
Budapest University of Technology and Economics
Faculty of Electrical Engineering and Informatics

Department of Measurement and Information Systems

Abstraction Based Techniques for Constrained
Horn Clause Solving

Scientific Students’ Association Report

Author:

Márk Somorjai

Advisors:

Mihály Dobos-Kovács
Levente Bajczi

Dr. András Vörös

2022

Contents

Kivonat i

Abstract ii

1 Introduction 1

2 Background 3
2.1 Satisfiability Modulo Theories . 3
2.2 Horn Clauses . 4

2.2.1 Constrained Horn Clauses . 4
2.2.2 Linear Constrained Horn Clauses . 7

2.3 Formal Software Verification . 7
2.3.1 Control Flow Automata . 7
2.3.2 Abstraction . 9
2.3.3 Counterexample-Guided Abstraction Refinement 9
2.3.4 Verification with Procedures . 10

2.3.4.1 Extensions to Control Flow Automata 10
2.3.4.2 Extensions to Model Checking 12

3 Related work 15
3.1 Bounded Exploration . 15
3.2 Counterexample-Guided Abstraction Refinement 15
3.3 Transformation to Software Verification Problem 16

4 Transformation of Constrained Horn Clauses to Control Flow Automata 17
4.1 Overview of the Transformation . 17
4.2 Forward Transformation . 19

4.2.1 Constrained Horn Clause Transformation 19
4.2.2 Proof Transformation . 24

4.2.2.1 Satisfying Model Generation 25

4.2.2.2 Refutation Creation . 26
4.3 Backward Transformation . 27

4.3.1 Constrained Horn Clause Transformation 27
4.3.2 Proof Transformation . 30

4.3.2.1 Satisfying Model Generation 30
4.3.2.2 Refutation Creation . 31

5 Evaluation 32
5.1 Benchmark Setup . 32
5.2 Benchmark Results . 33

5.2.1 Theta Configurations . 33
5.2.2 Different Underlying Solvers . 33
5.2.3 Comparison to Other Tools . 34
5.2.4 Threats to Validity . 34

6 Conclusion 36
6.1 Future Work . 37

Bibliography 38

Kivonat

A biztonságkritikus rendszerek szoftveres komponensei egyre komplexebbek. Egy bizton-
ságkritikus rendszerben fellépő hiba hatalmas gazdasági veszteségekkel, környezeti károk-
kal vagy akár életvesztéssel járhat, emiatt az ilyen rendszerek helyességét biztosítani kell.
Hagyományos tesztelési technikák nem tudnak kimerítőek lenni, így más módszerekre van
szükség. A formális verifikáció matematikailag precíz bizonyítékot vagy cáfolatot tud elő-
állítani a program biztonsági tulajdonságairól, mint például a hibaállapot elérhetősége.

A formális verifikáció programok formális modelljein működik, ezen formalizmusok
egyike a Control Flow Automaton (CFA). Ez egy gráfszerű reprezentációja a programok-
nak, amelyben a hibahelyek a gráf adott csomópontjaiként jelennek meg, melyek elérhe-
tetlenségét kell bizonyítani. Egy másik széleskörűen használt köztes nyelv a verifikációs
folyamatokban a Constrained Horn Clauses (CHCs). Ezek a programokat és kívánt tulaj-
donságaikat az elsőrendű logikai formulák egy jól definiált részhalmazában írják le válto-
zókkal és nem-interpretált függvényekkel. Ebben a reprezentációban a helyesség kérdése a
formulák kielégíthetőségeként jelenik meg, melyet a logikai formulák kielégíthetőségének
eldöntésére tervezett SMT megoldók tudnak meghatározni.

A hibaállapotok elérhetőségének megítélésére CFA-ban egy elterjedt megoldás a CHC-
re való konverziójuk, melyben SMT megoldók segítségével lehet kielégítő hozzárendelést
találni. Ezen feladat azonban nehéznek bizonyul az SMT megoldók számára, köszönhetően
az exponenciális számú lehetséges értékadásnak a változók számához viszonyítva. Ebben a
munkában egy fordított megközelítés, a CHC megoldásának CFA-vá transzformált verzi-
ójában való keresése kerül bemutatásra. Ezen reprezentációban ugyanis elérhetővé válnak
absztrakció-finomítás alapú modellellenőrzési algoritmusok, melyek absztrakció segítségé-
vel csökkentik a lehetséges értékadások terét, ezzel potenciálisan jelentős hatékonyságnöve-
lést érve el a hagyományos CHC megoldási technikákhoz képest. A megközelítés szintetikus
és ipari példákon is kiértékelésre kerül.

i

Abstract

Software components of safety-critical systems are becoming more and more complex.
Failure in a safety-critical system can lead to enormous financial loss, environmental dam-
age, or even loss of life; thereby, the correctness of such systems needs to be ensured.
Conventional testing can not be exhaustive in reasonable time, leaving the need to prove
the safety of programs in other ways. Formal verification takes on this task by provid-
ing a mathematically precise proof of correctness or refutation to the safety properties of
programs, such as the reachability of an erroneous state.
Formal verification works on formal models of programs, one such formalism being the
Control Flow Automaton (CFA). It is a graph-like notation to represent programs, in which
erroneous locations map to specific nodes that should be unreachable. Another formalism
that is widely used as an intermediate language in the verification process is Constrained
Horn Clauses (CHCs). They can describe programs and their desired properties in a
well-defined subset of first-order logic formulae on variables and uninterpreted functions.
Therefore the question of correctness in this representation is embodied in the satisfiability
of a query, which can be decided by SMT solvers designed to determine the satisfiability
of mathematical formulae.
Conventionally, one approach to deciding reachability in CFAs has been to transform
the model into CHCs and utilize an SMT solver to find a satisfying model. However,
this task tends to be difficult for SMT solvers due to the exponential number of possible
assignments with respect to the number of variables and predicates. In contrast, in this
work, I propose an approach to solving CHCs by transforming them into a CFA, which
provides access to powerful abstraction-refinement-based model checking algorithms. Such
algorithms employ abstraction to reduce the space of possible assignments, which could
potentially lead to significant improvements in efficiency compared to traditional CHC
solving techniques. I evaluate my approach both on synthetic and industrial examples.

ii

Chapter 1

Introduction

As the prevalence of electronics and digitalization keeps growing in the world, our depen-
dence on software becomes stronger and stronger. This trend can be seen in many areas
of our lives, one such area being safety-critical embedded systems: an increasing amount
of tasks are performed by embedded software instead of physical components. Failures in
these systems can cause environmental damage, substantial financial loss, or even loss of
human lives. Therefore the correct behaviour of software components of such systems is
imperative. One widespread approach to ensure functional correctness is formal verifica-
tion, a technique aiming at mathematically establishing certain properties of programs.
Traditionally, the programs and their desired properties are encoded in mathematical
formulae [16], converting the verification problem into a question of the satisfiability of
the generated formulae. The generated problems are called Satisfiability Modulo Theory
(SMT) problems, and they play a crucial role in the safety of embedded systems.
Generally, a SMT problem is not decidable. A subset of SMT problems that is easier to
handle while still being able to represent programs and their specific properties uses Con-
strained Horn Clauses (CHC). The main characteristic of these clauses is that they are
logical implications between uninterpreted functions, which makes them a suitable rep-
resentation of deduction problems. The statements in Constrained Logic Programming
are CHCs, and the provability of the goal is equivalent to the satisfiability of the set of
statement CHCs. Despite the fact that CHC is only a subset of the general class of SMT
problems, it is still very useful in many areas related to embedded systems: the declara-
tive data representation language Datalog [24] also uses CHCs to store information [25],
which has found its use in distributed knowledge databases [21] or memory representation
in embedded software. The most widespread utilization of CHCs comes from software
verification [15]. Many effective software verification tools are based on converting pro-
grams into CHCs, including the C verification frameworks Seahorn [16] and Tricera [12],
and the Rust verification framework RustHorn [22]. Deciding the satisfiability of CHCs
would therefore be beneficial in the verification of programs written in the aforementioned
low-level languages that are widely used in embedded software.
The satisfiability of a set of CHCs depends on the premise of a special kind of CHC that
has ⊥ as its implication: if ⊥ can be deduced, the problem is unsatisfiable. A trivial
way of solving the satisfiability problem of CHCs then would be to apply all CHCs as
long as they are applicable and check whether ⊥ could be deduced. This approach would
be infeasible in practice, because the space of possible applications would be enormous.
On top of that, it would not necessarily terminate, due to CHCs that could be applied
forever. One way of combating these issues would be to transform the problem into a

1

domain, which has algorithms that are equipped to deal with similar problems of huge
state spaces and infinite cycles.
In this work, I propose an approach to efficiently solve CHC problems. My novel ap-
proach reduces the satisfiability problem of CHCs into a software verification problem of
reachability. I devised a transformation that converts CHCs into Control Flow Automata
(CFA), a formal representation of programs. The conversion provides access to powerful
abstraction-refinement based model checking algorithms that harness the capabilities of
abstraction to reduce huge state spaces and handle infinite cycles. Additionally, a proto-
type of the transformation was implemented in the open-source model checking framework
Theta [17], which is evaluated on a set of synthetic and industrial benchmarks.
The report is structured as follows: in Chapter 2, the necessary concepts and definitions
are introduced, which the rest of the work builds upon. In Chapter 3, state-of-the-art
approaches to solving satisfiability problems of CHCs are described. In Chapter 4, two
different approaches to transforming CHCs to CFAs are presented: the first is my contri-
bution, the second is an already existing approach. In Chapter 5, a prototype implemen-
tation of the presented transformations are evaluated, and their performance is compared
to other approaches. Finally, in Chapter 6 my work is summarized.

2

Chapter 2

Background

To understand the presented work, some background knowledge is required about mathe-
matical logic and software verification. This chapter presents the necessary concepts and
definitions, as well as their interpretation in the context of the presented work.

2.1 Satisfiability Modulo Theories

Logic formulae are deeply embedded in the foundations of mathematics and computer
science. They describe relations between values and variables using logic symbols. The
symbols used and the domain of variables may vary based on the background of its con-
sumer, which leads to the introduction of Satisfiability Modulo Theories (SMT) [4]. The
interpretation of the variables and symbols of formulas in SMT is described by a back-
ground theory. For example, given the formula a + b < 1 ∧ ¬(a < 0), the intended
interpretation is for a and b to be numbers, + to be the addition, < to be the less-than
relation over numbers.
A model of a formula is a set of assignments, where each variable in the formula is assigned
a value exactly once, and substituting the variables to their values evaluates the formula
to true. If a formula has at least one model, the formula is satisfiable. On the other hand,
if no such model exists, the formula is unsatisfiable. The satisfiability of a formula in SMT
is formalized in Satisfiability Modulo Theories problems [14], where the decision problem
is whether a set of formulae can be satisfied within a given theory.

Definition 1 (Satisfiability Modulo Theory problem). A theory T , often referred
to as the background theory is a (possibly infinite) set of sentences, which has at least one
satisfying model. Given a formula φ with some interpreted symbols in T , φ is satisfiable
if there is a model MT that satisfies all sentences in T and MT ⊨ φ. If no such model
exists, the formula is unsatisfiable.

Example 1. For the formula a + b < 1 ∧ ¬(a < 0) over the theory of linear integer
arithmetic, {(a = 0); (b = 0)} would be a satisfying model.

SMT problems can be decided by specialized software called SMT solvers. They approach
the problem in different ways, which makes them excel at different sets of theories, e.g.
linear arithmetic, arrays, bit-vectors, etc.
Even though the interpretation of symbols in a formula is restricted to a background
theory, SMT problems can still be undecidable within some theories [4]. In the following,

3

we focus on a subset of logic formulae, in order to make the decision problem easier by
reducing the space of possible formulae.

2.2 Horn Clauses

Horn clauses are a fragment of logic formulae within some background theory. They
can describe deduction problems well, and thus are widely used in the fields of logic
programming and software verification.

