level, which allows the ARG
to stay finite in many cases, even when the concrete state space would be infinite.

2.2.1.3 Traces

Paths inbetween the ARG nodes on the directed edges are called abstract traces. If the
path leads from the initial node to an erroneus state then the abstract trace is an abstract
counterexample. If it is feasible, then it can be concretized into a concrete counterexample.
Of course the feasibility check and concretization can be done on any given abstract trace.

Abstract and concrete traces are illustrated in the example of Figure 2.2. The abstract
states (rectangles) of the ARG only include the states of the EFSM, but not the value of x.
There is an abstract trace in the ARG to C, which can be concretized to the trace shown
in Figure 2.2c, where x is now included and thus the states are not abstract anymore. On
the other hand, there is another abstract trace A − B − A in the ARG as well, which is
infeasible and thus can not be concretized.

2.3 Using Model Checkers in Practice

This section intends to give insight on how model checking looks in practice through the
typical types of models and modeling languages that can be utilized throughout verification
processes. These model types and some examples are listed in Figure 2.3 and explained
in the paragraphs below.

Input Models Model checking is a widely used method with many different application
domains, e.g. hardware specifications [55], software [10], protocols [23, 28], engineering
and business models [43, 50]. Thus input models are often design models or software code
instead of unambiguous formal models.

6

(Automatic) Model
Transformation

Input model

Model Checking
Analysis

Formal Model Result

Software,
Design Model,
Specification, ...

Control Flow Automata,
Petri Net,
Symbolic Transition
System, ...

Counterexample in
Individual Format,
Witnesses,
Executable Test
Harnesses, ...

Figure 2.3: Typical models throughout the verification process.

In this report the evaluation will focus on state machines modeling reactive systems and
thus most examples will also be added as state machines, although the proposed algorithms
and processes are not limited to these kind of models.

Formal Representation The system under verification has to be an unambiguous for-
mal model as this enables reasoning with mathematical precision over it. It is not unheard
of to directly create formal models or manually transform design models or protocol spec-
ifications to formal models (e.g. manually creating Petri nets or Extended Finite State
Machines).

However, most tools implement an automatic model transformation step instead, which
generates a formal representation out of the input design model, for example transforming
software code to Control Flow Automata (CFA) [6, 11].

Results, Counterexamples Beside a binary result of correct or faulty, model checking
tools may also provide a counterexample or a proof of correctness. Counterexamples are
concrete traces, usually backannotated to the input model from the formal representation,
so they are readable for the user. In some cases, mainly in software model checking, the
tool might even be able to generate an executable test harness [17], which runs the faulty
execution.

There are also initiatives in software model checking for a uniform format, called wit-
ness [15, 16]. This uniformity enables, for example, the validation of the proof or coun-
terexample by a separate verifier.

As described above, formal verification processes are more complex than just their core
algorithms and can include many different models. These models and the transformations
inbetween all have to be correct in order for the tool’s results to be reliable. Making sure
of this correctness is a complex question and one of the key motivations of this report.
Thus it is further elaborated on in Chapter 3.

7

Chapter 3

Validating Semantics of Verifiers

This chapter introduces the common formal verification process of model checkers in detail
(Section 3.1). It describes how issues in model transformation endanger the validity of the
verification results (Section 3.2).

Section 3.3 explains why these model transformations are also error prone due to ambigu-
ous semantics, especially if the input model is some kind of engineering model.

Section 3.4 proposes a solution: a validation process based on trace generation, which will
serve as the basis for the rest of this report.

3.1 Formal Verification Process

The scope of this work will mainly revolve around the formal verification of engineering
models with model checking tools. Engineering models are used not just for mutual
understanding, but for more and more refined design as well. Due to their growing function
importance, formal verification of these models is becoming crucial as well. One of the
best-known formal verification approach is model checking.

The typical high-level process implemented for verification in tools or toolchains is shown
in Figure 3.1. Although the actual reasoning upon the model is executed in the model
checking analysis step, the verification process itself consists of much more steps than that.

Design Tool Usually there is a design tool at the beginning of the toolchain, used to
create the engineering models (e.g. activity diagrams, state machines, hardware de-
scriptions).

Engineering Model and Modeling Language The engineering modeling language
might be text-based or visual, but it is certainly operating on a fairly high ab-
straction level to help usability.

Model Transformation Such a model cannot be reasoned upon directly by the model
checker, so it goes through a series of model transformation and optimization steps
and is transformed into a formal model, which has an unambiguous, formal language
that the model checker can work with.

Model Checking Analysis The model checking algorithms of the tools are executed on
the formal model, as described in Section 2.2.

8

Engineering Model Model Transformation Formal Model

Model Checking
Analysis

Back Annotation Trace(s)Engineering
Trace(s)

E. Modeling
Language

Formal
Representation

Language

Engineering
Design Tool

Intermediate
Representations

Transformation steps

Optimization passes

referencesreferences

Figure 3.1: Typical process of a model checking toolchain.

Backannotation and different Trace representations If the tool finds any issues, it
might return a counterexample or counterexamples as execution traces of the formal
model. This has to be backannotated to the original engineering model to help the
user mitigate the issue found.

3.2 Problem Statement

As it was shown in Section 3.1, using formal methods includes a complex verification
process. Furthermore, error properties also have to be designed and added to the model
checker, the right configuration has to be found and so on. All in all, it takes a considerable
amount of effort to use these tools, but in a lot of cases it is worth it for the mathematically
proven results.

However, the introduced process had to be implemented in the verification toolchain and it
might contain different issues due to human error. Therefore the main question motivating
my research was:

How can we trust formal verification tools?

If we do not make sure that all the implemented steps in the verification process are correct,
the results of the tool are basically invalid: both false positives (i.e. false alarms) and false
negatives (i.e. missed bugs) can possibly happen and thus the advantage of getting proofs
with mathematical precision is lost.

Model Checking Algorithms The core part for verification is the analysis executed
by the model checker. This analysis is not just for finding potential issues, but also to

9

prove soundness: if it finds no issues regarding the error property, ideally we expect that
there really is none [27]. A lot of work goes into the correct formalization of the algorithms
used in the analysis and also to proving that they are correct [25].

Model Transformations On the other hand model transformation steps, including
optimizations, are usually much less rigorously checked, even though bugs in these steps
can cause both false positive and false negative results.

For example, an issue in the model transformation step practically means that the analysis
is reasoning upon a different model, over a different state space. Such an issue is really
hard to uncover. If it causes a false alarm, it is possible to discover that the root of the issue
is the model transformation and to debug it through the incorrect counterexample, but it
requires a deep understanding on how the model transformation step works. However if
the result is a false negative, it can easily remain completely hidden and the missed bug
will remain in the model, even though the user will believe that the model is correct.

3.3 Challenges of Semantics in Model Transformation

Semantic Gap What makes model transformation steps more error prone is the seman-
tic gap inbetween engineering modeling languages and formal representations. Although
there are more and more initiatives for formalizing the semantics of engineering mod-
els [53, 54], full formalization of any engineering modeling language used in practice is
impractical. On the other hand formal models are fully unambiguous mathematical mod-
els. Thus mapping an engineering modeling language to a formal representation requires
the mapping of an ambiguous language to an unambiguous one.

Advantages of Ambiguity These modeling languages are made to enable the mod-
elers to design complex systems with ease, thus they include complex language elements
(e.g. non-determinism, concurrency, variables representing data). These complex language
elements serve to enable many possible executions of the model while the model itself
stays concise. These models are also often created iteratively with gradually increasing
refinement, therefore these languages by design have to be able to express models that are
still ambiguous and will only be refined in later iterations.

The Need for Unambiguity On the other hand, the precise reasoning of model check-
ers requires unambiguous formal models. This requires the developer implementing the
transformation to make decisions regarding missing and ambiguous parts of the semantics
of the engineering models. The correctness of these decisions depend on the developer’s
understanding of semantics. If semantics are misunderstood and bugs are introduced to
the model transformation, the results of the model checker might become invalid and this
might not even be detected.

3.3.1 Example of Ambiguous Semantics

One of the most well-known behavioral engineering models used in embedded systems are
the different state machines ranging from simple finite state machines (FSMs) to UML or
SysML [34] state machines. While the former is a low-level mathematical automaton, the
latter offers more elements, such as variables to be able to express complex systems.

10

f [i==2]
e

eInit

e / i := i+1
exit / i := 2*i S12

e / i := i-1
exit / i := 3 S22

Error

Workinginteger i := 0

S11

S21

Figure 3.2: State machine containing language elements with ambiguous semantics.

The state machine shown in Figure 3.2 contains several typical language elements where
interpretation of semantic rules highly affect the number of possible executions. Many
state machine languages introduce concurrency in the form of orthogonal regions and
non-determinism by adding conflicting triggers on several transitions. Another common
addition are variables, used in actions and guards as well.

To be able to decide on the enabled executions, we have to precisely answer all of the
following questions:

• Is full concurrency enabled, i.e. can the outgoing transitions of S11 and S21 fire in
any order?

• Is the firing of a transition in a single region atomic, i.e. can anything else be em-
bedded inbetween the execution of the exit action and the effect of the transition?

• Is there transition priority and if there is, what parts have priority, i.e. the outer or
the inner transitions? Is it even possible to fire the transitions inside the composite
state or will the model always go back to the Init state instead?

Different semantics and standards have different answers to these questions or some of
them might even be configurable in some tools (e.g. transition priority). Furthermore,
usually it is also possible to find questions that the semantics of a given language do not
even answer unambiguously.

3.4 An Approach to E2E Validation of the Verification Pro-
cess

The last two sections described why it would be necessary to validate the semantical
mapping inbetween the engineering and formal model and why it is a difficult and complex
task. Automatic validation is practically impossible due to the lack of fully formalized
semantics of the engineering models.

11

Model 01
Trace Set...

Intended
Semantics

Observed
Semantics

E2E Validation

Conforms?

Model n
Trace Set

Manual Validation

Validation
Model Suite

Model
Transformation

Back
Annotation

Trace
Generation

Modified Verification Process

Figure 3.3: End-to-end (E2E) validation with trace generation.

I propose an approach providing the possibility of the end-to-end (E2E) validation of this
process by utilizing the model transformation and the verification tool for trace generation.
The goal of this validation process is to compare the intended semantics of the engineering
model to the observed semantics after model transformation.

The trace generation algorithm shown in Figure 3.3 takes a model and uses the same
process as it would use for verification (Figure 3.1), but where the model checker would
execute the analysis, it generates a set of traces instead, which guarantee some kind of
well-defined coverage or completeness. The trace generation algorithm is formalized and
introduced in detail in Chapter 4.

The traces enable the user to manually compare the model and the execution traces, look-
ing for executions that should not be permitted or a lack of traces that should. As input
models for trace generation a validation model suite shall be designed, which covers a wide
range of modeling elements and combinations of these elements. If this is accomplished,
the generated traces might be able to uncover a wide range of possible issues in the different
transformation and optimization steps or even in the back annotation process.

3.4.1 Another Use Case: Mitigating Modeling Mistakes

If the validation is deemed to be complete, there is another possible use case for the trace
generation algorithm. The same process (Figure 3.3) can also be executed on a real-world
engineering model instead of a test model.

The traces of a real-world model are useful if the modeler is unsure or might be mistaken
about semantics. In this case the manual validation step shown on Figure 3.3 should be
carried out by the modeler, this time comparing the modeler’s understanding of semantics
to the semantics implemented in the verification toolchain.

12

Chapter 4

Abstraction-based Trace
Generation Algorithm

In this chapter I introduce a trace generation algorithm intended to be built around
abstraction-based tools. First I describe the prerequisites of the algorithm (Section 4.1).
After that the algorithm without abstraction and its extension with abstraction are for-
malized and explained (Section 4.2 and 4.3). The rest of the chapter adds an analysis on
coverage guarantees and usability.

4.1 Prerequisites of the Trace Generation Algorithm

The algorithms introduced below were designed to be built around abstraction-based [26]
tools which are capable of traversing abstract state spaces. Inevitably, some assumptions
have to be made about how these tools work.

4.1.1 Abstraction Capabilities

Abstract state space traversal features building abstract reachability graphs on different
abstraction levels and abstract domains. Thus the following requirements are established:

Abstract Domains The tool should include an explicit-value abstract domain [12] (or
any other domain capable of representing concrete values for the variables of the
model).

Building ARGs The tool should be able to build a fully expanded ARG [13] from a
given formal model and precision and should be able to concretize abstract traces.

