
Budapest University of Technology and Economics
Faculty of Electrical Engineering and Informatics

Department of Measurement and Information Systems

Abstraction-Based Interprocedural Software
Verification

Scientific Students’ Association Report

Author:

Márk Somorjai

Advisors:

Mihály Dobos-Kovács
Levente Bajczi

Dr. András Vörös

2023

Contents

Kivonat i

Abstract ii

1 Introduction 1

2 Background 3
2.1 Control Flow Automata . 3
2.2 Abstraction . 5
2.3 Counterexample-Guided Abstraction Refinement 8

2.3.1 Abstractor . 10
2.3.2 Refiner . 11

2.4 Procedures . 12
2.4.1 Variable Instances . 13
2.4.2 Parameter Assignments . 14

3 Related Work 16
3.1 Inlining . 16
3.2 Summaries . 16
3.3 Contracts . 17

4 Applying Abstraction to Stacks 18
4.1 Location Stack . 18
4.2 Stack Abstraction . 20

4.2.1 Changes to Abstractor . 22
4.2.2 Changes to Refiner . 24

4.3 Case Study . 25
4.3.1 Explicit Abstraction . 26
4.3.2 Predicate Abstraction . 27
4.3.3 Comparison to CEGAR . 27

5 Evaluation 29
5.1 Benchmark Setup . 29
5.2 Benchmark Results . 30

5.2.1 Basic Programs . 31
5.2.2 Recursive Programs . 31
5.2.3 Threats to Validity . 31

6 Conclusion 33
6.1 Future Work . 34

Bibliography 35

Kivonat

A technológiavezérelt világunkban egyre több feladat van automatizálva szoftver által.
Szoftvert használunk üzenetek küldéséhez és fizetéshez, de manapság rábízzuk nukleáris
erőművek működtetését és autók vezetését is. Az ilyen biztonságkritikus rendszerekben a
szoftverbe vetett bizalom nem elegendő, mert egy fellépő hiba hatalmas gazdasági veszte-
séggel, környezeti károkkal vagy akár életvesztéssel is járhat. A biztonságkritikus rendsze-
rek szoftverének helyességét tehát biztosítani kell. Bár a hagyományos tesztelési technikák
tudnak példát mutatni a rendszer helytelen viselkedésére, a hibák hiányát nem tudják ga-
rantálni. A formális verifikáció ezzel szemben matematikai bizonyítást vagy cáfolatot tud
adni a rendszer biztonsági tulajdonságairól.

A formális verifikációnak megvannak a saját kihívásai. Ahhoz, hogy egy program
helyes legyen, az elérhető állapotai, azaz az a változók lehetséges értékei az elérhető vezér-
lési helyeken nem sérthetik meg a biztonsági kritériumot. A program állapoterének mérete
azonban exponenciálisan nő a programváltozók számának függvényében, ami gyakorlatban
lehetetlenné teszi az összes állapot ellenőrzését. Az állapotteret tovább növelik a szoftver
minden területén megjelenő procedurák. Ezek struktúrálják és újrahasznosíthatóvá teszik
a szoftvert, azonban megnehezítik a szoftver interprocedurális analízisét a végrehajtás fo-
lyamának megzavarásával és új változópéldányok generálásával a meghívási helyeiknél.
Ezen felül a program állapotát a hívási veremmel egészítik ki, amely végtelen mély lehet
rekurzív programok esetén, így egy végtelen nagy állapotteret eredményezve.

A hatalmas állapotterek problémáját tipikusan redukciós eljárásokkal kezelik formális
szoftververifikációban. Az absztrakciós technikák az állapottér elemeit valamilyen informá-
ció elhagyásával csoportosítják absztrakt állapotokba, így egy redukált absztrakt állapot-
teret állítva elő. Hagyományosan az absztrakciót a változók értékeire alkalmazzák. A dolgo-
zatomban az absztrakció kiterjesztését mutatom be hívási vermekre egy absztrakció-alapú
modellellenőrző algoritmusban, az ellenpélda-alapú absztrakciófinomításban (CEGAR). A
hívási verem részeinek elabsztrahálásával különböző hívási veremmel rendelkező, hasonló
állapotok tovább csoportosíthatók, így csökkentve az absztrakt állapottér mértetét. Ez ja-
vítja a szoftverek interprocedurális verifikációjának hatékonyságát, különösképp rekurzív
progamok esetén, ahol a hívási verem nagyobb mértékben járul hozzá az állapottér növeke-
déséhez. A bemutatott ötlet egy prototípusát a Theta modellellenőrző keretrendszerben
implementálom, hatékonyságát pedig egy esettanulmányon értékelem ki.

A Kulturális és Innovációs Minisztérium ÚNKP-23-2-I-BME-83 kódszámú Új Nemzeti Kiválóság Prog-
ramjának a Nemzeti Kutatási, Fejlesztési és Innovációs Alapból finanszírozott szakmai támogatásával ké-
szült.

i

Abstract

In our technology-driven world, an increasing amount of tasks are automated using soft-
ware. We use it to deliver messages and execute payments, but nowadays we also trust
it to operate nuclear power plants and drive cars. In such safety-critical systems, trust
alone is not sufficient, because failure can lead to significant financial loss, environmental
damage or even the loss of life. Thus, the correctness of software in safety-critical systems
needs to be ensured. While conventional testing can provide examples of the incorrect
behavior of a system, it does not guarantee the absence of errors. Formal verification, on
the other hand, can give a mathematical proof of correctness or a refutation to the safety
properties of a system.
Formal verification of software comes with its own set of challenges. For a program to be
correct, its reachable states, that is, the possible values of variables at reachable locations
must not violate the safety property in question. The size of a program’s state-space,
however, grows exponentially with the number of variables in the program, making check-
ing every state practically infeasible. The state-space is further blown up by procedures,
a widespread concept in all fields of software. Procedures provide structure and allow
the reuse of existing software, but they make their interprocedural analysis more difficult
by disrupting the sequential flow of execution and generating new variable instances at
each of their calls. On top of that, they extend the state of the program with the call
stack, which can stretch infinitely deep in recursive programs, and as a result, lead to an
infinitely large state-space.
The problem of large state-spaces in formal software verification is typically handled using
some kind of reduction technique. Abstraction-based methods reduce the state-space into
an abstract state-space, grouping states together by removing some information from a
state of the program. Traditionally, abstraction is only applied to the values of variables. In
this work, I propose the extension of abstraction to the call stack in the abstraction-based
model checking algorithm, Counterexample-Guided Abstraction Refinement (CEGAR).
With parts of the call stack abstracted away, similarities between states with different
stacks can be detected and the size of the abstract state-space can further be reduced.
This improves the efficiency of interprocedural software verification, especially in the case
of recursive programs, where the call stack has a greater effect on the size of the state-
space. I implement a prototype of the proposed idea in the model checking framework
Theta, and evaluate its performance on a case study.

Supported by the ÚNKP-23-2-I-BME-83 New National Excellence Program of the Ministry for Culture
and Innovation from the source of the National Research, Development and Innovation Fund.

ii

Chapter 1

Introduction

As our lives are becoming more and more intertwined with technology, the range of tasks
taken over by software keeps broadening. Not only does it keep us connected or provide
entertainment, these days software is also used for flying planes or operating nuclear power
plants. While the failure of software may not matter much when playing a video game, it
can lead to catastrophic events if it happens mid-flight on a passenger aircraft. Systems, in
which the cost of failure is significant financial loss, environmental damage or the loss of life
are called safety-critical. It goes without saying, that ensuring the correctness of software
in such systems is imperative. Conventional testing methods are capable of proving the
presence of errors by showing an example of the incorrect behavior. On the contrary, the
success of tests does not guarantee the absence of errors, since it is infeasible for them to
cover all behaviors of the software. Therefore, in safety-critical systems, testing alone is
not sufficient and other techniques need to be employed. One such technique is formal
verification.
The goal of formal verification is to either provide a mathematically precise proof for a
software’s correctness, or generate a refutation to it. In order to do so, it employs model
checking, which explores the state-space of the program and checks whether an erroneous
state can be reached or not. The greatest challenge of formal verification stems from
the size of the state-space: to represent all possible states of a 32-bit integer, 232 states
are needed. Furthermore, the number of states grows exponentially with the number of
variables in the program, leading to more possible states in a program with eight 32-
bit integers than the number of atoms in the universe. This phenomenon is called the
state-space explosion [12], which all model checking algorithms have to deal with if they
aspire to be useful in practice. Abstraction-based model checking algorithms reduce the
state-space into an abstract state-space by grouping states together based on their control
locations and data states, that is, the values of their variables. The Gordian knot of such
algorithms is finding the right level of abstraction, so that correctness of the program can
be reasoned about.
Another challenge of formal verification emerges from procedures in programs. Procedures
are a widely used concept in all fields of software. They provide structure and allow the
reuse of existing software. On the other hand, they disrupt the sequential flow of execution
and generate new variable instances at each of their calls, which makes their interprocedural
verification more challenging. Moreover, they extend the state of a program with a call
stack, making it possible for the same control locations and data states to appear multiple
times in the state-space with different call stacks. Along with the fact that they allow
recursion, procedures enable the state-space to grow infinitely large, because the call stack
can stretch infinitely deep in recursive programs.

1

In this work, I propose an approach to improve the efficiency of abstraction-based inter-
procedural verification of programs. My novel approach reduces the size of the state-space
of a procedural program by applying abstraction to call stacks, similarly to how abstrac-
tion is traditionally applied to the control locations and data states of the program. The
idea is presented as a modification of the Counterexample-Guided Abstraction Refinement
(CEGAR) algorithm. Not only does the proposition improve the performance of verifi-
cation on procedural programs, it also empowers the CEGAR algorithm to verify some
infinitely recursive programs, which it is not able to do by default. A prototype of the
proposed approach was implemented in the open-source model checking framework Theta
[17] and was evaluated on benchmarks from SV-COMP [2], the international competition
for software verification.
The report is structured as follows: in Chapter 2, the preliminary concepts and definitions
are introduced, which the rest of the work builds upon. In Chapter 3, various approaches
to interprocedural verification are described. In Chapter 4, my main contribution is pre-
sented: a way of applying abstraction to location stacks, as a means of improving the
efficiency of interprocedural verification. In Chapter 5, a prototype implementation of the
presented idea is evaluated. Finally, in Chapter 6, my work is summarized and conclusions
are drawn.

2

Chapter 2

Background1

To understand the presented work, some background knowledge is required about software
verification. This chapter presents the necessary concepts and definitions, as well as their
interpretation in the context of the presented work.
The goal of software verification is to mathematically prove certain properties of a pro-
gram. One such property is the safety of a program, that is whether or not an erroneous
location can be reached in the program. A program is unsafe if such a location can be
reached from the initial location of the program using a finite number of transitions; oth-
erwise, it is safe. To prove these properties model checking is often employed, during
which the reachable states of the program are explored, and their erroneousness is de-
cided. Due to the large state-space of programs, state reduction techniques are usually
employed. A model checking algorithm using abstraction is described later in the section.
But first, a formal representation of programs is introduced, which is often used in software
verification.

