
Budapest University of Technology and Economics
Faculty of Electrical Engineering and Informatics

Department of Measurement and Information Systems

Abstraction-based model checking techniques for
real-time systems

Scientific Students’ Association Report

Author:

Dóra Cziborová
Béla Ákos Vizi

Advisor:

Mihály Dobos-Kovács
Dániel Szekeres
Kristóf Marussy

2022



Contents

Kivonat i

Abstract ii

1 Introduction 1

2 Background 3
2.1 Formal verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Extended timed automata . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2.1 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Timed control flow automata . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3.1 Transfer function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4 Abstract domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4.1 Explicit value abstraction . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4.2 Predicate abstraction . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4.3 Zone abstraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4.4 Product abstraction . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.5 CEGAR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.5.1 Abstraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.5.2 Refinement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.6 Lazy abstraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.6.1 Lazy abstraction over the zone domain . . . . . . . . . . . . . . . . . 15

3 Overview 18
3.1 Mapping Real-Time Systems to TCFA . . . . . . . . . . . . . . . . . . . . . 19

3.1.1 “Error” locations in Real-Time Sytems . . . . . . . . . . . . . . . . . 20
3.1.2 Converting RTS with Error Locations to TCFA . . . . . . . . . . . . 20

4 CEGAR with clock activity 22

5 Combined CEGAR 25



5.1 Pruning strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.2 Correctness of the combined CEGAR algorithm . . . . . . . . . . . . . . . . 30

6 Evaluation 33
6.1 Lazy abstraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
6.2 Eager CEGAR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
6.3 Combined CEGAR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
6.4 Comparison of approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

7 Related work 39

8 Conclusions 40
8.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Bibliography 41



Kivonat

Kritikus valós idejű rendszerek fejlesztésekor egy kulcsfontosságú kihívás a szoftverrendsze-
rek biztonságának verifikációja. Az ilyen rendszerekkel szemben gyakran szigorú időzítési
követelményeink is vannak, melyek megsértése akár életvesztéshez vagy jelentős anyagi
károkhoz vezethet. Ezen követelmények kielégítésének biztosítására automatizált modell-
ellenőrzés használható, melyben egy automatizált eszköz ellenőrzi a kívánt biztonsági kö-
vetelményeket a rendszer egy formális leírásán. Az analízis eredménye egy bizonyíték a
rendszer helyességére, vagy pedig egy hibaút, ami ellenpéldaként szolgál.

A modellellenőrzés azonban még közepes méretű rendszerek esetén is nehéz feladat,
hiszen a bejárandó állapotok száma gyakran a rendszer méretében exponenciálisan növek-
szik. Ezen kívül az időzítések figyelembe vételéhez az állapotoknak egy megszámlálhatatla-
nul végtelen halmazával szükséges dolgozni. A mérnöki alkalmazásokban az imént említett
kihívásokkal megbirkózó modern verifikációs algoritmusok használatához a rendszerek és
kritériumok komplex leírásait alacsonyszintű matematikai formalizmusokra szükséges for-
dítani.

Ezen munka célja az absztrakció alapú modellellenőrzés támogatása a széles körben
használt időzített automata formalizmushoz és a hozzá tartozó tulajdonság specifikációs
nyelvhez. A már létező algoritmusok adaptálása mellett a technikák egy olyan újszerű
kombinációjára teszünk javaslatot, mely ötvözi az irodalomban elérhető megközelítések
hatékonyságát az adatok és az idő absztrakciójára. Ezen kívül támogatást adunk egy
már létező modellellenőrző eszközben az időzített automaták tulajdonság specifikációinak
kezelésére.

Különösen a következő kontribúciókat mutatjuk be: (i) Visszavezetjük az időzített au-
tomaták elérhetőségi tulajdonságait egy keresési problémára. (ii) Kombináljuk az absztrak-
ciófinomítás lusta és mohó megközelítését egy újszerű vegyes stratégiaként. (iii) Implemen-
táljuk a javasolt technikákat a nyílt forráskódú Theta modellellenőrző keretrendszerben.
(iv) Kiértékeljük a létező és az általunk javasolt technikákat ipari és szintetikus benchmark
modelleken.

Legjobb tudomásunk szerint a miénk az első olyan megközelítés, ami kombinálja a
lusta és mohó absztrakciós technikák előnyeit az időzített automaták hatékony verifikáci-
ójára.

i



Abstract

Safety verification of software systems is a key challenge in the development of critical real-
time embedded systems. Such systems are often subject to stringent real-time scheduling
requirements, the violation of which may lead to loss of life or significant damage to
property. Automated model checking can be used to ensure the satisfaction of these
requirements, where a formal description of the system is checked against the desired
safety properties by an automated tool. The result of the analysis is either a proof of
correctness or an error trace serving as a counterexample.
However, model checking systems of even a moderate size can be difficult, as the number
of states that has to be traversed during model checking often grows exponentially in
the size of the system. Moreover, taking timing into account requires reasoning with
an uncountably infinite set of states. In engineering applications, the use of modern
verification algorithms tackling the aforementioned challenges requires translating complex
descriptions of systems and properties into low-level mathematical formalisms.
This work aims at providing support for abstraction-based model checking for the widely
used extended timed automaton formalism and the associated property specification lan-
guage. We adapt existing algorithms, as well as propose a novel combination of techniques
to take advantage of the efficiency of approaches for data and time abstractions available in
the literature. Moreover, we add support to an existing model checking tool for handling
property specifications of extended timed automata.
We present the following specific contributions: (i) We reduce symbolic reachability prop-
erties of extended timed automata to a search problem. (ii) We combine lazy and eager
abstraction refinement approaches into a novel mixed strategy. (iii) We implement the
proposed techniques in the open source Theta model checking framework. (iv) We evalu-
ate existing and proposed techniques in the context of industrial and synthetic benchmark
models.
To the best of our knowledge, ours is the first approach to combine the advantages of
both lazy and eager abstraction techniques for the efficient verification of extended timed
automata.
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Chapter 1

Introduction

Software systems are becoming prevalent in safety-critical applications, such as aerospace,
automotive, transportation, and industrial IoT infrastructures. Safety-critical systems
often have strict timing constraints, so they must provide soft or hard real-time services.
The design of real-time safety critical systems is often supported by rigorous design tech-
niques and modeling languages. However, to ensure the functional correctness of the de-
sired system, engineers need advanced verification techniques. Testing is often used to find
bugs in critical applications, but testing can not be used to prove functional correctness,
especially in the presence of complex timing and data-related requirements.
Formal verification is an automated technique to explore the possible behaviors of systems
and find errors or prove functional correctness. However, formal verification faces the
problem of state space explosion in the presence of data and timing in the systems. Real-
time safety-critical systems process data in a timely manner, which makes the formal
verification of such systems a huge challenge.
Abstraction-based techniques were developed in the literature to handle data in verifi-
cation and various refinement techniques were introduced to compute better and better
abstractions during the verification process. The family of algorithms exploiting iterative
refinement is called Counterexample Guided Abstraction Refinement, CEGAR for short.
Unfortunately, CEGAR-based algorithms turned out to be less efficient in representing the
timed behavior. So far, the most efficient tools for exploring timed behavior were based on
explicit state space exploration with fine-grained, lazy abstractions: this approach leads
to enumerating all the possible equivalence classes of timed behavior, which is good for
answering the verification questions but yields a huge task for the verification algorithms.
This conservative abstraction technique prevents the application of timed verification for
industrial systems where enumerating the state space does not scale.
Attempts tried to extend the CEGAR-based abstraction refinement approach to timed
systems and clock activity was used to describe the actually needed precision of the ab-
straction. Unfortunately, the clock activity-based refinement strategy still has not provided
the desired coarse-grained abstraction that would reduce the state space representation
significantly. Lazy abstraction uses a different abstraction refinement strategy, which
turned out to be efficient for timing, but unfortunately, this approach could only handle
a restricted class of software and system models.
Our motivation is to extend the former approaches and provide a framework with various
solutions to verify real-time software systems. In order to process the high-level input
models of real-time systems, we developed model transformations, that map the require-
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ment and the system models into a formal representation, that serves as input for the
verification algorithms. We implemented existing algorithms from the literature and in-
tegrated them to work on our formal representation. We extended the CEGAR-based
approach to use activity-based abstraction and refinement [14].
From the algorithmic point, we developed a novel algorithm as the combination of eager
CEGAR-based data refinement and lazy refinement for time. We have modified the gen-
eral CEGAR loop and introduced a two-phase refinement strategy. The new algorithm
combines the advantages of both algorithms, but without their limitations. So far, this
is the first approach to provide efficient automatic abstractions for the timed behavior
and also the data-dependent behavior in real-time software systems. Our approach can
handle even complex data-dependent and timed behavior together in one framework with-
out requiring manual tuning of the abstractions. From the theoretical point of view, we
formalized the new algorithm and proved its correctness.
We have implemented all the formerly mentioned algorithms in the open-source Theta
formal verification framework and evaluated on benchmark problems. Measurements show
that the new approach is competitive with the existing ones on the benchmark models,
without having the same restrictions on the expressive power of the input models.
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Chapter 2

Background

2.1 Formal verification

Formal verification is the term used for proving the correctness of a system using mathe-
matical techniques. Model checking is a formal verification method capable of proving that
some formalized properties hold in a formal model. The desired properties are typically
safety properties (an unsafe state of the system is never reached) and liveness properties
(the desired state is always reached eventually).
The inputs of a model checking [8] algorithm are the model and the requirements, both
formally specified. The algorithm then outputs whether the given model satisfies the
given requirements. If case the requirement is satisfied, then it gives a mathematical proof
for it, or, in case of the model not satisfying a requirement, it outputs a corresponding
counterexample, where the requirement is not met.

Figure 2.1: Model checking

As safety requirements usually define an error state that must not be reached, checking
whether the model satisfies the requirement is reduced to a reachability problem.
When checking whether a state is reachable in a model, explicitly enumerating all states on
all paths would not be an efficient or viable approach at all. This is because of the state
space explosion problem, which means that the state space can become unmanageably
large even in a relatively small model. Therefore, one of the main challenges in model
checking is to find more efficient solutions to the reachability problem.
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Many reachability analysis techniques are based on abstraction. The typical approach is
applying over-approximation to the model. The over-approximated model preserves all
behavior of the original model but also enables behavior that is not present in the original
one. It follows, that if a state is unreachable in the abstract model, then it is not reachable
in the original model as well. However, it also follows that a model checking algorithm
may find counterexamples in the abstract model that are not present in the original one,
and thus false positives may occur when the abstraction is too coarse.