If these requirements are already fulfilled by the tool, it should not be difficult to imple-
ment the trace generation algorithms. If not, case-by-case modifications are also worth
considering, e.g. it might be possible to modify the algorithm to work with some other
abstract domains as well.

There is however a further tool specific design point which has to be considered together
with the requirements for the usability of the trace generation.

13

ARG semantics ARGs [13] provide a fairly low-level graph structure for representing
state spaces. It receives semantic meaning from the abstract states, operations and transfer
function used, which will differ for each formal representation and tool.

For example, the granularity of abstract states can differ (e.g. are they only stable state
configurations or are there abstract states representing unstable state configurations inbe-
tween). What successors are calculated for the abstract states can also differ (e.g. if input
events that do not change the current state configuration are taken into account or not,
i.e. events which trigger no enabled transitions).

Thus the implemented logic and semantics for ARG building have to be compared to
the desired goal with trace generation. If there is a mismatch between the two, slight
modifications might be needed in the trace generation algorithm, such as filtering out
some unnecessary states or traces during trace generation. An example for this will be
shown in the case study used for evaluation in Section 5.1.2.3.

4.2 Generating Traces without Abstraction

Algorithm 4.1 utilizes the ARG building features of the abstraction-based tool. It uses
an explicit-value domain and adds every variable to the precision and then builds a fully
expanded ARG out of the input formal model. This will force the tool to build an ARG
with the least possible abstraction, which should result in a reachability graph (RG)
instead.

The main idea behind the algorithm is utilizing structural properties of reachability graphs.
Reachability graphs are often finite: if the variables in the model have a finite range of
possible values and the loops in the model have a finite number of possible states (i.e. at
some point a state in the loop can be covered by one from earlier).

For all these finite reachability graphs Algorithm 4.1 will generate a finite set of traces. The
generated reachability graph will also automatically assure that we do not unnecessarily
repeat states in the traces – this will be illustrated by the example in Section 4.2.1.

Algorithm 4.1: Trace generation algorithm without abstraction.
input : F : Formal model
output: T : Set of generated traces

1 π: Initial precision created including every variable
2 ARG(N, E, C) := buildARG(π, F)
3 n0 : initial node of ARG
4 Nleaf := ∀n ∈ N where n has no outgoing edge
5 for ∀n in Nleaf do
6 T ← trace from n0 to n
7 return T

4.2.1 Trace Generation without Abstraction Example

In this section I will show how the algorithm works on a simple state machine from the
model through the ARG to the traces. The formal representation created inbetween the
model and the ARG is omitted, since the examples of this chapter are small and simple.

14

e f
A

g h
B

i
C

End

(a) State machine form-
ing an "8"

Init

A
-

B

e

C

g

End
i

C

h

B

f

(b) ARG built from (a).
Dashed lines depict covered-
by edges.

i

e

g

fe
A

B

C

End

A

B

A

h
B

C

(c) Generated traces

Figure 4.1: Example showing the basic trace generation algorithm on a state machine.

A
f

B
e

(a) A state machine with a
loop

Init

A
-

B
e

A
f

(b) ARG for the state ma-
chine

A
f

B

e

0

1 2

(c) Single generated trace,
transitions are numbered in
the order of firing

Figure 4.2: Example showing how the algorithm avoids infinite loops

The input is visualized in Figure 4.1a. It is a simple state machine with 4 states and 5
possible incoming events.

In Figure 4.1b we depict a really simple reachability graph: there are no variables, so
in this case the states of the graph represent the active state of the input model. The
possible operations are assumptions on single incoming events, but the “assume” keyword
was omitted for brevity.

In Figure 4.1c the result of the algorithm is shown. As the ARG is finite, the set of traces
is also finite as well. The traces gradually shorten, because they stop at covered ARG
nodes and will not re-explore the already discovered states – this ensures that the trace
set remains relatively small and concise. This is also useful for the handling of larger
models and loops – Figure 4.2 shows an example for the latter.

4.3 Utilizing Abstraction

Engineering modeling languages usually heavily utilize several variables of different types.
Algorithm 4.1 keeps all of these variables in the precision, i.e. all variable values are
explicitly tracked and are part of the abstract states. This might lead to a state space
explosion in the ARG, which results in more and longer traces. These explosions are

15

abstract
state1

abstract
state 2

abstract
state 4

abstract
state1

abstract
state 2

abstract
state 3Trace 1

Trace 2

Figure 4.3: Trace 2 is only feasible if shortened, but then it is contained by Trace 1.

caused by the variables that are capable of holding many different values throughout the
model’s executions (e.g. indices and counters in loops).

Removing problematic variables from the precision mitigates such state space explosions.
This is heavily utilized in verification and might be just as useful for trace generation as
well – e.g. if we are mainly interested in possible control flows or possible values of other
variables instead.

Concretization and Feasibility Checks Removing variables from the precision means
that abstraction is introduced to the algorithm. Thus the algorithm has to be extended
with feasibility checks and concretization (marked as isFeasible(t) and concretize(t)),
as shown in Algorithm 4.2.

Concretization means creating a concrete trace out of an abstract one, if it is feasible.
During concretization untracked variables are re-added to the trace and concretization
finds a possible value for these (usually with the help of a SAT or SMT solver [27]).

Infeasible Traces Abstract traces that turn out to be infeasible will need special atten-
tion. The first important observation is that a shortened version of the trace might still be
feasible. Finding the longest, still feasible part (marked as shorten(t) in the algorithm)
is implementation specific. For example, it can be done with interpolants [8] or by just
shortening the trace state by state and doing feasibility checks each time.

The possibility of generating shortened traces also necessitates a filtering step at the end.
The reason for this is illustrated by Figure 4.3. Trace 2 only becomes feasible if abstract
state 4 is cut off. This shortened trace should be returned to show that abstract state 2
is reachable.

However if Trace 1 was also generated then it would be confusing to return both, as Trace
1 contains the shortened Trace 2. Thus in this case we should only return Trace 1. Note
that the check for containment happens inbetween the abstract traces, as both could have
several different concretizations.

4.3.1 Inappropriate Abstraction Level

There is another possible issue with infeasible traces which can be explained through
Figure 4.3: it is possible that there will be no concretized trace leading to abstract state 4,
even though in the concrete example it would be possible. For example, if abstract state 4
is only reachable via an execution where a loop with an index i has to be unrolled, but i is
not part of the precision, then the algorithm will find no trace leading to abstract state 4.

16

This issue can not be fully mitigated without adding i to the precision, but the user
might not want to do that, if adding i slows down the execution too much. So instead of
mitigation, a detection step is added to the algorithm.

This step collects the abstract nodes that are pruned down (i.e. removed from the end)
and also collects the abstract nodes that are concretized and included in the resulting
traces. If, in the end, there is any node included in the former than is not in the latter
then we could find no trace to reach that node with this abstraction, e.g. could not reach
abstract state 4. This is reported in the output, so the user can decide whether a less
abstract precision, e.g. adding i to the precision, is worth trying.

Algorithm 4.2: Trace Generation Algorithm with Abstraction.
input : F : Formal model

1 V : Set of variables to be included in the precision
output: T : Set of generated traces, fullCoverage: True, if every abstract state is

included in at least one trace
2 π: Initial precision created including every variable
3 ARG(N, E, C) := buildARG(π, F)
4 n0 : initial node of ARG
5 Nleaf := ∀n ∈ N where n has no outgoing edge
6 for ∀n ∈ Nleaf do
7 T ← trace from n0 to n
8 Tconcrete := ∅
9 Nincluded := ∅

10 Npruned := ∅
11 for ∀t in T do
12 if ¬ isFeasible(t) then
13 t′ := shorten(t)
14 Npruned ← ∀n ∈ t, /∈ t′

15 if |t′| > 0 then
16 Nincluded ← ∀n node of t′

17 tconcrete :=concretize(t′)
18 Tconcrete ← tconcrete

19 for ∀ta, tb ∈ T ′, |ta| ≤ |tb| do
20 if ta starts with tb then
21 Tconcrete := Tconcrete \ ta

22 if ∃n ∈ Npruned, /∈ Nincluded then
23 fullCoverage := False
24 else
25 fullCoverage := True
26 return Tconcrete, fullCoverage

4.3.2 Trace Generation with Abstraction Example

In Figure 4.4a a state machine with entry actions and two variables is shown. Using
Algorithm 4.1 without abstraction would result in 60 traces, as all of the possible values
of i would be enumerated. If i is removed from the precision, the ARG becomes much
smaller as shown in Figure 4.4b and the algorithm results in the three traces shown in
Figure 4.4c.

17

e

A

f [i<60]

B
entry / flag := !flag;

i := i+1;

int i := 0
bool flag := true

C
entry / flag := !flag;

g

(a) State machine with two variables.

Init, true

e
A, true

-

g fB, false fg
B, true

C, true

B, false

C, false
(b) ARG built by removing i from the pre-
cision

e

A

g

B

C

e

A

g

B

C

f [i<60]
e

A

B
f [i<60]

(flag=T, i=0)

(flag=F, i=1)

(flag=T, i=1)

(flag=T, i=0)

(flag=F, i=1),
(flag=T, i=2)

(flag=F, i=2)

(flag=T, i=0)

(flag=F, i=1)
(flag=T, i=2)
(flag=F, i=3)

(c) Resulting traces.

e

A

g

B

C

(flag=T, i=0)

(flag=F, i=1)

(flag=T, i=1)

(d) Result if the guard
is changed to [i < 1]

Figure 4.4: Example of using abstraction for trace generation.

18

Init

Figure 4.5: Possible ARG structure to illustrate ARG node coverage. The nodes are
(abstract) states, the thick arrows show the abstract traces found in the ARG.

The difference between removing i from the original model and removing it from the
precision is highlighted on Figure 4.4d. If the guard of the input model is changed from
[i < 60] to [i < 1], the self-loop of B will not be able to fire at any time. As the change
only concerns i, the ARG built by the algorithm stays the same. Yet the number of the
traces goes down to one – this is due to the fact that the other two traces become infeasible
and cannot be concretized.

Inappropriate Abstraction Level It is also worth to note that if we add, for example,
the guard [i == 50] on the transition leading to C in Figure 4.4a, we get an example where
the algorithm will return false to the fullCoverage value, as it does not unroll the loop
without including i in the precision and thus will not find a trace leading to C, flag = true
and C, flag = false. If we change the guard to [i == 70], we will get the same warning,
even though C is not reachable in this case, but without the appropriate abstraction level,
this can not be discovered, as explained earlier in Section 4.3.1.

4.4 Analysis of the Proposed Algorithm

In this section the coverage guarantees of the proposed algorithms are considered (Sec-
tion 4.4.1). After that the strengths and weaknesses of the algorithm are also summarized
(Section 4.4.2).

4.4.1 Coverage Guarantees

Coverage guarantees will first be considered on the level of the ARG and after that on
a more general, engineering model level as well. The former is deduced from how the
algorithm works, while the latter can usually be deduced from the former.

19

4.4.1.1 Coverage on the ARG level

State Space Coverage Figure 4.5 illustrates why abstract state space coverage is ac-
complished: in the fully expanded ARG the whole abstract state space is represented by
the ARG nodes (shown as circles). As there is a trace to every leaf (shown by the thick
arrows) and a node is either a leaf or has outgoing edges, every node is included in at least
one trace. Thus the algorithm easily covers the whole abstract state space. If there is no
abstraction applied and all variables are included in the abstract states, the abstract state
space coverage becomes concrete state space coverage as well.

In Section 4.3.1 the possibility of not reaching some of the abstract states was explained.
If this happens then the abstract state space is not covered by the traces. Repairing the
coverage requires finding the right abstraction, but the added complexity of this step can
easily make the algorithm infeasible to use in practice. Instead the algorithm detects this
incomplete coverage and lets the user decide on changing the abstraction level.

ARG Edge Coverage The edges leading inbetween nodes in an RG are also covered
(excluding covered-by edges), as each ARG node is covered and each ARG node has exactly
one incoming edge. For ARGs this coverage only holds if there are no infeasible traces
amongst the abstract traces. Keep in mind that this does not guarantee any kind of
coverage for the possible inputs, e.g. input events that trigger no response in the current
state of the model might not be added as an edge while building the ARG.

Comparison of Trace Generation with and without Abstraction With the in-
troduction of abstraction, an important trade-off appears, which is shown in Table 4.1.
While without abstraction the whole concrete state space is covered, this can make the
number of traces grow really high, making manual checks infeasible. On the other hand,
abstraction is capable of mitigating state space explosion and can provide a concise set of
traces, however untracked variables remain uncovered.