Definition 2 (Horn Clause). A Horn clause is a disjunction of negated terms and, at
most, one ponated term, where terms are logic relations applied to variables and values.
It can have one of the following forms:

∀X : (¬φ1 ∨ ¬φ2 ∨ · · · ∨ ¬φm ∨ β)⇔ ∀X : ((φ1 ∧ φ2 ∧ · · · ∧ φm)→ β),
∀X : (¬φ1 ∨ ¬φ2 ∨ · · · ∨ ¬φm)⇔ ∀X : ((φ1 ∧ φ2 ∧ · · · ∧ φm)→ ⊥),

∀X : β ⇔ ∀X : (⊤ → β),

where

• X = {x1, x2, . . . , xk} is a set of variables,

• φ1, φ2, . . . , φm and β are terms over X,

• and ∀X(·) denotes ∀x1 : (∀x2 : (. . . ∀xk(·)) . . .). �

In the following, the implication notation of Horn clauses will be used, that is, the right-
hand side of the equivalences in each of the three forms, which contain only ponated
terms.

2.2.1 Constrained Horn Clauses

The subset of Horn clauses can further be narrowed down by putting constraints on what
can appear on each side of the implications, one such thing being uninterpreted functions.

Definition 3 (Uninterpreted function). An uninterpreted function F with input pa-
rameters p1, p2, . . . , pn denotes a mathematical function that maps its inputs to a
boolean value1. The function F evaluated with variables x1, x2, . . . , xn is expressed as
F (x1, x2, . . . , xn), which is a term in a formula.
Uninterpreted functions will also be referred to as predicates in the rest of this work.

With the introduction of uninterpreted functions, the interpretation of a formula’s model
also needs to be extended. The model of a formula with predicates contains definitions
of the uninterpreted functions, on top of the variable and value assignment pairs, that
together evaluate the formula to true.

1Some definitions of uninterpreted functions allow mappings to non-boolean values as well. In this work,
uninterpreted functions are only used in relation to CHCs, making boolean values an adequate restriction.

4

Example 2. Given the uninterpreted function F (x), the formula F (1) ∧ ¬F (0) is satis-
fiable with the model {(F (x) := x > 0)}. On the other hand, the formula F (1) ∧ ¬F (1)
is unsatisfiable, because mathematical functions are one-to-one mappings by definition,
therefore there is no mathematical function F (x) that gives different outputs for the same
inputs.

The formulae on each side of an implication of a Horn clause can be divided into unin-
terpreted functions and interpreted formulae. This leads to the definition of Constrained
Horn Clauses [26].

Definition 4 (Constrained Horn Clause). A Constrained horn clause (CHC) is a
Horn clause on variables and uninterpreted functions in one of the following three forms:

∀X : (B1(X) ∧B2(X) ∧ · · · ∧Bn(X) ∧ φ→ H(X)), (2.1)
∀X : (B1(X) ∧B2(X) ∧ · · · ∧Bn(X) ∧ φ→ ⊥), (2.2)

∀X : (φ→ H(X)), (2.3)

where

• X is a set of variables,

• B1(X), B2(X), . . . , Bn(X) and H(X) are uninterpreted functions applied to variables
in X,

• φ = φ1 ∧ φ2 ∧ · · · ∧ φm is the conjunction of interpreted formulae over X. If m = 0,
then the CHC takes the form of ∀X : (⊤ → H(X)). φ is often referred to as the
condition. �

The premise of the implication is called the body or tail of the CHC, while the consequence
is referred to as the head of the CHC. Equation 2.1 is called an induction, Equation 2.2 is
called a query, and Equation 2.3 is called a fact [5].

The SMT problem for a set of CHCs, the CHC problem is whether the uninterpreted
functions have an interpretation that satisfies all of the clauses. If the set of CHCs contains
one in query form, the question of satisfiability can be interpreted as whether the body
of the query can be deduced. If an interpretation of the uninterpreted functions exists
that makes the deduction of the query’s body impossible, the set of CHCs are satisfiable.
If no such interpretation exists, ⊥ can be deduced, meaning that the CHC problem is
unsatisfiable.
It is worth noting that if no query is present in the set of CHCs, then the problem is
trivially satisfiable by defining all B1(X), B2(X), . . . , Bn(X) uninterpreted functions in
the CHCs as Bi(X) ≡ true,∀i ∈ {1, 2, . . . , n}, independently from the parameters. With
such a model, both fact and induction CHCs would take the form of body → true ⇔
¬body ∨ true⇔ true, which evaluates to true regardless of the body of the CHC.
On another note, if no facts are present in the set of CHCs, then the problem can once
again be satisfied trivially, by setting all B1(X), B2(X), . . . , Bn(X) uninterpreted functions
in the CHCs as Bi(X) ≡ false, ∀i ∈ {1, 2, . . . , n}, independently from the parameters.
With such a model, both induction and query CHCs would take the form of false →

5

false ⇔ ¬false ∨ false ⇔ true ∨ false ⇔ true, which satisfies the CHCs regardless of
the conditions.
Consequently, only sets of CHCs that include at least one fact and a query are considered
to be CHC problems in the rest of this paper.

Example 3. Given the uninterpreted function F (x), consider the CHC problem over in-
teger arithmetic with the following CHCs:

∀x : x = 0→ F (x)
∀x, y : F (x) ∧ x ≤ 1 ∧ y = x + 1→ F (y)

∀x : F (x) ∧ x > 2→ ⊥

From the first CHC, we know that any satisfying model of the problem would have to define
F at 0 to be true. No other value of x will satisfy the condition of this CHC, meaning we
can not expect to gain additional information from it.

Evaluating the second CHC using our observation at x = 0 gives F (y) ← F (0) ∧ 0 ≤
1 ∧ y = 0 + 1, which means that F also needs to evaluate to true at 1. As a result, the
evaluation of the second CHC at x = 1 is F (y)← F (1) ∧ 1 ≤ 1 ∧ y = 1 + 1, by which we
can deduce that F needs to be true at 2 as well. Trying the same at x = 2 won’t result
in any new information though, since in the second CHC, the x ≤ 1 condition no longer
holds due to 2 ≰ 1.

So far, we have deduced that a satisfying model would need to define F to be true at x ∈
{0, 1, 2}. As discussed above, the body of the third (query) CHC needs to be unsatisfiable for
the CHC problem to be satisfiable. Negating the body gives ¬(F (x)∧x > 2)⇔ ¬F (x)∨x ≤
2, meaning that either x needs to be less than or equal to 2, or F (x) needs to evaluate to
false. This can be fulfilled along with our previous observations by a model F (x) = x ≤
2 ∧ x ≥ 0, which is true for 0, 1, 2, and false for any x > 2. Since a satisfying model can
be found, the CHC problem is satisfiable.

If the x > 2 condition in the query were to be replaced with x ≥ 2, then the body of the
query would evaluate to true at 2, making ⊥ deducible. In order to avoid this, F would
need to evaluate to both true and false at 2. A mathematical function can not achieve that,
therefore the modified problem would be unsatisfiable.

As it can be seen in the example above, the structure of CHCs makes them a perfect fit
for deduction problems [15]. They can be used to describe knowledge, where based on
some facts and rules, the deducibility of some statements can be queried. CHCs are also
often used for software verification [26] [16] [22], where uninterpreted functions represent
locations in a program, while the query encapsulates the goal of the verification, e.g.
whether a path to an erroneous state is feasible or not.
From here on, the universal quantifier is conventionally emitted, and the head of a CHC
is written before the tail. For example, ∀X : B1(X)∧B2(X)∧ · · · ∧Bn(X)∧φ→ H(X) is
written as H(X)← B1(X)∧B2(X)∧· · ·∧Bn(X)∧φ. It is important to keep in mind that
even in this form, the variables are still local to each CHC, that is, a variable x appearing
in different CHCs is a different variable due to the omitted universal quantifier.

6

2.2.2 Linear Constrained Horn Clauses

CHCs can be futher divided into two categories based on their linearity.

Definition 5 (Linearity of a CHC). A constrained Horn clause is linear if its body
only contains, at most, a single uninterpreted function. If its body has two or more
uninterpreted functions, the CHC is non-linear.
A CHC problem is called linear if every CHC in the problem set is linear. If any member
of the set is non-linear, the CHC problem is also non-linear.

Example 4. Given the variables X = x1, x2 and uninterpreted functions B1(X), B2(X)
and H(X):

• H(X)← B1(X) ∧ x1 > 0 is a linear CHC,

• H(X)← B1(X)∧x1 > 0∧x2 < 3 is also linear CHC, with any number of additional
interpreted formulae,

• H(X)← B1(X) ∧B2(X) ∧ x2 < 3 is a non-linear CHC.

Linear CHCs can arise from the verification of non-recursive programs [20], because the
execution of a program goes from one location (represented by uninterpreted functions)
to another and is never in two locations at once. On the other hand, knowledge deduction
problems usually result in non-linear CHCs [25], since rules in these systems often involve
multiple preconditional statements.
The main focus of the rest of this work is solving linear CHC problems using abstraction-
based software verification techniques. In the following, the used formalisms and model
checking techniques are introduced.

2.3 Formal Software Verification

The goal of software verification is to mathematically prove certain properties of a pro-
gram. One such property is the safety of a program, that is whether or not an erroneous
location can be reached in the program. A program is unsafe if such a location can be
reached from the initial location of the program using a finite number of transitions, oth-
erwise, it is safe. To prove these properties model checking is often employed, during
which the reachable states of the program are explored, and their erroneousness is de-
cided. Due to the large state-space of programs, state reduction techniques are usually
employed. A model checking algorithm using abstraction is described later in the section.
But first, a formal representation of programs is introduced, which is often used in software
verification.

2.3.1 Control Flow Automata

Software can take many shapes and forms, most notably, it can be represented as source
code. While it is convenient for software development due to its readability, its usage in
model checking can be complicated due to its complex syntax and semantics. For that
purpose, a formal representation of the software is used, which allows for easier verification

7

of basic properties, such as error reachability. A formal representation that is often used
to model programs is the Control Flow Automaton. [2]
A Control Flow Automaton represents a program as a directed graph, as described in the
following.

Definition 6 (Control Flow Automata). A control flow automaton is a tuple CFA =
(V, L, l0, E), where:

• V : A set of variables, where each v ∈ V can have values from its domain Dv.

• L: A set of locations, where each location can be interpreted as a possible value of
the program counter.

• l0 ∈ L: The initial location, that is active at the start of the program.

• E ⊆ L×Ops×L: A set of transitions, where a transition is a directed edge going from
one location in L to another, with a label op ∈ Ops, where Ops is a set of operations
that can be executed as the program advances from one location to another. An
op ∈ Ops can be one of the following:

– v = expr: An assignment of a variable, where the value of v ∈ V becomes the
evaluation of the right-hand side expr.

– havoc v: A non-deterministic assignment of a variable, after which the value of
v ∈ V can be in anything from its domain Dv.

– [cond]: A guard operation, where cond is an expression that evaluates to a
boolean value. The transition can only be executed if the cond in the guard
evaluates to true. �

In formal verification, it is also useful to distinguish error locations, which are locations
where the program would behave in an undesirable way, as well as final locations, which
have no outgoing transitions, that is, transitions that are directed away from them.
The representation of program execution on the CFA consists of an alternating sequence
of locations and operations, where at each location, the state of the CFA can be described
as S = (lS , d0, d1, ..., dn), where:

• l ∈ L is the current location of the program,

• d1, d2, ..., dn are the values of all variables, that is vi = di, vi ∈ V, di ∈ Dvi , for every
1 ≤ i ≤ |V |.

The state of the CFA in its initial location is its initial state. The uninitialized values
of variables at the beginning of the program depend on the programming language. In a
language where uninitialized variables have the value of whatever memory garbage is at
their assigned location in the memory, the values of variables would be non-deterministic.
Therefore, the CFA of programs written in such languages may have many initial states.
Other languages (such as Java) assign a default value to uninitialized variables, resulting
in a single initial state of the CFA.
All possible states of the CFA make up the state-space of the program. The operations in
an alternating sequence (representing an execution of the program) can then be interpreted
as transitions in the state-space of the program.