2.2 Extended timed automata

Timed automata extend finite automata with clock variables, which are special variables
that model the passage of time. The values of these variables increase continuously at the
same rate. Apart from this, the values of any subset of the clock variables can be reset
to 0 at any point of operation, which is called resetting. Arbitrary assignments are not
permitted for them. A clock constraint is a conjunctive formula of atomic constraints of
the forms x ∼ n or x − y ∼ n where x, y ∈ C, ∼∈ {≤, <,=, >,≥} and n ∈ N. Let B(C)
denote a set of constraints that we will use as guards later.
A clock valuation valC for a set of clock variables VC is a function VC → R+ that assigns
a non-negative real value to each clock variable. For a clock valuation valC and a set of
clock variables r ⊂ VC , the notation valC [r] will mean a valuation where each clock in r is
reset (the new valuation assigns 0 to them), while all others retain their values from the
original valuation.
A data valuation for a set of data variables VD is a function VD →

⋃
v∈VD

Dom(v) that
assigns to each variable v an element from its domain Dom(v).
An Extended Timed Automaton (XTA) is a timed automaton extended with data variables
and synchronization channels. In a real-time system, more than one process can be defined,
which are separate Extended Timed Automata, and these can synchronize over channels.

Definition 1 (Real-Time System). A Real-Time System S is a tuple
⟨P,Dg, Cg, v

g
0 , S = Sb ⊎ Sn ⊎ {τ}⟩, where

• P = {p0, p1, . . . , p|P |} is a finite set of extended timed automata, that is called the
processes of the system,

• Dg = {dg
1, d

g
2, . . . , d

g
N} is a finite set of global data variables with corresponding

domains Dg
1, D

g
2, . . . , D

g
N ,

• C = {cg1 , cg2 , . . . , c2|C|} is a finite set of global clock variables that can take non-
negative real values,

• vg
0 is the initial data valuation, determining the initial value of each data variable, if

no value is assigned to a variable then it takes a nondeterministic value of its domain

• S = {s1, s1 . . . , s|S|−1, τ} is a finite set of channels through which processes can
synchronize; it is the disjoint union of broadchast channels Sb, non-broadcast channels
Sn and the “null-channel” τ used for denoting non-synchronized actions �

Definition 2 (Extended timed automaton). An XTA A in the context of a Real-
Time System ⟨P,Dg, Cg, S⟩ is a tuple ⟨L, l0, vloc

0 ,Dloc, Cloc, I, E, T ⟩, where
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• L = {l0, l1, . . . , l|L|} is a finite set of locations,

• l0 ∈ L is the initial location,

• vloc
0 is the initial data valuation, determining the initial value of each data variable, if

no value is assigned to a variable then it takes a nondeterministic value of its domain

• Dloc = {dloc
1 , dloc

2 , . . . , dloc
M } is a finite set of local data variables with corresponding

domains Dloc
1 , Dloc

2 , . . . , Dloc
M ,

• C = {cloc1 , cl2 , . . . , c|Cloc|} is a finite set of local clock variables that can take non-
negative real values,

• I : L → B(C) assigns an invariant to each location

• E ⊂ L × Op × S × L is the set of directed edges between locations, each of them
labeled with some operation op ∈ Op and a channel s ∈ S

• T is a function that maps each location to a type, that can be
NORMAL,URGENT,COMMITTED

– Normal location has no extra functionality
– Urgent location lU adds an extra clock variable x that resets in every incoming

edge to this location and adds an invariant x <= 0 to lU . So time is not allowed
to pass in these locations (clock variables cannot increase).

– Committed locations are the same as Urgent locations but the next transition
in the system must involve an outgoing edge of one of the committed locations
if any process is in this type of location. �

A global variable can be referenced from all processes, but local variables are visible only
in the process that they were defined in. An operation op ∈ Op consists of a guard, a set
of assignments, and resets.

• A guard g is a conjunction of data variable conditions and clock constraints.

• In an assignment a, a data variable can be assigned to any value in its domain.

• Reset r is a set of clock variables, which will be set to 0 after applying the operation.

A state in a Real-Time System with process set P = {p0, p1, . . . , p|P |} is a tuple
⟨L, valD, valC⟩, where L = ⟨l0, . . . l|P |⟩ ∈ ×p∈P Loc(P ) determines the currently ac-
tive location in each process, valD is a valuation, valC is a clock valuation satisfying
I(L) = I(l0) ∧ I(l1) ∧ · · · ∧ I(l|P |). The initial state contains the initial location of each
process, its clock valuation val0

C assigns 0 to every clock variable, and its data valuation
val0

D is computed in the following way:

val0
D =

{
vg

0 , if v ∈ Dg

vloci
0 if v ∈ Di

loc

,

where Di
loc denotes the set of local data variables of pi and vloci

0 denotes its initial data
valuation.
We call an edge e = ⟨l, op = ⟨g, a, r⟩, s, l′⟩ enabled, if the process is in l, valD satisfies the
data conditions of g, valC satisfies the clock conditions of g and valC [r] satisfies I(l′).
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If two processes p1, p2 are synchronised there are edges labelled with {s!|s ∈ S} in p1
and edges labeled with {s?|s ∈ S} in p2. Initiator edge e1=⟨l1, op = (g1, a1, r1), s!, l′1⟩
can initiate the synchronization if it is enabled, and if a receiving edge e2=⟨l2, op =
(g2, a2, r2), s?, l′2⟩ is enabled too. When p1 and p2 synchronize e1, e2 are fired at the same
time and neither of them can be fired individually. There is another type of channel, the
broadcast channel. In this case, there is one initiator edge and can be more receiving edge.
If the initiator edge is enabled, it can be always fired even if no receiving edge is enabled.
Enabled receiving edges will synchronize and will be fired.
The state ⟨L = ⟨l1 , . . . , l|P|⟩, valD, valC⟩ has a discrete transition to
⟨L′ = ⟨l ′

1 , . . . , l ′
|P|⟩, val

′
D, val

′
C⟩ if one of the following condition groups holds:

• ∃i ∈ 1 . . . |P | : there is an enabled edge e = ⟨li, op = ⟨g, a, r, ⟩, τ, l′i⟩ in the ith process,
∀k ̸= i ∈ 1 . . . |P | : lk = l′k, val′C = valC [r] and valD changes according to a

• ∃s ∈ Sn : ∃i ∈ 1 . . . |P | : there is an enabled edge e = ⟨li, op = ⟨g!, a!, r!, ⟩, s!, l′i⟩ in the
ith process, ∃j ∈ 1 . . . |P | : there is an enabled edge e = ⟨lj , op = ⟨g?, a?, r?, ⟩, s?, l′j⟩
in the jth process, ∀k ̸= i, j ∈ 1 . . . |P | : lk = l′k, val′C = valC [r!∪r?] and valD changes
according applying to a! first, then a?

• ∃s ∈ Sb : ∃i ∈ 1 . . . |P | : there is an enabled edge
e = ⟨li, op = ⟨g!, a!, r!, ⟩, s!, l′i⟩ in the ith process, let J =
{j | there is at least one enabled outgoing edge from lj labeled with s?}, then
∀j ∈ J : there is an enabled edge ej = ⟨lj , op = ⟨gj , aj , rj⟩, s?, l′j⟩,
val′C = valC [r! ∪

⋃
j∈J rj ], and valD changes according applying to a! first,

then all aj assignments for all j ∈ J

If there is at least one committed location in L, then li or lj above must be a committed
location in the definitions above - whenever a committed location is active, only transitions
that leave a committed location can be fired (with self-loops also considered leaving).
The state has a time transition (delay) from ⟨L, valD, valC⟩ to ⟨L, valD, val′C⟩ if val′C assigns
valC(c) + d for a non negative value d to every c ∈ C, and val′C satisfies I(l1)∪ I(l2)∪ · · · ∪
I(l|L|).

2.2.1 Properties

Timed automata are usually verified with the help of property specification languages
(PSL). We can specify properties on data-, clock variables and locations.

Definition 3 (State property). A property is a tuple prop = ⟨loc, d, c⟩, where

• loc is the location set that appears in prop

• d is the conjunction of conditions on data variables

• c is the conjunction of conditions on clock variables �

A state property prop = ⟨loc, d, c⟩ is satisfied in a state s = ⟨L, valD, valC⟩ denoted by
⟨L, valD, valC⟩ |= ⟨loc, d, c⟩ if:

• loc ∈ L,

• valD satisfies d

6



• valC satisfies c

Properties can be divided into two classes in our implementation:

• Possibly: Marked with E <> - evaluates to true iff there is a reachable state s of
the automata, where the s |= prop

• Invariantly: Marked with A[] - evaluates to true iff in every state s, s |= prop. It
can be expressed with the Possibly operator: not E <> not [state property].

Generally, to check the timed requirements, different kinds of PSL can be used such as
LTL, CTL*, and CTL, but we only use a subset of this. The elements of this subset can
be mapped to a reachability problem, so our algorithms can run on these systems [7].

2.3 Timed control flow automata

Our algorithms perform model checking on timed control flow automata. Our definition
of timed control flow automaton in slightly different from the traditional definition of the
control flow automata by the inclusion of clock variables.

Definition 4 (Timed control flow automaton). A timed control flow automaton is a
tuple TCFA = ⟨L, l0, VD, VC , val

0
D, val

0
C , E⟩, where

• L is a finite set of locations,

• l0 ∈ L is the initial location,

• VD = {d1, d2, . . . , d|VD|} is a finite set of data variables with domains
D1, D2, . . . , D|VD|,

• VC = {c1, c2, . . . , c|VC |} is a finite set of clock variables,

• val0D : VD →
|VD|⋃
i=0

Di where val0D(di) ∈ Di for all di ∈ VD is a total valuation that
maps data variables to their initial values in their corresponding domains,

• val0C : VC → R≥0 is a clock valuation that maps clock variables to their initial values,

• E ⊂ L×Op×L is a set of directed edges between locations, each edge labeled with
an operation op ∈ Op, representing the execution of that operation. �

Let ValD denote the set of total valuations over VD and ValC the set of clock valuations
over the set of clocks VC . We will also refer to ValD and ValC as concrete domains.
A state of the control flow automaton is a tuple ⟨l, valD, valC⟩ where l ∈ L, valD ∈ ValD

and valC ∈ ValC . The set of these concrete states is denoted by S. We can also use the
projections of these states to get a partial state corresponding to a specific domain (e.g.
clock valuations only).
The following operations are defined on TCFA:

• Guards are distinguished by the form [φ] where φ is a predicate over VD∪VC . Given
a valuation val, a guard [φ] does not change the value of any variable v ∈ val but
the operation can only be executed if φ evaluates to true on val.

7



• An assignment x := φ assigns the value of an expression φ over VD ∪ VC to the
variable x ∈ VD ∪ VC . Given a valuation val, it sets the value of the variable
x ∈ val in the successor state to φ and leaves the values of all other variables in val
unchanged.

• A havoc operation havoc(x) is a non-deterministic assignment that sets the value of
a variable x ∈ VD ∪ VC to any value of its domain Dx. Given a valuation val, it
produces a successor state for each value v ∈ Dx such that the value of x is v and
the values of all other variables in val are unchanged.