Both approaches have possible issues, which render them unusable for some models. With-
out abstraction the state space might explode so much, that the algorithm times out and
does not even provide any traces. With abstraction one might not be able to find an
appropriate abstraction level, which results in the loss of coverage guarantees.

Trace Generation without Abstraction with Abstraction
Abstract State
Space Size can explode can prevent explosion

Number of
Traces easily grows high can stay concise

Concrete State
Space Coverage yes no

(does not cover untracked variables)

Possible Issues State Space Explosion
(timeout)

Inappropriate Abstraction Level
(loses abstract state space coverage)

Table 4.1: Not using abstraction provides more guarantees, while abstraction helps
keeping the number of traces concise, but still providing coverage for important variables.

These ARG-level coverages can be used to deduce what kind of coverages we might reach
in the original input model, which is added in the next section.

20

4.4.1.2 Typical Coverages for Engineering Models

Typical coverage criteria in engineering models, e.g. in conformance testing, do not build
directly around state space. Thus it is important to examine coverage criteria on the input
model for control and data flow as well, not just on the state space and ARG-level.

There are no general criteria for behavioural engineering models, rather separate, more
specific definitions for state machines, activity diagrams and so on. But these are often
similar in practice, as they build around data and control flow, which are present in all
of these models. Thus typical state machine criteria are used here, but criteria for other
model types is also possible to derive from these.

Definition 4 (All-States Criterion [59, 61]). This criterion is satisfied iff each state
of the state machine is visited. �

Definition 5 (All-Configurations Criterion [61]). This criterion is satisfied iff each
state configurations are visited (i.e. composite states and orthogonal regions activate sev-
eral states at once). �

The satisfaction of All-Configurations implies satisfaction of All-States as well.

Definition 6 (All-Transitions Criterion [24]). This criterion is satisfied iff each tran-
sition in the statechart is traversed. �

Definition 7 (Transition-Pair Criterion [52]). This criterion is satisfied iff for each
pair of adjacent transitions exists a trace that traverses the transitions in sequence. �

Definition 8 (Decision Criterion [59, 61]). This criterion is satisfied iff each guard
condition is evaluated to true and false as well (if it is possible) in at least one trace. �

Definition 9 (All-Defs Criterion [59, 61]). Satisfied if for every defining action (vari-
able value assignment) there is a trace which includes the defining action for a variable
and at least one usage of that variable after the defining action, without the redefinition
of the variable inbetween. �

Definition 10 (All-Uses Criterion [59, 61]). Satisfied if for every variable, every pos-
sible defining action and usage pair is covered in at least one trace, in definition-usage
order, without the redefinition of the variable inbetween. �

The definitions do not take impossible to reach model elements into account, e.g. unreach-
able states are not included in the All-States criterion.

The relations between the coverages and the algorithms are shown on Table 4.2 and are
explained in the paragraphs below.

Loop Coverage It is hard to find wide-spread coverage criteria specifically for loops, but
it is still an important point to consider. While the ARG is built, loops are automatically
unrolled until an already covered state is found. This ability guarantees that all possible
abstract states in the loop will be covered, but infinite loops with repeating abstract states
will not prevent termination either. Note however that variables excluded by abstraction
will not be considered while unrolling. Moreover loops will be unrolled into “lasso-shaped”
traces, i.e. the trace ends after the loop is unrolled.

21

Trace generation

without
Abstraction

with Abstraction

Criterion No state space coverage
violation detected

State space coverage
violation detected

All-States ✓ ✓ ✗

All-Configurations ✓ ✓ ✗

All-Transitions ✓ ✓ ✗

Transition Pair ✗ ✗ ✗

Decisions ✓ ✓ ✗

All-Defs, All-Use ✗ ✗ ✗

Table 4.2: Examining the algorithms regarding common state machine coverage criteria

Data Flow Coverage Traditional data flow coverage criteria (All-Defs, All-Uses) [57]
do not hold, mainly because these coverage criteria do not take into account the values
given to the variable at definitions. For example if there is a trace with a sequence of two
definitions giving the same value to the variable and then a usage, the trace generation
algorithm will not necessarily generate a trace that avoids the second definition. This is
due to the fact that the abstract state regarding the variable will not change before and
after the second definition.

However, this is actually a refinement of the criteria as this trace would be superfluous if
we consider the possible values of the variables, not just the definition itself and this is
exactly what the algorithm does.

Trace Generation Algorithm without Abstraction Due to the expanding of the
whole state space, this algorithm covers most elements of the model: states and state con-
figurations, transitions, guards (decisions). However, the combinations of these elements
does not necessarily get covered, e.g. Section 4.2.1 and Figure 4.1a gave a good example
of why it does not necessarily cover transitions pairs.

Trace Generation Algorithm with Abstraction As explained in Section 4.3.1 and
shown in Section 4.3.2, it is possible in some cases with some specific loops that a model
might not reach some abstract states which should be reachable.

This breaks the coverage of the abstract state space and thus will not guarantee the
coverage criteria for the input model either. These coverage violations are detected, but
can only be mitigated if the precision is changed.

However, for models where abstract state space coverage is intact, the input coverage
criteria listed in Table 4.2 is guaranteed the same way as without abstraction as untracked
variables do not directly influence these criteria, except All-Defs and All-Use which are
not guaranteed in either case, as explained in the “Data Flow Coverage"" paragraph.

22

4.4.2 Usability and Feasibility for Validation

The main motivation behind the design of the algorithm was to enable the end-to-end
validation of verification processes, mainly to validate the model transformation step (see
Chapter 3).

Arguably the most important step regarding the feasibility of the validation is if the traces
are appropriate and concise enough for the validating person to manually check.

Appropriate Traces The main question of the validation is what state configurations
and values are possible during executions and in what ways are these possible to
reach. Checking these should be feasible based on the coverage guarantees introduced
above.

Conciseness Even when the whole of the concrete state space is considered, states are
not visited repeatedly if it is not necessary (see Section 4.2.1). If the number of
traces is still high, it is possible to filter out unimportant variables with abstraction
and still have a good chance of keeping the coverage guarantees.

The points above are valid in many cases, but it also has to be mentioned that there will
always be models, where validation is hardly feasible, e.g. if the variable causing a high
amount of traces is important and cannot be omitted.

Timeouts are also possible if the (abstract) state space is too large (e.g. due to the sheer
size of the model or state space explosion). Building ARGs by iteratively calculating
successor nodes is typically done with SMT solvers [27], which can not be efficient in
general, although they are well optimized in practice.

However contrary to these issues Chapter 5 will show that validation and other use cases
are still feasible.

4.4.2.1 Examples of Tools with the Necessary Prerequisites

In Chapter 5 a prototype implementation is introduced in detail, which was implemented
in the toolchain of Gamma [50] and Theta [2, 58]. However, the algorithm would be
possible to implement in other abstraction based tools as well. In this Section, a few other
examples are introduced.

CPAChecker CPAChecker [11, 29] is a de-facto standard tool in software model check-
ing. Most of its algorithms are abstraction-based and it utilizes ARGs and an explicit
domain as well. The usability of the algorithm for software was not evaluated, but it
would be worth considering.

LoLA LoLA [56, 62] is a low-level Petri net analyzer. These properties make it pos-
sible to implement the trace generation algorithm without abstraction in the tool. This
can prove advantageous in validating either transformation processes from business and
engineering models to petri nets or to validate the petri nets themselves.

PLCverif – Theta PLCVerif [46] is a frontend for verifying Programmable Logic Con-
troller (PLC) programs, utilizing several backends, including Theta. As the algorithm is

23

already implemented in the generic core of Theta, only PLCVerif would need extensions
to handle several traces instead of a single counterexample.

Usually the ideal candidates to implement the algorithm in a given tool are its developers,
as they already have the necessary knowledge about the code base of the tool. But with
sufficient documentation this is not by all means necessary.

24

Chapter 5

Evaluation

This Chapter starts with the introduction of the prototype implementation of the valida-
tion process from Chapter 3 and the trace generation algorithms from Chapter 4 (Sec-
tion 5.1). Next, it details the goals and design process of this evaluation (Section 5.2).
Section 5.3 elaborates on the design of the validation model suite, while Section 5.4 and
Section 5.5 describe and discuss the results of both case studies of this evaluation.

5.1 Prototype Implementation

In this Section I detail the prototype implementation of the algorithms introduced in
Chapter 4. This implementation is realized in the tools Gamma and Theta and shows
how the prerequisites added in Section 4.1 apply to these tools.

5.1.1 Gamma and Theta

Gamma The Gamma Statechart Composition Framework [50] is an open-source model-
ing toolset with the goal of adding integrated verification and code generation features. It
supports UPPAAL [44] and Theta [3, 58] as verification backends. It has a textual language
for modeling, but it is also capable of visualizing models and traces with PlantUML 1. It
has been under active development since 2016, continually extending its features.

Theta Theta [3, 58] is a generic and highly configurable, abstraction-refinement based
open-source model checker. It is capable of handling several formal representations (e.g
Symbolic Transition Systems, Control Flow Automata, Timed Automata). It is mainly
built around CEGAR [25], but is also capable of executing BMC and lazy abstraction.
Furthermore, these basic algorithms can be further configured by changing the abstract
domain, the refinement strategy, the SMT solver or some other parameters used in the
chosen algorithm.

5.1.2 Process and Implementation

In this section the verification and the trace generation process of the Gamma-Theta
toolchain is described to give an overview on how the trace generation algorithms become a

1https://plantuml.com/

25

https://plantuml.com/

Statechart
Composition XSTS

Trace XSTS
State Sequence

Model
Transformation

Backannotation

Gamma

Model
Checking

ARG

CLI

Configuration
Theta

Statechart
Composition XSTS

Trace Set XSTS
State Sequence Set

Model
Transformation

Backannotation

Gamma

Trace
Generation
Algorithm

ARG

CLI

Configuration
Theta

Verification Process

Trace Generation Process

Optimizations

Optimizations

Figure 5.1: Verification and trace generation process

usable feature. The implementation specific details of the prototype of the trace generation
algorithms are also detailed here.

5.1.2.1 High Level View of the Process

The two tools together are capable of executing a complete formal verification process,
shown at the top in Figure 5.1. The starting point of this process is a statechart or
statechart composition, modeled in Gamma. This is transformed into a formal model,
called eXtended Symbolic Transition System (XSTS) [51].

This is then given to Theta as the input model, together with the configuration of the
analysis. We will consider the model checking analysis of Theta as a black-box for now –
all we know is that it is building ARGs and returns a counterexample in the form of an
XSTS state sequence when done.

Gamma is then capable of backannotating this state sequence, so it can be shown and
visualized as a trace of the original statechart composition.

It is important to note how complex this process is, even though every step is essential for
verification. There are 5 different models or formalisms that represent the model or some
part of it:

• Gamma Statechart (composition),

• XSTS,

• ARG (nodes, edges, statements and actions),

• XSTS State Sequence,

26

• Gamma Trace Language.

Any of the transformations inbetween these representations can introduce issues and bugs.

The bottom process in Figure 5.1 is a modified version of the verification process. Instead
of verification, it uses the trace generation algorithms from Chapter 4 and returns a set
of traces instead of a single counterexample.

The prototype implementation is integrated into the configuration language of Gamma.
This enables the user to easily add or remove variables if using abstraction and execute
trace generation with only a few clicks in Gamma.

5.1.2.2 Implementing Abstraction-based Trace Generation in Theta

The following points detail the tool-specific details, that were left as implementation spe-
cific in Chapter 4.

Prerequisites Theta more than suffices for the prerequisites detailed in Section 4.1.
It is abstraction-based and the main structure used in the analyses is the ARG. It has
configurable abstract domains, including the explicit domain and the initial precisions
already have some possible configurations (i.e. empty precision or inclusion of all variables),
which are easy to extend with a new one. Thus building fully expanded ARGs for arbitrary
models and precisions can be easily done in the tool.

Feasibility Checks and Concretization These features are implemented with the
help of SMT solvers in the tool, which are also capable of returning an interpolant, which
can be used for shortening the trace.

Configurability The algorithm is implemented, so the algorithm can be used both with
and without abstraction. If abstraction is chosen, a list of variables can be provided, which
contains the variables that should be included in the precision.

5.1.2.3 XSTS Specific Additions

Gamma transforms the state machines to a formal representation called eXtended Sym-
bolic Transition System (XSTS) [51]. XSTS models represent everything with variables:
not just the actual variables of the state machine, but control structures (i.e. states) and
the input and output events as well.