2.1 Control Flow Automata

Software can take many shapes and forms, most notably, it can be represented as source
code. While it is convenient for software development due to its readability, its usage in
model checking can be complicated due to its complex syntax and semantics. For that
purpose, a formal representation of the software is used, which allows for easier verification
of basic properties, such as error reachability. A formal representation that is often used
to model programs is the Control Flow Automaton [3].
A Control Flow Automaton represents a program as a directed graph, as described in the
following.

Definition 1 (Control Flow Automata). A control flow automaton is a tuple CFA =
(V, L, l0, E), where:

• V : A set of variables, where each v ∈ V can have values from its domain Dv.

• L: A set of locations, where each location can be interpreted as a possible value of
the program counter.

• l0 ∈ L: The initial location, that is active at the start of the program.
1Some parts of this chapter are taken from my previous work [23].

3

• E ⊆ L×Ops×L: A set of transitions, where a transition is a directed edge going from
one location in L to another, with a label op ∈ Ops, where Ops is a set of operations
that can be executed as the program advances from one location to another. An
op ∈ Ops can be one of the following:

– v = expr: An assignment of a variable, where the value of v ∈ V becomes the
evaluation of the right-hand side expr.

– havoc v: A non-deterministic assignment of a variable, after which the value of
v ∈ V can be in anything from its domain Dv.

– [cond]: A guard operation, where cond is an expression that evaluates to a
boolean value. The transition can only be executed if the cond in the guard
evaluates to true. �

In formal verification, it is also useful to distinguish error locations, which are locations
where the program would behave in an undesirable way, as well as final locations, which
have no outgoing transitions, that is, transitions that are directed away from them.

Definition 2 (Concrete State). A concrete state of a CFA = (V, L, l0, E) can be de-
scribed as s = (l, d1, d2, . . . , dn), where:

• l ∈ L is the current location of the program,

• d1, d2, . . . , dn ∈ Dv1 ×Dv2 × · · ·×Dvn is the concrete data state, where d1, d2, . . . , dn

are the values of all variables, that is, ∀vi ∈ V : vi = di.

The set of concrete states of the program is denoted by ŜL = L × Ŝ, where Ŝ = Dv1 ×
Dv2 × · · · ×Dvn is the set of concrete data states. �

The state of the CFA in its initial location is its initial state. The uninitialized values
of variables at the beginning of the program depend on the programming language. In a
language where uninitialized variables have the value of whatever memory garbage is at
their assigned location in the memory, the values of variables would be non-deterministic.
Therefore, the CFA of programs written in such languages may have many initial states.
Other languages (such as Java) assign a default value to uninitialized variables, resulting
in a single initial state of the CFA.
All possible states of the CFA make up the state-space of the program. An execution of
a program on the CFA can be represented as (s1, op1, s2, . . . , opn−1, sn), an alternating
sequence of locations and operations. The operations an execution’s alternating sequence
can then be interpreted as transitions in the state-space of the program.

Example 1. Consider the following C program:

int a;
int b = a % 10;
while (a > 100) {

b = a % b;
a = a − 1;

}
assert (b < 10);

It can be represented by the CFA in Figure 2.1.

Note how the uninitialized variable a is havoced on the edge going from the initial location.

4

Figure 2.1: CFA of example C program.

2.2 Abstraction

The size of the state-space of a program presents the greatest challenge in software verifi-
cation: just to represent all possible states with a single 32-bit integer variable 232 states
are needed, moreover, it grows exponentially with the number of variables present in the
program. It goes without saying that checking the reachability of all states would be
unfeasible, leaving the need for some kind of reduction technique on the state-space. One
such technique is abstraction.

Definition 3 (Abstract Domain). An abstract domain is a tuple D = (S,⊑, concr),
where:

• S is a lattice of abstract data states,

• ⊑⊆ S × S is a partial order conforming to the lattice,

• concr : S → 2Ŝ is a function, mapping an abstract data state to its set of concrete
data states.

The abstract domain is overapproximating, that is, the partial ⊑ and the concr function
satisfy the following: S1 ⊑ S2 ⇔ concr(S1) ⊆ concr(S2), i.e., S1 overapproximates S2. �

The precision π ∈ Π defines the level of abstraction. The transfer function T : S ×Ops×
Π → 2S calculates the successors of an abstract data state with respect to the operation
Ops and a target precision.
In software verification, two widely used abstract domains are explicit-value abstraction
[4] and predicate abstraction [1].
Explicit-value abstraction defines an abstract data state S ∈ S by variable assignments,
mapping variables to ⊤,⊥ or a value from their domain. ⊤ is the top element of the lattice
and denotes an unknown value, while ⊥, the bottom element of the lattice represents that

5

no assignment to the variable is possible. Referring to the value of a variable v stored
in an abstract data state S as S(v), this can be expressed as S(v) ∈ Dv ∪ {⊤,⊥}. The
partial order for abstract data states S1, S2 ∈ S is defined as S1 ⊑ S2, if for all variables
v in S2: S1(v) = S2(v) or S1(v) = ⊥ or S2(v) = ⊤. The function concr for an abstract
data state S is concr(S) = Ŝ if ∀v : S(v) = ⊤, concr(S) = ∅ if ∃v : S(v) = ⊥, otherwise
it is concr(S) = {s ∈ Ŝ | ∀v : v = S(v)}. A precision π is a subset of the variables that
are being tracked.
In predicate abstraction, an abstract data state S ∈ S is the combination of first order
logic predicates on the variables, e.g. v1 > 7 ∧ v2 < 0. The top and bottom elements are
⊤ = true ⊥ = false, respectively. The partial order corresponds to implication, that is,
∀S1, S2 ∈ S : S1 ⊑ S2 if S1 ⇒ S2. The function concr maps the abstract data state S
to all concrete states, where the predicates of S evaluate to true. The predicates being
tracked are given by the precision π.
Similarly to how an abstract data state represents a set of concrete data states of a CFA,
the abstract states of a CFA can be defined by extending data states with locations.

Definition 4 (Abstract State). Given an abstract domain D = (S,⊑, concr), an ab-
stract state of a CFA = (V, L, l0, E) is a tuple SL = (l, S), where:

• l ∈ L is the current location of the program,

• S ∈ S is an abstract data state, describing the data state of the program.

The set of the abstract states of a CFA SL forms a lattice as well, where the partial order
⊑L for the abstract states (l1, S1), (l2, S2) ∈ SL is defined as (l1, S1) ⊑L (l2, S2) if l1 = l2
and S1 ⊑ S2.
The function conr : SL → 2ŜL for an abstract state (l, S) ∈ SL is defined as conr((l, S)) =
{(l, s) ∈ ŜL | s ∈ concr(S)}. �

The transfer function TL : SL × Π → 2SL in a CFA = (V, L, l0, E) for an abstract state
(l, S) ∈ SL is defined as TL((l, S), π) = {(l′, S′) ∈ SL | (l, op, l′) ∈ E, S′ ∈ T (S, op, π)},
that is, the successors of an abstract state (l, S) are abstract states (l′, S′) for which there
is an edge (l, op, l′) in the CFA and the abstract data state S′ is a successor of S with
respect to the transfer function T and precision π.
The set of abstract states SL of a CFA form the abstract state-space of a program, which
can be represented by an Abstract Reachability Graph [5].

Definition 5 (Abstract Reachability Graph). An abstract reachability graph is a
graph-like representation of the abstract state-space SL of a CFA = (V, L, l0, ECF A).
It is defined by the tuple ARG = (N, E, C), where:

• N ⊆ SL is the set of nodes, each corresponding to an abstract state.

• E ⊆ N×Ops×N is the set of directed edges between nodes, labeled with operations
of the CFA. An edge ((l1, S1), op, (l2, S2)) ∈ E is present if (l1, op, l2) ∈ ECF A and
(l2, S2) is a successor of (l1, S1) with op.

• C ∈ N ×N is the set of covered-by edges. A covered-by edge edge for the abstract
states S1, S2 ∈ N is present, i.e., (S1, S2) ∈ C, if S1 ⊑L S2. In this case, S1 is covered
by S2 or in other words, S2 covers S1. �

6

The edges between abstract states can be interpreted as transitions in the abstract state-
space of the program. An abstract path is a directed path in the ARG, i.e., an alternating
sequence ((l1, S1), op1, (l2, S2), op2, . . . , opn−1, (ln, Sn)) of abstract states an operations. An
abstract path is feasible, if there is a concrete path ((l1, s1), op1, (l2, s2), . . . , opn−1, (ln, sn)
where ∀i ∈ [1, n] : si ∈ concr(Si). In practice, feasibility can be decided by converting the
abstract states to logic formulae and querying an SMT solver (such as Z3 [13]) with the
formula S1∧op1∧S2∧· · ·∧opn−1∧Sn. Moreover, a satisfying assignment to the variables
in this formula can be converted to a concrete path in the CFA.
A node SL = (l, S) ∈ N of an ARG = (N, E, C) is called

• expanded, if ∀S′
L ∈ TL(SL) : ∃(SL, op, S′

L) ∈ E for some operation op, i.e., all of its
successors according to the transfer function are in the ARG,

• covered, if ∃(SL, S′
L) ∈ C for some S′

L ∈ N , meaning SL has an outgoing covered-by
edge,

• unsafe, if l = lE is an error location of the CFA,

• incomplete otherwise.

An ARG is unsafe if there is an unsafe node in it and complete if none of its nodes are
incomplete.

Example 2. Consider the CFA in Example 1. An ARG of this CFA can be seen in
Figure 2.2, using predicate abstraction with the precision π = {a ≥ 100, a > 100, b < 10}.
Starting from the abstract state of the initial location l0 of the CFA, the first edge does not
provide any information about the data state of the program. The second transition using
the edge (l1, b = a%10, l2), however, does provide information about the value of b, which
is stored in the abstract state: it is less than 10. From here, there are two possible edges
guarded by the value of a. These are both possible, since there’s no information currently
available about the value of a, therefore the ARG will branch in two directions.

The one going towards l5 reaches the final location next, since the b < 10 information still
holds. Since the aren’t any outgoing edges from the final location, the corresponding node
of the ARG is expanded without any outgoing edges.

The other branch going towards l3 follows one iteration of the loop in the program. Let
S1 = (l2, b < 10) denote the branching node and S2 = (l2, a ≥ 100∧ b < 10) the other node
with location l2. The transfer function TL describes an edge going from S1 to the abstract
state (l3, a ≥ 100∧a > 100∧b < 10), because the guard on the edge (l2, [a > 100], l3) of the
CFA guarantees that the predicates (a > 100), (a ≥ 100) ∈ π are satisfied in all concrete
states of the program in l3. The predicates stay true along the next transition, since the
CFA edge (l3, b = a%10, l4) has no effect on the value of a. However, during the next
transition, the operation a = a − 1 can make the predicate a > 100 false. On the other
hand, a ≥ 100 still holds, as a result of a > 100 being true in the previous abstract state
and the value of a only decreasing by 1. Thus, the transfer function TL specifies an edge
going to S2.