8

2.3.2 Abstraction

The size of the state-space of a program presents the greatest challenge in software verifi-
cation: just to represent all possible states with a single 32-bit integer variable 232 states
are needed, moreover, it grows exponentially with the number of variables present in the
program. It goes without saying that checking the reachability of all states would be
unfeasible, leaving the need for some kind of reduction technique on the state-space. One
such technique is abstraction.
An abstract state is a set of states of the CFA with the same location, which stores
information that is present in all said states by abstracting information away from the
states of the CFA. A trivial way of achieving this is by not storing the values of certain
variables. Another common technique is predicate abstraction, where boolean expressions
about the variables are stored instead of their values (e.g. v > 0 ∧ v < 10). The word
predicate in predicate abstraction does not denote an uninterpreted function, but rather
an interpreted formula on variables. An abstract state can be represented by a tuple
S = (l, Li, ..., Lj), where l is the location of the represented set of states, and Li, ..., Lj

information is valid in all of the represented set of states.
Every state of the CFA is part of an abstract state. The set of all abstract states and the
transitions between them is the abstract state-space, where a transition is an operation
between two abstract states. To calculate all transitions going out from an abstract state,
expansion is used. When an abstract state is expanded, a transition is created towards all
abstract states that can be reached by performing an outgoing transition from the location
of the abstract state.
Repeated expansion starting from the initial abstract state can be used to calculate the
reachable abstract states. However, the expansion can easily become never-ending if there
is a directed circle between abstract states due to repeated expansion of the same nodes.
To avoid this, the covering relation is introduced.
If an abstract state S1 = (lS1 , Li, ..., Lj) has not yet been expanded, and another abstract
state S2 = (lS2 , Lk, ..., Ll) exists for which lS1 = lS2 and (Li, ..., Lj) =⇒ (Lk, ..., Ll),
then S2 covers S1 (or S1 is covered by S2). Semantically, this means that S2 represents a
larger set of CFA states than S1, including all states represented by S1, ensuring that the
expansion of S1 can not result in an abstract state that would not have been reachable
from S2 as well. Therefore the expansion of S1 is pointless.
Using the definitions above, the Abstract Reachability Graph (ARG) can be built. Starting
from the abstract state representing the initial state of the CFA, expansion is repeated
on all nodes that are not covered by already expanded nodes. The resulting graph is a
directed acyclic graph, where the nodes represent abstract states, and the directed edges
represent transitions between those abstract states.

2.3.3 Counterexample-Guided Abstraction Refinement

Counterexample-Guided Abstraction Refinement (CEGAR) [8] is an abstraction-based
model checking algorithm. It takes the formal representation of a program (such as a
CFA) with distinguished error locations and decides whether or not the program is safe,
that is, if the error locations are reachable from the initial location of the program. It
does this by either exploring all reachable abstract states of the program and deeming
them non-erroneous or by providing a counterexample to the program’s safety, which is a
concrete execution of the program in which an error-state is reached.

9

The core of the algorithm is the CEGAR-loop Figure 2.1, made up of two main parts: the
abstractor and the refiner. The abstractor builds the ARG using the expand operation and
covering relation on abstract states, as introduced in the previous section. A parameter
of abstraction is precision, which describes how much information about a concrete state
is abstracted in the abstract state. An abstract error-state is an overapproximation of the
possible error-states, consequently, if no abstract error-state is reachable, then no concrete
error-state is reachable, meaning the program is safe.

Initial precision

Abstractor RefinerARG

Safe Unsafe

Abstract counterexample

Refined precision

Expand Prune

Figure 2.1: The CEGAR loop

On the other hand, if an abstract error-state is reachable, the abstractor produces an
abstract counterexample, that is, an alternating sequence of abstract states and transitions
between them, starting at the initial abstract state, ending in an abstract error-state. This
is where the refiner comes in: it decides whether or not a concrete error state is reachable in
the abstract error-state. If it can be reached, then the program is unsafe, and the path from
the initial location of the CFA to a concrete error state is presented as a counterexample.
However, if a concrete error-state is not reachable, then the reachability of the abstract
error-state is a result of the overapproximation of abstraction. Thus, the abstraction needs
to be refined so that the abstract error-state does not contain the unreachable concrete
error-state. This results in a refined precision, which is passed back to the abstractor after
all unreachable abstract states are removed (pruned) from the abstract state-space.
The CEGAR loop is repeated until it either finds a concrete counterexample to the safety
of the program or proves that no abstract error-state is reachable, that is, all nodes in the
ARG are either expanded or covered. In the first case, the program is unsafe, while in the
latter, it is safe.

2.3.4 Verification with Procedures

Procedures are not inherently a part of CFAs and CEGAR. In this subsection, their
adaptation to both is described, one after another.

2.3.4.1 Extensions to Control Flow Automata

Procedures are a well-known concept in software that allow modularity, more structured
software, as well as the reuse of already written software. However, their semantics and
usage can differ between languages and different domains, hence the following definition
is introduced.

10

Definition 7 (Procedure). A procedure is an encapsulated part of software represented
by the tuple F = (I, O, body), where:

• I: A set of variables called input parameters, where each v ∈ I can have values from
its domain Dv.

• O: A set of variables called output parameters, where each v ∈ O can have values
from its domain Dv. They must be assigned a value in the body.

• body: The software encapsulated by the procedure, e.g. part of the source code.

Repeated execution of procedures does not preserve state, meaning all variables are unini-
tialized at the start of a new execution. �

Some programming languages support inout parameters, where a variable is passed into
the procedure by reference, making all local modifications to a parameter apply to the
outer variable as well. These variables can be replaced by an input and an output variable,
therefore I chose not to distinguish them for the sake of simplicity.
The union of input parameters and variables that are defined in the body are called local
variables. These variables only exist within the scope of the procedure and are uninitialized
at the start of a new execution.
Procedures can be thought of as small programs: they have their initial and final locations,
and they do not preserve the values of variables between executions. Therefore it comes
naturally to represent them with a CFA, with the locations of the body and the operations
between them as L and E, the initial location of the body as l0, and the variables used in
the body as V .
The use of procedures comes with the introduction of procedure calls.

Definition 8 (Procedure call). A procedure call is an operation in programs which
initiates the execution of the body of a procedure. It can be represented by the tuple
C = (F, P, R), where:

• F : The procedure being called, the body of which will be executed.

• P : A set of expressions, that are assigned to the input parameters of the procedure
(IF), that is vi = pi, vi ∈ IF , pi ∈ P , where pi ∈ Dvi for 1 ≤ i ≤ |IF |.

• R: A set of variables, to which the output parameters of the procedure (OF) will be
assigned to, that is ri = vi, vi ∈ OF , ri ∈ R, where the vi ∈ Dri , for 1 ≤ i ≤ |OF |.

A procedure call consists of 3 steps:

1. The evaluations of the expressions in P are assigned to the input parameters of F .

2. Execution carries on from the initial location of the procedure’s body until a final
location of said body is reached.

3. The output parameters of F are assigned to the variables in R, after which execution
continues from the location after the procedure call. �

It is important to note that calling a procedure essentially creates a new instance of it,
meaning that if a procedure was called multiple times at the same time, the different

11

executions of the body would not operate on the same set of local variables. The names
of the variables would be the same, but they would be different instances.
As procedure calls are introduced to software verification, complications arise. One is
the aforementioned handling of different variable instances, but problems emerge with
abstract states and their covering relation as well. An approach to handle these problems
is introduced in the following.

2.3.4.2 Extensions to Model Checking

Procedures introduce procedure calls as a valid operation on CFA transitions, therefore
they need to be handled during verification. This calls for slight changes in how the model
checking algorithm works and what information abstract states store. In the following,
I describe adjustments that can be used to support procedures and procedure calls in
CEGAR.

Location stack

With procedures, the input of the model checking algorithm is no longer a single CFA, but
several Control Flow Automata (CFAs). The bridges connecting these CFAs are procedure
calls: after a procedure call, execution carries on from the initial location of the called
procedure’s CFA. Calling is just one part of the task, though; the continued execution
from the calling location, as the final location of the procedure’s CFA is reached, also
needs to be ensured. To mimic these properties of procedures during model checking, a
location stack is used, similar to the call stack that is employed in programs.
A location stack P stores all locations from where procedure calls were made to reach the
current location lP . The current location lP is always on the top of the stack. At the
beginning, the stack stores the location that represents the entry point of the program.
Afterwards, the stack is modified in the following three situations:

• With every transition in the CFA, the top location of the stack is replaced with the
target of the transition. This guarantees that the current location is always on the
top of the stack.

• Additionally, if a procedure call is present on the transition, the called procedure’s
initial location is pushed (placed on top) of the stack.

• If a final location of a procedure is reached, the top location is popped (removed)
from the stack.

With these rules, it is ensured the desired properties of procedures are kept, as well as
that the top location of the stack is always the current location. The only thing missing
is the assignment of variables, which is discussed later in this section.
The introduction of location stacks means that a concrete state of a CFA is no longer
defined by the values of its variables and the location. Instead of the location, the location
stack is what can accurately represent a concrete state of a CFA, because it also stores
the procedure calls (and the CFAs) through which the current location was reached.
This change also impacts abstract states. Previously, if two states of a CFA had the same
location, then the difference between them could only be the evaluations of the variables
present in the CFA. The addition of location stacks causes that to no longer be true since

12

a location can be reached through different procedure calls. Therefore, an abstract state
also needs to be extended with a location stack. An abstract state can only represent
concrete states with the same location stack as the abstract state.
The expand operation on abstract states needs adjustment as well. When an abstract
state with the location stack P is expanded, a transition is created towards all abstract
states that can be reached using an outgoing transition from lP , the top location of P .
The covering relation between abstract states also needs to be revised. If an abstract
state S1 = (PS1 , Li, ..., Lj) has not yet been expanded, and another abstract state S2 =
(PS2 , Lk, ..., Ll) exists for which l1i = l2i , l1i ∈ PS1 , l2i ∈ PS2 , 1 ≤ i ≤ max{|PS1 |, |PS2 |}
and (Li, ..., Lj) =⇒ (Lk, ..., Ll), then S2 covers S1. This means that an abstract state
can only cover another one if all locations in their locations stacks are equal.

Variable instances

Another desired property of procedures is their template-like behaviour, that is, new
instances of their variables are created with every procedure call. One approach would be
to copy the local variables uniquely with every procedure call.
However, the variables cannot be replaced on the CFA’s transitions because there is only
one CFA per procedure. Therefore an instance mapping is required, which associates a
local variable with its uniquely copied version (instance). Note the use of local variables:
global variables and output parameters do not need to be instantiated because, in the first
case, there is just the single instance of them; in the second case their value can only be
used in the next assignment anyway, so there is no point in managing separate versions
of them. Using the mapping, local variables can be replaced by their mapped instances
during verification when expressions are evaluated.
By default, instance mappings need to be created every time a procedure is called. How-
ever, due to the nature of CEGAR, previously instantiated versions of variables need to be
accessible sometimes. This can happen, when the refiner creates a refined precision, and
a new iteration of expansion starts. The refined precision contains information about pre-
viously created instances of variables that are used in comparison with the same variable
versions’ evaluations in the new iteration. One solution is to store the instance mappings
associated with location stacks. This way, instances can be reused in procedures called
from the same location stack, and the refined precision can be utilized.
To summarize, when a procedure is encountered during verification, the association of
location stacks and instance mappings is checked. If an instance mapping exists for the
location stack of the current state, then that mapping is used; if not, a new one is created
with unique copies of the called procedure’s local variables. This way, it is ensured that
variables on a CFA transition can be replaced with their correct instances at any point
during verification with CEGAR.

Parameter assignments

The last defined property of procedures that remains unaccounted for is parameters and
their assignments. To address this, additional transitions can be created in the CFAs,
with the assignments of parameters on them. Caution needs to be taken around which
CFA to add these transitions to, and which version of variables to use.

13

Let F1 = (I1, O1, body1) be the outer procedure, F2 = (I2, O2, body2) be the called proce-
dures, and let C = (F2, P, R) be a procedure call on a transition between locations li and
lj in body1.
The output parameters of F2 will be used by variables in F1, for this reason it makes sense
to assign them in body1 after the procedure call. This can be done by the following:

1. A new location lk is created.

2. The transition with the procedure call is moved so that it goes from li to lk.

3. A new transition is created from lk to lj , with the assignments output parameters
ri = vi, vi ∈ O2, ri ∈ R, 1 ≤ i ≤ |O2| as an operation.