This required small adjustments at several points during implementations, such as:

• If abstraction is used, the variables representing control structures and output events
have to be automatically included in the precision.

• The transfer function allows branching into a direction where no transition is fired
– these become small "dead-ends" (the unchanged state is immediately covered by
its predecessor), which form traces that are unnecessary for validation, so these
dead-ends are cut-off from the ARG.

These adjustments are simple additions, which were made with the main goal of validating
model semantics in mind. Control structures and output events are both expected to

27

always be tracked. While in conformance testing it might be useful to check if a model is
really ignoring input events that it should not react to, in this case this was already shown
and presumed, thus traces only illustrating this behaviour would just make the number of
generated trace unnecessarily high.

5.2 Evaluation Design

I designed this evaluation to assess the feasibility and usability of the trace generation
algorithm (Chapter 4) and the end-to-end validation process (Chapter 3).

5.2.1 Research Questions

The evaluation was designed along the following research questions:

RQ1 Is manual validation feasible based on the number and content of the generated
traces?

RQ2 What types of issues can the validation process uncover?

RQ3 Can the trace generation be successfully executed on real-world models and give
meaningful insights about behavior?

5.2.2 Process and Goal of the Evaluation

The research questions can be divided into two parts: RQ1 and RQ2 are concerned mainly
with the end-to-end validation process, while RQ3 extends the scope to real-world models.
Thus the evaluation can also be divided into two case studies:

E2E Validation This case study evaluates the model transformation validation process
introduced in Chapter 3

Real-World Models Case study exploring trace generation on real-world models

5.2.2.1 End-to-End Validation

The goal of this case study was to show that the validation process is capable of discovering
inconsistencies and issues in the different steps (mainly the model transformation) of
the verification process of Gamma and Theta. The generic process itself was already
introduced in Chapter 3.

This case study also serves as the evaluation of the trace generation approach of this
report, which is deemed satisfactory, if RQ1) the generated traces are appropriate for the
manual checks, RQ2) the validation process uncovers different issues in the tools (or the
lack thereof).

End-to-end validation consisted of the following steps:

1. Systematic design of a modeling suite for validation of semantics (Section 5.3)

2. Executing trace generation on the modeling suite, adding and changing abstraction
as needed

28

3. Quantitative evaluation: size of models (states, transitions, variables), size of gener-
ated traces (number and lengths) (Section 5.4.1)

4. Qualitative evaluation: manual check of traces, discovering findings and issues, ex-
ploring explanations and solutions (Section 5.4.2)

5.2.2.2 Real-World Models

This case study intends to give an example on the secondary use case of trace generation
by executing it on real-world models from state machines of reactive systems.

There are different tutorial and industrial models in Gamma which are used for evaluation
of new features on a regular basis. These are often complex systems of several state
machines, but these state machines can also be used on their own.

Section 5.4.3 reports on the results of trace generation on models from three different
projects: RQ3) investigates which ones were feasible to generate traces for and what insight
this gave on Gamma and the models themselves. The goal was to see the limitations and
capabilities of the algorithm on non-artifical models.

5.3 Designing a Validation Modeling Suite for Gamma

I systematically designed and modeled a validation modeling suite consisting of Gamma
synchronous state machines for the E2E validation case study. The design followed itera-
tive principles, i.e. it starts with a minimal set of model elements and progressively adds
more and more elements to the models. This helps the manual validation process to find
the roots of the discovered issues more easily.

The state machine language elements were extracted from the grammar of the Gamma
statechart language [50] and then filtered based on the goal of the case study, i.e. it is
out of scope to check every possible expression element (e.g. different operators) or state
machine compositions.

The focus of this study are single, synchronous state machines, mainly concentrating on
control flow and variables modifying control flow. The modeling suite covers a core set of
the elements and semantic features of single, synchronous Gamma state charts. This core
set can be arbitrarily extended in the future if needed.

The design went along the following groups of model elements in the following order:

A Basic elements (entry node, state, triggers)

B Loops (technically not a language element, but plays an important part in control
flow)

C Entry/exit actions, actions on transitions

D Composite States

E Orthogonal Regions

F Variables (assignments, modification of value, guards)

29

S0

S1 S2

input.e input.f

(a) Model 04 in package
A.

statemachineTrace of statemachine

«SUT»
statemachine

Statemachine in {S0} with
__id_S0_0_S2_ = false
__id_S0_1_S1_ = false

input.f()

Execute

Statemachine in {S2} with
__id_S0_0_S2_ = true
__id_S0_1_S1_ = false

(b) First trace generated for the
model.

statemachineTrace of statemachine

«SUT»
statemachine

Statemachine in {S0} with
__id_S0_0_S2_ = false
__id_S0_1_S1_ = false

input.e()

Execute

Statemachine in {S1} with
__id_S0_0_S2_ = false
__id_S0_1_S1_ = true

(c) Second trace generated for the
model.

Figure 5.2: State machine and traces modeled, generated and visualized in Gamma.

The packages are built upon one another in the order shown above: each of these introduces
a new group of model elements, while also utilizing the elements from previous packages
in at least some of the models.

The order of the elements is based on their complexity and if they can be used without the
packages before, e.g. everything depends on the basic elements, orthogonal regions utilize
composite states and so on. Variables were added as last as they can be used to enable
more possibilities and more complicated control flow to the models created earlier. In the
end, 30 models were created.

5.3.1 Understanding Gamma Models and Traces

As the remaining part of the chapter will introduce a lot of Gamma synchronous statecharts
and executions traces, this section will introduce how these traces can be interpreted.

Figure 5.2 shows model04, a simple state machine from the Gamma validation model suite
I created. Executing trace generation results in two traces, also shown on the figure. The
traces are visualized as sequence diagrams with a single life line, representing the model.

Input and output events are shown as lost and found messages. The environment and the
model step alternately – the step of the model is represented by the Execute annotation
on the lifeline.

After the model executed its step, the resulting state configuration and variable values
are shown in the yellow hexagon. The state current configuration is in brackets. Keep
in mind that in XSTS structure is also represented by variables and the boolean flags of
transitions are shown in this hexagon as well, making it possible to see what transitions
were fired during the step.

5.4 Results of the Case Studies

This section analyses quantitative results, such as the number and size of the generated
traces (Section 5.4.1) and then the findings of the validation process are detailed (Sec-

30

tion 5.4.2). In Section 5.4.3 the results of the other case study on real-world models is
reported.

5.4.1 RQ1: Quantitative Analysis of the Models and Traces

The basic trace algorithm was executed on all of the models, saving the resulting traces
separately for each of them. For the traces with variables in package F, additional execu-
tions with abstraction were also added.

The qualitative summary of the traces is shown in Table 5.1. As the models are small,
almost all executions ended up producing 1 to 4 traces with a maximum length of 4 (with
exceptions in only three models: model18, model28 and model25).

Designing the whole model suite required a few additional iterations, where some “vari-
ants” of some already existing models were added, either to be able to check if some feature
works as intended in both cases or to be able to understand findings more precisely.

Model01 uncovered a minor bug, where XSTS generation crashes for regions without
transitions. The trace generation will be able to execute successfully, when this issue is
fixed.

Time was not measured precisely, as all of the successful executions took mere seconds on
a personal computer, which should be more than enough for general usability.

On the other hand, model 24 did not terminate without abstraction, even with a time
limit of 30 minutes, so this execution was deemed to be a timeout. This was due to a
self-loop incrementing an integer variable without a guard or other bound. The execution
did not even finish building the ARG.

The manual part of the validation process did not cause much difficulty. The coverage
guarantees introduced in Section 4.4.1 are also in order in the trace sets. Typically a
model takes only a few minutes to check, mainly along the following guidelines:

1. if using abstraction, check if the tool reported a violation of abstract state space
coverage,

2. check if the number of traces is approximately right,

3. check if the length of traces is approximately right,

4. check the state configurations and variable values in the traces,

5. check which transitions were fired, check guard values and executed actions as well.

RQ1: Is manual validation feasible based on the number and content of the
generated traces?
All of the above mentioned quantitative properties were chosen to examine if the manual
check of each trace set is a feasible task. The results show that this is true: there are only
a few traces per model (if not, it can be mitigated using abstraction), which are also fairly
short, but cover the reachable states and fireable transitions to show the behaviour of the
model.

5.4.2 RQ2: Validation Findings

In this section the findings of the case study are reported. The rest of the traces and
models will not be detailed in this report, but are available as an artifact [1].

31

Model
(Package A) St. Tr. No. of

traces
Max.
length

model01 1 0 - -
model02 2 1 1 2
model03 2 2 2 2
model04 3 2 2 2
model05 4 4 2 3
model06 3 3 2 3
model07 4 4 2 2
model08 4 5 3 4

(a) Package A (with basic elements).

Model
(Package B) St. Tr. No. of

traces
Max.
length

model09 1 1 2 3
model10 2 2 2 3

(b) Package B (introducing loops).

Model
(Package C) St. Tr. No. of

traces
Max.
length

model11 2 1 2 2
model22 1 1 2 2

(c) Package C (introducing different actions).

Model
(Package D) St. Tr. No. of

traces
Max.
length

model12 4 2 2 2
model13 4 3 3 4
model14 4 3 3 3
model15 4 3 3 3
model23 3 1 2 2

(d) Package D (introducing composite states).

Model
(Package E) St. Tr. No. of

traces
Max.
length

model16 5 2 2 2
model17 6 3 4 4
model18 6 4 8 4
model20 6 3 2 4
model21 5 2 4 3

(e) Package E (introducing orthogonal re-
gions).

Basic Abstraction

Model
(Package F) St. Tr. Var. No. of

traces
Max.
length

No. of
traces

Max.
length

model24 1 1 1 T T 1 2
model25 1 1 1 1 11 1 2
model26 1 1 1 1 2 1 2
model27 2 1 1 1 2 1 2
model28 3 3 2 60 62 3 5
model30 1 1 1 1 3 1 3
model31 2 1 1 1 3 1 3
model32 5 2 3 1 3 1 3

(f) Package F (adds variables). Includes executions with abstraction (tracking no or boolean
variables only).

Table 5.1: Summary of results on all models: number of states (St.), transitions (Tr.),
traces (No. of traces) and the maximum number of state configurations in a trace (Max.
length).

32

S0

S1

S2

S3

input.e input.f

input.g input.h

input.i

Figure 5.3: “Form 8” state machine modeled in Gamma (model 08, package A).

5.4.2.1 Missing Default Values in XSTS

Discovery The first issue was found by discovering that a lot of traces are generated
more than once when executing the algorithm. After checking the formal model and the
ARG built for the model, a bug was found in the model transformation in Gamma.

Explanation As mentioned in Section 5.1.2.3, XSTS models [51] represent practically
everything with variables, including boolean flags representing transitions. XSTS also rep-
resents the steps taken by the environment and the model separately and in an alternating
manner. The transition variables are only relevant for the steps taken by the model and
are set to false by default at the beginning of each step of the model, so that the relevant
steps can be set to true later on in the step.

The hidden issue was that the value of the transition variables are also included in the
environment steps, but were not set to false by default. Thus the abstract states produced
by the environment steps superfluously reflected the transitions fired by the model earlier,
creating abstract states that could not be covered by one another, even though in reality
they should have been able to.

Solution The solution was to simply modify the model transformation step, so that it
includes setting these variables to false in environment steps as well.

The size of the produced ARG is crucial in verification, as in larger models ARGs growing
too big are often the cause for timeouts. This issue causes superfluous abstract states,
letting the ARG grow larger than it should. To illustrate, the fully expanded ARG built
for the small state machine shown in Figure 5.3 had 31 ARG nodes before fixing the issues
and only 20 ARG nodes afterwards.

33

S0

entry / output.a()
exit / output.b()

S1

entry / output.c()
exit / output.d()

input.e /
output.x()

(a) model 11 introducing en-
try and exit actions

statemachineTrace of statemachine

«SUT»
statemachine

output.a()

Statemachine in {S0} with
__id_S0_0_S1_ = false

input.e()

Execute

output.b()

output.c()

output.x()

Statemachine in {S1} with
__id_S0_0_S1_ = true

(b) Trace generated from model
11.

statemachineTrace of statemachine

«SUT»
statemachine

output.a()

Statemachine in {S0} with
__id_S0_0_S1_ = false

input.e()

Execute

output.c()

output.x()

output.b()

Statemachine in {S1} with
__id_S0_0_S1_ = true

(c) Another “out of order” trace
generated from model11.

Figure 5.4: model 11, package C. Expected order of actions is b(), x(), c().