In S2, a covering relation can be found between the two abstract states in l2. Their locations
are the same and the abstract data state of the latter implies the abstract data state of the
former: (a ≥ 100 ∧ b < 10) =⇒ (b < 10), which in the case of predicate abstraction
means S2 ⊑L S1. Therefore, there is a covered-by edge going from S2 to S1.

7

Figure 2.2: Fully expanded ARG of Example 1.

The node corresponding to S2 is covered, all other nodes of the ARG are expanded and
none of the nodes are unsafe because none are in the error location lErr. Consequently,
the ARG is complete and not unsafe, alias safe.

2.3 Counterexample-Guided Abstraction Refinement

Counterexample-Guided Abstraction Refinement (CEGAR) [11] is an abstraction-based
model checking algorithm. It takes the formal representation of a program (such as a
CFA) with distinguished error locations and decides whether or not the program is safe,
that is, if the error locations are reachable from the initial location of the program. It
does this by either exploring all reachable abstract states of the program and deeming
them non-erroneous or by providing a counterexample to the program’s safety, which is a
concrete execution of the program in which an error-state is reached.
The core of the algorithm is the CEGAR-loop on Figure 2.3, made up of two main parts:
the abstractor and the refiner. The abstractor builds the ARG using the covering relation,
a transfer function and a precision on abstract states, as introduced in Section 2.2. An
abstract error-state is an overapproximation of the possible error-states, consequently, if
no abstract error-state is reachable, then no concrete error-state is reachable, meaning the
program is safe.
On the other hand, if an abstract error-state is reachable, the abstractor produces an
abstract counterexample, that is, an abstract path starting at the initial abstract state and

8

Initial precision

Abstractor RefinerARG

Safe Unsafe

Abstract counterexample

Refined precision

Expand Prune

Figure 2.3: The CEGAR loop

ending in an abstract error-state. This is where the refiner comes in: it decides whether
or not a concrete error state is reachable in the abstract error-state. If it can be reached,
then the program is unsafe, and the path from the initial location of the CFA to a concrete
error state is presented as a counterexample.
However, if a concrete error-state is not reachable, then the reachability of the abstract
error-state is a result of the overapproximation of abstraction. Thus, the abstraction needs
to be refined so that the abstract error-state does not contain the unreachable concrete
error-state. This results in a refined precision, which is passed back to the abstractor after
all unreachable abstract states are removed (pruned) from the abstract state-space.
The CEGAR loop is repeated until it either finds a concrete counterexample to the safety
of the program or proves that no abstract error-state is reachable, that is, all nodes in the
ARG are either expanded or covered. In the first case, the program is unsafe, while in the
latter, it is safe. A pseudo-code of the CEGAR loop [16] is presented in Algorithm 2.1.

Algorithm 2.1: CEGAR loop
Input:

CFA = (V, L, l0, E): program
D = (S,⊑, concr): abstract domain
π0: initial precision
T : transfer function

Output: safe or unsafe
1 ARG← ((l0,⊤),∅,∅)
2 π ← π0
3 while true do
4 result, ARG← Abstraction(ARG, D, π, T)
5 if result = safe then
6 return safe
7 else
8 result, π, ARG← Refinement(ARG, π)
9 if result = unsafe then

10 return unsafe
11 end
12 end
13 end

The abstractor and its Abstraction procedure is presented in Section 2.3.1, while the
refiner and the Refinement procedure are described in Section 2.3.2.

9

2.3.1 Abstractor

Using the concepts defined in Section 2.2, the abstractor’s operation in the CEGAR loop is
presented in Algorithm 2.2. The abstractor explores the abstract state-space by building
the ARG, using the covered-by relation, the transfer function with some precision. If it
builds the ARG to completion without encountering an erroneous abstract state, the pro-
gram is deemed safe because abstract state-space is an overapproximation of the concrete
state-space, meaning if a concrete error state was reachable in the concrete state-space, it
would be reachable in the abstract state-space as well. On the other hand, if it reaches
an erroneous state during exploration then it returns an abstract counterexample to the
program’s safety, that is, an abstract path going from the initial abstract state to an
erroneous one in the ARG.

Algorithm 2.2: Abstraction procedure
Input:

ARG = (N, E, C): partially constructed abstract reachability graph
D = (S,⊑, concr): abstract domain
π: current precision
TL: transfer function

Output: (safe or unsafe, ARG)
1 waitlist← {S ∈ N | S is incomplete}
2 while waitlist ̸= ∅ do
3 (l, S)← pop waitlist
4 if l = lE then
5 return (unsafe, ARG)
6 else if ∃(l′, S′) ∈ N : (l, S) ⊑L (l′, S′) then
7 C ← C ∪ {((l, S), (l′, S′))}
8 else
9 foreach (l′, S′) ∈ TL((l, S), π) \ {⊥} do

10 waitlist← waitlist ∪ {(l′, S′)}
11 N ← N ∪ {(l′, S′)}
12 E ← E ∪ {((l, S), op, (l′, S′))}
13 end
14 end
15 end
16 return (safe, ARG)

The algorithm manages a waitlist of incomplete nodes that gets filled up as new abstract
states are discovered. The while loop iterates through each abstract state (l, S) in the
waitlist by popping the first element of it. Since the first element is taken in each iteration,
the ordering of the waitlist can be used to define a search strategy in the abstract state-
space (e.g. BFS). The abstractor does one of the following 3 operations on the popped
abstract state:

• If the abstract state is in an erroneous location, then an abstract counterexample
to the CFA’s safety has been found. Therefore, the abstractor returns the verdict
unsafe along with the partially built ARG.

• If the abstract state is not erroneous, but it is covered by another abstract state
(l′, S′), then a covered-by edge is created in the ARG. In this case, the node does not

10

need to be expanded, since S′ overapproximates S, meaning that for every abstract
path starting at (l, S) there is a corresponding one starting at (l′, S′) = (l, S′).
Therefore, the expansion of (q, S) would be redundant, so it is not expanded.

• If the abstract state is neither erroneous or covered, then it is expanded, i.e., its
successors are calculated using TL and are added to the ARG.

If there are no more abstract states in the waitlist, it means that no erroneous abstract
state was found - otherwise the procedure would have terminated already -, and that all
nodes are either expanded or covered by another node. Therefore, the ARG is complete
and safe by definition. Since the built ARG is an overapproximation of the concrete state
space of the program, a concrete path to an erroneous location would have to appear in
the ARG as an abstract counterexample; but none were found, thus, the program is safe.

2.3.2 Refiner

Using the concepts defined in Section 2.2, the refiner’s operation in the CEGAR loop
is presented in Algorithm 2.3. The task of the refiner is twofold: for one, it needs to
decide whether an abstract counterexample to the program’s safety is feasible or not.
Additionally, if the abstract counterexample was found to be infeasible, it needs to refine
the precision π so that the counterexample becomes unattainable in the abstract state
space as well.

Algorithm 2.3: Refinement procedure
Input:

ARG = (N, E, C): partially constructed abstract reachability graph
π: current precision

Output: (spurious or unsafe, π′, ARG)
1 σ = ((l1, S1), op1, . . . , opn−1, (ln, Sn))← abstract path to unsafe node in ARG
2 if σ is feasible then
3 return (unsafe, π, ARG)
4 else
5 (I1, . . . , In)← interpolant for σ
6 (π1, . . . , πn)← (I1, . . . , In) converted to precisions
7 π′ ← π ∪

⋃
1≤i≤n πi

8 i← lowest i for which Ii /∈ {true, false}
9 end

10 Ni ← all nodes in the subtree rooted at (li, Si)
11 N ← N \Ni

12 E ← {(n1, op, n2) ∈ E | n1, n2 /∈ Ni}
13 C ← {(n1, n2) ∈ C | n1, n2 /∈ Ni}
14 return (spurious, π′, ARG)

The algorithm starts off by finding an abstract counterexample in the ARG, that is, an
abstract path σ = ((l1, S1), op1, (l2, S2), . . . , opn−1, (ln, Sn)) that starts off at the initial
abstract state and ends in an erroneous one. This can be done by using any kind of search
algorithm (e.g. BFS) from the initial node of the ARG.
Next, the feasibility of σ is decided, that is, whether there is a concrete path in the CFA
((l1, s1), op1, (l2, s2), . . . , opn−1, (ln, sn) for which ∀i ∈ [1, n] : si ∈ concr(Si). A widely

11

used way of deciding this is converting the abstract states to logic formulae and querying
an SMT solver with the formula S1 ∧ op1 ∧ S2 ∧ · · · ∧ opn−1 ∧ Sn:

• If the formula is satisfiable, then the counterexample is feasible and the verdict
unsafe is returned.

• If the formula is unsatisfiable, then the counterexample is infeasible. In this case,
the verdict is spurious, a refined precision π′ is calculated and the ARG is pruned
of its unreachable abstract states.

The new precision π′ is calculated using an inductive sequence of assertions, which can
be calculated via sequence interpolants [25] or Newton refinement [14]. For example,
the elements of a sequence interpolant (I1, . . . , In) correspond to the abstract states of
the counterexample. The structure of the interpolant for some k ∈ (1, n) is as follows:
Ii = true if i < k, Ii = Ik if i = k and Ii = false if i > k. The sequence interpolant
(I1, . . . , In) is converted to precisions (π1, . . . , πn) according to the abstract domain (e.g.
πi = Ii for predicate abstraction), then the new precision π′ is created as the union of the
created precisions.
Finally, the ARG pruned back using lazy abstraction [24], i.e., the descendants of the
earliest abstract state (li, Si) where the precision changed are removed. Since the sequence
interpolants resemble the abstract states, the index i of the earliest abstract state can be
found by looking for the first sequence interpolant that is not true or false. With the index
in hand, all descendants of (li, Si) are removed from the ARG, along with all transitions
and covered-by edges related to them.
The motivation behind pruning lazily is to keep as much of the unaffected part of the
ARG as possible, so that the abstractor can reuse it in the next iteration of the CEGAR
loop. Note, that during the pruning process, the remaining nodes may become incomplete
due to the removal of transitions and covered-by edges.

2.4 Procedures

Procedures are a well-known concept in software that allow modularity, more structured
software, as well as the reuse of already written software. However, their semantics and
usage can differ between languages and different domains, hence the following definition
is introduced.

Definition 6 (Procedure). A procedure is an encapsulated part of software represented
by the tuple P = (B, I, O), where:

• B = (V, L, l0, E): The encapsulated program body, represented as a CFA.

• I ⊆ V : A set of variables called input parameters, Unlike all other variables, they
have a value assigned to them in the initial state of B.