A run of the automaton is an alternating finite sequence of states and operations:
σ = ⟨l0, val0D, val0C⟩ − op1 − ⟨l1, val1D, val1C⟩ − op2 − · · · − opn − ⟨ln, valnD, valnC⟩.
A location l is reachable in the model if and only if there exists a run from the initial state
⟨l0, val0D, val0C⟩ such that ln = l.
We define the model checking problem for TFCA as checking for the reachability of a
given target location in the model.

2.3.1 Transfer function

Transitions execute operations that bring the automaton from one state to its succes-
sor. The successor of a state consists of one or possibly multiple states. These states
are determined by transfer functions. We refer to transfer functions that operate on con-
crete states and determine exact successors (i.e. without under- or over-approximation) as
concrete transfer functions. We can define transfer functions for each domain separately:

Definition 5 (TD,concr). The concrete transfer function for data valuations is a function
TD,concr : ValD × Op → 2ValD that maps a total valuation valD ∈ V alD to its successor
states with respect to an operation op ∈ Op. �

Definition 6 (TC,concr). The concrete transfer function for clock valuations is a function
TC,concr : ValC × Op → 2ValC that maps a clock valuation valC ∈ V alC to its successor
states with respect to an operation op ∈ Op. �

The transfer function that operates on the actual states of the automaton is composed
of the now-defined transfer functions for the data and clock domains. The term concrete
transfer function used later in this work refers to this transfer function.

Definition 7 (Concrete transfer function Tconcr). The concrete transfer function is
a function Tconcr : L × ValD × ValC × Op → 2L×ValD×ValC such that (l′, val′D, val′C) ∈
Tconcr(l, valD, valC , op) if and only if

• (l′, val′D) ∈ TD,concr(l, valD, op),

• (l′, val′C) ∈ TC,concr(l, valC , op),

• (l, op, l′) ∈ E. �
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2.4 Abstract domains

The state space of models involved in verification tasks is usually large, often infinite. To
handle such state space, abstractions are used, which means that we do not use concrete
states during model checking, instead, we use abstract states comprising multiple concrete
states. With the proper use of abstractions, the state space of a system can be represented
by a significantly smaller set of abstract states.
Definition 8 (Abstract domain). An abstract domain is a tuple D = ⟨S,Sa,⊑, γ⟩,
where

• S is the set of concrete states,

• Sa is the set of abstract states,

• ⊑ ⊆ Sa × Sa is a preorder, i.e., it is a reflexive (s ⊑ s for all s ∈ Sa) and transitive
(s1 ⊑ s2 and s2 ⊑ s3 implies s1 ⊑ s3 for all s1, s2, s3 ∈ Sa) binary relation,

• γ : Sa → 2S is the concretization function that maps abstract labels to the sets of
states they represent, such that s1 ⊑ s2 implies γ(s1) ⊆ γ(s2) for all s1, s2 ∈ Sa �

If there exists a function α : 2S → D such that A ⊆ γ(α(A)), α(γ(b)) ⊑ b and A1 ⊑ A2
implies α(A1) ⊑ α(A2), then α is the abstraction function corresponding to γ and we say
that 2S −−−→←−−−α

γ
D form a Galois connection.

We use a set Π of precisions to keep track of how coarse the abstraction is. Smaller
precision corresponds to less concrete abstraction. Since abstraction-based algorithms use
abstract states to explore the state space, we have to define transfer functions that operate
on these abstract states with a given precision.
Definition 9 (Abstract transfer function). The abstract transfer function for an ab-
stract domain D = ⟨S,Sa,⊑, γ⟩ is the function Tabstr : Sa × Op × Π → 2Sa that maps
an s ∈ Sa to its successor states {s′ | s′ ∈ Tabstr(s, op, π)} with respect to an operation
op ∈ Op and a precision π ∈ Π such that for all sa ∈ Sa :⋃
sc∈γ(sa)

Tconcr(sc, op) ⊆
⋃

s′
a∈Tabstr(sa,op,π)

γ(s′
a) �

There are numerous abstractions in the literature for both data and clock valuations. In
the following, we present the ones we work with in our solutions, namely explicit value
abstraction and predicate abstraction for data valuations, and zone abstraction for clock
valuations, then we define the product of abstractions.

2.4.1 Explicit value abstraction

For the abstraction of total valuations over data variables we might use explicit value
abstraction [4], where each abstract state explicitly tracks the values of some subset of data
variables, while the rest of the variables may take any value. The value of an explicitly
tracked variable can either be a value of its domain or ⊤ if the value of the variable is
unknown.
Definition 10 (Explicit value abstraction). Explicit value abstraction over the set
of data variables VD = {d1, d2, . . . , d|VD|} with domains D1, D2, . . . , D|VD|, their union

D =
|VD|⋃
i=0

Di and a precision π ⊆ VD is the abstract domain Expl(VD, π) = ⟨S, E ,⊑E , γE⟩,
where
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• S is the set of total valuations {valD : VD → D | valD(di) ∈ Di for all di ∈ VD},

• E is the set of partial valuations {pval : π → D∪{⊤} | ∀di ∈ π : pval(di) ∈ Di∪{⊤}},

• pval1 ⊑E pval2 if and only if pval2(d) ∈ {pval1(d),⊤} for all d ∈ π,

• γE(pval) = {valD ∈ S | valD(d) = pval(d) for all d ∈ π}. �

The corresponding abstraction function α forms the least general abstraction α(A) of a
set of states A ⊆ S by collecting variables that have only a single value. In other words,
d ∈ supp(α(A)) and α(A)(d) = v if val(d) = v for all val ∈ A. Otherwise, if there are
some val1, val2 ∈ A such that val1(d) ̸= val2(d), then d /∈ supp(α(A)). As a special case,
we have α(∅) = ⊥.
The transfer function for the abstract domain Expl(VD, π) is the abstract transfer function
TE . Informally, TE(pval, op, π) assigns values to variables in π according to operation op
executed on pval where it can be evaluated and assigns ⊤ to all other tracked variables.

2.4.2 Predicate abstraction

In predicate abstraction [19] the value of data variables are not tracked explicitly, but
we track whether some predicates π hold in the state or not. There are 2π states in
the abstract model, because VD can satisfies a predicate or not. Predicates are logical
expressions that can contain constants and data variables of the model.

Definition 11 (Predicate abstraction). Predicate abstraction over the set of data

variables VD = {d1, d2, . . . , d|VD|} with domains D1, D2, . . . , D|VD|, their union D =
|VD|⋃
i=0

Di

and a set π of predicates over VD is the abstract domain Pred(VD, π) = ⟨S,P,⊑P , γP⟩,
where

• S is the set of total valuations {valD : VD → D | valD(di) ∈ Di for all di ∈ VD},

• P ⊆ 2π is the set of abstract states,

• p1 ⊑ p2 if and only if p1 ⇒ p2, i.e. the preorder corresponds to implication,

• γP(p) = {valD ∈ S | (( ∧
φ∈p

φ) ← valD) = true} where (f ← val) denotes replacing
each variable x in the logical expression f by val(x). �

The transfer function for the abstract domain Pred(VD, π) is the abstract transfer function
TP : P ×Op× π → P. A successor state is the strongest set of predicates in the precision
that is implied by the source state and the operation.

2.4.3 Zone abstraction

Due to clock variables being real-valued, the state spaces of timed automata are infinite. In
order to make verification of timed systems feasible, clock valuations have to be abstracted.
For this purpose we use zone abstraction [2].

Definition 12 (Zone). A zone is a set of clock constraints. For a set of clock variables
VC and a zone Z, let LZM denote the set of clock valuations {valC : VC → R≥0} such that
valC satisfies all clock constraints in Z, i.e. LZM is the solution set of the conjunction of
clock constraints in Z. �

10



Note that two clock valuations cval1, cval2 ∈ LZM are indistinguishable by the clock con-
straints in Z, however, this does not necessarily hold for an arbitrary clock constraint.
Nonetheless, for the purpose of efficient model checking it is sufficient for these clock val-
uations to be indistinguishable only by a finite set of clock constraints, e.g. a reasonable
subset of clock constraints that appear in the model being analyzed.

Definition 13 (Zone abstraction). Zone abstraction over the set of clock variables
VC = {c1, c2, . . . , c|VC |} and a precision π ⊆ VC is the abstract domain Zone(VC , π) =
⟨S,Z,⊑Z , γZ⟩, where

• S is the set of clock valuations {valC : VC → R≥0},

• Z is the set of zones over the set of clock variables in π, the zone ⊤ containing clock
constraints c ≥ 0 and c− c ≤ 0 for all c ∈ π, and the inconsistent zone ⊥,

• Z1 ⊑Z Z2 if and only if LZ1M ⊆ LZ2M,

• γZ(Z) = LZM. �

The abstraction function αZ corresponding to γZ is the least general abstraction αZ(A) of
a set of clock valuations A ∈ S, such that αZ(A) is a zone containing the clock constraints
c ≤ max

val∈A
val(c), c ≥ min

val∈A
val(c), c − c′ ≤ max

val∈A
(val(c) − val(c′)), c − c′ ≥ min

val∈A
(val(c) −

val(c′)) for each pair of clocks (c ∈ VC , c
′ ∈ VC).

The transfer function for the zone domain is the abstract transfer function TZ : Z ×Op×
Π→ Z, which produces exactly one successor state and the concretization of the successor
yields only states that are actually reachable from the source state in the concrete domain
by the given operation (i.e. it does not introduce unreachable states):⋃
valC∈γZ (Z)

Tconcr(valC , op) = γZ(TZ(Z, op, π))

2.4.4 Product abstraction

For systems that contain variables of different kinds (e.g. a timed automaton with data
and clock variables), we use product abstraction [5] to handle different domains as one
abstract domain. Here we define product abstraction for two abstract domains, however,
the definition can easily be extended to allow products of more than two domains as well.

Definition 14 (Product abstraction). The product of two abstractions D1 =
⟨S1,S1a,⊑1, γ1⟩ and D2 = ⟨S2,S2a,⊑2, γ2⟩ is the domain Prod(D1 ,D2 ) = ⟨S,Sa,⊑, γ⟩,
where

• S = S1 × S2,

• Sa = S1a × S2a,

• (s1, s2) ⊑ (s′
1, s

′
2) if and only if s1 ⊑1 s′

1 ∧ s2 ⊑2 s′
2, where s1, s

′
1 ∈ S1a and

s2, s
′
2 ∈ S2a,

• γ((s1, s2)) = (γ1(s1), γ2(s2)), where s1 ∈ S1a and s2 ∈ S2a. �

Let T1, T2 denote the transfer functions for D1, D2. The transfer function for the product
domain produces the successor states, which are the cartesian product of those states, that
are produced by T1 and T2
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2.5 CEGAR

Counterexample-guided abstraction refinement (CEGAR) [6] is an abstraction-based model
checking technique. The idea of the CEGAR approach is to start with a very coarse
initial abstraction, then refine it iteratively. In each iteration an abstract state space is
constructed, where a counterexample (e.g. a path to the unsafe state) may be encountered.
Upon encountering a counterexample, its feasibility in the concrete model has to be
checked. If it is feasible, then the model indeed does not satisfy the requirement. How-
ever, if it is infeasible, then the counterexample is spurious, and the abstraction has to be
refined in such a way that excludes the spurious counterexample.
If the abstract state space does not contain a counterexample, then the model is safe, since
the abstract state space over-approximates the possible behaviors of the model.