5.4.2.2 Order of Operations inbetween Stable State Configurations

Discovery The naively expected semantics for the order of actions taken when a transi-
tion fires would be to execute the proper exit actions then the action on the transition and
lastly the proper entry actions. Executing model 11 in package C it was discovered that
the order of the output messages is often out of order and seemingly random, as shown on
Figure 5.4. I could even generate different traces with some slight changes in configuration
options that should not matter.

Furthermore, the execution of model 31 in package F (Figure 5.5) showed that the op-
erations on variables seem to be consistent and correct in each case, even if the order of
output messages are not right. If the ordering of the operations would not be right, i could
end up being either 3, 4 or 2 on the traces in Figure 5.5.

Explanation The intended semantics for synchronous state machines in Gamma is for
the input and output messages to be handled like “signals", as they are part of a syn-
chronous reactive system. The order these signals are changed in does not matter, only
the value they have in the given step of the model.

But doing the same to variable operations would cause the model to be unintuitive and
the result of the operations to be unambiguous, e.g. as in Figure 5.5a, so the variable
operations were implemented to have a fixed and intuitive ordering.

Solution This finding is actually the result of a series of conscious decisions. The solu-
tion is simply to communicate these decisions with the user better in two ways: a) reflect
the non-ordered nature of input and output events in the trace visualization by using
parallel fragments, b) highlight the intended semantics in documentation more.

34

var i: long = 0

S0

entry / output.a()
exit / i := (i + 1)
exit / output.b()

S1

entry / i := (i * 2)
entry / output.c()
exit / output.d()

input.e /
i := (i + 1)

output.x()

(a) model31 (package F, vari-
ant of model11)

statemachineTrace of statemachine

«SUT»
statemachine

output.a()

Statemachine in {S0} with
__id_S0_0_S1_ = false
i = 0

input.e()

Execute

output.b()

output.c()

output.x()

Statemachine in {S1} with
__id_S0_0_S1_ = true
i = 4

(b) Trace generated from
model31.

statemachineTrace of statemachine

«SUT»
statemachine

output.a()

Statemachine in {S0} with
__id_S0_0_S1_ = false
i = 0

input.e()

Execute

output.x()

output.c()

output.b()

Statemachine in {S1} with
__id_S0_0_S1_ = true
i = 4

(c) Trace generated from
model31 with slightly modified
configuration.

Figure 5.5: model 31, package F

It is out of scope for this report to discuss if the intended semantics are suitable and
consistent. Yet it might be worth to inspect from time to time if some decisions for
semantics were added organically through implementation and if these were appropriate.

5.4.2.3 Limitation of Parallel Executions

Discovery This finding stems from checking the traces generated by model16 and
model32. The two models, shown in Figure 5.6, are variants of each other. Model16
belongs in package E, as it uses orthogonal regions, while model32 belongs in package F,
as it extends model16 with variables.

The finding itself is that both models generated only a single trace (shown in Figure 5.7).
This means that the state space checked by Theta does not include different orderings of
entering states in these state machines.

This cannot really cause any issues in model16, as the resulting state configuration will be
the same anyways and there are no variables. However, the trace shows that in model32
the possibility that we end up with flag = true is not considered by the model checker.

Explanation The semantical resolution for the issues in model32 in Gamma is that
orthogonal regions are meant to be independent from each other. Gamma even issues a
warning in the editor if instead of separate variables a single flag variable is used: “Both
this transition and the transition between S3 and S4 assign value to the same variable
flag”.

However, actions in states are not checked for the same issue and the message above is
simply a warning; it does not prohibit the modeler in creating the model this way.

35

C1

S1 S2input.f

S3 S4input.f

(a) model16 (package E)

var flag1: boolean = false
var flag2: boolean = false
var flag: boolean = false

C1

S1 S2

entry / flag := flag1

input.f /
flag1 := true

S3 S4

entry / flag := flag2

input.f /
flag2 := false

(b) model32 (variant of model16, package F)

Figure 5.6: model16 and model32, showing orthogonal regions

statemachineTrace of statemachine

«SUT»
statemachine

Statemachine in {C1, S1, S3} with
__id_S1_0_S2_ = false
__id_S3_1_S4_ = false

input.f()

Execute

Statemachine in {C1, S2, S4} with
__id_S1_0_S2_ = true
__id_S3_1_S4_ = true

(a) Trace generated for model16.

statemachineTrace of statemachine

«SUT»
statemachine

Statemachine in {C1, S3, S1} with
__id_S1_0_S2_ = false
__id_S3_1_S4_ = false
flag = false
flag1 = false
flag2 = false

input.f()

Execute

Statemachine in {C1, S4, S2} with
__id_S1_0_S2_ = true
__id_S3_1_S4_ = true
flag = false
flag1 = true
flag2 = false

(b) Trace generated for model32.

Figure 5.7: Traces generated for the models on Figure 5.6

36

S0

C1

h
S1 S11

gS2 S22

e

(a) model17 (package E)

e
S0

C1

h

f

S1 S11

gS2 S22

(b) model18 (package E)

Figure 5.8: Models with transitions going into orthogonal regions

The root of the issue is granularity: “temporary” state configurations inbetween “stable”
ones are not considered. This “coarse” granularity is crucial when verifying larger models
as otherwise verification might practically never complete due to ARGs becoming too
large.

Thus when transitions are fired throughout several steps of the state machine, they behave
as expected, i.e. if one of the triggers in model16 is changed to be different, Theta will
include the state configurations S1, S4 and S3, S2 as well.

Solution As we have shown, for verification to be reliable, the orthogonal regions shall
be modeled so that they are independent from each other. But this expectation should be
communicated better with more warnings (or even prohibitions).

At this point it is worth to point out that the model suite of this case study can be used
as a specification by example to help in communicating the presumptions and limitations
discovered here or above in Section 5.4.2.2.

5.4.2.4 Visualizing Transitions Crossing Composite states with Orthogonal
Regions

Discovery There are several minor issues regarding transitions crossing borders of com-
posite states and orthogonal regions.

Explanation Several models exhibited issues, which were traced back to different root
causes.

model17, model18 These models, drawn manually in Figure 5.8, cannot be visualized
by PlantUML, as it prohibits transitions entering a state in an orthogonal region. However
Gamma does not prohibit them and the trace generation can be executed successfully.

The intended semantics of model17 are the same as if the transition with the trigger e
would go to C1 instead. The generated traces have shown that this is what happens.
However, model18 should be prohibited by Gamma.

Based on the traces, model18 is capable of achieving the {C1, S22} state configuration,
shown in Figure 5.9, while model17 behaves as if the transition going to S1 would be going
to C1 instead.

37

statemachineTrace of statemachine

«SUT»
statemachine

Statemachine in {S0} with
__id_S0_0_C1_ = false
__id_S1_1_S11_ = false
__id_S1_2_S2_ = false
__id_S2_3_S22_ = false

input.e()

Execute

Statemachine in {C1, S1, S2} with
__id_S0_0_C1_ = true
__id_S1_1_S11_ = false
__id_S1_2_S2_ = false
__id_S2_3_S22_ = false

input.g()

Execute

Statemachine in {C1, S1, S22} with
__id_S0_0_C1_ = false
__id_S1_1_S11_ = false
__id_S1_2_S2_ = false
__id_S2_3_S22_ = true

input.f()

Execute

Statemachine in {C1, S2} with
__id_S0_0_C1_ = false
__id_S1_1_S11_ = false
__id_S1_2_S2_ = true
__id_S2_3_S22_ = false

Figure 5.9: One of the traces for model18, enabling the model to reside in only one of
the orthogonal regions

38

C1

S1 S2 S3 S5input.e input.f input.g

S4

(a) model20 (package E), visualized incorrectly

statemachineTrace of statemachine

«SUT»
statemachine

Statemachine in {C1, S1} with
__id_S1_0_S2_ = false
__id_S2_2_S3_ = false
__id_S3_1_S5_ = false

input.e()

Execute

Statemachine in {C1, S2} with
__id_S1_0_S2_ = true
__id_S2_2_S3_ = false
__id_S3_1_S5_ = false

input.f()

Execute

Statemachine in {C1, S3} with
__id_S1_0_S2_ = false
__id_S2_2_S3_ = true
__id_S3_1_S5_ = false

input.g()

Execute

Statemachine in {S5} with
__id_S1_0_S2_ = false
__id_S2_2_S3_ = false
__id_S3_1_S5_ = true

(b) The single trace of model20

Figure 5.10: Incorrect visualization by PlantUML, uncovered by trace generation.

model20 This model is incorrectly visualized by PlantUML, as based on the textual
representation, S5 is not supposed to be a part of the composite state. But trace generation
instantly reveals the issue by generating a correct trace and displaying the real possible
state configurations as shown in Figure 5.10.

Solution For model20 this is a simple visualization issue, which should be debugged
to display the models correctly. The importance of it comes from the ability to cause
misinterpretation and confusion, especially in more complex cases.

Model17 also uncovers a visualization issue, but this time the feature set of PlantUML
might not be able to cover like this and finding a solution for that will not be that simple.

For model18, there was a missing validation rule, as such crossing transitions should be
prohibited by Gamma in the editor already. Although it was easy to fix, such validation
rules play a really important part in mitigating modeling errors, e.g. typos. If a model
like this is verified, the modeler ends up with a hidden invalid result.

39

Model Number
of traces

Number of traces
with no variables

TrafficLightCtrl 21 10

GroundStation 10sec steps: 5,
5sec steps: 10 5

Spacecraft Timeout 1 (incomplete coverage)
Signaller Timeout 12, only integers excluded: 33

Table 5.2: Result of trace generation on models from real-world examples.

RQ2: What types of issues can the validation process uncover?
The validation process was able to uncover several issues regarding model transformation,
granularity and limitations of the formal representation (including missing executions) and
visualization. It did not only uncover simple implementation bugs, but also limitations of
the generated models that can easily invalidate verification results and require more than
a simple patch of the tool.

5.4.3 RQ3: Traces of Real-World Models

So far the main use case introduced for the algorithm was the end-to-end validation of
model transformations in the verification process. Another possible use case is uncovering
mistakes in real-world models, as explained in Section 3.4.1.

Model developers utilizing the trace generation feature can gain insight on the possible ex-
ecutions of their model, uncovering misunderstandings in semantics, e.g. possible “corner-
case” executions that the modeler did not think of or limitations of the verification the
user did not know about, such as the one reported in Section 5.4.2.3.

Due to its inherent goal, the validation model suite contains only artificial models. To
evaluate the usability of trace generation on real-world models, the prototype was executed
on some models of the tutorials and industrial case studies [38] available for Gamma.

The result of the execution was checked on some synchronous state machines from:

• the Crossroads test/tutorial models2,

• the signaller subsystem of the Railway Traffic Control System case study3,

• and the Simple Space Mission case study4.

Table 5.2 summarizes the results of the execution, while the results per model are detailed
below.

Ground Station The Ground Station state machine is part of the Simple Space Mission
case study and is shown on Figure 5.11. It contains two timers, which trigger some of its
outer transitions.

2https://github.com/ftsrg/gamma/tree/master/tests/hu.bme.mit.gamma.tests/model/
Crossroads

3https://github.com/ftsrg/gamma/tree/master/examples/hu.bme.mit.gamma.railway.
casestudy/model/COID

4https://github.com/ftsrg/gamma/tree/master/examples/hu.bme.mit.jpl.spacemission.
casestudy

40

https://github.com/ftsrg/gamma/tree/master/tests/hu.bme.mit.gamma.tests/model/Crossroads
https://github.com/ftsrg/gamma/tree/master/tests/hu.bme.mit.gamma.tests/model/Crossroads
https://github.com/ftsrg/gamma/tree/master/examples/hu.bme.mit.gamma.railway.casestudy/model/COID
https://github.com/ftsrg/gamma/tree/master/examples/hu.bme.mit.gamma.railway.casestudy/model/COID
https://github.com/ftsrg/gamma/tree/master/examples/hu.bme.mit.jpl.spacemission.casestudy
https://github.com/ftsrg/gamma/tree/master/examples/hu.bme.mit.jpl.spacemission.casestudy

timeout pingTimeout
timeout autoStart

Idle
entry / autoStart := 30 s

Operation
entry / connection.ping()
entry / pingTimeout := 10 s

Waiting
connection.data

control.start timeout autoStart control.shutdown

timeout pingTimeout

Figure 5.11: Ground Station model of the Simple Space Mission case study.