Since output parameters do not have versions (because their value is only used right after
the procedure call), no further effort is needed to have their correct versions present in the
outer procedure.
The input expressions are used by variables in F2, therefore it makes sense to assign them
in body2, before the initial location. Unlike output parameters, input parameters do have
versions, therefore additional care needs to be taken with their assignments. For each
procedure call C with unique input expressions, the following needs to be done:

1. Each local variable of F1 used in the input expressions pi ∈ P, 1 ≤ i ≤ |P | is replaced
with a prime version of itself (e.g. v → v′).

2. A new initial parameter location lC is created.

3. A new transition is created from lC to the initial location in F2, with the assignments
of input parameters vi = pi, vi ∈ I2, pi ∈ P, 1 ≤ i ≤ |I2| as an operation, using the
modified input expressions.

A mapping of the procedure calls associated with their freshly created lC can be used
during verification, to push the correct lC on top of the location stack whenever a procedure
call is encountered. During such an encounter, the marked versions of variables mapped to
the instances of their original counterparts in F1 also need to be passed onto the instance
map of F2, to allow the assignment of the outer procedure’s local variables.

14

Chapter 3

Related work

This chapter covers state-of-the-art Constrained Horn Clause solvers that participate in
the annual CHC solving competition, CHC-COMP1. The transformation described in
Section 4.2 focuses on linear CHCs. Therefore the techniques used by the top solvers of
the linear tracks of CHC-COMP21 [13] are described. First, the best-performing approach
is introduced. Then, the second- and third-best approaches are presented, which share
characteristics with the approach proposed in this work.

3.1 Bounded Exploration

Bounded methods in transition systems are iterative procedures that explore the state
space to a certain number of steps in each iteration to check whether a property in question
holds. A version of this algorithm that works with SMT problems with CHCs is Spacer
[15] which is used by the prevalent SMT solver, z3 [9].
Spacer works by iteratively looking for a bounded deduction of ⊥. Each time the algo-
rithm fails to find a deduction of a fixed bound N , the reasons for failure are analyzed to
derive consequences of the CHCs that explain why a deduction of ⊥ must have at least
N + 1 steps. This process is repeated until either ⊥ is deduced, meaning the problem is
unsatisfiable, or the consequences can be used to give satisfying definitions of the unin-
terpreted functions, making the problem satisfiable. Though this process may continue
indefinitely, Spacer always makes progress by ruling out the possibility of increasingly
longer refutations.
Spacer is used in z3 by software verification tools for low-level languages, such as Seahorn
[16] for C and RustHorn [22] for Rust.

3.2 Counterexample-Guided Abstraction Refinement

Counterexample-Guided Abstraction Refinement (CEGAR) is a powerful model checking
technique. The CHC solver Eldarica [19] uses a variant of CEGAR, in combination with
predicate abstraction, to check the satisfiability of Horn clauses. It uses princess [23] as
an underlying solver responsible for checking the feasibility of counterexamples.
Eldarica constructs an ARG that is built on CHCs, rather than locations of a CFA
like the one described in Section 2.3.2. Nodes represent a set of pairs, consisting of an

1https://chc-comp.github.io

15

https://chc-comp.github.io

uninterpreted function of the CHC problem and a set of interpreted formulae on the
parameters of the uninterpreted function. The edges of the ARG correspond to the CHCs
themselves. The construction continues until there are no more CHCs that can be applied
to introduce new nodes to the graph, at which point the ARG is fully constructed, and
the CHC is satisfiable. On the other hand, if a query CHC can be successfully applied, a
deduction of ⊥ is found, and a counterexample is generated. In this case, the abstraction
is refined, and the CEGAR loop continues.
Eldarica verifies C programs by converting them into CHCs [11]. The tool is also
available in CoCoSim [6], an analysis and code generation framework for Simulink, a
software widely used in the software development of embedded systems.

3.3 Transformation to Software Verification Problem

Transforming a problem to another domain opens up the possibility of using the new
domain’s algorithms and techniques to solve the original problem. This approach is used
by Unihorn, a yet unpublished part of the Ultimate program analysis framework2 that
was submitted to CHC-COMP21. The tool converts the CHC problem into Boogie [1]
program code, by which the problem of satisfiability is turned into a question of location
reachability. The latter is then checked by another part of the framework, the software
verification tool Ultimate Automizer [18]. The transformation is done with a top-down or
backward approach, meaning verification starts at ⊥, and exploration is done towards the
facts in the CHC problem.
Unihorn creates a program with procedures representing the uninterpreted functions of
the CHC problem. The body of each procedure contains the interpreted parts of CHCs that
have the uninterpreted function corresponding to the procedure as their heads, in assert
statements. After the assertions, procedure calls are made to the procedures representing
the uninterpreted functions in the body of the CHC. The generated procedures return when
their corresponding uninterpreted function is deducible. If all procedure calls return, an
assert false statement at the entry point of the program denotes the unsafe property
of the program, thereby the unsatisfiability of the CHC problem. An adaptation of the
above transformation to Control Flow Automata instead of Boogie programs is described
in detail in Section 4.3.

2https://monteverdi.informatik.uni-freiburg.de/tomcat/Website/

16

https://monteverdi.informatik.uni-freiburg.de/tomcat/Website/

Chapter 4

Transformation of Constrained
Horn Clauses to Control Flow
Automata

In this chapter, two approaches of CHC to CFA transformations are described. The
first forward transformation is my main contribution in this paper. The second backward
transformation is my adaptation of a similar transformation used by Unihorn at CHC-
COMP21 [13]. In the following, an overview of both transformations is presented, then
each transformation is described in detail.

4.1 Overview of the Transformation

The goal of this transformation is to create a CFA from a linear CHC in a way that
turns the SMT problem of satisfiability in a CHC into a software verification question of
erroneous state reachability in the CFA, so that model checking techniques can be used
to decide both. More specifically, an erroneous state in a CFA should be reachable if, and
only if the CHC is unsatisfiable. In this case, a refutation of the satisfiability should be
given; otherwise a satisfying model ought to be generated. The approach is summarized
in Figure 4.1.
The transformation consists of two parts: the mapping of CHCs to CFAs, and the gener-
ation of a model/refutation from the output of model checking. These are represented in
Figure 4.1 by the boxes CHC to CFA transformation and Proof transformation, respec-
tively, and are not to be confused with forward and backward transformations described
later on. As seen in the figure, proof transformation requires the utilized model checking
algorithm to provide a counterexample when the CFA is deemed unsafe, and to produce
an ARG when the CFA is safe.
The main idea behind the CHC to CFA transformation is to represent the uninterpreted
functions as locations in the CFA, map CHCs to edges guarded by the conditions in the
CHC, and use local variables to model the implications of deductions. The deducibility of a
predicate with certain parameters can then be represented by the corresponding location’s
reachability during verification, with the given parameters as the variables’ values. The
source of the edges of fact CHCs can be the initial location of a CFA, since these do not
have any preconditional predicates in their bodies. The target of the edge of a query CHC
can then be an error location, which can only be reached if the conditions on an incoming

17

Figure 4.1: Overview of the presented work.

edge are satisfied, similarly to how ⊥ is deduced. If the error location can be reached from
the initial location, then the counterexample contains the path of edges to it, which can
then be mapped to their CHCs to show a sequence of CHCs that deduce ⊥ from facts.
On the other hand, if the error location is unreachable, then the explored abstract states
can be used to define the uninterpreted functions to provide a satisfying model.
One way of approaching the problem of CHC satisfiability is to start with the facts, and
try to apply the induction and query CHCs to deduce ⊥. This is called the forward or
bottom-up approach, which is what my main contribution, the forward transformation in
Section 4.2 employs. Another approach is to recursively check what would be required to
satisfy the body of the query CHC, stopping only when all requirements are satisfied by
facts. This is often referred to as the backward or top-down approach, and is used by Uni-
horn to transform CHCs into program code. The backward transformation in Section 4.3
is an adaptation of this, made to work with CFAs and CEGAR.
An example CHC problem will be used throughout the chapter to demonstrate the trans-
formations.

Example 5. Consider the following CHC problem within integer arithmetic:

A(n)← n > 0 ∧ n < 100 (4.1)
B(n, x)← A(n) ∧ x > 0 (4.2)
C(y, x)← B(n, x) ∧ y = n− x ∧ y > 0 (4.3)

A(n)← C(y, x) ∧ n = y + (y mod x) (4.4)
⊥ ← A(n) ∧ n ≥ 100 (4.5)

The fact states that A(n) needs to evaluate to true for 0 < n < 100, while the satisfiability
of the query depends on A(n) being false for n ≥ 100 and n ≤ 0. What makes this problem
non-trivial is the cyclic deductions between the predicates A, B and C: B can be deduced

18

from A, C can be deduced from B, and A can be deduced from C under certain conditions.
Trying the deduction approach from Example 3 becomes a bit cumbersome here, due to
the possibility of an infinite deduction cycle and the high number of combinations possible
between the variables’ values. As a matter of fact, z3, the prevalent SMT solver with
dedicated CHC solving algorithm [15] can not solve this CHC.

One may notice that n can not increase in the cycle since no matter what the subtracted x
is, it will always be larger than the y mod x that is added to n in a cycle. In the following,
it will be shown that the problem is indeed satisfiable, by transforming it into a software
verification problem and synthesizing a satisfying model from its proof.

4.2 Forward Transformation

The forward transformation creates a CFA from a linear CHC by mapping the uninter-
preted functions directly to locations, and converting the CHCs to edges between these
locations. A key property of this transformation is to have the reachability of a location
with certain values correspond to the deducibility of the predicate with said values as
parameters. If a predicate is deducible with some input parameters, then the location
should be reachable with certain variables taking up the values of the input parameters.
On the contrary, when a predicate is not deducible with some input parameters, then the
location should be unreachable with certain variables taking up the values of the input
parameters.
The CFA is created in a way that the verification of it resembles a forward or bottom-
up approach: verification starts from the locations corresponding to the fact CHCs, and
the question is whether a feasible path can be found to the CHC query’s location, the
error location. If it can be reached, a refutation can be generated from the path to it,
thanks to the direct mapping between predicates and locations. On the other hand, if the
error location can not be reached, the nodes of the built ARG can be used to define the
predicates by mapping the explored states in each location to true in the corresponding
uninterpreted function.
First, the transformation from CHCs to CFA is introduced, then the proof transformation
is described.

4.2.1 Constrained Horn Clause Transformation

The transformation first creates the locations and variables of the CFA, then maps the
CHCs to edges in different ways for fact, induction and query CHCs.
Consider the linear CHC problem with CHC set {C1, C2, . . . , Ck} over uninterpreted
functions B1(b1

1, b1
2, . . . , b1

m1), B2(b2
1, b2

2, . . . , b2
m2), . . . , Bn(bn

1 , bn
2 , . . . , bn

mn
), that is each CHC

Cl,∀l ∈ {1, 2, . . . , k} takes one of the following three forms for some i, j ∈ {1, 2, . . . , k}:

Bi(x1, x2, . . . , xmi)← φl,

Bi(x1, x2, . . . , xmi)← Bj(y1, y2, . . . , ymj) ∧ φl,

⊥ ← Bj(y1, y2, . . . , ymj) ∧ φl,

19

where φl is the interpreted formula in the body of Cl. As before, CHCs in these forms are
referred to as facts, inductions and queries, respectively.

Step 1. Create CFA locations and variables
The uninterpreted functions B1(b1

1, b1
2, . . . , b1

m1), B2(b2
1, b2

2, . . . , b2
m2), . . . , Bn(bn

1 , bn
2 , . . . , bn

mn
)

are mapped to the CFA = (V, L, lInit, E), where:

• V = {bi
j | ∀i ∈ {1, 2, . . . , n} : ∀j ∈ {1, 2, . . . , mi}},

• L = {lInit, lErr, l1, l2, . . . , ln},

• lInit,

• E = ∅.

Semantically, a new location is created for each uninterpreted function, along with an
initial location lInit and a distinguished error location lErr. In addition, a unique variable
is created for each parameter in every predicate. It is worth noting that the edge set is
empty at this point, because edges are added in the next step of the transformation.

The motivation behind creating a location and variables for every uninterpreted func-
tion is that this way, a location’s reachability with certain variable values can be directly
mapped to the predicate’s evaluation with said variable values as parameters: if a lo-
cation li representing Ci is reachable with some values for variables bi

1, bi
2, . . . , bi

mi
, then

Ci(bi
1, bi

2, . . . , bi
mi

) should evaluate to true. On the other hand, if li can not be reached
with variables bi

1, bi
2, . . . , bi

mi
, then Ci(bi

1, bi
2, . . . , bi

mi
) ought to evaluate to false.