Figure 2.2: The CEGAR method

The abstract state space constructed in each iteration of the CEGAR algorithm is repre-
sented by an abstract reachability graph.
Let D = ⟨S,D,⊑, γ⟩ denote the abstract domain used in the algorithm with T being the
abstract transfer function for D.

Definition 15 (Abstract reachability graph). An abstract reachability graph is a tu-
ple ARG = ⟨N,E,C⟩, where

• N is the set of nodes, consisting of a location and an abstract state,

• E ⊂ N × Op × N is the set of directed edges representing transitions, an edge
(n, op, n′) expressing that n′ is a successor of n with respect to operation op,

• C ⊂ N ×N is the set of covered-by edges, a covered-by edge (n1, n2) expressing that
all states reachable from n are also reachable from n′. �

In the CEGAR algorithm, the nodes of the ARG are labeled by a location and an abstract
state of an abstract domain D = ⟨S,Sabstr,⊑, γ⟩, obtained from a node by the following
functions:

• loc : N → L maps a node to the corresponding location,

• s : N → Sabstr maps a node to the corresponding abstract state.
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The CEGAR algorithm (Algorithm 1) is constructed as a loop consisting of an abstraction
step (function Build, Section 2.5.1) and a refinement step (function Refine, Section 2.5.2).

Algorithm 1 Counterexample-guided abstraction refinement algorithm
1: function Check(M : TCFA, lt: target location, D = ⟨S,Sabstr,⊑, γ⟩: abstract

domain,
Tabstr: abstract transfer function over D, π0: initial precision)

2: π ← π0
3: arg ← (∅, ∅, ∅)
4: repeat
5: abstractorResult, arg ← Build(M , lt, arg, π, D, Tabstr)
6: if abstractorResult = unsafe then
7: refinerResult, arg, π ← Refine(arg, π)
8: until abstractorResult = safe ∨ refinerResult = unsafe

2.5.1 Abstraction

The abstraction step (Algorithm 2) of the CEGAR algorithm corresponds to building an
ARG of reachable abstract states with a given precision and determining whether any of
the abstract states contains a counterexample for the given property to be checked.
The algorithm starts either with an empty ARG or (in later iterations) a partially con-
structed ARG. If the ARG is empty, then an initial set of nodes is created by an initial-
ization function I : Π → 2L×Sa that over-approximates the initial states of the model.
The algorithm maintains a waitlist for nodes to be processed. The main loop of the ab-
straction algorithm takes a node from the waitlist and first checks whether it violates the
property. If it violates the property, then the path to the node is returned as a coun-
terexample on the abstract states. Otherwise, the algorithm continues with attempting
to create a covered-by edge from this node to a node in the set of already reached nodes.
If no such coverage is possible, then the node is expanded, i.e. a new node is created for
each successor state of the abstract state represented by the node.
Of course, this algorithm can be optimized, for example by checking whether a node
violates the safety property as soon as it is reached in the expand step of its parent.

2.5.2 Refinement

If a counterexample was found in the abstract state space, CEGAR uses a refinement
algorithm to check whether the path to this counterexample is present in the concrete state
space or not. If the counterexample is infeasible according to the refinement algorithm
(the path is not concretizable in the concrete state space), then more information need to
be added to the precision, for the spurious counterexample to be excluded from the next
iteration. If the path is feasible, then the corresponding concrete path is present in the
concrete state space, so the model is unsafe.
We present a high-level algorithm for the refinement step (Algorithm 3), without the
details of the implementation. In this algorithm, the function Concretize takes a feasible
abstract counterexample and returns a concrete path to an unsafe state in that abstract
counterexample. Function RefineAndPrune refines the precision with information obtained
from the provided spurious abstract counterexample and prunes some nodes of the ARG
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Algorithm 2 Constructing and checking an ARG
1: function Build(M : TCFA, lt: target location, arg=⟨N,E,C⟩: ARG, π: precision,
D=⟨S,Sabstr,⊑, γ⟩: abstract domain, Tabstr: abstract transfer function)

2: N ← N ∪ I(π)
3: waitlist← {n ∈ N | n is not covered and not expanded}
4: while n ∈ waitlist for some n do
5: waitlist← waitlist\{n}
6: if loc(n) = lt then
7: return unsafe, arg
8: if loc(n) = loc(n′) ∧ s(n) ⊑ s(n′) for some n′ ∈ N then
9: C ← C ∪ {(n, n′)}

10: else
11: for all (l, op, l′) ∈ {enabled edge from loc(n) in M} do
12: for all s′ ∈ Tabstr(s(n), op, π) do
13: N ← N ∪ {s′}
14: E ← E ∪ {(s(n), op, s′)}
15: waitlist← waitlist ∪ {s′}
16: return safe, arg

so that the spurious counterexample is removed and will be excluded from the following
iterations. Some refinement techniques are detailed in [21] and [9].

Algorithm 3 Abstraction refinement
1: function Refine(arg: ARG, π: precision)
2: ψ ← abstract counterexample in arg
3: if ψ is feasible then
4: σ ← Concretize(ψ)
5: return unsafe, arg, σ
6: else
7: ARG, π ← RefineAndPrune(arg, π, ψ)
8: return spurious, arg, π

2.6 Lazy abstraction

Besides the well-known CEGAR algorithm, there are other approaches to tackle the reach-
ability problem in model checking. One of them is lazy abstraction. The lazy abstraction
algorithm builds an ARG on-the-fly, without the alternating ARG building and refinement
steps seen in the CEGAR algorithm. Abstraction refinement is performed occasionally (as
needed) during the construction of the ARG.
As a configurable framework, lazy abstraction can work with various abstract domains and
product domains composed of different abstract domains [12]. E.g. data can be represented
by explicit abstraction or by first-order logic formulas while timing constraints can be
represented by zone abstraction. The lazy abstraction algorithm enables working with
zones without binding the level of abstraction to a precision as opposed to the abstraction
step of the CEGAR algorithm. Lazy abstraction also enables the use of efficient abstraction
refinement algorithms that do not use an SMT solver.
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The algorithm may resemble the CEGAR algorithm (it maintains a waitlist of nodes, builds
an ARG, checks for coverages, expands nodes, and performs abstraction refinement), even
though they have fundamental differences.
Lazy abstraction uses abstract states that must not over-approximate the set of reachable
concrete states. However, this granularity of abstract states would not allow many covered-
by edges in the ARG. Because of this, lazy abstraction uses an additional abstract domain
for each concrete domain, which is called coverage domain. This domain has the purpose
of over-approximating of the set of reachable concrete states, which is useful when checking
for coverage.
For the abstraction refinement algorithms to work, lazy abstraction can only use transfer
functions that produce an exact successor state for a given operation. These constraints
are satisfied by zone abstraction, however, it is not always the case with data domains,
e.g. we cannot use havoc operations on data variables when using this algorithm.
To outline the preliminaries of this work more clearly, we present only a simplified version
of the lazy abstraction algorithm, which works over models containing only clock variables,
for which we will use zones as abstract states.

2.6.1 Lazy abstraction over the zone domain

For the abstract domain, Zone(VC , VC) is capable of representing states with the required
granularity. We can use Zone(VC , VC) for the coverage domain as well, in this case al-
lowing the over-approximation of concrete states. We denote the abstract domain with
Zoneabstr = ⟨S,Zabstr,⊑Z , γZ⟩ and the coverage domain with Zonecov = ⟨S,Zcov,⊑Z , γZ⟩.
Both domains use the same preorder, hence we will use the ⊑Z relation between zones
belonging to different domains as well.
The lazy abstraction algorithm constructs an ARG of reachable states. The nodes of this
ARG are labeled with a location and with a zone from both Zoneabstr and Zonecov. To
obtain these labels of nodes, we define the following functions:

• loc : N → L maps a node to the corresponding location,

• zabstr : N → Zabstr maps a node to the corresponding zone in Zoneabstr, we refer to
this zone as the abstract zone of node n,

• zcov : N → Zcov maps a node to the corresponding zone in Zonecov, we refer to this
zone as the coverage zone of node n.

Definition 16 (Lazy transfer function). The lazy abstraction algorithm uses a trans-
fer function Tlazy : N × Op → N , which uses the abstract transfer function TZ of the
zone domain, such that Tlazy(n, op) = (l′, TZ(zabstr(n), op, VC),⊤) if an edge (loc(n), op, l′)
exists in the model. �

Note that precision is irrelevant here, we always use all clock variables to compute the
successors of a state on the abstract domain, while the successor on the coverage domain
is always ⊤ (it may get refined later). We will omit the precision parameter when referring
to the abstract transfer function TZ in the lazy algorithm.
To ensure the correctness of the algorithm, we must construct the ARG in such a way
that it is well-labeled, which means that the following conditions hold [24]:
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1. initiation: zabstr(n0) = αZ(val0C) and zabstr(n0) ⊑Z zcov(n0) where n0 is the root
node of the ARG and val0C is the initial valuation of the TCFA,

2. simulation: ∀n ∈ N : TZ(zabstr(n), op) = ⊥ ⇒ TZ(zcov(n), op) = ⊥,

3. consecution on Zoneabstr: ∀(n, op, n′) ∈ E : TZ(zabstr(n), op) = zabstr(n′),

4. consecution on Zonecov: ∀(n, op, n′) ∈ E : TZ(zcov(n), op) ⊑Z zcov(n′),

5. coverage: ∀(n, n′) ∈ C : zcov(n) ⊑Z zcov(n′).