As shown in the second row of Table 5.2, different configurations result in a really different
number of traces. The model transformation to XSTS requires a time step size to be set
for timers. This will increment the relevant timers with this given step size each time
before the model steps. As the outer transition of the Operation state has priority to the
inner transition of Waiting, the inner transition is never fired if the time step is set to 10
seconds, but it is executed in some traces if the time step is smaller.

Spacecraft The other state machine from the Simple Space Mission case study is shown
on Figure A.0.1. This model illustrates the limitations of this trace generation method.

Without excluding the data and batteryV ariable variables the execution never finished,
while with abstraction the coverage of the state space becomes so low that only a single
trace will be generated, as the loops decrementing these variables are not unrolled. This is
detected and reported in the report file generated by Theta. This phenomenon is explained
in detail in Section 4.3.1.

Traffic Light Ctrl This model on Figure A.0.2 depicts the state machine of a traffic
light, capable of working in a normal or a blinking yellow mode. It is a common test model
in Gamma and also includes some meaningless variables.

The number of traces here is higher than for the artificial models, but it is still feasible to
check all of them, especially if the variables are not tracked.

Signaller Figure A.0.3 shows the Signaller state machine. This model features input
and output events with boolean parameters, which significantly enlarge the state space of
the model. It also features two integers as counters, which make abstraction essential, but
contrary to the Spacecraft model, the abstract state space coverage is not violated here.

However, tracking the rest of the variables, which are either boolean or an enumeration
(with 3 possible values) is feasible. While the number of traces here is fairly high, especially
with some of the variables included, they are still feasible to look through, especially with
a good understanding of the model.

41

RQ3: Is trace generation capable of successful executions on real-world mod-
els?
Trace generation was successful for most of the real-world models in the case study and
these executions provided sets of traces appropriate for further manual analysis. The
generated traces seem to be appropriate to illustrate how different aspects, like timers or
priorities are handled and are capable of showing the relevant aspects right on the model
in focus.
There are limitations as well: as in the case of the Spacecraft model, it is possible that
a model has no “right” abstraction level, as with abstraction loss of state coverage is
detected, without abstraction the trace generation will not terminate. Also, the number
and length of traces might not scale well for some larger models and generate too many
traces even with abstraction.

5.5 Discussion

E2E Validation of Semantics Based on the case study, the trace generation algorithm
and the validation approach are deemed successful. The validation model suite did not
completely cover the language elements of Gamma statecharts, but it includes a core set of
these elements and can be easily extended. Determining what coverage should a validation
suite should accomplish and designing a model suite sufficing to that would be a separate
topic and thus this completeness was out of scope for this work.

Even then the validation approach was able to uncover several issues in different parts of
the verification process: not just in the model transformation, but also visualization issues
and limitations in concurrency and granularity. The validation suite and the traces can
also serve in the tool’s documentation as specification by example, informing the users
about such presumptions in an intuitive way.

Real-World Models Although there are limitations in scalability and thus a time limit
for execution is required, the trace generation can also be successful and useful on real-
world models. It is capable of giving insight about semantics, such as priorities, right on
the model itself.

Threats to Validity Internal validity is ensured by carefully following the steps of
validation process. Trace generation was also re-executed on the models and produced the
same input each time. Furthermore, the case studies’ main goal was to show the feasibility
and usefulness of the techniques (which was successful) not the exhaustive and complete
validation of Gamma.

External validity is concerned with how well the results can be generalized. Different ap-
plication domains of model checking have different aspects that make verification difficult
and complex, while this case study is validating only a single modeling language. However
some assumptions can be made on extending it to other domains and languages.

Checking software code will probably require some more work on scalability as the number
and range of variables employed is usually much higher. However, for other engineering
models (e.g. other state machine languages, activity diagrams, process diagrams) trace
generation and the validation process will likely work in a similar manner as here due to
their similarities.

42

Chapter 6

Related Work

6.1 The Landscape of Verification Tools

This work builds upon the abstraction capabilities of the tool under validation, thus it is
important to examine how common abstraction is in such tools.

There are a wide array of formal verification tools available for many different application
domains. Due to the need for comparative evaluation, many domains have benchmarking
competitions at their disposal, showcasing the state of the art tools and techniques.

SV-COMP [10][9] The International Competition on Software Verification (SV-
COMP) might be the largest of these competitions to date. It was specifically created for
software verifiers and had 33 actively competing tools in 2022. Based on their report [10],
11 of these tools use Counterexample-guided Abstraction Refinement (CEGAR) [25], 8
use lazy abstraction, 9 of the tools use Explicit-Value Analysis and 5 use ARG-Based
Analysis. There are several overlaps inbetween these properties.

Model Checking Contest [43] The Model Checking Contest (MCC) benchmarks ver-
ification tools on Petri net models. They had 7 actively competing tools in 2021. They do
not have such a detailed report on the properties on the tools, but abstraction and explicit-
value techniques seem to be present in the reported techniques of several tools [43]. One
of the competitors is LoLA [56][62], which was already introduced in Section 4.4.2.1.

Hardware Verification Competition The hardware verification competition1 exe-
cutes benchmarks on hardware models mainly in the And-Inverter Graphs (AIG) format
with 11 submitted tools in the last edition of the competition in 2020. Based on the report
slides, some tools also apply abstraction here as well. For example nuXmv [21], one of the
de facto standard tools, implements CEGAR and already has a feature called “computing
reachable states”2.

As shown in this section, abstraction and related techniques appear throughout all the
different and domains in a significant amount of tools. While benchmarking competitions
compare tools and give valuable feedback to tool developers, they are limited to only a
few input model types and languages (e.g. C software, Petri nets).

1http://fmv.jku.at/hwmcc20/#results
2https://usermanual.wiki/Document/nuxmvusermanual.465943104/html

43

http://fmv.jku.at/hwmcc20/#results
https://usermanual.wiki/Document/nuxmvusermanual.465943104/html

6.2 Test Generation with Model Checkers

Fraser et al. [33] describes several tools and papers about generating test cases with model
checkers. Many of the works cited in this survey [31, 35] and even more recent works [45]
differ greatly from my approach in that they use model checkers as black box tools, gen-
erating properties based on the test generation goals and feeding these properties to the
tool as a verification problem, using the resulting counterexample as a test case.

In a subsequent paper, Fraser et al. [32] describes several drawbacks of this approach, e.g.
a model checker might prioritise counterexamples that are easy to understand, but make
no good test cases. This work states that model checkers could generate better quality test
suites with some added techniques focusing on test generation (e.g. abstraction for testing,
constraints and prioritization of counterexamples), i.e. not using the model checker as a
completely black box tool.

Although my work generates traces with a different goal in mind, it relates to the realiza-
tions of these issues. When the model checker is seen as a black box, typically the whole
verification process is utilized for the generation of a single test case, making several state
space traversals necessary for the test suite. Instead, this work utilizes lower level features
of the tool, such as ARG building, making the tool capable to generate all the traces in a
single execution.

6.3 V&V of Model Transformations

There is a lot of available work on different approaches to the verification of different
model transformations, such as UML state machines to colored petri nets [49], UML
statecharts to Petri nets [60] or BPMN models to Petri nets [48], verifying properties,
such as termination and structural properties.

Varró and Pataricza [60] fully verify several properties, such as syntactic correctness and
completeness. For semantic correctness they give separate dynamic consistency properties,
as semantic equivalence between the models cannot always be proved.

These approaches concentrate on automatically checking properties, while this work con-
centrates on with the validation of informal semantics, which cannot be fully automated
due to the lack of formality. Chapter 3 explained why this lack of formal semantics is
typical for many models and thus this report can be viewed as a complementary extension
of the works mentioned above.

6.4 Conformance Testing of Different Tools and Compilers

Conformance testing is frequently used in practice. For example, the “Precise Semantics of
UML State Machines (PSSM)” specification [53] defines execution semantics for UML state
machines. It contains a conformance test suite containing state machines with execution
traces, both modeled by hand. Any given execution tool that wants to conform to this
specification must pass the conformance tests. Issues due to manual creation of traces
include typos, inconsistencies on completeness and unambiguity as well [30].

Test generation and conformance test suites are commonly used in the testing of com-
pilers [22]. Test generation most commonly builds on the grammar of the programming
language. However, ambiguous or non-deterministic executions are rarely tested.

44

Chapter 7

Conclusion

7.1 Summary of Results

Validating Semantics of Verifiers Chapter 3 described the typical formal verification
process and formulated the main motivation of this work (“How can we trust formal
verification tools?”). It concentrated on why model transformation steps are prone to
errors, especially when verifying engineering models. To counter such errors, I proposed
an end-to-end validation process with execution trace generation at its core to detect issues
in model transformation in formal verification tools.

Trace Generation Algorithms In Chapter 4, I proposed a novel algorithm for generat-
ing execution traces with model checkers. This algorithm is capable of utilizing abstraction
to keep the trace set concise and thus make it feasible to check the traces manually during
the validation process. I also gave detailed analysis on coverage guarantees, usability and
comparison of trace generation with and without abstraction.

Evaluation Lastly, in Chapter 5 I implemented a prototype of the algorithms and the
validation process and designed two case studies. The goal of the first one was to evaluate
not just trace generation, but the whole end-to-end validation process. For this, I designed
a validation model suite covering a core set of the state machine language of Gamma. After
executing trace generation, I listed my findings in this chapter as well, including several
different issues from minor bugs to hidden limitations. The models and the generated
traces are available as an artifact for this report [1].

The other case study was created to investigate another use case of trace generation:
generating traces for real-world models to discover modeling mistakes. For this I took
some real-world models from earlier Gamma case studies and tutorials and checked what
insights the generated traces can give on these models.

7.2 Future Work

As detailed in Chapter 4, Section 4.4.2.1, there are other tools in which the trace generation
algorithm and the validation process would be possible to implement. Furthermore, Theta
has several other frontends and formalisms, e.g. for C code and hardware models. These
would also be interesting to employ trace generation in.

45

Implementing the algorithm in these tools would open the possibility of further experi-
ments and case studies of validating model transformation and utilizing trace generation.

Issues with ambiguity are also typical for software (e.g. undefined behaviour in C), so
execution trace generation might also be useful in software model checkers – however this
might require further research into the abstraction aspect of the algorithm as variables
play an even more prevalent role in software code.

Another interesting part to extend the trace generation algorithm itself would be to find
ways of employing other abstract domains (e.g. predicate abstraction) for trace generation.
This might prove useful if there are variables that cause state space explosion, but they
are important and should not be completely ignored. Predicate abstraction might offer a
solution, as it can represent predicates, e.g. statements about the possible values of the
variable in a more compact way.

Acknowledgment Supported by the ÚNKP-22-2-I-BME-205 New National Excel-
lence Program of the Ministry for Culture and Innovation from the source of the National
Research, Development and Innovation Fund.

46

Bibliography

[1] Zsófia Ádám and Zoltán Micskei. Abstraction-based trace generation to validate
semantics of formal verifiers: Validation model suite, 2022. URL https://zenodo.
org/record/7263707.

[2] Zsófia Ádám, Gyula Sallai, and Ákos Hajdu. Gazer-Theta: LLVM-based Verifier
Portfolio with BMC/CEGAR (Competition Contribution). In Jan Friso Groote and
Kim Guldstrand Larsen, editors, Tools and Algorithms for the Construction and Anal-
ysis of Systems, pages 433–437, Cham, 2021. Springer International Publishing.

[3] Zsófia Ádám, Levente Bajczi, Mihály Dobos-Kovács, Ákos Hajdu, and Vince Molnár.
Theta: portfolio of cegar-based analyses with dynamic algorithm selection (com-
petition contribution). In Tools and Algorithms for the Construction and Analysis
of Systems, volume 13244 of LNCS, pages 474–478. Springer, Cham, 2022. DOI:
10.1007/978-3-030-99527-0_34.

[4] Sven Apel, Dirk Beyer, Karlheinz Friedberger, Franco Raimondi, and Alexander von
Rhein. Domain Types: Abstract-Domain Selection Based on Variable Usage. In Hard-
ware and Software: Verification and Testing, pages 262–278. Springer International
Publishing, 2013. DOI: 10.1007/978-3-319-03077-7_18.

[5] Christel Baier and Joost-Pieter Katoen. Principles of model checking. MIT press,
2008. ISBN 978-0-262-02649-9.

[6] Levente Bajczi, Zsófia Ádám, and Vince Molnár. C for yourself: Comparison of
front-end techniques for formal verification. In 2022 IEEE/ACM 10th Interna-
tional Conference on Formal Methods in Software Engineering. IEEE, 2022. DOI:
10.1145/3524482.3527646.