Example 6. From Example 5, the first step of the forward transformation would create
the CFA = (V, L, lInit,∅), with the locations L = {lInit, lErr, lA, lB, lC} and variables
V = {a1, b1, b2, c1, c2}. The CFA can be seen in Figure 4.2 as a graph of isolated nodes,
which will be connected in later steps.

Figure 4.2: CFA after Step 1 of forward transformation.

20

Step 2. Create CFA edges
In this step, each CHC is transformed into an edge in the CFA created in Step 1. Each
kind of CHC (fact, induction, query) is treated differently, as described in the following
sections. The goal of this mapping is for the transition on the edge to only be possible,
when the head of the CHC is deducible from the body of it.

Step 2/a. Create fact edges
For each fact CHC Cl : Bi(x1, x2, . . . , xmi)← φl where i ∈ {1, 2, . . . , n}, an edge is created
from the initial location lInit to li, the location representing Bi. The labels on the created
edge consist of the following, in the specified order:

• φl, the interpreted formula in the CHC’s body as a guard,

• bi
1 = x1, bi

2 = x2, . . . , bi
mi

= xmi , assignment of the passed values to the variables
corresponding to the input parameters.

Fact CHCs are named facts because they can be deduced just from the background theory
⊤, when the interpreted formula φl is true. The created edge from the initial location
mimics this, since the target of an edge will be reachable from the initial location when
the guard φ is true.

To put it more formally, the head of a fact CHC Bi(x1, x2, . . . , xmi) is only deducible when
its body, the interpreted formula φl is true. Similarly, the location li is only reachable from
the initial location lInit of the CFA using the created edge, when its guard φl evaluates to
true. Furthermore, the parameters x1, x2, . . . , xmi are assigned to bi

1, bi
2, . . . , bi

mi
, meaning

that the constraints of φl on the parameters are applied to the variables related to the
location, just as they are applied when deducing Bi(x1, x2, . . . , xmi). Thus, we can con-
clude that li is only reachable using the created edge with variables bi

1, bi
2, . . . , bi

mi
valued

x1, x2, . . . , xmi , when Bi(x1, x2, . . . , xmi) is deducible using Cl.

Example 7. In Example 5, the second step of the forward transformation for fact CHCs
would create the edge e = (lInit, op, lA) from Equation 4.1, where the guard of op would be
n > 0 ∧ n < 100, and the assignments would consist of a1 = n, since a1 is the variable
corresponding to the first (and only) parameter of the predicate A. The CFA can be seen
in Figure 4.3 as a graph, with the newly created edge and its label.

Step 2/b. Create induction edges
For each induction CHC Cl : Bi(x1, x2, . . . , xmi) ← Bj(y1, y2, . . . , ymj) ∧ φl where i, j ∈
{1, 2, . . . , n}, an edge is created from lj (the location representing Bj) to li (the location
representing Bi). The labels on the created edge consist of the following, in the specified
order:

• y1 = bj
1, y2 = bj

2, . . . , ymj = bj
mj

, assignment of the variables corresponding to the
input parameters of Bj to the passed values,

• φl, the interpreted formula in the CHC’s body as a guard,

• bi
1 = x1, bi

2 = x2, . . . , bi
mi

= xmi , assignment of the passed values to the variables
corresponding to the input parameters of Bi.

21

Figure 4.3: CFA after Step 2/a of forward transformation.

In addition to the first assignments, x1, x2, . . . , xmi and all variables in φl need to be
uninitialized with a havoc statement to ensure that the semantics of ∀ in the CHCs are
kept. However, the havoc statements are omitted from the examples for ease of readability.
Induction CHCs embody deductions from their bodies to their heads with some conditions
φl. Assuming that lj could have only been reached if it is deducible with some parameters,
then this edge resembles the same: one can only go to li from lj , when φl is true.

More formally, the head of an induction CHC Bi(x1, x2, . . . , xmi) is only deducible, when
both Bj(y1, y2, . . . , ymj) is deducible, and φl is true. Similarly, the location li can only
be reached from lj once lj has been reached and the guard φl evaluates to true. Fur-
thermore, the variables bj

1, bj
2, . . . , bj

mj
are assigned to y1, y2, . . . , ymj and the parameters

x1, x2, . . . , xmi are assigned to bi
1, bi

2, . . . , bi
mi

, meaning that the constraints of φl are applied
to the y parameters and the bi variables related to the location li, just as they are applied
when deducing Bi(x1, x2, . . . , xmi) from Bj(y1, y2, . . . , ymj). Thus, we can conclude that li
is only reachable using the created edge with variables bi

1, bi
2, . . . , bi

mi
valued x1, x2, . . . , xmi

from lj with variables bj
1, bj

2, . . . , bj
mj

valued y1, y2, . . . , ymj , when Bi(x1, x2, . . . , xmi) is de-
ducible from Bj(y1, y2, . . . , ymj) using Cl.

Example 8. From Example 5, the second step of the forward transformation for induction
CHCs would create three edges from Equation 4.2, 4.3 and 4.4:

• e1 = (lA, op1, lB) for B(n, x) ← A(n) ∧ x > 0, where op1 consists of the assignment
n = a1, then the guard x > 0, and the assignments b1 = n, b2 = x at last,

• e2 = (lB, op2, lC) for C(y, x)← B(n, x)∧y = n−x∧y > 0, where op2 consists of the
assignments n = b1, x = b2, then the guard y = n− x ∧ y > 0, and the assignments
c1 = y, c2 = x at last,

• e3 = (lC , op3, lA) for A(n)← C(y, x) ∧ n = y + (y mod x), where op3 consists of the
assignments y = c1, x = c2, then the guard n = y + (y mod x), and the assignment
a1 = n at last.

22

The resulting CFA can be seen in Figure 4.4 as a graph, with the newly created edges and
their labels.

Figure 4.4: CFA after Step 2/b of forward transformation.

It is worth noting that the order of instructions is important: the assignments from the
source location’s variables need to happen before φl is evaluated.

Step 2/c. Create query edges
For each query CHC Cl : ⊥ ← Bj(y1, y2, . . . , ymj) ∧ φl where j ∈ {1, 2, . . . , n} an edge is
created to the error location lErr from lj , the location representing Bj . The labels on the
created edge consist of the following, in the specified order:

• y1 = bj
1, y2 = bj

2, . . . , ymj = bj
mj

, assignment of the variables corresponding to the
input parameters to the passed values,

• φl, the interpreted formula in the CHC’s body as a guard.

The bodies of CHC queries should not be deducible, otherwise ⊥ can be deduced and
the problem is unsatisfiable. This is behaviour is captured by the created edge: if the
edge’s source is reachable with values that make the guard of the edge true, then the error
location is reachable, making the program unsafe.

In a formal way, the head of the query CHC ⊥ is only deducible when both
Bj(y1, y2, . . . , ymj) is deducible, and φl is true. Similarly, the error location lErr can
only be reached from lj once lj has been reached and the guard φl evaluates to true.
Furthermore, the variables bj

1, bj
2, . . . , bj

mj
are assigned to y1, y2, . . . , ymj , meaning that the

constraints of φl are applied to the y parameters, just as they are applied when deduc-
ing ⊥ from Bj(y1, y2, . . . , ymj). Thus, we can conclude that lErr is only reachable using
the created edge from lj with variables bj

1, bj
2, . . . , bj

mj
valued y1, y2, . . . , ymj , when ⊥ is

deducible from Bj(y1, y2, . . . , ymj) using Cl.

Example 9. In Example 5, the second step of the forward transformation for query CHCs
would create the edge e = (lA, op, lErr) from Equation 4.5, where op would consist of the

23

Figure 4.5: CFA after Step 2/c of forward transformation.

assignment n = a1 and the guard n ≥ 100. The CFA can be seen in Figure 4.5 as a graph,
with the newly created edge and its label.

To summarize, first a location li and variables bi
1, bi

2, . . . , bi
mi

are created for each uninter-
preted function Bi(bi

1, bi
2, . . . , bi

mi
), then all CHCs are transformed into edges. Since the

edges are created in a way that li can only be reached with the corresponding variables
bi

1, bi
2, . . . , bi

mi
valued x1, x2, . . . , xmi if, and only if Bi(x1, x2, . . . , xmi) can be deduced, we

can conclude that the described transformation successfully converts the problem of sat-
isfiability into a question of error location reachability. Thus, using a model checker to
decide the latter will yield a result for the former as well: if the CFA is unsafe, the CHC
problem is unsatisfiable; if the CFA is safe, the CHC problem is satisfiable.
It is worth to consider what the transformation results in, when there is no fact or query
CHC in the set of CHCs. In the former case, there will not be any outgoing edges from the
initial location of the CFA. As a result, none of the locations will be reachable, meaning
the predicates need not be true for any input. This can be expressed as Bi ≡ false, ∀i ∈
{1, 2, . . . , n}, which is the same result as the one we got in Section 2.2.1, when discussing
the same topic.
In the latter case, there will not be any edges going to the error location of the CFA. As a
result, all locations are reachable in the abstract state ⊤, meaning the predicates can be
true for any input. This can be expressed as Bi ≡ true,∀i ∈ {1, 2, . . . , n}, which is once
again the same result as we got earlier.

Example 10. The fully transformed version of the motivating Example 5 using forward
transformation can be seen in Figure 4.6 as a graph.

4.2.2 Proof Transformation

Proof transformation is the step of converting the result of the model checking algorithm
to an answer to the CHC problem. This consists of two parts, depending on the result: the

24

Figure 4.6: CFA of the motivating Example 5 after forward transformation.

generation of a satisfying model from the ARG built during verification, or the creation
of a refutation from the counterexample provided by the model checking algorithm.

4.2.2.1 Satisfying Model Generation

When a SMT problem is satisfiable, a model can be found that satisfies it. In
the case of a CHC problem, this means the definition of all uninterpreted functions
B1(b1

1, b1
2, . . . , b1

m1), B2(b2
1, b2

2, . . . , b2
m2), . . . , Bn(bn

1 , bn
2 , . . . , bn

mn
) present in the set of CHCs,

that satisfy all of the CHCs.
The transformation described in Section 4.2.1 ensures that a location li in the CFA can
only be reached with the corresponding variables bi

1, bi
2, . . . , bi

mi
valued x1, x2, . . . , xmi if,

and only if Bi(x1, x2, . . . , xmi) can be deduced. If a node Sj = (li, Lj
1, . . . , Lj

kj
) is present

in the ARG, it means li has been reached under the condition Lj
1∧· · ·∧Lj

kj
. Consequently,

it is guaranteed that Bi can be deducted under the condition Lj
1 ∧ · · · ∧ Lj

kj
. This is true

for all Si = {Sj |Sj = (li, Lj
1, . . . , Lj

kj
)} nodes in the ARG, therefore Bi needs to evaluate

to true under either of their conditions, which can be represented by concatenating them
with ∨. This gives the following the definition for Bi,∀i ∈ {1, 2, . . . , n}:

Bi(bi
1, bi

2, . . . , bi
mi

) =
Si∨

Sj=(li,Lj
1,...,Lj

kj
)

(
Lj

1 ∧ · · · ∧ Lj
kj

)
(4.6)

At the end of verification of a safe CFA, the ARG is fully expanded, i.e., all reachable
abstract states have been visited, and none are in an erroneous location. Furthermore, no
erroneous state can be reached from any of the nodes in the ARG. Therefore the definitions
provided by Equation 4.6 guarantee that there can not be a deduction to ⊥, meaning they
satisfy the CHC problem.
The type of information present in any Lj needs to be taken into consideration when
defining the function. If Lj contains information about any other variable x then the vari-

25

ables bi
1, bi

2, . . . , bi
mi

representing the input parameters of Bi, then unless some information
about a bi is dependent on x (e.g. bi

1 > x), Lj can be left out. If there is a dependent bi,
then x needs to be defined with a universal quantifier inside the function (∀x).