The algorithm presented here is a version of the lazy abstraction algorithm that can
explore the state space starting from either an empty or a partially constructed ARG.
The algorithm maintains a waitlist of nodes to be processed and a list of passed nodes,
i.e. nodes that are already fully expanded. The main loop of the algorithm, similarly to
CEGAR, consumes nodes from the waitlist, and first checks if it is the target location
(this can also be checked as soon as the node is reached for a more efficient algorithm).
If it is the target location, then the model is unsafe without the need for any further
checks, since only actually feasible nodes are created. Then the possibility of covering
the abstract zone of the node with the coverage zone of another node is checked, with an
additional abstraction refinement step if a covering node is found. For non-covered nodes,
the algorithm proceeds to expand the node. During the expansion step, an abstraction
refinement is performed for all disabled transitions from the abstract zone to ensure that
it is disabled from the coverage zone as well.
In this algorithm, there is no loop of alternating ARG building and refinement steps,
rather the ARG building is occasionally interrupted by a necessary refinement step.
Procedures Cover and Disable ensure that the ARG stays well-labeled. In the case of
coverage, this is needed to ensure the well-labeledness condition for coverage. When
encountering a disabled transition, abstraction refinement is performed to ensure the sim-
ulation condition. Unfortunately, refining the coverage zone only in the directly involved
node is not enough, as this may produce an ARG that does not satisfy the condition of
consecution on the coverage domain. Because of this, these are complex algorithms that
traverse the ARG backward on the path toward the root node to ensure well-labeledness.
These algorithms are detailed in [24] and [12].
Note that this algorithm builds an inductive ARG on both Zoneabstr and Zonecov domains,
but the set of reachable states in the model is over-approximated by only the coverage
domain.
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Algorithm 4 Lazy abstraction algorithm
1: function Check(M : TCFA, lt: target location, arg: ARG)
2: if N = ∅ then
3: N ← {(l0, αZ(val0C),⊤)}
4: waitlist← {n ∈ N | n is not covered and not expanded}
5: passed← {n ∈ N | n is expanded}
6: while n ∈ waitlist for some n do
7: if loc(n) = lt then
8: return unsafe, arg
9: // try to cover

10: if loc(n) = loc(n′) ∧ zabstr(n) ⊑Z zcov(n′) for some n′ ∈ passed then
11: C ← C ∪ {(n, n′)}
12: Cover(n, n’)
13: // expand
14: if n is not covered then
15: for all (l, op, l′) outgoing edge from loc(n) in M do
16: n′ ← Tlazy(n, op) // zcov(n′) = ⊤
17: if γZ(zabstr(n′)) = ∅ then
18: Disable(n, op)
19: else
20: N ← N ∪ {n′}
21: E ← E ∪ {(n, op, n′)}
22: waitlist← waitlist ∪ {n′}
23: passed← passed ∪ {n}
24: return safe, arg
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Chapter 3

Overview

In this chapter, we present our framework to support the verification of software-intensive
systems. Our goal is to analyze real-time systems that have data and time-dependent
behavior so the analysis methods need to take into consideration both aspects. In our
approach (Figure 3.1), we assume that we have a real-time system (RTS for short) with
both data and clock variables and a safety property. This model is often derived from
high-level engineering models. The verification task is to prove that the system satisfies
the given property.
Formal verification algorithms are utilized to answer the verification query. The first step
in the verification process is to derive a formal model (in this case, a Timed Control Flow
Automaton) via a series of model transformation steps.
The first model transformation step takes the RTS and the safety property and generates
a modified RTS encompassing the property by generating a witness process and error
locations in the RTS. The modified RTS is safe (based on the reachability of the error
location) if the input RTS satisfies the property, or the modified RTS is unsafe if the input
RTS does not satisfy the property. The property preserving transformation is detailed in
Section 3.1.1.
Next, we map the modified RTS to a TCFA. The RTS supports high-level elements such
as synchronization, urgent and committed locations, which makes it easy to model a real-
world system in RTS, but they introduce unnecessary complexity in the formal verification
process. To combat this issue, we generate a low-level formal model from the RTS, whose
behavior is equivalent to the RTS. We describe this model transformation in Section 3.1.2.
Our formal verification methods can be applied on the TCFA formalism, so they are
independent of the high-level RTS formalism. The TCFA formalism provides flexibility as
any kind of higher-level formalism can be verified through TCFA: we only need a mapping
from the high-level formalism to it.
Given a TCFA, we are able to run formal verification algorithms to determine whether the
TCFA is safe or unsafe. We extended the Theta open source, modular, formal verification
framework to be able to execute the implemented verification algorithms.
We provide lazy abstraction, which is efficient in handling time-dependant behaviour as
it provides efficient abstractions. On the other hand, lazy abstraction has significant
limitations on the data-dependant behaviour. However, lazy abstraction can solve many
problems efficiently, so it is a valuable part of our portfolio. We integrated the lazy
abstraction into Theta, and we used this implementation as a baseline to compare our
novel approach.
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Figure 3.1: Overview of our approach

We implemented two algorithms from the literature based on the eager CEGAR approach.
These algorithms can handle data efficiently thanks to the CEGAR-based refinement loop.
These algorithms use zone abstraction for time, but while one follows all clock variables,
the other performs an activity-based preprocessing step that reduces the number of clock
variables during verification. Unfortunately, zone-based handling of clock variables provide
a fine grained abstraction preserving too much information during verification, so these
algorithms perform better for data than for time. We elaborate on these algorithms in
Chapter 4.
Finally, we introduce a novel algorithm that combines the efficient data abstraction strate-
gies of eager CEGAR with the efficient clock abstraction methods of lazy abstraction. This
new algorithm is capable of overcoming the difficulties plaguing both lazy abstraction and
eager CEGAR when it comes to the verification of real-time software systems that have
both data and time-based behavior. We describe the combined approach in Chapter 5.

3.1 Mapping Real-Time Systems to TCFA

We define the algorithms in this work to be able to check whether an error location in a
TCFA is reachable or not. Therefore, we need to create a method to transform a Real-Time
System and a property to a TCFA with a set of error locations.
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3.1.1 “Error” locations in Real-Time Sytems

We introduce error locations as a new type of location in an XTA. So the new definition
of an XTA = ⟨L, l0, vloc

0 ,Dloc, Cloc, I, E, T, lerr⟩, where lerr is an optional error location
(not every process has to have an error location) and everything else is the same as in
Definition 2. The connection between the safety of the system and the reachability of an
error location depends on the type of property.
We reduce the verification problem with PSL to a search problem. A new process is added
to the system, that has an initial and an error location. There is only one edge e in
this process from the initial location to the error location, with a single guard, which is
the state property with a little modification: if a location is in the state property, it is
replaced with a boolean variable that is true if and only if the state, which the system
is in, contains the corresponding location. Let prop denote this modified property. The
guard g of e depends on the type of the state property:

• g = prop if the property’s type is possibly and the system is safe if an error location
is reachable because the system can be brought to a state, where the property holds

• g = ¬prop if the property’s type is invariantly and the system is unsafe, if the
error location is reachable because the system can be brought to a state, where the
property not holds

The extra process is not enough to check reachability, because if the system is in a state
that contains some committed locations and no edge from it to an error location, but g
holds, the next transition must include an outgoing edge of one of the committed locations,
and after this transition, g may never hold again. It is not an option to make the initial
location of the extra process committed, because it can cause a deadlock - if g is not
satisfied and there are no other committed locations in the state then no edge can be
fired. Therefore, each process containing at least one committed location needs to be
extended with an error location, and from every committed location, an outgoing edge
with guard g must be added to the error location. Thus an error location is reachable
from every committed location if the property under analysis holds in the committed
location.

3.1.2 Converting RTS with Error Locations to TCFA

In this section, we use the notations from Definition 1, and Definition 4. The goal of this
section is to give a method to transform a Real-Time System RTS = ⟨P,Dg, Cg, S⟩ to a
Timed Control Flow Automaton TCFA = ⟨L, l0, VD, VC , val

0
D, val

0
C , E⟩. We use L to refer

to the location set of the state of the RTS. Dloc
i denotes the data variables, and C loc

i

denotes the clock variables and Li denotes the locations of pi | i ∈ {1, 2, . . . , |P |}. In the
following list we show how to calculate the parts of the model:

• VD =
|P |⋃
i=0
Dloc

i ∪ Dg

• VC =
|P |⋃
i=0
C loc

i ∪ Cg

• val0D is the initial value of VD.

• val0C is a clock valuation that maps VC to 0
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• L = L1 × L2 × · · · × L|P |

• E = L ×Op× L

• l0 is the initial location that is the cartesian product of the initial locations of all
processes

The edge set of the TCFA consists of edges representing timed transitions and edges rep-
resenting discrete transitions, as defined in 2.2. The TCFA has an edge et = ⟨loc, opt, loc

′⟩,
where loc, loc′ have |P | components with the ith component being from Li, if one of the
following conditions groups holds:

• ∃i ∈ 1 . . . |P | : there is an edge in the RTS e = ⟨li, op = ⟨gi, ai, ri, ⟩, τ, l′i⟩ in the ith
process, ∀k ̸= i ∈ 1 . . . |P | : the kth component of loc and loc′ are the same, the ith
component of loc′ is l′i and opt = ⟨gi ∧ I(l′i), ai, ri⟩

• ∃s ∈ Sn : ∃i ∈ 1 . . . |P | : there is an edge in the RTS e = ⟨li, op = ⟨g!, a!, r!, ⟩, s!, l′i⟩ in
the ith process, ∃j ∈ 1 . . . |P | : there is an edge e = ⟨lj , op = ⟨g?, a?, r?, ⟩, s?, l′j⟩ in the
jth process, ∀k ̸= i, j ∈ 1 . . . |P | :,the kth component of loc and loc′ are the same,
the ith, jth component of loc′ is l′i, l′j and opt = ⟨g! ∧ g? ∧ I(l′i)∧ I(l′j), a! ∪ a?, r! ∪ r?⟩

• ∃s ∈ Sb : ∃i ∈ 1 . . . |P| : there is an edge in the RTS
e = ⟨li , op = ⟨g!, a!, r!, ⟩, s!, l ′

i⟩ in the ith process, let J =
{j | there is at least one outgoing edge from lj labeled with s?}, then ∀j ∈ J : there
is an edge ej = ⟨lj , op = ⟨gj , aj , rj⟩, s?, l′j⟩, the ith component of loc′ is l′i, for all
j ∈ J the jth component of loc′ is l′j , every other component in loc, loc′ are the
same, opt = ⟨gi ∧

∧
j∈J gj ∧

∧
j∈J I(l′j), a! ∪

⋃
j∈J aj , r! ∪

⋃
j∈J rj⟩

If there is at least one committed location in the components of loc, then li or lj above
must be a committed location.
In a timed transition, every clock variable is increased by d, an arbitrarily large real
number, so there is an edge ⟨l, op, l⟩ for every l ∈ L and op contains a guard that is
the conjunctions of the invariants of the XTA locations in l and increases every value
of clock variables c ∈ VC by an arbitrary value d (non-deterministically chosen by the
concrete transition function). The error location lerr in the TCFA has an incoming edge
e = l × lerr where l contains an error location from the RTS, and e is the only outgoing
edge from l.
Our algorithms can be run on everything that can be mapped to a TCFA. In this work,
we focused on Real-Time systems from UPPAAL verification software, but system models
and real-time software can be mapped to TCFA as well.
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Chapter 4