• O ⊆ V : A set of variables called output parameters. Unlike all other variables, values
assigned to them are preserved after the final state of B is reached. �

Some programming languages support inout parameters, where a variable is passed into
the procedure by reference (or by a pointer), making all local modifications to a parameter

12

apply to the outer variable as well. These variables can be replaced by an input and an
output parameter, therefore I chose not to distinguish them for the sake of simplicity.
Another commonly used feature in procedural programming languages are global variables
that exist independently from procedures: they have a value at the start of the program
and can be modified from any procedure. As with inout parameters, a global variable g can
also be replaced with an input ig and an output og parameter, where the ig takes up the
value of the global variable before the procedure is executed, while the og is assigned the
value of ig at the final location of the procedure. Since og keeps its value after the execution
of the procedure, it can be used to update the value of g as if the procedure operated on it.
Therefore, without loss of generality, only programs without global variables are considered
in this work.
The utility of procedures comes with the introduction of procedure calls.
Definition 7 (Procedure call). A procedure call is an operation in programs which
initiates the execution of the body of a procedure. It can be represented by the tuple
C = (P, A, R), where:

• P = (B, I, O): The procedure being called, the CFA B = (V, L, l0, E) of which is to
be executed.

• A = {a1, a2, . . . , a|I|}: Arguments are a set of expressions that are assigned to the
input parameters I of the procedure, that is, ∀i ∈ [1, |I|], vi ∈ I, ai ∈ A : vi = ai ∈
Dvi .

• R = {r1, r2, . . . , r|O|}: Return variables are a set of variables, to which the output
parameters O of the procedure will be assigned to, that is ∀i ∈ [1, |O|], vi ∈ O, ri ∈
R : ri = vi ∈ Dri .

A procedure call consists of 3 steps:

1. The evaluations of the expressions in A are assigned to I, the input parameters of
P .

2. Execution carries on from the initial location l0 in B, the CFA representing the body
of the procedure, until a final location is reached.

3. The output parameters O of P are assigned to the variables in R, after which exe-
cution continues from the location after the procedure call. �

It is important to note that calling a procedure essentially creates a new instance of it,
meaning that if a procedure was called multiple times at the same time, the different
executions of the body would not operate on the same set of variables.
As procedure calls are introduced to software verification, complications arise. One is the
aforementioned handling of different variable instances, but problems emerge with abstract
states and their covering relation as well. Handling the modified control flow with location
stacks is described in Section 4.1, as it is closely connected to the main topic of this work.
In the following, solutions for the intricacies of data flow are introduced.

2.4.1 Variable Instances

A desired property of procedures is their template-like behaviour, that is, new instances
of their variables are created with every procedure call. One approach would be to copy
the local variables uniquely with every procedure call.

13

However, the variables cannot be replaced on the CFA’s transitions because there is only
one CFA per procedure. Therefore an instance mapping is required, which associates a
local variable with its uniquely copied version (instance). Note the use of local variables:
global variables and output parameters do not need to be instantiated because, in the first
case, there is just the single instance of them; in the second case their value can only be
used in the next assignment anyway, so there is no point in managing separate versions
of them. Using the mapping, local variables can be replaced by their mapped instances
during verification when expressions are evaluated.
By default, instance mappings need to be created every time a procedure is called. How-
ever, due to the nature of CEGAR, previously instantiated versions of variables need to be
accessible sometimes. This can happen, when the refiner creates a refined precision, and
a new iteration of expansion starts. The refined precision contains information about pre-
viously created instances of variables that are used in comparison with the same variable
versions’ evaluations in the new iteration. One solution is to store the instance mappings
associated with location stacks. This way, instances can be reused in procedures called
from the same location stack, and the refined precision can be utilized.
To summarize, when a procedure is encountered during verification, the association of
location stacks and instance mappings is checked. If an instance mapping exists for the
location stack of the current state, then that mapping is used; if not, a new one is created
with unique copies of the called procedure’s local variables. This way, it is ensured that
variables on a CFA transition can be replaced with their correct instances at any point
during verification with CEGAR.

2.4.2 Parameter Assignments

The last defined property of procedures that remains unaccounted for is parameters and
their assignments. To address this, additional transitions can be created in the CFAs,
with the assignments of parameters on them. Caution needs to be taken around which
CFA to add these transitions to, and which version of variables to use.
Let P1 = (B1, I1, O1) be the outer procedure, P2 = (B2, I2, O2) be the called procedures
and let C = (P2, A, R) be a procedure call on a transition between locations li and lj in
B1.
The output parameters of P2 will be used by variables in P1, for this reason they need to
be assigned in B1 after the procedure call. This can be done by the following:

1. A new location lk is created.

2. The transition with the procedure call is moved so that it goes from li to lk.

3. A new transition is created from lk to lj , with the assignments output parameters
∀i ∈ [1, |O2|], ri ∈ R, vi ∈ O2 : ri = vi as an operation.

Since output parameters do not have versions (because their value is only used right after
the procedure call), no further effort is needed to have their correct versions present in the
outer procedure.
The input expressions are used by variables in P2, therefore it makes sense to assign them
in B2, before the initial location. Unlike output parameters, input parameters do have
versions, therefore additional care needs to be taken with their assignments. For each
procedure call C = (P2, A, R) of P2, the following needs to be done ∀A arguments:

14

1. Each variable of the CFA B1 used in the input expressions ai ∈ A,∀i ∈ [1, |A|] is
replaced with a prime version of itself (e.g. v → v′).

2. A new initial parameter location lA is created.

3. A new transition is created from lA to the initial location in P2, with the assignments
of input parameters ∀i ∈ [1, |I2|], vi ∈ I2, ai ∈ A : vi = ai as an operation, using the
modified input expressions.

A mapping of the procedure calls associated with their freshly created lA can be used
during verification, to push the correct lA on top of the location stack whenever a procedure
call is encountered. During such an encounter, the marked versions of variables mapped to
the instances of their original counterparts in P1 also need to be passed onto the instance
map of P2, to allow the assignment of the outer procedure’s local variables.

15

Chapter 3

Related Work

Procedures make the analysis of programs more difficult by disrupting both the control
and data flow of the program. This chapter covers various approaches to interprocedu-
ral analysis of procedural programs. First, inlining is discussed, then its extension with
summaries is described. At last, contracts are introduced.

3.1 Inlining

Inlining handles the procedures of procedural programs by eliminating all procedures from
them. The elimination is done by replacing every procedure call with the called procedure’s
body, along with the input and output parameter assignments.
An advantage of inlining is that it is straightforward way of handling procedures correctly.
A downside of it is that it produces huge programs. The pitfall of inlining, however, is that
it does not work on recursive, or even transitively recursive programs, i.e., programs where
the a procedure can reach a call of itself, potentially through other procedures. In such
programs, each time a (transitively) recursive procedure call is replaced by the procedure’s
body, a new call of the procedure is created. Therefore, the number of procedure calls
never reaches 0, so inlining does not terminate. Bounded inlining [9] handles this by
setting a bound on the depth of inlining.
Bounded inlining inlines all procedure calls up to a certain depth k and cuts off every call
that would go beyond this depth. This results in an underapproximation of the original
program. Verification starts off with a bound k = 0, i.e., no procedure calls are inlined,
they are just removed from the program. If a counterexample to the program’s safety is
found in the underapproximating program, then the counterexample exists in the original
program as well, so the program is deemed unsafe. If no counterexample is found, then the
bound is increased and another iteration is done. If all procedure calls have been inlined
and no counterexample was found, then the program is safe.
Bounded inlining methods are used by Bounded Model Checkers [7]. They are usually
combined with some other technique, such as summaries.

3.2 Summaries

A procedure summary [22] captures the effect of computations that start at the entry and
end at the exit points of a procedure. This can be done by an explicit tabulation of the

16

relation between abstract initial and final states [21], or by defining a function from input
abstract states to the output abstract states [26], for example. In the case of recursive
procedures, transformers [27] or fixpoint algorithms [20] can be employed to to generate
a summary, among others.
Procedure summaries cannot be used directly as a verification method. They are typically
utilized by verification algorithms to replace procedure calls with their summaries, in order
to reduce the number of states that need to be explored. CPARec [10] combines summaries
with intraprocedural analyzers to verify recursive programs. Stratified inlining [18] is an
extension of bounded inlining with summaries.

3.3 Contracts

A contract [19] in a software component describes requirements and guarantees that have
to be satisfied when interacting with the component. For procedures, this corresponds to
preconditions on the input parameters and postconditions on the output parameters of
the procedure. Therefore, contract can be used similarly to summaries: a procedure call
can be replaced with the procedure’s contract during verification, in order to reduce the
size of the state-space.
Contracts of procedures have to be specified by the developer. On one hand, this allows
them to capture fundamental information about the procedure without the need for sum-
mary calculation, since the developer may be able to provide insight about the program
using their expertise. On the other hand, contracts require the developer to have a strong
background in formal verification. Some verification tools employing contract-based veri-
fication are KeY [8] and TriCera [15].

17

Chapter 4

Applying Abstraction to Stacks

Procedures introduce procedure calls as a valid operation on CFA transitions, therefore,
they need to be handled during verification. This calls for changes in how the model
checking algorithm works and what information abstract states store. First, I describe the
adjustments that can be used to support procedures and procedure calls in CEGAR. Then,
I present an extension of abstraction to stacks that improves the efficiency of verification.
Finally, I show the modified algorithm on an example program.

4.1 Location Stack

With the addition of procedures, the input of the model checking algorithm is no longer
a single CFA, but several Control Flow Automata (CFAs). The bridges connecting these
CFAs are procedure calls: after a procedure call, execution carries on from the initial
location of the called procedure’s CFA. Calling is just one part of the task, though; the
continued execution from the calling location, as the final location of the procedure’s CFA
is reached, also needs to be ensured. For this purpose, a location stack can be used, similar
to the call stack that is employed in programs.

Definition 8 (Location Stack). A location stack q is a FILO data structure with push
and pop operations, which stores all locations of a procedural program’s CFAs from where
procedure calls were made to reach the current location lq. The current location lq is
always on the top of the stack, i.e., lq = top(q).
The set of all possible stacks of a program is denoted by Q. �

At the beginning, the location stack stores the location that represents the entry point of
the program. Afterwards, the stack is modified in the following three situations, when an
edge (li, op, lj) of the CFA is reached:

• By default, the top location of the stack is replaced with the target of the transition
by popping li from the stack and pushing lj onto it.

• Additionally, if the operation op of the edge is a procedure call C = (P, A, R), the
initial location of the called procedure P ’s body is pushed onto the stack.

• If the target location lj of the edge is the final location of a procedure, it is popped
from the stack and execution carries on from the location underneath. If there are
no locations left in the stack, execution stops as the program terminates.

18

With these rules, it is ensured the desired properties of procedures are kept, as well as
that the top location of the stack is always the current location.
The introduction of location stacks means that a concrete state of a CFA can no longer be
described by a location and a concrete data state, since that does not store information
about if and where execution should be continued from the final location. Instead, the
location stack is what can accurately represent a concrete state of a CFA, because it also
stores the procedure calls (and the CFAs) through which the current location was reached.