4.2.2.2 Refutation Creation

When a CHC problem is unsatisfiable, a deduction can be found from the facts to ⊥ that
is always valid, regardless of how the uninterpreted functions are defined. The refutation
is then a series of applications of the CHCs in the CHC set that start with a fact CHC
and end with a satisfiable query CHC.
The counterexample provided by the model checker is an alternating sequence of concrete
states of the CFA and edges. It starts at the initial location CFA with some values
assigned to the variables and ends in the error location. The transformation described in
Section 4.2.1 ensures that a location li in the CFA can only be reached with the related
variables bi

1, bi
2, . . . , bi

mi
valued x1, x2, . . . , xmi if, and only if Bi(x1, x2, . . . , xmi) can be

deduced. Consequently, all predicates corresponding to the locations of the concrete states
in the counterexample are deducible, with the valuations present in the concrete states as
parameters. The transformation also creates a one-to-one mapping of CHCs and edges.
Thus, mapping the edges in the counterexample back to their CHCs, with the values of
variables in the concrete states substituted as parameters, amounts to a valid refutation
of the CHC problem’s satisfiability.

Example 11. Since the motivating Example 5 is satisfiable, consider a modified version
of it, in which the only fact is replaced with A(n) ← n > 0 ∧ n ≤ 100. The forward
generated CFA would be similar to the one in Figure 4.6, with the exception of the edge
going from lInit to lA having n ≤ 100 instead of n < 100 in its guard.

The model checking algorithm would return the following counterexample, with the irrele-
vant variable values omitted:

(lInit, n = 100)
(lInit, ([n > 0, n ≤ 100], a1 = n), lA)
(lA, n = 100, a1 = 100)
(lA, (n = a1, [n >= 100]), lErr)
(lErr, n = 100, a1 = 100)

This could be mapped to the refutation below:

A(n)← (n > 0 ∧ n <= 100) ∧ n = 100
⊥ ← (A(n) ∧ n ≥ 100) ∧ n = 100

Since all variables have values assigned to them, it is trivial to check that this is indeed
unsatisfiable.

26

4.3 Backward Transformation

The backward transformation creates a CFA from a CHC by mapping the uninterpreted
functions to procedures in the CFA, and converting the CHCs to procedure calls. In this
approach, the reachability of a location in a procedure with certain values corresponds to
the necessity of the deducibility of the predicate with said values as parameters, in order
for the CHC problem to be unsatisfiable. The deducibility of a predicate with certain
parameters is represented by the return value of a procedure call with said parameters, to
the procedure resembling the predicate.
The creation of the CFA in this transformation is done with a backward or top-down
approach: verification starts at the procedure corresponding to a query CHC, and the
question is whether the procedure call to the procedure representing the predicate in the
body of the query CHC, and all recursive procedure calls to procedures representing the
predicates in the bodies of other CHCs, all return true by reaching a fact CHC branch of a
procedure that has no further procedure calls. If the call to the procedure representing the
predicate in the query CHC’s body eventually returns, then an error location is reached
and a refutation to the satisfiability of the CHC problem can be generated using the
mapping between procedure calls and CHCs. On the other hand, if the initial procedure
call never returns, the nodes of the built ARG can be used to define the predicates by
mapping explored states in each procedure to false in the corresponding uninterpreted
function.
The presented transformation is an adaptation of a transformation used in the Unihorn
tool that transforms CHC problems into Boogie [1] code. My contribution in this section
is the adaptation of the transformation used in Unihorn to CFAs.

4.3.1 Constrained Horn Clause Transformation

The transformation first creates the procedure CFAs, then maps the CHCs to edges.
Consider the linear CHC problem with CHC set {C1, C2, . . . , Ck} over uninterpreted
functions B1(b1

1, b1
2, . . . , b1

m1), B2(b2
1, b2

2, . . . , b2
m2), . . . , Bn(bn

1 , bn
2 , . . . , bn

mn
), that is each CHC

Cl,∀l ∈ {1, 2, . . . , k} takes one of the following three forms for some i, j ∈ {1, 2, . . . , k}:

Bi(x1, x2, . . . , xmi)← φl,

Bi(x1, x2, . . . , xmi)← Bj(y1, y2, . . . , ymj) ∧ φl,

⊥ ← Bj(y1, y2, . . . , ymj) ∧ φl,

where φl is the interpreted formula in the body of Cl. As before, CHCs in these forms are
referred to as facts, inductions and queries, respectively. One constraint of this transfor-
mation is the limitation of the number of query CHCs to exactly 1. This is without loss of
genericity, however, since queries do not depend on each other, meaning a transformation
could be run for each query. If any of them came out to be unsatisfiable, then the problem
would also be unsatisfiable; otherwise, it would be satisfiable.

Step 1. Create procedure CFAs
The uninterpreted functions B1(b1

1, b1
2, . . . , b1

m1), B2(b2
1, b2

2, . . . , b2
m2), . . . , Bn(bn

1 , bn
2 , . . . , bn

mn
)

are mapped to a procedure Pi(Ii, {ri}, bodyi) with CFA CFAi = (Vi, Li, liInit, Ei), ∀i ∈
{1, 2, . . . , n}, where:

27

• Ii = {bi
1, bi

2, . . . , bi
mi
},

• bodyi is empty,

• Vi = {bi
1, bi

2, . . . , bi
mi
},

• Li = {liInit, liF inal},

• liInit,

• Ei = ∅.

Semantically, a procedure and a CFA is created for each predicate, along with an initial
location lInit and a final location lF inal. In addition, a unique variable is created for each
parameter in every predicate. It is worth noting that the edge set and the body is empty
at this point because edges are added in a later step of the transformation.

Procedures are much closer to predicates in nature than locations. They have parame-
ters, therefore the assignment of the passed parameters and return values will be handled
automatically.

Step 2. Create main CFA
The single query in the CHC problem ⊥ ← Bj(y1, y2, . . . , ymj) ∧ φl with procedure Pj =
Ij , {rj}, bodyj corresponding to Bj is transferred into CFAmain = (∅, L, lInit, E), where:

• L = {lInit, lErr, l1},

• E = {(lInit, ([φl], call C), l1), (l1, [rj], lErr)}

• C = (Pj , {y1, y2, . . . , ymj}, {rj}).

Semantically, a CFA is created with initial location lInit, a distinguished error location
lErr and a middle location l1. The edge going from lInit to l1 is guarded by φl, and calls
the procedure Pj with its return value stored in rj , representing the need for Bj to be
deducible with the conditions φl. Another edge is created from l1 to lErr guarded by rj ,
which encodes that if Bj can indeed be deduced with conditions φl, then the error location
can be reached, meaning ⊥ can be deduced.

Step 3. Create procedure CFA edges
In this step, each fact and query CHC is transformed into some edges and locations in the
CFAs created in Step 1. The two kinds of CHC are treated differently, as described in the
following.
In order to make the transformation sound, the aforementioned CHCs need to be trans-
formed in a way that the procedures representing their heads can only return true with
their bodies’ constraints, if they can be deduced. This is achieved by creating disjunct
paths from the initial location to the final location of the CFAs, with appropriate labels.

Step 3/a. Create induction edges
For each induction CHC Cl : Bi(x1, x2, . . . , xmi) ← Bj(y1, y2, . . . , ymj) ∧ φl where
i ∈ {1, 2, . . . , n}, the following are added to CFAi = (Vi, Li, liInit, Ei) of the procedure
Pi(bi

1, bi
2, . . . , bi

mi
, ri, bodyi) to get CFA′

i = (V ′
i , L′

i, liInit, E′
i):

28

• V ′
i = Vi ∪ {rl},

• L′
i = Li ∪ {ll},

• E′
i = Ei ∪ {(liInit, ([φl], call C), ll), (ll, ([rl], ri = true), liF inal)},

• C = (Pj , {y1, y2, . . . , ymj}, {rl}).

This step is similar semantically to Step 2, with the second edge going to the final location
liF inal and assigning the return value of the procedure ri. As a result, the procedure
can only return using the created edges if both Bj(y1, y2, . . . , ymj) return true and φl is
true, similarly to how Bi(x1, x2, . . . , xmi) can only be deduced when Bj(y1, y2, . . . , ymj)
is deducible and φl evaluates to true. Thus, Bi(x1, x2, . . . , xmi) can be deduced from
Bj(y1, y2, . . . , ymj) under the conditions φl if, and only if Pi(x1, x2, . . . , xmi) returns true
using the edges created above.

Step 3/b. Create fact edges
For each fact CHC Cl : Bi(x1, x2, . . . , xmi) ← φl where i ∈ {1, 2, . . . , n}, the CFAi =
(Vi, Li, liInit, Ei) of the procedure Pi(bi

1, bi
2, . . . , bi

mi
, ri, bodyi) is extended with the edge

(liInit, ([φl], ri = true), liF inal).
The head of a fact CHC can be deduced when φl is true. Similarly, the procedure Pi will
only return true using the created edge when the guard φl evaluates to true. Consequently
Bi(x1, x2, . . . , xmi) can be deduced using Cl if, and only if Pi(x1, x2, . . . , xmi) returns true
using the edge created above.

To summarize, first, a procedure Pi and a CFAi is created for each uninterpreted function
Bi, then a CFAmain is created from the query, and finally, all CHCs are mapped to edges
in the procedures’ CFAs. The edges are created in a way that Pi(x1, x2, . . . , xmi) returns
true using the path created for a CHC if, and only if Bi(x1, x2, . . . , xmi) can be deduced
by said CHC, therefore we can conclude that the described transformation successfully
converts the problem of satisfiability into a question of error reachability. Thus, using a
model checker to decide the latter will yield a result for the former as well: if the CFAs
are unsafe, the CHC problem is unsatisfiable; if the CFAs are safe, the CHC problem is
satisfiable.
It is worth noting that in the case of linear CHCs, if any of the procedures reaches its
final location, it will trigger a return chain all the way back to CFAmain, making the error
location reachable. Consequently, the CFAs can only be safe if none of the procedures can
return by going through a path corresponding to a fact.

Example 12. From Example 5, the backward transformation creates the procedures A =
({a1}, {rA}, bodyA), B = ({b1, b2}, {rB}, bodyB) and C = ({c1, c2}, {rC}, bodyC) where the
bodies can be seen as the CFAs’ paths in Figure 4.7. Procedures calls are denoted with a
more conventional notation for simplicity, where rA = A(n) represents call (A, a1, rA).
The CHCs are represented by the following edges (noted with ⇔):

29

A(n)← n > 0 ∧ n < 100⇔ (lAInit, ([a1 > 0 ∧ a1 < 100], rA = true), lAF inal)
B(n, x)← A(n) ∧ x > 0⇔ (lBInit, ([b2 > 0], rA = A(b1)), lB)

C(y, x)← B(n, x) ∧ y = n− x ∧ y > 0⇔ (lCInit, ([c1 = n− c2 ∧ c1 > 0], rB = B(n, c1)), lC)
A(n)← C(y, x) ∧ n = y + (y mod x)⇔ (lAInit, ([a1 = y + (y mod x)], rC = C(y, x)), lA)

⊥ ← A(n) ∧ n ≥ 100⇔ (lInit, ([n ≥ 100], rA = A(n)), l1)

Figure 4.7: CFAs of the motivating Example 5 after backward transformation.

One advantage of this approach over forward transformation is that it also works for non-
linear CHCs, because additional calls and guards can be added to the already existing ones.
A great disadvantage of it, however, is that it can easily get stuck in infinite recursive calls
during verification if a recursive induction exists that does not narrow down the possible
values of the parameters.

4.3.2 Proof Transformation

Proof transformation is the step of converting the result of the model checking algorithm
to an answer to the CHC problem. This consists of two parts, depending on the result: the
generation of a satisfying model from the ARG built during verification, or the creation
of a refutation from the counterexample provided by the model checking algorithm.

4.3.2.1 Satisfying Model Generation

When a SMT problem is satisfiable, a model can be found that satisfies it. In
the case of a CHC problem, this means the definition of all uninterpreted functions
B1(b1

1, b1
2, . . . , b1

m1), B2(b2
1, b2

2, . . . , b2
m2), . . . , Bn(bn

1 , bn
2 , . . . , bn

mn
) present in the set of CHCs,

that satisfy all of the CHCs.