CEGAR with clock activity

We introduce another abstraction to reduce the number of clock variables in Zone ab-
straction without losing any information that affects state space. This abstraction is
called active zone abstraction [14], and its main idea is omitting those clock variables from
the zone that do not affect any future operations. A clock c is active at a location l,
denoted by c ∈ Act(l), if c is part of invariant I(l), appears in the guard of some outgoing
edge of l, or c ∈ Act(l′) where l′ is a location reachable from l and c /∈ r, and r is the set
of clocks that are reset on the outgoing edge of l.
Definition 17 (Global Zone abstraction). Global Zone abstraction over the set of
clock variables VC = {c1, c2, . . . , c|VC |} is the abstract domain GlobalZone(VC) =
Zone(VC , VC) where Zone is an abstract domain (defined in Definition 13), �

Definition 18 (Active Zone abstraction). Active Zone abstraction over the set of
clock variables VC = {c1, c2, . . . , c|VC |} and a precision π ⊆ VC is the abstract domain
ActiveZone(VC , π) = Zone(VC , Act(l)) where Zone is an abstract domain (defined in Def-
inition 13), and Act(l) is the set of clock variables, which may affect future operations, so
this abstraction depends on the locations. �

Active clocks of a location can be calculated using the iterative algorithm described below,
where Act(l) is the set of active clock variables of l, and clk : B(C) → 2C assigns to each
clock constraint the set of clocks appearing in it

Algorithm 5 Activity calculation
1: function GET_ACTIVE_CLOCKS(xta : XTA)
2: for all l ∈ {location in xta} do
3: Act0(l)← clk(I(l))
4: for all (l, a, g, r, s, l′) ∈ {every outgoing edge from l} do
5: Act0(l)← {Act0(l) ∪ clk(g)}
6: i← 1
7: do
8: for all l ∈ {locationin}xta do
9: for all (l, a, g, r, s, l′) ∈ {every outgoing edge from l} do

10: Acti(l)← {Acti−1(l) ∪Acti−1(l′)\r}
11: while Act(l)i−1 ̸= Act(l)i for every l in xta

In the 0th iteration Act(l) gets every clock variable appears in the invariant of location
and every clock variable appears in the guard of each outgoing edge. Then from the first
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iteration Act(l) is expanded with every element of the active clocks of the target location
of each outgoing edge excluding the clocks, that is reset in the outgoing edge. The loop
stops when a fix-point is reached, so when Act(l) is not expanded for any l.
In the CEGAR algorithm we need to use an abstraction over the data variables, and one
over the clock variables. Therefore, we used product abstraction. We use Zone abstraction
over clock variables, and Predicate or Explicit abstraction over data variables. CEGAR
creates an ARG of a TCFA, where the abstract states are labeled with a location, and a
product state of a data state that abstracts over data variables and a zone that abstracts
over clock variables. To build the ARG we can use Algorithm 2, to check whether the error
location is reachable or not. We can reduce the tracked clock variables in the zone if we
use Active Zone abstraction, so we expect a reduced abstract state space, which manifests
in an increased number of coverage edges in the ARG. We show that in the example below
that we need fewer nodes to be expanded in the ARG building algorithm if we use Active
Zone abstraction.

Example 1. Figure 4.2 is the ARG constructed by Active Zone abstractor for the TCFA
in Figure 4.1. The construction starts with a preprocess that calculates Act(l) for each
location in the TCFA using Algorithm 5. The TCFA has x, y, z clock variables and

• Act(L1) = {z}

• Act(L2) = {x, z}

• Act(L3) = {x, y, z}

• Act(L4) = {x}

When the ARG is expanded from L3 with two nodes, one is labeled with L4 and the other
one is labeled with L3. Both of them can be covered by other nodes, but with Global Zone
abstraction we would not have the red coverage arrow, because z would appear in the clock
constraints in each node. The upper abstract node labeled with L4 would have a constraint:
z > 0 and the lower one would have a constraint z > 1, so the lower one does not imply
the upper one. It follows that both of them need to be expanded, but with Active Zone
Abstraction only the upper one needs to be expanded.
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Figure 4.1: Example TCFA
Figure 4.2: ARG constructed by Active Zone ab-

stractor
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Chapter 5

Combined CEGAR

TCFA models contain both data and clock variables. In the following, we overview both
those algorithms that we integrated to the framework, and also our novel verification
algorithms. These algorithms can now be used in the framework for timed verification.

Eager CEGAR

Figure 5.1: Eager CEGAR

Our first option is to use the (eager) CEGAR algorithm. In that case, an eager abstractor
builds the ARG with a common precision for both time and data and an eager refiner
is responsible for refining the precision and pruning the ARG. With this option, we have
efficient abstract domains for data, e.g. explicit value abstraction, and predicate abstrac-
tion. On the other hand, we do not have any efficient options for representing time. We
can use visible clock abstraction, or active clock abstraction, although both of them are
based on removing all information about some of the clocks in the abstract states. In our
experience, neither of them proved to be efficient (see evaluation in Chapter 6).
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Lazy abstraction

Figure 5.2: Lazy abstraction

Instead of the eager CEGAR algorithm, we could use lazy abstraction. In this case, we
do not need a global precision to be able to use abstraction, instead, precision is handled
locally in each ARG node. This is advantageous for the timed component, as we can
utilize the ability of zones to store some (but not all) information about a clock. We also
have efficient abstraction refinement algorithms for it. Lazy abstraction can be efficient
on the data domain as well, however, non-deterministic operations can hinder this, as we
can not give an efficient data domain where non-deterministic operations are supported.
[15] Therefore, lazy abstraction is not suitable for the verification of some models, even
though lots of models contain non-deterministic operations in practice, e.g. handling user
input.
We could turn back to the eager CEGAR option when verifying these models; instead, we
propose a novel approach that combines the advantages of the eager and lazy algorithms
to give a more efficient solution, which is the combined CEGAR algorithm.

Combined CEGAR

Previously we have seen that the CEGAR algorithm handles discrete data efficiently but it
cannot handle timing very well, on the other hand, the efficiency of the lazy algorithm for
zone abstraction is outstanding but it also has its weaknesses when it comes to handling
data variables, it severely limits what operations we can use in the data domains. To allow
the efficient verification of as many models as possible, we combine them into a Combined
CEGAR algorithm, so that discrete data is handled by an eager CEGAR algorithm, while
timing is handled by lazy abstraction. To do so, we run a lazy abstraction algorithm inside
a CEGAR algorithm, in place of its abstraction step.
This abstraction algorithm runs with a fixed precision for data, obtained from the last
refinement step of the CEGAR algorithm. For data abstraction, it uses the abstract
transfer function for the eager algorithm, which allows states that over-approximate the
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Figure 5.3: Combined CEGAR with lazy abstraction

set of reachable concrete states, as opposed to the lazy algorithm. For time abstraction
the lazy transfer function and abstraction refinement are used, as described previously.
In this combined algorithm reaching inconsistent states is possible, as successors are com-
puted for all outgoing edges as in the lazy abstraction algorithm. When encountering a
state with an inconsistent time component, the simulation condition of well-labeledness
has to be ensured, while states with an inconsistent data component can simply be skipped.
Moreover, when adding a covered-by edge, there are no further actions needed to be per-
formed on the data component of states, as it already satisfies the requirement for coverage,
while in the timed component it has to be ensured that the coverage domain satisfies the
coverage condition of well-labeledness in the lazy algorithm. Therefore, abstraction re-
finement caused by an inconsistent state or a coverage involves only the time domain, so
in these cases, we can use the abstraction refinement algorithms presented previously for
lazy abstraction as they are.
When reaching an unsafe state in the combined algorithm, the counterexample projected
to the timed component of states is always concretizable, since we run the lazy algorithm
on that part. However, when projected to the data domain, we get an abstract counterex-
ample, which may or may not be concretizable. Therefore, when encountering an unsafe
abstract state, we do not deem the automaton unsafe immediately but instead, use the
refiner of the CEGAR algorithm. The refiner runs as usual in the CEGAR algorithm. The
result of the refinement is always either a concrete counterexample or only the data pre-
cision being refined since the lazy algorithm does not generate spurious counterexamples.
The ARG built with the combined algorithm is similar to that of the lazy algorithm,
however, we have to label the nodes with abstract data states as well. With D = ⟨S,D,⊑D
, γD⟩ being the abstract domain used for data, let dabstr : N → D denote the function that
maps a node to the corresponding abstract data state.

Definition 19 (Combined transfer function). Let TD denote the abstract transfer
function used in the combined algorithm for the data domain D. The combined algo-
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rithm uses a transfer function Tcombined : N ×Op×Π→ 2N , which uses transfer functions
TD and TZ . With the decomposition of a node n as (loc(n), dabstr(n), zabstr(n), zcov(n)), the
successors of a node n with respect to operation op and precision π are Tcombined(n, op, π) =
{(l′, sd, sz,⊤) | sd ∈ TD(dabstr(n), op, π), sz = TZ(zabstr(n), op)} if an edge (loc(n), op, l′)
exists in the model. �

The combined algorithm uses the same outer CEGAR loop as presented in Algorithm 1.
The refinement algorithms used in eager CEGAR can also be used here. Here we present
the ARG building step of the combined algorithm, which is slightly different than the ones
presented before. It is a lazy abstraction algorithm, modified to handle both data and
timing as described here. The highlighted parts show where this algorithm differs from the
lazy abstraction algorithm presented previously.1 We refer to this part of the combined
CEGAR algorithm as a combined abstraction.

Algorithm 6 Build an ARG in the combined CEGAR algorithm
1: function Build(M : TCFA, lt: target location, arg: ARG, π: precision,
D=⟨S,D,⊑D, γD⟩: abstract data domain, TD: abstract transfer function for D)

2: N ← N ∪ {(l0, id, iz,⊤) | id ∈ I(π), iz = αZ(val0C)}
3: waitlist← {n ∈ N | n is not covered and not expanded}
4: passed← {n ∈ N | n is expanded}
5: while n ∈ waitlist for some n do
6: if loc(n) = lt then
7: return unsafe, arg
8: if loc(n) = loc(n′) ∧ dabstr(n) ⊑D dabstr(n′) ∧ zabstr(n) ⊑Z zcov(n′) for some
n′ ∈ passed then

9: C ← C ∪ {(n, n′)}
10: Cover(n, n’)
11: if n is not covered then
12: for all (l, op, l′) outgoing edge from loc(n) in M do
13: for all n′ ∈ Tcombined(n, op, π) do
14: if γZ(zabstr(n′)) = ∅ then
15: Disable(n, op)
16: else if γD(dabstr(n′)) = ∅ then
17: continue
18: else
19: N ← N ∪ {n′}
20: E ← E ∪ {(n, op, n′)}
21: waitlist← waitlist ∪ {n′}
22: passed← passed ∪ {n}
23: return safe, arg

Example 2. Figure 5.5 illustrates the ARG constructed by the combined abstractor for
the TCFA in Figure 5.4 in the first iteration of the combined CEGAR algorithm. In this
example, explicit value abstraction is used for data. The algorithm starts with an empty
precision, i.e. no data variables are tracked. The abstract zone of the initial node of the
ARG contains information available from the initial clock valuation. In accordance with
the presented algorithm, both the abstract data state and the coverage zone are ⊤. The

1Note that there are only a few changes. These can be handled well by writing a generic lazy abstraction
algorithm (see [12]), with configurations that provide different implementations for the domain-specific
parts, such as the marked places here.
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transition from L1 to L2 sets x2 to 0 but the next abstract data state is still ⊤, as x2 is
not tracked. The transition also resets clock c1, hence the value of c1 is at most the value
of c2 in the next state. The result of the next transition (from L2 to L3) is computed
similarly. From this third node the transition with the guard [c1 < 1 ∧ c2 ≥ 1] is disabled
because c2 ≤ c1. The disabled transition triggers an abstraction refinement on zones,
setting the coverage zone of this node to c2 ≤ c1. The transition resetting c2 is enabled,
and a new node is created, which is then covered by its parent node since their locations
are the same and the abstract zone of the child is over-approximated by the coverage zone
of the parent. To ensure that coverage is satisfied on the coverage domain, the coverage
zone of the covered node is refined. From L3 there is a third outgoing edge as well, to the
error location L4, with the guard [x1 > 1]. As x1 is not tracked, we must assume that this
transition is enabled, and the combined abstractor returns an unsafe result.