Definition 9 (Concrete State). A concrete state of a CFA = (V, L, l0, E) with proce-
dure calls can be described as a tuple (q, s), where:

• q ∈ Q is a location stack with the current location top(q) on top of it,

• s ∈ Ŝ is a concrete data state of the program.

The set of concrete states of a procedural program is denoted by ŜQ = Q× Ŝ. �

The extension of concrete states with a location stack also impacts abstract states in a
similar fashion. An abstract state of a CFA can no longer be described by a location
and an abstract data state, since that would not be sufficient for the transfer function to
calculate the successors of an abstract state in a final location. Therefore, an abstract
state also needs to be extended with a location stack.

Definition 10 (Abstract State). An abstract state of a CFA = (V, L, l0, E) with pro-
cedure calls can be described as a tuple (q, S), where:

• q is a location stack with the current location top(q) on top of it,

• S ∈ S is an abstract data state of the program.

The set of abstract states of a procedural program is denoted by SQ = Q× S. �

The function concr : SQ → 2ŜQ for an abstract state (q, S) ∈ SQ can then be defined as
concr((q, S)) = {(q, s) ∈ ŜQ | s ∈ concr(S)}.
The transfer function

TQ : SQ ×Π→ 2SQ

in a procedural program with

∀i ∈ [1, n] : CFAi = (V i, Li, li0, Ei)

for an abstract state

(q, S) ∈ SQ

is defined as

TQ((q, S), π) = {(q′, S′) ∈ SQ | ∃i ∈ [1, n] : (top(q), op, top(q′)) ∈ Ei, S′ ∈ T (S, op, π)}.

19

That is, the successors of an abstract state (q, S) are abstract states (q′, S′) for which there
is an edge (top(q), op, top(q′)) going between their stacks’ top locations, and the abstract
data state S′ is a successor of S with respect to the transfer function T and precision π.
All that remains is the partial order ⊑Q between abstract states (q1, S1), (q2, S2) ∈ SQ

with stacks, in order to make SQ a lattice. Carrying over the idea from ⊑L, one could
potentially define ⊑Q as (q1, S1) ⊑Q (q2, S2) if S1 ⊑ S2 and their current locations are
equal, that is, top(q1) = top(q2).
The problem with the definition of (q1, S1) ⊑Q (q2, S2) above is that the abstract state
(q2, S2) is not necessarily an overapproximation of (q1, S1). Just because their current
location is the same, their stacks underneath could be entirely different and map to disjoint
sets of concrete states. The overapproximation was what allowed covered abstract states to
not be expanded in Algorithm 2.2. Without overapproximation, it is no longer guaranteed
that all paths of covered state are present from the covering state, which lead to an unsound
analysis.
Another way of interpreting ⊑L on the abstract states is that not only should their current
locations be equal, but everything other than their abstract data states should be identical.
While for ⊑L the current location is the only information stored in the abstract states other
than the data state, in the case of abstract states with stacks, the aforementioned condition
would mean that their whole stack should match.
The partial order ⊑Q on abstract states with stacks is defined as (q1, S1) ⊑Q (q2, S2) if
S1 ⊑ S2 and q1 = q2, i.e, their stacks are identical. As opposed to the previous potential
definition, this way of defining ⊑Q guarantees that (q2, S2) is an overapproximation of
(q1, S1), because for q = q1 = q2 : concr((q, S1)) = {(q, s1) ∈ ŜQ | s1 ∈ concr(S1)} ⊆
{(q, s2) ∈ ŜQ | s2 ∈ concr(S2)} = concr((q, S2)) holds by definition of S1 ⊑ S2. Thus, this
definition of ⊑Q can be used for covering, keeping the analysis sound.
Even though the definition of ⊑Q leads to a sound analysis by preserving the overap-
proximation property, it loses out on some of the power of abstraction: not considering
similarities between abstract data states because they have different stacks, leads to re-
dundant calculations. In the following, a way of improving the efficiency of verification is
introduced.

4.2 Stack Abstraction

Using the whole stacks for the partial order ⊑Q between abstract states leads to redundant
calculations in abstract states with the same top location and similar data states, making
verification less efficient. Defining ⊑Q with only the current top locations of the stack
would eliminate such calculations because such abstract states would be covered. However,
that definition leads to unsound analysis. In the following, a combination of these two
approaches is presented in CEGAR, in order to get a verification algorithm that is both
sound and performant.
Let ⊑A denote the partial order between abstract states with stacks, which only requires
their top locations to match as in the first attempted definition in Section 4.1: (q1, S1) ⊑A

(q2, S2) if top(q1) = top(q2) and S1 ⊑ S2. The reason why this led to an unsound analysis
was that (q2, S2) is not necessarily an overapproximation of (q1, S1). On the other hand,
the redundant calculations of using ⊑Q come from repeating the same calculations in
states that are to some extent, exactly the same.

20

The main idea behind combining these two approaches is to abstract away part of the
stack, so that the resulting two abstract states overapproximate one another. Consider an
ARG with abstract states (q1, S1), (q2, S2) ∈ SQ, where (q1, S1) ⊑A (q2, S2) but (q1, S1) ̸⊑Q

(q2, S2). This can only occur, when S1 ⊑ S2 and top(q1) = top(q2), but q1 ̸= q2. A part of
such an ARG can be seen on Figure 4.1, where the dashed line labeled with ⊑A represents
that the source node would cover the target node, if ⊑A was used for covering.

Figure 4.1: Part of an ARG with ⊑A between two abstract states.

The key observation in this situation is that from the current location l1 = top(q1) =
top(q2), the same states will be explored essentially from (q2, S2) as from (q1, S1), until
it reaches the final location of l1’s CFA. The reason for this is the same as for regular
covering: S1 overapproximates S2, therefore all paths from (l1, S2) will be present from
(l1, S1). The only difference between the explored states is the bottom of the stack, below
l1. However, this part of the stack has no effect on the control flow nor the data state
until an element of it becomes the current location again, which happens exactly when
the final location of said CFA is reached and the top location is popped.
Another perspective on this observation is that with the part of the stack below l1 ab-
stracted away, the abstract states overapproximate each other, because without the bottom
of the stack, exploration would end at the final location lF of l1’s CFA. In this sense, ⊑A

is a good partial order for covering: there is no need to explore what happens from l1 at
(q2, S2) until lF is reached, since all such paths are already present at (q1, S1). Neverthe-
less, the path after reaching lF does have to be examined due to q1 ̸= q2.
Both of the aforementioned demands can be met by popping the top location l1 of q2
and carrying on with exploration with the remainder of the stack q′

2, instead of creating a
covering edge. Popping the top location ensures that the covered part of (q2, S2), i.e., the
paths going from l1 to lF are not traversed again. Continuing from the remainder of the
stack instead of stopping with a covering edge guarantees that the not overapproximated
part of (q2, S2), that is, the bottom part (q′

2, S2) is further explored. The exact way of
this operation is described in Section 4.2.1, while the result of applying it to the ARG in
Figure 4.1 can be seen on Figure 4.2.

Figure 4.2: Part of the ARG in Figure 4.1 after popping.

One key feature of abstraction is that it is an overapproximation, i.e., for each path in the
concrete state-space of the program, a corresponding abstract path can be found in the
abstract state-space. To show that this property still holds with the introduced popping,
assume without loss of generality that the input program has no global variables and
no procedures with inout parameters (see Section 2.4 for details). The only threat to
the overapproximation property then would be if the output parameters in the popped

21

abstract data state did not match all of their possible concrete values. These parameters,
however, remain uninitialized because the final location of the CFA was never reached. An
uninitialized abstract state can correspond any value of the variable’s domain, therefore,
all concrete states are represented. Consequently, every abstract path that would start at
(q2, S2) will have corresponding paths in the ARG: the part of the path going from l1 to
lF is covered by one at (q1, S1), while the remainder of the path after l2 is covered by a
path starting at (q′

2, S2). Thus, the modified ARG will be an overapproximation of the
original ARG, and transitively the concrete state-space of the program.
The fact that the ARG remains to be an overapproximation of the CFA’s concrete state-
space implies that if the program is unsafe, the verification algorithm will not give a
wrong answer, because an abstract path corresponding to the concrete counterexample to
the program’s safety will always be present in the abstract state-space as well. Conversely,
if the program is safe, the ARG may still contain an abstract path leading to an erroneous
state due the overapproximation. It is the task of the refiner to detect such an abstract
counterexample’s infeasibility and to provide a refined precision that prevents the infeasible
step.
The proposed popping introduces a new kind of infeasibility. The top location may be
popped at any abstract state of an ARG, not just where the state’s current location is
a final one, as in Figure 4.2. If an abstract state with such stack is popped, the ARG
will have a transition that cannot happen in the concrete state space of the program:
not due to the infeasibility of some assignment in the abstract data state, but because
no operation in an inner CFA’s non-final location can lead to the outer CFA. To avoid
providing a counterexample with such impossible transitions, the feasibility check of the
refiner needs to be updated to detect the infeasible pop in abstract counterexamples, and
to provide a refined precision that can prevent it from happening in the next iteration.
The latter is achieved by introducing a stack precision πQ ⊆ Q, a set of location stacks in
which no special popping should occur. The changes of the refiner are further discussed
in Section 4.2.2.
The adjustments made to the refiner ensure the CEGAR loop will not terminate with
an infeasible counterexample, because all infeasible abstract counterexamples are refined.
Therefore, the verification algorithm will not give a wrong answer if the program is safe.
Combined with the observation for unsafe programs above, the algorithm is sound.
In the following, the exact changes made to the abstractor and the refiner are described,
then the modified algorithm is presented on an example program.

4.2.1 Changes to Abstractor

The abstractor of the CEGAR algorithm is responsible for exploring the abstract state-
space of the program by building the ARG. It iteratively explores all non-covered abstract
states until it either finds an erroneous one or all nodes are expanded. The abstractor’s
algorithm is described in Section 2.3.1.
The modifications proposed in Section 4.2 affect the abstractor in the following 3 ways:

1. The ⊑A relation also needs to be checked between abstract states.

2. If found, then the top location of the covered state’s stack needs to be popped,

3. unless the stack is in πQ, in which case it needs to be expanded.

22

The abstractor’s modified pseudo-code is presented in Algorithm 4.1, with the changes
highlighted in blue.