30

The transformation described in Section 4.3.1 ensures that a procedure call
Pi(x1, x2, . . . , xmi) returns true if, and only if Bi(x1, x2, . . . , xmi) can be deduced, which
in the case of a safe program is not the case for any of the procedures. Given a loca-
tion li in the CFA of Pi, if a node Sj = (li, Lj

1, . . . , Lj
kj

) is present in the ARG, it means
li has been reached under the condition Lj

1 ∧ · · · ∧ Lj
kj

, and therefore the corresponding
predicate Bi should not return true under the conditions Lj

1 ∧ · · · ∧ Lj
kj

. This is true for
all Si = {Sj |Sj = (li, Lj

1, . . . , Lj
kj

), li ∈ Li, CFAi = (Vi, Li, liInit, Ei)} nodes in the ARG;
thus, Bi needs to evaluate to false under either of their conditions:

Bi(bi
1, bi

2, . . . , bi
mi

) = ¬
Si∨

Sj=(li,Lj
1,...,Lj

kj
)

(
Lj

1 ∧ · · · ∧ Lj
kj

)
(4.7)

At the end of verification of a safe CFA, the ARG is fully expanded, i.e., all reachable
abstract states have been visited, and none are in an erroneous location. Furthermore,
none of the procedures could return in any of the abstract states. Therefore the definitions
provided by Equation 4.7 guarantee that there can not be a deduction to ⊥, meaning they
satisfy the CHC problem.

4.3.2.2 Refutation Creation

When a CHC problem is unsatisfiable, a deduction can be found from the facts to ⊥ that
is always valid, regardless of how the uninterpreted functions are defined. The refutation
is then a series of applications of the CHCs in the CHC set that start with a fact CHC
and end with a satisfiable query CHC.
Refutations can be created similarly to Section 4.2.2.2: the one-on-one mapping between
CHCs and paths in the procedure CFAs can be used to convert the counterexample pro-
vided by the model checker into a series of CHC applications.

31

Chapter 5

Evaluation

In this chapter, a prototype implementation of the transformations described in Chapter 4
are evaluated on a set of CHC problems. First, the benchmark environment is described,
then the benchmark results are presented. Finally, possible improvements and future plans
are discussed.

5.1 Benchmark Setup

A prototype of the CHC to CFA transformations was implemented in the Theta [17], an
open-source formal model checking framework. The transformations are done in a fron-
tend using ANTLR1. The frontend reads the CHC in the format used in CHC-COMP2.
The frontend can be turned on with the –-chc flag, and can be configured to use different
transformations by the –-chc-transformation FORWARD/BACKWARD flag, for forward and
backward transformations, respectively. In its current state, the implementation can only
give an answer of satisfiable or unsatisfiable to a CHC problem; the generation of refuta-
tions and proofs is not yet implemented. Thereby only the correctness of the answer and
the time it took to compute was benchmarked.
The implementation was evaluated on 585 linear CHCs over the background theory of
linear integer arithmetic from the LIA-Lin track of the CHC-COMP21 benchmark reposi-
tory3. The benchmarks used are a careful selection of distributed benchmark repositories,
as described in the CHC-COMP21 competition report. [13] The CHCs originate from
software verification problems and function synthesis tasks, among others.
Theta is a highly configurable framework, therefore many different configurations were
tested. All sensible combinations of the following options were tested:

• CHC transformation: FORWARD, BACKWARD

• domain: EXPL, PRED_CART, PRED_BOOL, PRED_SPLIT

• interpolation: SEQ_ITP, BW_BIN_ITP, NWT_IT_WP, NWT_WP_LV

• predicate split: ATOMS, WHOLE

• solver: z3 [9], mathsat [7] [7], cvc4

1https://www.antlr.org
2https://chc-comp.github.io
3https://github.com/chc-comp/chc-comp21-benchmarks

32

https://www.antlr.org
https://chc-comp.github.io
https://github.com/chc-comp/chc-comp21-benchmarks

The –-chc, –-init-prec empty and –-max-enum 1 flags were used in all tests. The actual
configurations tested are presented along with the results in Section 5.2. For comparison,
the top solvers from CHC-COMP21 on the LIN-Lia track were benchmarked as well in
the same environment, using their default configurations.
The execution of benchmarks was done using the BenchExec framework. [3] The tests
were run on virtual machines equipped with 8 CPU cores and 16 GB of memory, in the
BME-NIIF cloud4. A timeout of 300 seconds was chosen for each benchmark, in order
allow for the wide variety of configurations to be tested within limited time constraints.

5.2 Benchmark Results

The tested configurations only gave correct answers, meaning they either answered cor-
rectly or did not answer within the 5-minute timeout. Therefore, the results are presented
from a perspective of performance. More specifically, the number of solved tasks within
the 5-minute time constraint is shown, along with a quantile plot of the solved tasks with
respect to time passed. The latter chart shows how the number of solved tasks would
change (x axis), had the time limit been set to a certain value (y axis).

5.2.1 Theta Configurations

First, we tested sensible configurations of Theta, as described in Section 5.1, with the
solver being set to z3 in all cases. The number of solved tasks by each configuration can
be seen in Table 5.1.

domain interpolation pred-split transformation
BACKWARD FORWARD

EXPL NWT_IT_WP - 77 138
EXPL NWT_WP_LV - 82 137
EXPL SEQ_ITP - 81 175

PRED_BOOL BW_BIN_ITP WHOLE 110 288
PRED_CART BW_BIN_ITP WHOLE 141 302
PRED_SPLIT SEQ_ITP ATOMS 131 310
PRED_SPLIT SEQ_ITP WHOLE 142 318
PRED_SPLIT BW_BIN_ITP ATOMS 83 291
PRED_SPLIT BW_BIN_ITP WHOLE 114 328

Table 5.1: Number of solved tasks by configuration.

Forward transformation proved to be more effective by far than backward transformation
in all configurations. The configurations using boolean predicate based abstraction with
sub-state splitting (PRED_SPLIT) performed the best, with the other predicate based ab-
straction methods not too far behind. The best overall configuration turned out to be
PRED_SPLIT & BW_BIN_ITP & WHOLE with FORWARD transformation.

5.2.2 Different Underlying Solvers

Under the hood, Theta uses SMT solvers to decide the feasibility of paths in the CFA.
To save on time, only the best configurations of Theta based on our experiments in

4https://niif.cloud.bme.hu

33

https://niif.cloud.bme.hu

Section 5.2.1 were chosen and tried out with different underlying solvers: z3, mathsat and
cvc4. The number of solved tasks by Theta using each solver configuration can be seen
on Table 5.2.

domain pred-split z3 mathsat cvc4
PRED_CART ATOMS 301 239 223
PRED_CART WHOLE 302 236 224
PRED_SPLIT ATOMS 291 238 225
PRED_SPLIT WHOLE 328 254 246

Table 5.2: Number of solved tasks by different solvers.

Theta performed significantly better when it used z3 as its solver. It is important to
note, however, that the integration of mathsat and cvc4 into Theta has not been without
problems due to problems with the SMT-LIB interface [10].

5.2.3 Comparison to Other Tools

Benchmarks were also run with the top solvers from CHC-COMP21 on the LIA-Lin track,
namely z3, Unihorn and Eldarica. These solvers were run using their default configuration,
with the same hardware, time constraints and benchmark framework as Theta. The
number of solved tasks compared to the best-performing configuration of Theta can be
seen on Table 5.3.

Theta z3 Eldarica Unihorn
328 437 337 380

Table 5.3: Number of solved tasks compared to other tools.

Though the best configuration of Theta performs worse than the other solvers, its per-
formance is in the ballpark of the third-best solver, Eldarica. On top of that, a smart
portfolio technique that chooses the best configuration of Theta for each task would
result in 388 solved tasks, which would put Theta in second place based on these results.
A quantile plot of the tools’ performances can be seen on Figure 5.1. The time it took to
solve tasks can be seen on the y axis with a logarithmic scale, and the number of tasks
that were solved within said time is present on the x axis. Theta performs better than
both Unihorn and Eldarica for easier tasks, but it starts to get slower at a faster pace for
tougher tasks than the other tools.

5.2.4 Threats to Validity

In this section, possible biases and threats to the validity of the benchmark results are
discussed. First, the correctness of the implemented transformation is further elaborated
upon, then, the performance results are examined.
The CHC-COMP21 repository does not provide expected answers to the CHC problems.
This meant that the only way to evaluate the soundness of the implementation was to
generate the results ourselves, using state-of-the-art SMT solvers with some time limit.
We could obtain the expected results of 456 CHCs out of the 585 that we benchmarked
with, with 129 remaining unknown. Thereby there is a possibility that the answers given
by Theta to the tasks without an expected answer were wrong. There were only 15 of

34

Figure 5.1: Number of solved tasks by tools under a certain time.

the 129 such tasks, though, and the remaining 373 tasks with known expected answers
were all correct. Therefore we can be confident that the implemented transformation is
correct.
To get benchmark results in reasonable time, the aforementioned 5-minute limit had to
be introduced. Given enough time, the number of solved tasks could have turned out
differently. However, the satisfiability of a CHC problem is not decidable in general,
therefore a limit always has to be used in practice. 5 minutes still may seem a bit too
short, as the quantile plot in Figure 5.1 shows that a 2-minute timeout would have resulted
in a completely different ranking of the benchmarked tools. This is the reason why the
quantile plot is presented in the first place, to provide more insight into how the tools
behave. In addition to that, counting solved tasks can be seen as more of a measure of
practical performance.
Another thing to note about the comparison to other tools is that the others were used
with their default configurations, whereas the best out of many configurations of Theta
was used. The main reason for this is that our goal was not to compete with other tools;
it was just to get an approximate idea of where this technique of CHC solving lies within
the grand scheme of things. On top of that, the best configurations of the other tools were
either outdated or just difficult to obtain.

35

Chapter 6

Conclusion

As software enters more and more parts of our lives, the complexity of software components
increases. This is true for safety-critical embedded systems, where the correctness of the
embedded software must be ensured. Conventional testing can no longer be exhaustive,
leaving the need for other ways to prove correctness. Formal software verification aims to
provide mathematical proof of the correctness of programs. A commonly used approach
by efficient software verification tools is to convert programs and their correctness into
mathematical formulae, the satisfiability of which can be checked. This problem is called
a Satisfiability Modulo Theory (SMT) problem.
Constrained Horn Clauses (CHC) are logical implications between uninterpreted functions
that capture deduction problems well when utilized in an SMT problem. Consequently,
they are used in Constrained Logic Programming, but also in embedded systems: in
distributed knowledge databases and memory representation. Most importantly, it is used
in software verification of programs written in low-level languages: numerous effective
software verification tools convert programs written in C or Rust into CHCs, then solve
the satisfiability problem of the CHCs to decide the correctness of a program.
Solving the satisfiability of CHCs is not trivial due to the large state space of possible
deductions and the possibility of infinite deduction. In Chapter 4, I presented an ap-
proach that transforms the satisfiability problem of CHCs into a question of reachability
in programs, which allows access to powerful abstraction-refinement based model check-
ing algorithms. This was achieved by transforming the CHCs into Control Flow Automata
(CFA), a formal representation of programs. Two different transformations were described:
forward transformation in Section 4.2, and backward transformation in Section 4.3. My
contribution was the novel forward transformation, which converted linear CHCs to CFAs
with a bottom-up approach, starting from the fact CHCs towards the query CHCs. Back-
ward transformation was my adaptation to CFAs of an existing transformation used by
Unihorn, which converted CHCs to programs with a top-down approach, from the query
CHCs towards the fact CHCs. The backward transformation also supports non-linear
CHCs, but it is also less likely to terminate for difficult problems.
Prototypes of both transformations were implemented in the open-source model checking
framework Theta. The implementation was evaluated on a set of 585 linear CHCs, in dif-
ferent configurations of Theta. Both transformation gave correct answers only, meaning
they either gave the correct answer or no answer within the 5-minute timeout. Forward
transformation performed significantly better than backward transformation, getting com-
parable performance results to the top CHC solvers in linear integer arithmetic problems.

36

6.1 Future Work

In the short term, the prototype implementation could be extended to support Theta’s
pre-verification optimization techniques, which could result in significant improvement
gains in efficiency. Our goal is to submit Theta as a promising competitor for next year’s
CHC-COMP23.
A longer-term goal is to implement refutation and proof generation. The theory behind
it is all laid out in Chapter 4, but integration with all supported domains of Theta will
take further investigation.
As for more theory related-tasks, verification using the backward transformation does
not always terminate for difficult tasks due to the possibility of infinite recursion. One
approach to handling this would be some kind of similarity detection between location
stacks in the abstract state space, which could additionally prove to be useful in software
verification.