Figure 5.4: Example TCFA

Figure 5.5: ARG constructed by the combined ab-
stractor
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5.1 Pruning strategies

We experimented with two different strategies for pruning the ARG at the end of the data
refinement step. The most straightforward strategy is to erase the ARG completely and
build an entirely new one. We call this strategy full pruning. However, full pruning seems
inefficient, as no information is preserved that might be useful in the next iteration.
To reuse information, we tried another strategy that we call lazy pruning. Lazy prun-
ing determines which node is the first in the provided counterexample where precision
should be refined to exclude the spurious counterexample. The subtree of this node is
then removed from the ARG since they contain states that are actually infeasible. This
refinement strategy requires additional steps to keep the ARG correct. The parent node of
the subtree should be removed from the set of passed nodes and put back in the waitlist,
as it has an enabled transition for which there is no corresponding child node now. More-
over, all nodes should be put back in the waitlist that covered or was covered by a node in
the removed subtree. The algorithm can then continue with the ARG building step with
this pruned ARG and the refined precision. Even though the data precision is refined, the
information stored in the already existing parts of the ARG is not modified, and because
of this it can happen that we get the same counterexample in the next iteration, i.e. the
algorithm becomes stuck. When this happens, we do full pruning instead of lazy pruning,
then continue the algorithm normally.

Example 3. The left side of Figure 5.6 illustrates the continuation of the previous ex-
ample after data abstraction refinement and lazy pruning. The refiner concluded that x1
should be tracked, and prunes the ARG, leaving only the first two nodes, as the value of
x1 should be set in the transition from the second ARG node. The highlighted parts of the
figure are added to the ARG in the second iteration of the combined CEGAR loop. The
transition from L2 to L3 sets the value of x1 to 1 and this time we track x1, so the abstract
data state of the successor ARG node is x1 = 1. Regarding the time component, everything
is the same as in the previous iteration. From the third ARG node, the transition with
guard [c1 < 1 ∧ c2 ≥ 1] is disabled again, triggering the abstraction refinement, setting
the coverage zone of the third node to c2 ≤ c1. The transition resetting c2 creates a new
ARG node (this time with abstract data state x1 = 1), which is then covered, just as in
the previous iteration. However, this time the transition from the third ARG node to L4 is
disabled, as now we know that x1 > 1 cannot be true since x1 = 1. At this point all nodes
are either expanded or covered, there are no more nodes to be processed; the combined
algorithm returns that the model is safe.

The right side of the figure shows the ARG constructed after full pruning. This leads to
the same result, although in this case the whole ARG has to be built again and the value
of x1 is tracked everywhere in the ARG.

5.2 Correctness of the combined CEGAR algorithm

Lastly, we show that the combined CEGAR algorithm is correct, i.e. if it terminates, then
it concludes that the model is safe if and only if an unsafe state can not be reached in the
model. For this let us assume that the lazy abstraction algorithm presented in this work
for zone abstraction builds a well-labeled ARG and that a well-labeled ARG preserves
reachable states. Proofs for both statements are given in [24].
With the handling of the data components removed from the combined abstraction algo-
rithm, the resulting algorithm is the previously presented lazy abstraction algorithm for
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Figure 5.6: ARG constructed after data abstraction refinement and lazy pruning (left)
or full pruning (right)

the zone domain: (1) the set of initial states without the initial states for data abstraction
consists of a single state, equivalent to the initial state of the lazy algorithm, (2) the check
for coverage without checking the data part becomes the same as in the lazy algorithm,
(3) it is also easy to see that the abstract transfer function Tcombined becomes Tlazy with-
out the data component. From our previous assumption, the lazy abstraction algorithm
builds a well-labeled ARG. We show that re-adding the data components preserves the
well-labeledness on the timed projection of the ARG.
Even though the initialization function for the data domain might produce more than one
initial state, zabstr(n0) will be αZ(val0C) for each initial node n0, and zcov(n0) will always
be ⊤ ⊒ αZ(val0C). On the timed projection of the ARG this means that there might be
multiple identical initial nodes, however, assuming the presence of only one initial node
identical to the original initial nodes with a no-op operation to all original ones transforms
it to an ARG where there is only one initial node, it covers exactly the same concrete states
as the union of the ARGs built separately from the original initial nodes, and it satisfies
the condition of initiation.
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The successor state of the abstract zone of each node is computed with the same TZ ab-
stract transfer function in both combined and lazy algorithms, so consecution on Zoneabstr

is trivially preserved.
Even with data present in the algorithm, the successor state of the coverage zone of a
node is always ⊤ and time refinement is also not affected by it. Therefore, consecution on
Zonecov and simulation are trivially preserved.
The preconditions for creating a covered-by edge (n, n′) in the combined algorithm include
zabstr(n) ⊑Z zcov(n′) and the Cover method ensures that the coverage condition zcov(n) ⊑Z
zcov(n′) is satisfied on these nodes in the same way as in the lazy abstraction algorithm,
as it works only on the timed projection of the ARG, the presence of data does not affect
this aspect of the algorithm.
From these, it follows that the combined algorithm builds such an ARG that its timed pro-
jection is well-labeled. This means that it preserves the timed projections of all reachable
states.
Next, we show that the data projection of the ARG built by the combined CEGAR
algorithm over-approximates the set of reachable states. The initialization function for
data over-approximates the set of initial states of the model. Any node that is not in the
waitlist is either expanded or covered. When expanding a node, the combined algorithm
creates a successor node in the ARG for each outgoing edge that contains an operation that
is enabled from both the timed and data projection of the node and computes successor
states of dabstr(n) with the abstract transfer function TD for data domain D that by the
definition of abstract transfer functions over-approximates the set of successor states. The
preconditions for creating a covered-by edge (n, n′) in the combined algorithm contain
dabstr(n) ⊑D dabstr(n′), therefore no reachable states are lost by coverage. The data
projection of an existing ARG node is never modified during the run of the combined
abstraction algorithm. From these, it follows that the data projection of the ARG preserves
the data projection of all reachable states.
Pruning also preserves the desired properties. With full pruning this is trivial, a completely
new ARG is constructed. In the case of lazy pruning, if an initial node is removed, then it
is re-added at the beginning of the next iteration, hence initiation is ensured. The abstract
and coverage zones of the remaining nodes are not modified, so simulation and consecution
are trivially preserved, as well as coverage for all such covered-by edges that have both their
source and target in the remaining nodes. If either the source or the target is a removed
node, then lazy pruning also removes the covered-by edge, so coverage is ensured in this
case as well. The data projections of existing ARG nodes are not modified by pruning,
and any node that became non-covered or non-expanded is put back into the waitlist at
the beginning of the next iteration, hence no reachable states are lost by pruning.
All reachable states are preserved, therefore we do not lose reachable locations either, since
for a location to be reachable there has to exist a concrete run of the automaton to that
state.
A safe result from the combined abstraction algorithm is returned only if the ARG does
not contain the target location. We have seen that the ARG built by this algorithm
preserves all reachable locations, so if the ARG does not contain the target location, then
it is indeed unreachable in the model.
An unsafe result is returned only if the refiner provides a concrete path to the target
location for the given abstract counterexample. This means that if an unsafe result is
returned, then assuming that the refiner works correctly, the target location is actually
reachable in the model.
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Chapter 6

Evaluation

We implemented the proposed techniques in the Theta open source model checking frame-
work [25]. Since Theta is a configurable framework, we were able to implement our solu-
tions as new algorithm configurations in the framework and also experiment with multiple
options for some aspects of our algorithms that were already present in the framework
(e.g. different abstract domains, abstraction refinement techniques, etc.).
Theta has already supported model checking for XTA models, although previously using
the lazy abstraction algorithm was the only option for that. Because of this, we conducted
experiments with lazy abstraction as well to use as a baseline for our results.
We evaluated our solutions on a benchmark set for RTS. These systems are usually verified
by lazy abstraction, so the models in this benchmark set do not contain elements that are
not supported by lazy abstraction algorithms. The benchmark set we used consists of 95
benchmark models [13].
The benchmarks were run using Benchexec1 on virtual computers with 6 CPU cores. Each
task was run with a time limit of 300 seconds and a memory limit of 15 GB.

6.1 Lazy abstraction

In the following, we describe the configuration options used in our experiments with lazy
abstraction.
Abstract and coverage data domains:

• EXPL/EXPL (explicit value abstraction for both domains, using over-approximation
in the coverage domain)

• EXPL/NONE (explicit value abstraction without over-approximation): this is the
approach used by the Uppaal verification tool [20], one of the most efficient ap-
proaches for real-time systems

• FORM (first-order logic formulas as abstract states in both domains): this is the
only option supporting non-deterministic operations, therefore this configuration can
be considered the actual baseline for our results

Data refinement algorithm:
• NONE (no data refinement): used when the coverage domain does not allow over-

approximation
1https://github.com/sosy-lab/benchexec
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• BW (backward propagated interpolation)
• FW (forward propagated interpolation)
• SEQ (sequence interpolation)

Time refinement algorithm:
• BW (backward propagated interpolation)
• FW (forward propagated interpolation)
• LU (propagation of LU bounds)

Not all combinations of the above configuration options are valid: data refinement does
not make sense for the EXPL/NONE abstraction, EXPL/EXPL is only used with BW
and FW data refinement algorithms, FORM is only used with SEQ refinement.