[7] Thomas Ball, Andreas Podelski, and Sriram K. Rajamani. Boolean and cartesian
abstraction for model checking c programs. In Tiziana Margaria and Wang Yi, editors,
Tools and Algorithms for the Construction and Analysis of Systems, pages 268–283,
Berlin, Heidelberg, 2001. Springer Berlin Heidelberg. ISBN 978-3-540-45319-2.

[8] Clark Barrett and Cesare Tinelli. Satisfiability modulo theories. In Handbook of Model
Checking, pages 305–343. Springer, 2018. DOI: 10.1007/978-3-319-10575-8_11.

[9] Dirk Beyer. Software verification: 10th comparative evaluation (SV-COMP 2021). In
Tools and Algorithms for the Construction and Analysis of Systems, pages 401–422.
Springer International Publishing, 2021. DOI: 10.1007/978-3-030-72013-1_24.

[10] Dirk Beyer. Progress on software verification: SV-COMP 2022. In Dana Fisman
and Grigore Rosu, editors, Tools and Algorithms for the Construction and Analysis
of Systems, pages 375–402, Cham, 2022. Springer International Publishing.

47

https://zenodo.org/record/7263707
https://zenodo.org/record/7263707
http://dx.doi.org/10.1007/978-3-030-99527-0_34
http://dx.doi.org/10.1007/978-3-319-03077-7_18
http://dx.doi.org/10.1145/3524482.3527646
http://dx.doi.org/10.1007/978-3-319-10575-8_11
http://dx.doi.org/10.1007/978-3-030-72013-1_24

[11] Dirk Beyer and M. Erkan Keremoglu. CPAchecker: A Tool for Configurable Software
Verification. In Ganesh Gopalakrishnan and Shaz Qadeer, editors, Computer Aided
Verification, pages 184–190, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg.

[12] Dirk Beyer and Stefan Löwe. Explicit-State Software Model Checking Based on CE-
GAR and Interpolation. In Fundamental Approaches to Software Engineering, pages
146–162. Springer Berlin Heidelberg, 2013. DOI: 10.1007/978-3-642-37057-1_11.

[13] Dirk Beyer, Thomas A. Henzinger, Ranjit Jhala, and Rupak Majumdar.
The software model checker Blast. STTT, 9(5-6):505–525, 2007. DOI:
10.1007/s10009-007-0044-z.

[14] Dirk Beyer, Thomas A. Henzinger, and Grégory Théoduloz. Configurable software
verification: Concretizing the convergence of model checking and program analysis.
In Werner Damm and Holger Hermanns, editors, Computer Aided Verification, pages
504–518, Berlin, Heidelberg, 2007. Springer Berlin Heidelberg. ISBN 978-3-540-73368-
3.

[15] Dirk Beyer, Matthias Dangl, Daniel Dietsch, and Matthias Heizmann. Correctness
witnesses: Exchanging verification results between verifiers. In Proceedings of the
2016 24th ACM SIGSOFT International Symposium on Foundations of Software En-
gineering, FSE 2016, page 326–337, New York, NY, USA, 2016. Association for Com-
puting Machinery. ISBN 9781450342186. DOI: 10.1145/2950290.2950351. URL
https://doi.org/10.1145/2950290.2950351.

[16] Dirk Beyer, Matthias Dangl, Daniel Dietsch, and Matthias Heizmann. Correctness
witnesses: Exchanging verification results between verifiers. In Proceedings of the
2016 24th ACM SIGSOFT International Symposium on Foundations of Software En-
gineering, FSE 2016, page 326–337, New York, NY, USA, 2016. Association for Com-
puting Machinery. ISBN 9781450342186. DOI: 10.1145/2950290.2950351. URL
https://doi.org/10.1145/2950290.2950351.

[17] Dirk Beyer, Matthias Dangl, Thomas Lemberger, and Michael Tautschnig. Tests from
witnesses. In Catherine Dubois and Burkhart Wolff, editors, Tests and Proofs, pages
3–23, Cham, 2018. Springer International Publishing. ISBN 978-3-319-92994-1.

[18] Armin Biere, Alessandro Cimatti, Edmund Clarke, and Yunshan Zhu. Symbolic
Model Checking without BDDs. In Tools and Algorithms for the Construction
and Analysis of Systems, pages 193–207. Springer Berlin Heidelberg, 1999. DOI:
10.1007/3-540-49059-0_14.

[19] Manfred Broy, Bengt Jonsson, J-P Katoen, Martin Leucker, and Alexander
Pretschner. Model-based testing of reactive systems. Springer Berlin Heidelberg, 2005.
DOI: 10.1007/b137241. URL https://doi.org/10.1007/b137241.

[20] J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, and L.J. Hwang. Symbolic model
checking: 1020 States and beyond. Information and Computation, 98(2):142–170,
June 1992. DOI: 10.1016/0890-5401(92)90017-a.

[21] Roberto Cavada, Alessandro Cimatti, Michele Dorigatti, Alberto Griggio, Alessan-
dro Mariotti, Andrea Micheli, Sergio Mover, Marco Roveri, and Stefano Tonetta. The
nuxmv symbolic model checker. In Armin Biere and Roderick Bloem, editors, Com-
puter Aided Verification, pages 334–342, Cham, 2014. Springer International Publish-
ing. ISBN 978-3-319-08867-9.

48

http://dx.doi.org/10.1007/978-3-642-37057-1_11
http://dx.doi.org/10.1007/s10009-007-0044-z
http://dx.doi.org/10.1145/2950290.2950351
https://doi.org/10.1145/2950290.2950351
http://dx.doi.org/10.1145/2950290.2950351
https://doi.org/10.1145/2950290.2950351
http://dx.doi.org/10.1007/3-540-49059-0_14
http://dx.doi.org/10.1007/b137241
https://doi.org/10.1007/b137241
http://dx.doi.org/10.1016/0890-5401(92)90017-a

[22] Junjie Chen, Jibesh Patra, Michael Pradel, Yingfei Xiong, Hongyu Zhang, Dan Hao,
and Lu Zhang. A survey of compiler testing. ACM Comput. Surv., 53(1), feb
2020. ISSN 0360-0300. DOI: 10.1145/3363562. URL https://doi.org/10.1145/
3363562.

[23] Shengbo Chen, Hao Fu, and Huaikou Miao. Formal verification of security protocols
using Spin. In 2016 IEEE/ACIS 15th International Conference on Computer and
Information Science (ICIS), pages 1–6, 2016. DOI: 10.1109/ICIS.2016.7550830.

[24] P. Chevalley and P. Thevenod-Fosse. Automated generation of statistical test
cases from UML state diagrams. In 25th Annual International Computer Soft-
ware and Applications Conference. COMPSAC 2001, pages 205–214, 2001. DOI:
10.1109/CMPSAC.2001.960618.

[25] Edmund Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith.
Counterexample-guided abstraction refinement for symbolic model checking. Journal
of the ACM, 50(5):752–794, September 2003. DOI: 10.1145/876638.876643. URL
https://doi.org/10.1145/876638.876643.

[26] Edmund M. Clarke, Orna Grumberg, and David E. Long. Model checking and abstrac-
tion. ACM Transactions on Programming Languages and Systems, 16(5):1512–1542,
September 1994. DOI: 10.1145/186025.186051.

[27] Edmund M. Clarke, Thomas A. Henzinger, Helmut Veith, and Roderick Bloem. Hand-
book of Model Checking. Springer Publishing Company, Incorporated, 1st edition,
2018. ISBN 3319105744.

[28] Tom Coffey, Reiner Dojen, and Tomas Flanagan. Formal verification: an imperative
step in the design of security protocols. Computer Networks, 43(5):601–618, 2003.
ISSN 1389-1286. DOI: https://doi.org/10.1016/S1389-1286(03)00292-5. URL
https://www.sciencedirect.com/science/article/pii/S1389128603002925.

[29] Matthias Dangl, Stefan Löwe, and Philipp Wendler. CPAchecker with Support for
Recursive Programs and Floating-Point Arithmetic. In Christel Baier and Cesare
Tinelli, editors, Tools and Algorithms for the Construction and Analysis of Systems,
pages 423–425, Berlin, Heidelberg, 2015. Springer Berlin Heidelberg. ISBN 978-3-
662-46681-0.

[30] Márton Elekes, Vince Molnár, and Zoltán Micskei. Assessing the specification
of modelling language semantics: A study on UML PSSM. May 2022. DOI:
10.21203/rs.3.rs-1577254/v1.

[31] André Engels, Loe Feijs, and Sjouke Mauw. Test generation for intelligent networks
using model checking. In Ed Brinksma, editor, Tools and Algorithms for the Con-
struction and Analysis of Systems, pages 384–398, Berlin, Heidelberg, 1997. Springer
Berlin Heidelberg. ISBN 978-3-540-68519-7.

[32] Gordon Fraser, Franz Wotawa, and Paul Ammann. Issues in using model check-
ers for test case generation. Journal of Systems and Software, 82(9):1403–1418,
2009. ISSN 0164-1212. DOI: https://doi.org/10.1016/j.jss.2009.05.016. URL
https://www.sciencedirect.com/science/article/pii/S0164121209001137. SI:
QSIC 2007.

[33] Gordon Fraser, Franz Wotawa, and Paul E. Ammann. Testing with model
checkers: a survey. Softw Test Verif Rel, 19(3):215–261, 2009. DOI:
https://doi.org/10.1002/stvr.402.

49

http://dx.doi.org/10.1145/3363562
https://doi.org/10.1145/3363562
https://doi.org/10.1145/3363562
http://dx.doi.org/10.1109/ICIS.2016.7550830
http://dx.doi.org/10.1109/CMPSAC.2001.960618
http://dx.doi.org/10.1145/876638.876643
https://doi.org/10.1145/876638.876643
http://dx.doi.org/10.1145/186025.186051
http://dx.doi.org/https://doi.org/10.1016/S1389-1286(03)00292-5
https://www.sciencedirect.com/science/article/pii/S1389128603002925
http://dx.doi.org/10.21203/rs.3.rs-1577254/v1
http://dx.doi.org/https://doi.org/10.1016/j.jss.2009.05.016
https://www.sciencedirect.com/science/article/pii/S0164121209001137
http://dx.doi.org/https://doi.org/10.1002/stvr.402

[34] Sanford Friedenthal, Alan Moore, and Rick Steiner. A practical guide to SysML: the
systems modeling language. Morgan Kaufmann, 2014.

[35] Angelo Gargantini and Constance Heitmeyer. Using model checking to generate tests
from requirements specifications. In Oscar Nierstrasz and Michel Lemoine, editors,
Software Engineering — ESEC/FSE ’99, pages 146–162, Berlin, Heidelberg, 1999.
Springer Berlin Heidelberg. ISBN 978-3-540-48166-9.

[36] Vahid Garousi, Michael Felderer, Çağrı Murat Karapıçak, and Uğur Yılmaz. Testing
embedded software: A survey of the literature. Information and Software Technology,
104:14–45, 2018. DOI: 10.1016/j.infsof.2018.06.016.

[37] Susanne Graf and Hassen Saidi. Construction of abstract state graphs with PVS. In
Computer Aided Verification, pages 72–83. Springer Berlin Heidelberg, 1997. DOI:
10.1007/3-540-63166-6_10.

[38] Bence Graics, Vince Molnár, and István Majzik. Integration test generation for state-
based components in the gamma framework. Under review.

[39] Orna Grumberg, Doron A Peled, and EM Clarke. Model checking. MIT press Cam-
bridge, 1999. ISBN 978-0-262-03883-6.

[40] Havva Gülay Gürbüz and Bedir Tekinerdogan. Model-based testing for software
safety: a systematic mapping study. Softw. Qual. J., 26(4):1327–1372, 2018. DOI:
10.1007/s11219-017-9386-2.

[41] ISO/IEC. Conformance testing methodology and framework, 1994. ISO/IEC 9646.

[42] John C. Knight. Safety critical systems: Challenges and directions. In Proceedings of
the 24th International Conference on Software Engineering, ICSE ’02, page 547–550,
New York, NY, USA, 2002. Association for Computing Machinery. ISBN 158113472X.
DOI: 10.1145/581339.581406. URL https://doi.org/10.1145/581339.581406.

[43] F. Kordon, P. Bouvier, H. Garavel, L. M. Hillah, F. Hulin-Hubard, N. Amat.,
E. Amparore, B. Berthomieu, S. Biswal, D. Donatelli, F. Galla, , S. Dal Zilio, P.
G. Jensen, C. He, D. Le Botlan, S. Li, , J. Srba, . Thierry-Mieg, A. Walner, and
K. Wolf. Complete Results for the 2020 Edition of the Model Checking Contest.
http://mcc.lip6.fr/2021/results.php, June 2021.