Algorithm 4.1: Modified Abstraction procedure
Input:

ARG = (N, E, C): partially constructed abstract reachability graph
D = (S,⊑, concr): abstract domain
(π, πQ): current precision
TQ: transfer function

Output: (safe or unsafe, ARG)
1 waitlist← {S ∈ N | S is incomplete}
2 while waitlist ̸= ∅ do
3 (q, S)← pop waitlist
4 if top(q) = lE then
5 return (unsafe, ARG)
6 else if ∃(q′, S′) ∈ N : (q, S) ⊑A (q′, S′) then
7 if (q, S) ⊑Q (q′, S′) then
8 C ← C ∪ {((q, S), (q′, S′))}
9 continue

10 else if q /∈ πQ then
11 pop q
12 waitlist← waitlist ∪ {(q, S)}
13 continue
14 end
15 end
16 foreach (q′, S′) ∈ TQ((q, S), π) \ {⊥} do
17 waitlist← waitlist ∪ {(q′, S′)}
18 N ← N ∪ {(q′, S′)}
19 E ← E ∪ {((q, S), op, (q′, S′))}
20 end
21 end
22 return (safe, ARG)

The input is slightly adjusted: the precision is changed to a tuple (π, πQ) of a precision
π and a stack precision πQ. The former specifies the level of abstraction in the abstract
domain, while the latter contains all location stacks which should not be popped, because
the refiner found their popping in an abstract counterexample.
The body of the while loop decides what to do with the abstract state (q, S). Lines
6-15 contain the algorithmic modifications, where previously the covered-by edges were
created. In line 6, an abstract state (q′, S′) is chosen, which overapproximates (q, S) with
the partial order ⊑A, corresponding to change 1. Lines 7-9 execute the previous behaviour,
meaning a covered-by edge is created if (q, S) ⊑Q (q′, S′), i.e., not only is their top location
identical, but their whole stack. Under these conditions, the covered-by edge is justified
by the definition of ⊑Q. Lines 10-13 carry out change 2 by popping the top location of q
and adding the modified abstract state back to the waitlist, so that it is only expanded
in a later iteration if it is not erroneous and covered. The lack of else branches in lines
14-15 realize change 3 by continuing onto expansion if the stack to pop q was in the stack
precision πQ. This is imperative to avoid finding the same abstract counterexample in
each iteration of the CEGAR loop, as it guarantees (in combination with the changes in

23

Section 4.2.2) that an infeasible popping of an abstract state (q, S) with q ∈ πQ will not
happen again.

4.2.2 Changes to Refiner

The refiner of the CEGAR algorithm is responsible for deciding the feasibility of an ab-
stract counterexample to the program’s safety. If the counterexample is infeasible, it also
needs to refine the precision so that the counterexample becomes unattainable in the ab-
stract state space as well. Refiners usually rely on SMT solvers for these tasks. The
refiner’s algorithm is described in Section 2.3.2.
The modifications proposed in Section 4.2 affect the refiner in the following 2 ways:

1. The abstract counterexample also needs to be checked for infeasible pops.

2. If such pop is found, then it needs to be prevented in the next iteration.

The refiner’s modified pseudo-code is presented in Algorithm 4.2, with the changes high-
lighted in blue.

Algorithm 4.2: Modified Refinement procedure
Input:

ARG = (N, E, C): partially constructed abstract reachability graph
(π, πQ): current precision

Output: (spurious or unsafe, (π, πQ), ARG)
1 σ = ((q1, S1), op1, . . . , opn−1, (qn, Sn))← abstract path to unsafe node in ARG
2 if σ is feasible then
3 if ∃j ∈ [2, n] : |qj−1| > |qj |, top(qj) was not final then
4 i← lowest such j
5 πQ ← πQ ∪ {qi}
6 else
7 return (unsafe, (π, πQ), ARG)
8 end
9 else

10 (I1, . . . , In)← interpolant for σ
11 (π1, . . . , πn)← (I1, . . . , In) converted to precisions
12 π ← π ∪

⋃
1≤i≤n πi

13 i← lowest i for which Ii /∈ {true, false}
14 end
15 Ni ← all nodes in the subtree rooted at (qi, Si)
16 N ← N \Ni

17 E ← {(n1, op, n2) ∈ E | n1, n2 /∈ Ni}
18 C ← {(n1, n2) ∈ C | n1, n2 /∈ Ni}
19 return (spurious, (π, πQ), ARG)

The input and output precisions are changed to tuples (π, πQ) of a precision π and a stack
precision πQ. The former specifies the level of abstraction in the abstract domain, while
the latter contains all location stacks which should not be popped, because they appeared
in an abstract counterexample.

24

The refiner gets an abstract counterexample from the ARG and decides whether it is
feasible or not. Lines 3-8 on the feasible branch contain the algorithmic modifications,
where previously the unsafe verdict was returned due to the σ being feasible. In line 3, the
abstract counterexample is checked for having infeasible pops, corresponding to change 1.
The condition |qj−1| > |qj | describes that qj has been popped, because it is smaller than
the stack of the previous state. With this knowledge in mind, the interpretation of the
condition top(qj) was not final is the location that was popped from qj is final, which
can be decided by storing the popped location in each ARG node, for example. Lines
4-5 enforce change 2 (alongside with the changes in Section 4.2.1), by adding the first
such qj in the abstract counterexample to the stack precision πQ. The remaining lines 6-8
execute the previous behaviour of returning an unsafe verdict, when the counterexample
is feasible with regards to popping as well.
The remainder of the algorithm is unchanged. It is worth noting, however, that lazy
abstraction is applied for the change in stack precision as well. All descendants of (qi, Si)
are removed from the graph, which is in line with what is expected from lazy abstraction:
in the next iteration of the CEGAR loop, (qi, Si) will not be popped by the abstractor
and the abstract state will have different successors.

4.3 Case Study

In this chapter, the modified verification algorithm is presented on an example C program.
The built ARGs are shown for both explicit and predicate abstraction: predicate abstrac-
tion succeeds in verifying the program, while the explicit domain does not terminate. It
is also demonstrated, that original CEGAR algorithm is not able to verify the example
program.
Consider the following C program and its CFAs on Figure 4.3. The procedure call
reach_error() represents the program entering some unwanted state.

int rec(int k) {
if (k > 0) rec(k + 1);
else reach_error();

}

int main() {
rec(1) ;

};

Figure 4.3: Example C program and its CFAs.

25

In the first iteration of the CEGAR loop the precision is empty, so no information about
the value of k is available. In such case, it is assumed that k can have any value, there-
fore, the edge going out of lrInit guarded by [k ≤ 0] is available and the error location is
reached. Thus, both explicit and predicate abstraction find the abstract counterexample
on Figure 4.4. The erroneous abstract state is highlighted in red.

Figure 4.4: The abstract counterexample found in the first iteration.

The abstract counterexample is passed onto the refiner, which checks its feasibility. One
may notice that the transition guarded by [k ≤ 0] is not enabled in the concrete state
space of the program, so the counterexample is deemed spurious and a refined precision
is calculated. Given some refinement strategy, let us assume that the refiner creates the
precision πe = {k} for explicit abstraction and the precision πp = {k > 0} for predicate
abstraction. With this, the first iteration of the CEGAR loop is finished.
From here, verification using explicit and predicate abstraction carries on differently. First,
the second iteration with explicit abstraction is discussed.

4.3.1 Explicit Abstraction

The refined precision πe = {k} means that the value of k should be tracked while the
abstract state-space is being explored. The first couple nodes of the built ARG are shown
on Figure 4.5.

Figure 4.5: The ARG built using explicit domain.

With the first call of rec(1), the tracked value of k becomes 1. Consequently, only the
edge guarded by [k > 0] is enabled in the second abstract state. The next call of rec(k +
1) changes the tracked value of k to 2. At this point, the top locations of the second and
the current (fourth) node are both lrInit. However, the abstract data state k = 1 of the
second node does not overapproximate the abstract data state k = 2 of the current node.
Therefore, the partial order ⊑A does not hold between them, so no popping occurs.
Due to the tracked value k = 2, the only enabled transition in the fourth node is the
edge guarded by [k > 0]. The fifth node has the same top location l3 as the third one,
however, their abstract data states k = 1 and k = 2 do not overapproximate one another
once again, so ⊑A does not hold and no popping occurs. From here on, the value of k
increases by 1 every time a new location is pushed onto the stack due to the rec(k + 1)
procedure call. Thus, the same sequence of expansions is repeated infinitely, meaning the
verification algorithm never terminates.

26

4.3.2 Predicate Abstraction

The refined precision πp = {k > 0} means that the truth of the predicate k > 0 should
be tracked while the abstract state-space is being explored. The first couple of nodes of
the built ARG are shown on Figure 4.6. The visualization of the ARG nodes is to be
interpreted as all predicates that are displayed in a node hold in the abstract state.

Figure 4.6: The ARG built using predicate abstraction, before popping.

With the first call of rec(1), it is ensured that k > 0, so the predicate evaluates to true
in the second node. Consequently, only the edge guarded by [k > 0] is enabled in this
abstract state. The next call of rec(k + 1) does not make the predicate false, because
adding 1 to a positive number cannot make it ≤ 0. Thus, the predicate remains true in the
fourth abstract state as well. At this point, the top locations of the second node (q2, S2)
and the current (fourth) node (q4, S4) are both lrInit. The partial order ⊑ for predicate
abstraction is implication: {k > 0} ⊑ {k > 0} ⇔ (k > 0) =⇒ (k > 0), which is true,
meaning that (q2, S2) ⊑A (q4, S4), but (q2, S2) ̸⊑Q (q4, S4). According to Algorithm 4.1,
this is exactly when the stack q4 needs to be popped. The modified ARG can be seen on
Figure 4.7, with the popped node highlighted in blue.

Figure 4.7: The final ARG built using predicate abstraction.

After popping, exploration continues from the popped state (q′
4, S4), which is now in the

final location lrF inal of CFArec. On the next transition, the needs to be popped because a
final location was reached, as described in Section 4.1. The only transition from this fifth
node goes to the final location of the main procedure lmF inal and with that, the ARG is
fully expanded. There are no erroneous abstract states in it, therefore, the ARG is safe.
It is also an overapproximation of the program’s state-space, thus, the program is safe as
well.

4.3.3 Comparison to CEGAR

In this section, the unmodified version of CEGAR is ran on the example program in
Figure 4.3, using predicate abstraction.
In the first iteration of the CEGAR loop the precision is empty, so no information about
the value of k is available. For the same reasons as with the modified version, the first
iteration of the abstractor finds the abstract counterexample on Figure 4.4. Given some

27

refinement strategy, let us assume that the refiner creates the same πp = {k > 0} precision
as in the modified case. With that, the first iteration of the CEGAR loop is finished.
In the second iteration, the refined precision πp = {k > 0} means that the truth of the
predicate k > 0 should be tracked while the abstract state-space is being explored. The
first couple nodes of the built ARG are shown on Figure 4.8.

Figure 4.8: The ARG built using predicate abstraction, without popping.

With the first call of rec(1), it is ensured that k > 0, so the predicate evaluates to true
in the second node. Consequently, only the edge guarded by [k > 0] is enabled in this
abstract state. The next call of rec(k + 1) does not make the predicate false, because
adding 1 to a positive number cannot make it ≤ 0. Thus, the predicate remains true
in the fourth abstract state as well. At this point, the top locations of the second node
(q2, S2) and the current (fourth) node (q4, S4) are both lrInit and their abstract data states
imply one another. Even though their top locations is the same, for ⊑Q their whole stack
would need to match. But q2 ̸= q4, therefore, (q2, S2) ̸⊑Q (q4, S4) and no covered-by edge
is created.
Due to the tracked predicate k > 0 being true in the fourth node, the only enabled
transition in it is the edge guarded by [k > 0]. The fifth node once again has the same
top location l3 and abstract data state {k > 0} as the third one, however, their whole
stack are not identical, so ⊑Q does not hold and no covered-by edge is created between
them. From here on, the height of the stack increases with each rec(k + 1) procedure
call. Thus, the same sequence of expansions is repeated infinitely, meaning the verification
algorithm never terminates.