37

Bibliography

[1] Mike Barnett, Bor-Yuh Evan Chang, Robert DeLine, Bart Jacobs, and K. Rus-
tan M. Leino. Boogie: A modular reusable verifier for object-oriented programs.
In Frank S. de Boer, Marcello M. Bonsangue, Susanne Graf, and Willem-Paul
de Roever, editors, Formal Methods for Components and Objects, pages 364–387,
Berlin, Heidelberg, 2006. Springer Berlin Heidelberg. ISBN 978-3-540-36750-5. DOI:
10.1007/11804192_17.

[2] Dirk Beyer and M. Erkan Keremoglu. Cpachecker: A tool for configurable software
verification. In Ganesh Gopalakrishnan and Shaz Qadeer, editors, Computer Aided
Verification, pages 184–190, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg.
ISBN 978-3-642-22110-1.

[3] Dirk Beyer, Stefan Löwe, and Philipp Wendler. Reliable benchmarking: requirements
and solutions. International Journal on Software Tools for Technology Transfer, 21
(1):1–29, Feb 2019. ISSN 1433-2787. DOI: 10.1007/s10009-017-0469-y. URL
https://doi.org/10.1007/s10009-017-0469-y.

[4] A. Biere, A. Biere, M. Heule, H. van Maaren, and T. Walsh. Handbook of Satisfiability:
Volume 185 Frontiers in Artificial Intelligence and Applications. IOS Press, NLD,
2009. ISBN 1586039296. DOI: 10.5555/1550723.

[5] Nikolaj Bjørner, Arie Gurfinkel, Ken McMillan, and Andrey Rybalchenko. Horn
Clause Solvers for Program Verification, pages 24–51. Springer International Pub-
lishing, Cham, 2015. ISBN 978-3-319-23534-9. DOI: 10.1007/978-3-319-23534-9_2.
URL https://doi.org/10.1007/978-3-319-23534-9_2.

[6] Hamza Bourbouh, Pierre-Loïc Garoche, Thomas Loquen, Éric Noulard, and Claire
Pagetti. Cocosim, a code generation framework for control/command applications an
overview of cocosim for multi-periodic discrete simulink models. In 10th European
Congress on Embedded Real Time Software and Systems (ERTS 2020), Toulouse,
France, January 2020. URL https://hal.archives-ouvertes.fr/hal-02441334.

[7] Alessandro Cimatti, Alberto Griggio, Bastiaan Schaafsma, and Roberto Sebastiani.
The mathsat5 smt solver. In Nir Piterman and Scott Smolka, editors, Proceedings of
TACAS, volume 7795 of LNCS. Springer, 2013.

[8] Edmund Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith.
Counterexample-guided abstraction refinement for symbolic model checking. J. ACM,
50(5):752–794, sep 2003. ISSN 0004-5411. DOI: 10.1145/876638.876643. URL
https://doi.org/10.1145/876638.876643.

[9] Leonardo de Moura and Nikolaj Bjørner. Z3: An efficient smt solver. In C. R.
Ramakrishnan and Jakob Rehof, editors, Tools and Algorithms for the Construction

38

http://dx.doi.org/10.1007/11804192_17
http://dx.doi.org/10.1007/s10009-017-0469-y
https://doi.org/10.1007/s10009-017-0469-y
http://dx.doi.org/10.5555/1550723
http://dx.doi.org/10.1007/978-3-319-23534-9_2
https://doi.org/10.1007/978-3-319-23534-9_2
https://hal.archives-ouvertes.fr/hal-02441334
http://dx.doi.org/10.1145/876638.876643
https://doi.org/10.1145/876638.876643

and Analysis of Systems, pages 337–340, Berlin, Heidelberg, 2008. Springer Berlin
Heidelberg. ISBN 978-3-540-78800-3. DOI: 10.1007/978-3-540-78800-3_24.

[10] Mihály Dobos-Kovács. On the verification of safety-critical embedded
software systems. Master’s thesis, Budapest University of Technology
and Economics, 2021. URL https://diplomaterv.vik.bme.hu/en/Theses/
Kritikus-beagyazott-szoftverek-verifikacios.

[11] Zafer Esen. Extension of the eldarica c model checker with heap memory. Master’s
thesis, Uppsala University, Department of Information Technology, 2019.

[12] Zafer Esen and Philipp Ruemmer. Tricera: Verifying c programs using the theory
of heaps. In CONFERENCE ON FORMAL METHODS IN COMPUTER-AIDED
DESIGN–FMCAD 2022, pages 360–391. TU Wien Academic Press, 2022. DOI:
10.34727/2022/isbn.978-3-85448-053-2_45.

[13] Grigory Fedyukovich and Philipp Rümmer. Competition report: CHC-COMP-21.
In Hossein Hojjat and Bishoksan Kafle, editors, Proceedings 8th Workshop on Horn
Clauses for Verification and Synthesis, HCVS@ETAPS 2021, Virtual, 28th March
2021, volume 344 of EPTCS, pages 91–108, 2021. DOI: 10.4204/EPTCS.344.7. URL
https://doi.org/10.4204/EPTCS.344.7.

[14] Yeting Ge. Solving Quantified First Order Formulas in Satisfiability Modulo Theories.
PhD thesis, New York University, 2010.

[15] Arie Gurfinkel. Program verification with constrained horn clauses (invited paper).
In Sharon Shoham and Yakir Vizel, editors, Computer Aided Verification, pages 19–
29, Cham, 2022. Springer International Publishing. ISBN 978-3-031-13185-1. DOI:
10.1007/978-3-031-13185-1_2.

[16] Arie Gurfinkel, Temesghen Kahsai, Anvesh Komuravelli, and Jorge A. Navas. The
seahorn verification framework. In Daniel Kroening and Corina S. Păsăreanu, edi-
tors, Computer Aided Verification, pages 343–361, Cham, 2015. Springer International
Publishing. ISBN 978-3-319-21690-4. DOI: 10.1007/978-3-319-21690-4_20.

[17] Ákos Hajdu and Zoltán Micskei. Efficient strategies for cegar-based model check-
ing. Journal of Automated Reasoning, 64(6):1051–1091, Aug 2020. ISSN 1573-
0670. DOI: 10.1007/s10817-019-09535-x. URL https://doi.org/10.1007/
s10817-019-09535-x.

[18] Matthias Heizmann, Yu-Fang Chen, Daniel Dietsch, Marius Greitschus, Jochen
Hoenicke, Yong Li, Alexander Nutz, Betim Musa, Christian Schilling, Tanja
Schindler, and Andreas Podelski. Ultimate automizer and the search for perfect inter-
polants. In Dirk Beyer and Marieke Huisman, editors, Tools and Algorithms for the
Construction and Analysis of Systems, pages 447–451, Cham, 2018. Springer Interna-
tional Publishing. ISBN 978-3-319-89963-3. DOI: 10.1007/978-3-319-89963-3_30.

[19] Hossein Hojjat and Philipp Rümmer. The eldarica horn solver. In 2018 For-
mal Methods in Computer Aided Design (FMCAD), pages 1–7, 2018. DOI:
10.23919/FMCAD.2018.8603013.

[20] Hari Govind V K, Sharon Shoham, and Arie Gurfinkel. Solving constrained horn
clauses modulo algebraic data types and recursive functions. Proc. ACM Program.
Lang., 6(POPL), jan 2022. DOI: 10.1145/3498722. URL https://doi.org/10.
1145/3498722.

39

http://dx.doi.org/10.1007/978-3-540-78800-3_24
https://diplomaterv.vik.bme.hu/en/Theses/Kritikus-beagyazott-szoftverek-verifikacios
https://diplomaterv.vik.bme.hu/en/Theses/Kritikus-beagyazott-szoftverek-verifikacios
http://dx.doi.org/10.34727/2022/isbn.978-3-85448-053-2_45
http://dx.doi.org/10.4204/EPTCS.344.7
https://doi.org/10.4204/EPTCS.344.7
http://dx.doi.org/10.1007/978-3-031-13185-1_2
http://dx.doi.org/10.1007/978-3-319-21690-4_20
http://dx.doi.org/10.1007/s10817-019-09535-x
https://doi.org/10.1007/s10817-019-09535-x
https://doi.org/10.1007/s10817-019-09535-x
http://dx.doi.org/10.1007/978-3-319-89963-3_30
http://dx.doi.org/10.23919/FMCAD.2018.8603013
http://dx.doi.org/10.1145/3498722
https://doi.org/10.1145/3498722
https://doi.org/10.1145/3498722

[21] Maurizio Lenzerini. Data integration: A theoretical perspective. In PODS ’02: Pro-
ceedings of the twenty-first ACM SIGMOD-SIGACT-SIGART symposium on Princi-
ples of database systems, pages 233–246, 01 2002. DOI: 10.1145/543613.543644.

[22] Yusuke Matsushita, Takeshi Tsukada, and Naoki Kobayashi. Rusthorn: Chc-
based verification for rust programs. ACM Trans. Program. Lang. Syst., 43(4), oct
2021. ISSN 0164-0925. DOI: 10.1145/3462205. URL https://doi.org/10.1145/
3462205.

[23] Philipp Rümmer. A constraint sequent calculus for first-order logic with linear in-
teger arithmetic. In Iliano Cervesato, Helmut Veith, and Andrei Voronkov, edi-
tors, Logic for Programming, Artificial Intelligence, and Reasoning, pages 274–289,
Berlin, Heidelberg, 2008. Springer Berlin Heidelberg. ISBN 978-3-540-89439-1. DOI:
10.1007/978-3-540-89439-1_20.

[24] Victor Vianu Serge Abiteboul, Richard Hull. Foundations of Databases. Addison-
Wesley, 1995. ISBN 0-201-53771-0. URL http://webdam.inria.fr/Alice/.

[25] Letizia Tanca Stefano Ceri, Georg Gottlob. Logic Programming and
Databases. Springer Berlin, Heidelberg, 1990. ISBN 978-3-642-83954-2. DOI:
https://doi.org/10.1007/978-3-642-83952-8.

[26] Tamás Tegzes. Learning and synthesis supported software verifica-
tion. Master’s thesis, Budapest University of Technology and Eco-
nomics, 2020. URL https://diplomaterv.vik.bme.hu/en/Theses/
Tanulo-es-Szintezis-Algoritmusokkal-Tamogatott1.

40

http://dx.doi.org/10.1145/543613.543644
http://dx.doi.org/10.1145/3462205
https://doi.org/10.1145/3462205
https://doi.org/10.1145/3462205
http://dx.doi.org/10.1007/978-3-540-89439-1_20
http://webdam.inria.fr/Alice/
http://dx.doi.org/https://doi.org/10.1007/978-3-642-83952-8
https://diplomaterv.vik.bme.hu/en/Theses/Tanulo-es-Szintezis-Algoritmusokkal-Tamogatott1
https://diplomaterv.vik.bme.hu/en/Theses/Tanulo-es-Szintezis-Algoritmusokkal-Tamogatott1

	Kivonat
	Abstract
	Introduction
	Background
	Satisfiability Modulo Theories
	Horn Clauses
	Constrained Horn Clauses
	Linear Constrained Horn Clauses

	Formal Software Verification
	Control Flow Automata
	Abstraction
	Counterexample-Guided Abstraction Refinement
	Verification with Procedures
	Extensions to Control Flow Automata
	Extensions to Model Checking

	Related work
	Bounded Exploration
	Counterexample-Guided Abstraction Refinement
	Transformation to Software Verification Problem

	Transformation of Constrained Horn Clauses to Control Flow Automata
	Overview of the Transformation
	Forward Transformation
	Constrained Horn Clause Transformation
	Proof Transformation
	Satisfying Model Generation
	Refutation Creation

	Backward Transformation
	Constrained Horn Clause Transformation
	Proof Transformation
	Satisfying Model Generation
	Refutation Creation

	Evaluation
	Benchmark Setup
	Benchmark Results
	Theta Configurations
	Different Underlying Solvers
	Comparison to Other Tools
	Threats to Validity

	Conclusion
	Future Work

	Bibliography