Data Time EXPL FORMrefinement refinement EXPL NONE

NONE

BW 54
546

FW 54
577

LU 53
385

BW

BW 53
350

FW 53
351

LU 52
321

FW

BW 48
211

FW 48
221

LU 48
289

SEQ

BW 45
1040

FW 45
1060

LU 45
1110

Table 6.1: Benchmark results for the lazy abstraction algorithm:
the number of runs where the algorithm has given a result within the allowed
time frame and the total CPU time in seconds needed for those computations
(in italics)

The results can be seen in Table 6.1. From our point of view, the most important part of
this table is the part with FORM abstraction. Even though it performed poorly compared
to other configurations, it is the only configuration that has the same expressive power as
our solutions, so we will use this configuration as the baseline for our results.
Evaluation of the lazy abstraction using measurements with different configurations has
already been done before, further analysis of these measurements can be found in [24].
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6.2 Eager CEGAR

Our goal was to evaluate the newly implemented eager CEGAR algorithms and compare
them with the preexisting solutions. In particular, we look for answers to the following
questions:

• How do the eager CEGAR algorithms compare to the lazy abstraction algorithms?

• How do different data abstract domains and data refinement strategies affect the
result?

• How does active zone abstraction compared to Global Zone abstraction?

• Does lazy pruning improve the result?

As for the data abstract domains we chose explicit value analysis (EXPL) and predi-
cate abstraction (PRED) because they were shown to be effective in eager CEGAR. For
data refinement, we chose sequence interpolation (SEQ), and Newton refinement (NWT)
[10]because these two radically different approaches to refinement are proven to be efficient
in different circumstances, and the time system is a new application for both of them. We
tried each configuration with both full and lazy pruning and with both active (ACT) and
global zone abstraction (GLOB) for clock variables.

EXPL PRED
SEQ NWT SEQ NWT

GLOB
full pruning 48 47 50 0

780 802 1310 -

lazy pruning 48 48 48 0
884 822 1150 -

ACT
full pruning 35 35 48 0

696 723 1460 -

lazy pruning 35 35 45 0
819 702 1250 -

Table 6.2: Benchmark results for the eager CEGAR algorithm:
the number of runs where the algorithm has given a result within the allowed
time frame and the total CPU time in seconds needed for those computations
(in italics)

Predicate abstraction was able to verify more problems than explicit value analysis, but
verification required 30-100% more CPU time. As for the refinement, Newton refinement
did not work on predicate abstraction, but in the case of explicit value analysis, it verified
the same amount of problems as sequence interpolation. Interestingly the cost of full
pruning, Newton refinement required 2-4% more time than sequence interpolation, but
with lazy pruning, it was the other way around with sequence interpolation requiring
7-16% more time.
In the case of explicit value analysis and lazy pruning, it verified the same amount of
problems but required 2-13% more CPU time than full pruning, and in the case of predicate
abstraction and lazy pruning, it verified fewer problems, than full pruning.
As for the zone abstractions, active zone abstraction unfortunately is much worse than
global value abstraction. In the case of explicit value analysis, global zone abstraction
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37% more problems are verified. When we used predicate abstraction and global zone
abstraction it verified 4-6% more problems in 8-10% less time than active zone abstraction.
We got the best result when we used Global Zone abstraction with full pruning and SEQ
refinement algorithm, in the case of predicatre abstraction it verified 4% more problems,
but required 68% more CPU time.
The expressive power of form abstraction in lazy abstraction, and predicate abstraction in
eager CEGAR are the same over data variables, and we can see from Table6.1 and Table
6.2 that the eager CEGAR verified 10% more problems.

6.3 Combined CEGAR

We conducted experiments with the combined CEGAR algorithm as well, to answer the
following questions:

1. How does the combined CEGAR algorithm compare to the lazy abstraction algo-
rithm?

2. How do different data abstractions, data, and clock refinement techniques affect the
result?

3. Does lazy pruning improve the result?

To answer these questions using experiments, we have to specify first what configurations
we will use. For the abstract data domain, we use the already implemented options: ex-
plicit value abstraction (EXPL) and predicate abstraction (PRED). Previous work ([16],
[11]) shows that interpolating techniques give the best performance for data abstraction
refinement. For data refinement, we use sequence interpolation (SEQ) and Newton in-
terpolation (NWT) [21],[9] for the same reasons as for the eager CEGAR algorithm. For
time refinement we use algorithms that were used with the lazy abstraction algorithm as
well: backward propagated interpolation (BW), forward propagated interpolation (FW),
or propagation of LU bounds (LU). We also want to evaluate the effect of different pruning
strategies, so we run all configurations once with full pruning and once with lazy pruning.
From Table 6.3 we can see that by using the combined CEGAR algorithm our results
significantly improved compared to the baseline. We were able to check up to 6 more
models, in less than half the time the baseline lazy algorithm needed to check fewer of
them. The best results were produced by using explicit value abstraction with sequence
interpolation for data, with forward propagated interpolation for time refinement.
Generally, explicit value abstraction performed better than predicate abstraction, by about
20-35%. It can also be concluded that we can not use predicate abstraction with Newton
refinement with this algorithm for these models. However, with explicit value abstraction,
Newton refinement and sequence interpolation yielded similar results. The same can be
said about backward and forward propagated interpolation for time refinement. Compared
to them, propagating LU bounds proved to be much less efficient, requiring about 50%
more CPU time, although it could check around the same number of models.
It can also be noted that the same time refinement algorithms proved to be the best for
this algorithm as for the lazy abstraction algorithm (forward and backward propagated
interpolation).
Introducing lazy pruning did not improve our results, on the contrary, it yielded worse
results than full pruning by 1-14%. This is not contradictory to our expectations, as lazy
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EXPL PRED
SEQ NWT SEQ NWT

BW
full pruning 51 51 49 0

462 479 723 -

lazy pruning 49 51 47 0
498 495 671 -

FW
full pruning 51 51 49 0

457 487 704 -

lazy pruning 49 51 47 0
498 486 657 -

LU
full pruning 51 51 49 0

653 617 949 -

lazy pruning 49 51 47 0
676 625 834 -

Table 6.3: Benchmark results for the combined CEGAR algorithm:
the number of runs where the algorithm has given a result within the allowed
time frame and the total CPU time in seconds needed for those computations
(in italics)

pruning does some additional steps and it might also be performed multiple times if more
information is needed about data variables in nodes already present in the ARG. Even
though it did not improve the results, the loss in performance was not significant either,
in most cases being 3-9%.

6.4 Comparison of approaches

From each group of algorithms discussed in this chapter (lazy abstraction, eager CEGAR,
combined CEGAR) we took the best-performing configuration to compare all the different
approaches. We also included the baseline lazy abstraction configuration (working with
first-order formulas) in the comparison.
Figure 6.1 shows the number of models that can be verified within a given time limit. A
point with coordinates (x, y) on a line corresponding to a configuration means that the
given configuration can verify x models if the time limit for each task is y seconds.
The black line corresponding to the best performance represents lazy abstraction without
data abstraction, although it is the only configuration in this figure that cannot handle
non-determinism.
The baseline lazy abstraction configuration is represented by the red line. One can see
that almost all of our novel techniques require less time and check more models than
the lazy abstraction of the same expressive power. The best-performing novel technique
turned out to be the combined CEGAR algorithm. The combined CEGAR algorithm with
explicit value abstraction performed especially well, its results are comparable with the
best-performing lazy abstraction algorithm.
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Figure 6.1: Number of models verified by time
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Chapter 7

Related work

Model checking has a long standing history [8]. However, in this section, we focus on the
verification of timed systems and the handling of data in CEGAR approaches.
The most prominent tool for the verification of timed systems is the UPPAAL tool [20].
UPPAAL uses zones for time representation and explicit state space traversal for the
discrete parts. UPPAAL is an efficient tool for verification when only simple data is used.
Other zone based techniques for time representation are also available in the literature,
where both forward and backward computation for the zone representation was examined
[15, 17, 22, 26, 1]. A general CEGAR-based abstraction technique using active clocks for
refinement was used in [14]. Efficient lazy abstraction for timed systems was developed in
[23] with efficient refinement strategies. The authors also used their former work in the
field [12]. These works served as the basis of this paper.
Software verification has a much richer literature with real industrial success stories. Lazy
abstraction was introduced in software verification in [18]. Later, when CEGAR was
devised [7, 21, 4], it became the dominant technique for software verification for a long
time. A wide range of abstraction and refinement algorithms provided an efficient software
verification solution. An extensive study, which served the basis for the data handling in
our framework can be found here: [16].
Other abstraction based techniques also proved their efficiency is software verification:
many of them available in open source tools such as Theta1 [25] and CPAchecker2 [3].

1https://github.com/FTSRG/theta
2https://cpachecker.sosy-lab.org/
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Chapter 8

Conclusions

Real-time safety-critical systems are becoming more and more important in industrial
environments. Assuring the safe behavior of such systems is of utmost importance, so
formal verification is desirable as it is able to check the whole state space of the system
for errors, that would otherwise be hard to find with conventional testing. However real-
time systems have both data and time-based behavior, which has proved to be a huge
challenge for model-checking algorithms, as data and time abstractions require different
approaches for efficient verification. No former approaches could give efficient techniques
for this problem.
Based on the literature lazy abstraction is efficient for representing time, but have severe
limitations with data: formalisms supporting non-deterministic assignments (such as input
variables, input data) are not supported by most lazy abstraction techniques. On the other
hand, the eager abstraction in the CEGAR approach has numerous efficient domains for
data but does not have a flexible abstract domain with a configurable precision to provide
efficient representation for time.
In this work, we aimed at providing support and algorithms for efficient abstraction-based
model checking for real-time systems that have data and time-based behavior.
We provided the following algorithmic and theoretical results:

• We defined a mapping from a high-level modelling language and property description
to the low-level formal representation in Theta.

• We defined a new, two step refinement strategy inside the CEGAR loop to use
traditional CEGAR-based abstraction and refinement for data and lazy abstraction
for time.

• We defined a novel representation of the nodes in the state space that supports the
efficient computation of both the data and time coverage.

• We developed various pruning strategies that preserve the consistency of the abstract
reachability graph representation between the steps of the algorithm.

• We proved the correctness of the new algorithms.

In order to provide support for the verification engineers, we extended an existing, open-
source framework. Our implementation related results are the following:

• We implemented a chain of model transformations to provide the mapping of the
high-level input language to the low-level formal representations.
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• We have adapted the lazy abstraction and also activity based CEGAR techniques
to the TCFA formalism and integrated the approaches to the Theta framework.

• We have implemented the novel combination of the algorithms and integrated into
the Theta framework.

We implemented the aforementioned algorithms in the open source Theta framework and
evaluated them on benchmark models. Our measurements show that the novel combined
algorithm is competitive and it performed better than lazy and eager abstraction. In
conclusion, we extended the Theta framework with various existing and new algorithms
to handle real-time, software-based systems, so now a significant verification portfolio can
be used by the verification engineers for solving their problems.

8.1 Future Work

In the future we would like to:

• extend the set of properties that the model transformation supports so we can verify
a more diverse set of problems and requirements,

• investigate the efficiency of the algorithm calculating the set of active clocks and
employ dynamic programming methods to increase its efficiency and make it a com-
petitive alternative.
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