28

Chapter 5

Evaluation

In this chapter, a prototype implementation of the modified CEGAR algorithm described
in Chapter 4 is evaluated on a set of C programs. First, the benchmark environment is
described, then the benchmark results are presented.

5.1 Benchmark Setup

A prototype of the presented CEGAR modifications was implemented in Theta [17], an
open-source formal model checking framework. Theta already had a highly configurable
CEGAR engine with different abstraction domains, interpolation techniques and search
strategies, among other options. The changes were implemented into the xcfa subpro-
ject of Theta in Java and Kotlin: new Abstractor and Refiner classes were created,
the Precision class was extended, while the implementation of ⊑A was placed along
other analysis utilities. The implementation is available on a fork of Theta1 and as the
prototype is finalized, a pull request will be made as well.
The implementation was evaluated on 1219 C programs from the SV-COMP benchmark
repository2. The verification tasks were chosen from 4 categories: 22 from control, 321 from
eca, 779 from loops and 97 from recursive. The first 3 categories were chosen to measure
the computational overhead of the new technique, since most of these tasks have 1-2
non-recursive procedures. The recursive category, on the other hand, has many recursive
procedures and is a good indicator of the presented idea’s efficiency.
As Theta is a highly configurable framework, 4 different configurations were tested:

• EXPL_BFS: explicit domain with sequential interpolation and BFS search strategy

• EXPL_DFS: explicit domain with sequential interpolation and DFS search strategy

• PRED_BW: predicate domain with backward binary interpolation and BFS search
strategy

• PRED_NWT: predicate domain with Newton-style interpolation [14] and BFS
search strategy

1https://github.com/s0mark/theta/tree/interproc
2https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks

29

https://github.com/s0mark/theta/tree/interproc
https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks

All of the configurations above were ran with lazy pruning strategy. On top of that, each
configuration was benchmarked with (POP) and without (NOPOP) the presented CEGAR
modification.
The execution of benchmarks was done using the BenchExec framework [6]. The tests
were run on virutal machines equipped with 3 Intel Haswell/Skylake CPU cores and 16
GB of memory, in university cloud infrastructure3. The number of solved tasks and their
execution times were measured with a 900 second timeout for each task, in order to
allow for a wide variety of configurations to be tested within limited time constraints, in
compliance with the benchmarking practice of SV-COMP.

5.2 Benchmark Results

The tested configurations only gave correct answers, meaning they either answered cor-
rectly or did not answer within the 15-minute timeout. Therefore, only the number of
solved tasks of each configuration is presented on Figure 5.1. The blue and green bars cor-
respond to the number of tasks solved by configurations with NOPOP and POP, respectively.
For clarification, the exact numerical values are available in Table 5.1.

0

2

4

6

8

10

EXPL_BFS EXPL_DFS PRED_BW PRED_NWT

NOPOP
POP

(a) Control

0

50

100

150

200

250

300

EXPL_BFS EXPL_DFS PRED_BW PRED_NWT

NOPOP
POP

(b) ECA

0

50

100

150

200

250

300

EXPL_BFS EXPL_DFS PRED_BW PRED_NWT

NOPOP
POP

(c) Loops

0

10

20

30

40

EXPL_BFS EXPL_DFS PRED_BW PRED_NWT

NOPOP
POP

(d) Recursive

Figure 5.1: Number of tasks solved by configuration.

3https://cloud.bme.hu

30

https://cloud.bme.hu

configuration EXPL_BFS EXPL_DFS PRED_BW PRED_NWT
version NOPOP POP NOPOP POP NOPOP POP NOPOP POP
control 9 9 10 9 7 7 0 0

eca 197 177 175 131 262 263 2 2
loops 70 60 62 60 294 157 94 64

recursive 38 36 28 28 23 38 13 14

Table 5.1: Number of solved tasks by configuration.

5.2.1 Basic Programs

In categories control, eca and loops, POP mostly performed on par with or slightly worse
than NOPOP. This is in line with expectations, since tasks in these categories have 1-2
non-recursive procedures. Consequently, there is no opportunity for popping to occur, but
the extra checks with ⊑A are still performed, leading to a futile computational overhead.
The largest difference in performance is in loop tasks, using predicate abstraction with
backward binary interpolation, as seen on Figure 5.1c: the modified CEGAR version could
only solve just over half as many tasks as the original version. One major contributing
factor to such a drop in performance is that loop tasks only have a single procedure
with a loop in it. Therefore, the size of the location stack is always one, in which case
⊑A and ⊑Q are equivalent. As a result, the same calculation is done on lines 6 & 7 in
Algorithm 4.1, whereas in the original Algorithm 2.2 the computation of the partial order
only happens once. The loops in the tasks’ main procedures amplify the effect of the
redundant calculation on performance, because the same location is visited repeatedly in
the loop, leading to an increased number of computations of the partial order.

5.2.2 Recursive Programs

For recursive tasks, the two versions perform the same using explicit abstraction, as seen
on Figure 5.1d. With predicate abstraction, however, the changes proposed in Section 4.2
lead to an improvement in efficiency: with backward binary interpolation, the number of
solved tasks increased by over 65%. This promotes it to being the joint best configuration,
matching the performance of the reigning champion EXPL_BFS which dominated the
other configurations without popping. Moreover, over 20% of the programs that this
configuration verified were tasks that no other NOPOP configuration could verify within the
time constraints.
The lack of improvement using explicit abstraction can be attributed to the fundamental
way recursion is used in programs: there usually is a variable k tracking the depth of the
recursion. This variable gets added to the precision rather early during verification, be-
cause its value typically determines whether recursion continues or the procedure returns.
Once k is in the precision of explicit abstraction, its value is tracked which blocks ⊑A

from occurring between different abstract states with different sized stacks, because their
abstract data states will differ in the value of k as a result of their recursion depth not
being equal. Therefore, popping can not happen, hence the lack of improvement.

5.2.3 Threats to Validity

In this section, possible biases and threats to the validity of the benchmark results are
discussed.

31

As mentioned in Section 5.1, the virtual machines used for benchmarking had either an
Intel Haswell or Skylake processor. There is some 5-10% difference in the performance
of these chips, which could influence the results if the configurations were assigned to
different processors. The execution of benchmarks, however, was done in a distributed
benchmarking environment which assigned each individual task and configuration to a
random available worker. Consequentially, the difference between the chips only appears
as mere noise in the results, and it can certainly not be responsible for the 60-100%
efficiency losses and gains seen on Figure 5.1c and Figure 5.1d.
To get benchmark results in reasonable time, the aforementioned 15-minute limit was
introduced. Given enough time, the number of solved tasks of configurations could have
turned out differently. However, the verification of a program is not decidable in general,
therefore, a limit always has to be put in place in practice. 15 minutes was chosen because
it has been agreed upon by experts in the field of formal verification as the timeout used
at SV-COMP [2], the international competition of software verification tools. Counting
the solved tasks can be seen as a measure of practical performance.

32

Chapter 6

Conclusion

As technology is integrated into an increasing part of our lives, more and more tasks
are automated using software. In addition to using it as a means of communication and
entertainment, software is also used in safety-critical systems, such as cars and spaceships.
In such systems, failure can lead to catastrophes, therefore, their correctness needs to be
guaranteed. While conventional testing can only show the presence of incorrect behavior,
formal verification can mathematically prove the absence of errors as well.
In formal verification, model checking is employed to explore the state-space of the program
and look for erroneous states in it. The most challenging part of formal verification is the
state-explosion problem, that is, the size of the state-space grows exponentially with the
number of variables in the program. To counteract this, reduction techniques are applied
to the state-space of the program, such as abstraction. Abstraction groups states together
by abstracting away some information from the state of the program, e.g. the values of
some variables. The abstraction-based model checking algorithm CEGAR was presented
in Section 2.3.
Procedures are a widespread concept in all fields of software. They allow the reuse of
existing software, but they also make interprocedural verification more challenging by
creating new variable instances with each of their calls. On top of that, they extend the
state of a program with the call stack, which can lead to an infinitely large state-space in
the case of recursive programs, where the stack stretches infinitely deep.
In Chapter 4, I presented a novel approach to improve the efficiency of interprocedural
verification. The main idea was to extend abstraction to the location stacks of states
in order to further reduce the size of the abstract state-space. This was achieved by
introducing 2 partial orders in Section 4.2 for covering: ⊑Q was a sound, but wasteful
version and ⊑A was an underapproximating, but performant one. The two partial orders
were combined and integrated into CEGAR in a way that keeps the algorithm sound
but makes it more performant. Changes necessary to the abstractor were presented in
Section 4.2.1, while the refiners modifications were described in Section 4.2.2. The modified
algorithm was presented in a case study in Section 4.3, where it was shown that the
modified CEGAR algorithm can verify certain infinitely recursive programs, which it was
not able to by default, without the modifications.
A prototype of the presented approach was implemented in the open-source model checking
framework Theta. The implementation was evaluated in Chapter 5 on 1219 C programs in
different configurations of Theta. All configurations gave only correct answers, meaning
they either verified the program correctly or did not give an answer within the 15-minute
timeout. For tasks without procedures, the computational overhead of the modifications

33

degraded performance to a varying degree: in most cases there was no or only a slight
decrease in the number of solved tasks, in the worst case it was halved. For recursive tasks,
the performance was improved by as much as 65% with predicate abstraction, promoting
it to being the best configuration. Furthermore, over 20% of the programs that it verified
were tasks that no other configuration could verify within the time constraints.

6.1 Future Work

In the short-term, the prototype implementation could be finalized and integrated into
Theta as an optional configuration. This would allow a portfolio to only use the modified
algorithm on tasks that it brings an improvement to, e.g. recursive programs. The goal
is to submit the feature as part of the experimental version of Theta for next year’s
SV-COMP ’24.
The number of required CEGAR loop iterations could be reduced by putting more con-
sideration into what is added to the stack precision πQ. If a location l is found to have
been impossibly popped in the abstract counterexample, the location stack of the popped
abstract state gets added to πQ. In the current version, this is followed by adding l’s de-
scendant locations to πQ in separate CEGAR iterations. These iterations could be avoided
by adding them at once when the impossible pop of l is detected, one just needs to figure
out which of l’s descendants need to be added.
A longer-term goal is to extend popping with summaries. Currently, when a stack is
popped in accordance with the presented idea, the return variables of the abstracted
procedure call are left uninitialized. This could be improved upon by applying a summary
of the procedure to the popped abstract state, resulting in a more precise abstraction.