[44] Kim G Larsen, Paul Pettersson, and Wang Yi. Uppaal in a nutshell. Interna-
tional Journal on Software Tools for Technology Transfer, 1(1-2):134–152, 1997. DOI:
10.1007/s100090050010.

[45] Daniset González Lima, Rauĺ E. González Torres, and Pedro Mejía Alvarez. Auto-
matic test cases generation for C written programs using model checking. In 2021
International Conference on Computational Science and Computational Intelligence
(CSCI), pages 1944–1950, 2021. DOI: 10.1109/CSCI54926.2021.00361.

[46] Ignacio D. Lopez-Miguel, Jean-Charles Tournier, and Borja Fernandez Adiego.
Plcverif: Status of a formal verification tool for programmable logic controller. 2022.
DOI: 10.48550/ARXIV.2203.17253. URL https://arxiv.org/abs/2203.17253.

[47] Azad M. Madni and Michael Sievers. Model-based systems engineering: Motivation,
current status, and research opportunities. Systems Engineering, 21(3):172–190, 2018.
DOI: 10.1002/sys.21438.

50

http://dx.doi.org/10.1016/j.infsof.2018.06.016
http://dx.doi.org/10.1007/3-540-63166-6_10
http://dx.doi.org/10.1007/s11219-017-9386-2
http://dx.doi.org/10.1145/581339.581406
https://doi.org/10.1145/581339.581406
http://dx.doi.org/10.1007/s100090050010
http://dx.doi.org/10.1109/CSCI54926.2021.00361
http://dx.doi.org/10.48550/ARXIV.2203.17253
https://arxiv.org/abs/2203.17253
http://dx.doi.org/10.1002/sys.21438

[48] Said Meghzili, Allaoua Chaoui, Martin Strecker, and Elhillali Kerkouche. Transfor-
mation and validation of BPMN models to Petri nets models using GROOVE. In 2016
International Conference on Advanced Aspects of Software Engineering (ICAASE),
pages 22–29, 2016. DOI: 10.1109/ICAASE.2016.7843859.

[49] Said Meghzili, Allaoua Chaoui, Martin Strecker, and Elhillali Kerkouche. Verifica-
tion of model transformations using Isabelle/HOL and Scala. Information Systems
Frontiers, 21(1):45–65, May 2018. DOI: 10.1007/s10796-018-9860-9.

[50] Vince Molnár, Bence Graics, András Vörös, István Majzik, and Dániel Varró. The
Gamma statechart composition framework: design, verification and code generation
for component-based reactive systems. In ICSE: Companion Proc., pages 113–116.
ACM, 2018. DOI: 10.1145/3183440.3183489.

[51] Milán Mondok. Formal verification of engineering models via extended symbolic
transition systems, 2020. Bachelor’s Thesis, Budapest University of Technology and
Economics.

[52] Jeff Offutt and Aynur Abdurazik. Generating tests from UML specifications. In
Robert France and Bernhard Rumpe, editors, «UML»’99 — The Unified Modeling
Language, pages 416–429, Berlin, Heidelberg, 1999. Springer Berlin Heidelberg.

[53] OMG. Precise Semantics of UML State Machines (PSSM), 2019.

[54] OMG. Semantics of a Foundational Subset for Executable UML Models, 2021.

[55] Mathias Preiner, Armin Biere, and Nils Froleyks. Hardware model checking compe-
tition 2020. 2020. website: http://fmv.jku.at/hwmcc20/.

[56] Karsten Schmidt. Lola a low level analyser. In Mogens Nielsen and Dan Simpson,
editors, Application and Theory of Petri Nets 2000, pages 465–474, Berlin, Heidelberg,
2000. Springer Berlin Heidelberg. ISBN 978-3-540-44988-1.

[57] Ting Su, Ke Wu, Weikai Miao, Geguang Pu, Jifeng He, Yuting Chen, and Zhendong
Su. A survey on data-flow testing. ACM Comput. Surv., 50(1), mar 2017. ISSN
0360-0300. DOI: 10.1145/3020266. URL https://doi.org/10.1145/3020266.

[58] Tamas Toth, Akos Hajdu, Andras Voros, Zoltan Micskei, and Istvan Majzik. Theta:
A framework for abstraction refinement-based model checking. In FMCAD. IEEE,
2017. DOI: 10.23919/fmcad.2017.8102257.

[59] Mark Utting and Bruno Legeard. Practical model-based testing: a tools approach.
Elsevier, 2010.

[60] Dániel Varró and András Pataricza. Automated formal verification of model trans-
formations. In Critical Systems Development with UML - Proceedings of the UML’03
workshop, page 63, 2003.

[61] Stephan Weißleder. Test models and coverage criteria for automatic model-based test
generation with UML state machines. PhD thesis, Humboldt University of Berlin,
2010.

[62] Karsten Wolf. Petri net model checking with LoLA 2. In Victor Khomenko and
Olivier H. Roux, editors, Application and Theory of Petri Nets and Concurrency,
pages 351–362, Cham, 2018. Springer International Publishing.

51

http://dx.doi.org/10.1109/ICAASE.2016.7843859
http://dx.doi.org/10.1007/s10796-018-9860-9
http://dx.doi.org/10.1145/3183440.3183489
http://dx.doi.org/10.1145/3020266
https://doi.org/10.1145/3020266
http://dx.doi.org/10.23919/fmcad.2017.8102257

Appendix

The following pages contain the real-world models introduced in Chapter 5, Section 5.4.3,
except the Ground Station model which was added directly to the chapter (Figure 5.11).

52

var batteryVariable: long = 100
var recharging: boolean = false
var data: long = 100
tim

eout rechargeTim
eout

tim
eout consum

eTim
eout

tim
eout transm

itTim
eout

Spacecraft

W
aitingPing

Transm
itting

Sending
entry / transm

itTim
eout := 1500 m

s

tim
eout transm

itTim
eout

[((data > 1) &
&

 (batteryVariable >= 40))] /
data := (data - 1)
connection.data()

Consum
ing

entry / consum
eTim

eout := 1 s

tim
eout consum

eTim
eout

[(batteryVariable >= 40)] /
batteryVariable := (batteryVariable - 1)

connection.ping
[(recharging == false)]

tim
eout consum

eTim
eout

[(batteryVariable < 40)]

tim
eout transm

itTim
eout

[((data <= 1) || (batteryVariable < 40))]

N
otRecharging

entry / recharging := false

Recharging
entry / recharging := true
entry / rechargeTim

eout := 10 s
tim

eout consum
eTim

eout
[(batteryVariable < 80)]

tim
eout rechargeTim

eout
[(batteryVariable < 100)] /

batteryVariable := (batteryVariable + 1)

tim
eout rechargeTim

eout
[(batteryVariable == 100)]

Figure A.0.1: Spacecraft model of the Simple Space Mission case study.

53

var c: boolean
var a: boolean
var asd: long
var b: long
timeout BlinkingYellowTimeout3
timeout BlackTimeout4

Interrupted

BlinkingYellow
entry / BlinkingYellowTimeout3 := 500 ms
entry / LightCommands.displayYellow()

Black
entry / BlackTimeout4 := 500 ms
entry / LightCommands.displayNone()

timeout BlackTimeout4timeout BlinkingYellowTimeout3

Normal
exit / asd := 321

H
Red

entry / LightCommands.displayRed()
exit / a := true

Yellow
entry / LightCommands.displayYellow()

Green
entry / LightCommands.displayGreen()

Control.toggle

Control.toggle

Control.toggle /
b := 4

PoliceInterrupt.policePoliceInterrupt.police

Figure A.0.2: Traffic Light model from the Crossroads tutorial models.

54

var RS_CO
ID

: CeloldasIdozites
var Release: boolean
var off

Count: long
var toggleCount: long
var tim

erSet: boolean

O
ldas_4

entry / StateM
achine_O

utPort.O
_CO

ID
(Activeness::ACTIVE)

entry / RS_CO
ID

 := CeloldasIdozites::CELO
LD

AS_ID
O

ZITES

Celoldas_idozites_fut_8
entry / StateM

achine_O
utPort.O

_CO
ID

(Activeness::PASSIVE)
entry / RS_CO

ID
 := CeloldasIdozites::CELO

LD
AS_ID

O
ZITES

entry / tim
erSet := true

Celoldas_idozites_nem
_fut_5

entry / StateM
achine_O

utPort.O
_CO

ID
(Activeness::PASSIVE)

Ervenytelen_0
entry / RS_CO

ID
 := CeloldasIdozites::N

ERV1

Idozites_nem
_fut_1

entry / RS_CO
ID

 := CeloldasIdozites::N
IN

CS_CELO
LD

AS_ID
O

ZITES

Tranziens_2
entry / RS_CO

ID
 := CeloldasIdozites::N

IN
CS_CELO

LD
AS_ID

O
ZITES

I_FT.e
[(I_FT.e::eValue == M

yBool::_0)]

T.tim
eout

I_FT.e
[(I_FT.e::eValue != M

yBool::_0)]

I_FT.e
[(I_FT.e::eValue == M

yBool::_0)]

I_FT.e
[(I_FT.e::eValue != M

yBool::_0)]

Funkcio_kikapcsolva_6
entry / RS_CO

ID
 := CeloldasIdozites::N

IN
CS_CELO

LD
AS_ID

O
ZITES

entry / off
Count := (off

Count + 1)

O
ff

Counter
I.toggle /

toggleCount := (toggleCount + 1)

(T.tim
eout &

&
(I_CR.f &

&
I_FT.f))

[((I_CR.f::fValue == M
yBool::_1) &

&
 (I_FT.f::fValue == M

yBool::_1))]

(I_CR.f ||
I_FT.f)

[((I_CR.f::fValue != M
yBool::_1) || (I_FT.f::fValue != M

yBool::_1))] /
Release := true

(I_CR.f &
&

I_FT.f)
[((I_CR.f::fValue == M

yBool::_1) &
&

 (I_FT.f::fValue == M
yBool::_1))]

(I_CR.f ||
I_FT.f)

[((I_CR.f::fValue != M
yBool::_1) || (I_FT.f::fValue != M

yBool::_1))]
I.toggle

T.tim
eout

Figure A.0.3: Signaller model of the Railway Traffic Control System case study.

55

	Kivonat
	Abstract
	Introduction
	Background
	Verification of Critical Embedded Systems
	Formal Verification and Model Checking
	Abstraction in Model Checking
	Abstract Domains
	ARG
	Traces

	Using Model Checkers in Practice

	Validating Semantics of Verifiers
	Formal Verification Process
	Problem Statement
	Challenges of Semantics in Model Transformation
	Example of Ambiguous Semantics

	An Approach to E2E Validation of the Verification Process
	Another Use Case: Mitigating Modeling Mistakes

	Abstraction-based Trace Generation Algorithm
	Prerequisites of the Trace Generation Algorithm
	Abstraction Capabilities

	Generating Traces without Abstraction
	Trace Generation without Abstraction Example

	Utilizing Abstraction
	Inappropriate Abstraction Level
	Trace Generation with Abstraction Example

	Analysis of the Proposed Algorithm
	Coverage Guarantees
	Coverage on the ARG level
	Typical Coverages for Engineering Models

	Usability and Feasibility for Validation
	Examples of Tools with the Necessary Prerequisites

	Evaluation
	Prototype Implementation
	Gamma and Theta
	Process and Implementation
	High Level View of the Process
	Implementing Abstraction-based Trace Generation in Theta
	XSTS Specific Additions

	Evaluation Design
	Research Questions
	Process and Goal of the Evaluation
	End-to-End Validation
	Real-World Models

	Designing a Validation Modeling Suite for Gamma
	Understanding Gamma Models and Traces

	Results of the Case Studies
	RQ1: Quantitative Analysis of the Models and Traces
	RQ2: Validation Findings
	Missing Default Values in XSTS
	Order of Operations inbetween Stable State Configurations
	Limitation of Parallel Executions
	Visualizing Transitions Crossing Composite states with Orthogonal Regions

	RQ3: Traces of Real-World Models

	Discussion

	Related Work
	The Landscape of Verification Tools
	Test Generation with Model Checkers
	V&V of Model Transformations
	Conformance Testing of Different Tools and Compilers

	Conclusion
	Summary of Results
	Future Work

	Bibliography
	Appendix