34

Bibliography

[1] Thomas Ball, Andreas Podelski, and Sriram K. Rajamani. Boolean and cartesian
abstraction for model checking c programs. In Tiziana Margaria and Wang Yi, editors,
Tools and Algorithms for the Construction and Analysis of Systems, pages 268–283,
Berlin, Heidelberg, 2001. Springer Berlin Heidelberg. ISBN 978-3-540-45319-2.

[2] Dirk Beyer. Competition on software verification and witness validation: Sv-
comp 2023. In Sriram Sankaranarayanan and Natasha Sharygina, editors, Tools
and Algorithms for the Construction and Analysis of Systems, pages 495–522,
Cham, 2023. Springer Nature Switzerland. ISBN 978-3-031-30820-8. DOI:
10.1007/978-3-031-30820-8_29.

[3] Dirk Beyer and M. Erkan Keremoglu. Cpachecker: A tool for configurable software
verification. In Ganesh Gopalakrishnan and Shaz Qadeer, editors, Computer Aided
Verification, pages 184–190, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg.
ISBN 978-3-642-22110-1.

[4] Dirk Beyer and Stefan Löwe. Explicit-state software model checking based on cegar
and interpolation. In Vittorio Cortellessa and Dániel Varró, editors, Fundamental Ap-
proaches to Software Engineering, pages 146–162, Berlin, Heidelberg, 2013. Springer
Berlin Heidelberg. ISBN 978-3-642-37057-1.

[5] Dirk Beyer, Thomas A Henzinger, Ranjit Jhala, and Rupak Majumdar. The software
model checker blast. International Journal on Software Tools for Technology Transfer,
9(5):505–525, October 2007.

[6] Dirk Beyer, Stefan Löwe, and Philipp Wendler. Reliable benchmarking: requirements
and solutions. International Journal on Software Tools for Technology Transfer, 21
(1):1–29, Feb 2019. ISSN 1433-2787. DOI: 10.1007/s10009-017-0469-y. URL
https://doi.org/10.1007/s10009-017-0469-y.

[7] Armin Biere, Alessandro Cimatti, Edmund Clarke, and Yunshan Zhu. Symbolic
model checking without bdds. In W. Rance Cleaveland, editor, Tools and Al-
gorithms for the Construction and Analysis of Systems, pages 193–207, Berlin,
Heidelberg, 1999. Springer Berlin Heidelberg. ISBN 978-3-540-49059-3. DOI:
10.1007/3-540-49059-0_14.

[8] Richard Bubel, Reiner Hähnle, and Maria Pelevina. Fully abstract operation con-
tracts. In Tiziana Margaria and Bernhard Steffen, editors, Leveraging Applications
of Formal Methods, Verification and Validation. Specialized Techniques and Appli-
cations, pages 120–134, Berlin, Heidelberg, 2014. Springer Berlin Heidelberg. ISBN
978-3-662-45231-8. DOI: 10.1007/978-3-662-45231-8_9.

[9] Prantik Chatterjee, Jaydeepsinh Meda, Akash Lal, and Subhajit Roy. Proof-
guided underapproximation widening for bounded model checking. In Sharon

35

http://dx.doi.org/10.1007/978-3-031-30820-8_29
http://dx.doi.org/10.1007/s10009-017-0469-y
https://doi.org/10.1007/s10009-017-0469-y
http://dx.doi.org/10.1007/3-540-49059-0_14
http://dx.doi.org/10.1007/978-3-662-45231-8_9

Shoham and Yakir Vizel, editors, Computer Aided Verification, pages 304–324,
Cham, 2022. Springer International Publishing. ISBN 978-3-031-13185-1. DOI:
10.1007/978-3-031-13185-1_15.

[10] Yu-Fang Chen, Chiao Hsieh, Ming-Hsien Tsai, Bow-Yaw Wang, and Farn Wang. Veri-
fying recursive programs using intraprocedural analyzers. In Markus Müller-Olm and
Helmut Seidl, editors, Static Analysis, pages 118–133, Cham, 2014. Springer Interna-
tional Publishing. ISBN 978-3-319-10936-7. DOI: 10.1007/978-3-319-10936-7_8.

[11] Edmund Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith.
Counterexample-guided abstraction refinement for symbolic model checking. J. ACM,
50(5):752–794, sep 2003. ISSN 0004-5411. DOI: 10.1145/876638.876643.

[12] Edmund M. Clarke, William Klieber, Miloš Nováček, and Paolo Zuliani. Model Check-
ing and the State Explosion Problem, pages 1–30. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2012. ISBN 978-3-642-35746-6. DOI: 10.1007/978-3-642-35746-6_1.

[13] Leonardo de Moura and Nikolaj Bjørner. Z3: An efficient smt solver. In C. R.
Ramakrishnan and Jakob Rehof, editors, Tools and Algorithms for the Construction
and Analysis of Systems, pages 337–340, Berlin, Heidelberg, 2008. Springer Berlin
Heidelberg. ISBN 978-3-540-78800-3. DOI: 10.1007/978-3-540-78800-3_24.

[14] Daniel Dietsch, Matthias Heizmann, Betim Musa, Alexander Nutz, and Andreas
Podelski. Craig vs. newton in software model checking. In Proceedings of the 2017
11th Joint Meeting on Foundations of Software Engineering, ESEC/FSE 2017, page
487–497, New York, NY, USA, 2017. Association for Computing Machinery. ISBN
9781450351058. DOI: 10.1145/3106237.3106307.

[15] Pontus Ernstedt. Contract-Based Verification in TriCera. PhD thesis, Upp-
sala University, 2022. URL https://urn.kb.se/resolve?urn=urn:nbn:se:uu:
diva-474539.

[16] Ákos Hajdú. Effective Domain-Specific Formal Verification Techniques. Phd thesis,
Budapest University of Technology and Economics, 2020. URL http://hdl.handle.
net/10890/13523.

[17] Ákos Hajdu and Zoltán Micskei. Efficient strategies for cegar-based model check-
ing. Journal of Automated Reasoning, 64(6):1051–1091, Aug 2020. ISSN 1573-
0670. DOI: 10.1007/s10817-019-09535-x. URL https://doi.org/10.1007/
s10817-019-09535-x.

[18] Akash Lal, Shaz Qadeer, and Shuvendu K. Lahiri. A solver for reachability modulo
theories. In P. Madhusudan and Sanjit A. Seshia, editors, Computer Aided Verifi-
cation, pages 427–443, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg. ISBN
978-3-642-31424-7. DOI: 10.1007/978-3-642-31424-7_32.

[19] B. Meyer. Applying ’design by contract’. Computer, 25(10):40–51, 1992. DOI:
10.1109/2.161279.

[20] Andreas Podelski, Ina Schaefer, and Silke Wagner. Summaries for while programs
with recursion. In Mooly Sagiv, editor, Programming Languages and Systems, pages
94–107, Berlin, Heidelberg, 2005. Springer Berlin Heidelberg. ISBN 978-3-540-31987-
0. DOI: 10.1007/978-3-540-31987-0_8.

36

http://dx.doi.org/10.1007/978-3-031-13185-1_15
http://dx.doi.org/10.1007/978-3-319-10936-7_8
http://dx.doi.org/10.1145/876638.876643
http://dx.doi.org/10.1007/978-3-642-35746-6_1
http://dx.doi.org/10.1007/978-3-540-78800-3_24
http://dx.doi.org/10.1145/3106237.3106307
https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-474539
https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-474539
http://hdl.handle.net/10890/13523
http://hdl.handle.net/10890/13523
http://dx.doi.org/10.1007/s10817-019-09535-x
https://doi.org/10.1007/s10817-019-09535-x
https://doi.org/10.1007/s10817-019-09535-x
http://dx.doi.org/10.1007/978-3-642-31424-7_32
http://dx.doi.org/10.1109/2.161279
http://dx.doi.org/10.1007/978-3-540-31987-0_8

[21] Thomas Reps, Susan Horwitz, and Mooly Sagiv. Precise interprocedural dataflow
analysis via graph reachability. In Proceedings of the 22nd ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL ’95, page 49–61, New
York, NY, USA, 1995. Association for Computing Machinery. ISBN 0897916921.
DOI: 10.1145/199448.199462.

[22] M Sharir and A Pnueli. Two approaches to interprocedural data flow analysis. In
Program Flow Analysis: Theory and Applications, 1981.

[23] Márk Somorjai. Abstraction Based Techniques for Constrained Horn
Clause Solving. Bachelor’s thesis, Budapest University of Technology and
Economics, 2023. URL https://diplomaterv.vik.bme.hu/en/Theses/
Absztrakcio-alapu-technikak-CHC-problemak.

[24] Taku Terao. Lazy abstraction for higher-order program verification. In Proceedings of
the 20th International Symposium on Principles and Practice of Declarative Program-
ming, PPDP ’18, New York, NY, USA, 2018. Association for Computing Machinery.
ISBN 9781450364416. DOI: 10.1145/3236950.3236969.

[25] Yakir Vizel and Orna Grumberg. Interpolation-sequence based model checking.
In 2009 Formal Methods in Computer-Aided Design, pages 1–8, 2009. DOI:
10.1109/FMCAD.2009.5351148.

[26] Greta Yorsh, Eran Yahav, and Satish Chandra. Generating precise and concise proce-
dure summaries. In Proceedings of the 35th Annual ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages, POPL ’08, page 221–234, New York,
NY, USA, 2008. Association for Computing Machinery. ISBN 9781595936899. DOI:
10.1145/1328438.1328467.

[27] Greta Yorsh, Eran Yahav, and Satish Chandra. Generating precise and concise pro-
cedure summaries. SIGPLAN Not., 43(1):221–234, jan 2008. ISSN 0362-1340. DOI:
10.1145/1328897.1328467.

37

http://dx.doi.org/10.1145/199448.199462
https://diplomaterv.vik.bme.hu/en/Theses/Absztrakcio-alapu-technikak-CHC-problemak
https://diplomaterv.vik.bme.hu/en/Theses/Absztrakcio-alapu-technikak-CHC-problemak
http://dx.doi.org/10.1145/3236950.3236969
http://dx.doi.org/10.1109/FMCAD.2009.5351148
http://dx.doi.org/10.1145/1328438.1328467
http://dx.doi.org/10.1145/1328897.1328467

	Kivonat
	Abstract
	Introduction
	Background
	Control Flow Automata
	Abstraction
	Counterexample-Guided Abstraction Refinement
	Abstractor
	Refiner

	Procedures
	Variable Instances
	Parameter Assignments

	Related Work
	Inlining
	Summaries
	Contracts

	Applying Abstraction to Stacks
	Location Stack
	Stack Abstraction
	Changes to Abstractor
	Changes to Refiner

	Case Study
	Explicit Abstraction
	Predicate Abstraction
	Comparison to CEGAR

	Evaluation
	Benchmark Setup
	Benchmark Results
	Basic Programs
	Recursive Programs
	Threats to Validity

	Conclusion
	Future Work

	Bibliography

