
Budapest University of Technology and Economics
Faculty of Electrical Engineering and Informatics

Department of Measurement and Information Systems

Abstraction-based algorithms for configurable
automata-theoretic model checking

Scientific Students’ Association Report

Author:

Balázs Róbert Rippl

Advisors:

Milán Mondok
Dániel Szekeres

2023

Contents

Kivonat i

Abstract ii

1 Introduction 1

2 Background 3
2.1 Model checking . 3

2.2 Modeling formalisms . 4

2.2.1 Kripke structures . 4

2.2.2 More complex data states using variables 4

2.2.3 Symbolic Transition System . 5

2.2.4 Operation-based formalisms . 5

2.2.4.1 Operations . 5

2.2.4.2 Structural and concrete states 6

2.2.4.3 Actions . 6

2.2.4.4 Interface of operation-based formalisms 7

2.2.4.5 eXtended Symbolic Transition System 7

2.2.4.6 Control Flow Automaton 8

2.3 Requirement specifications . 8

2.3.1 Safety - reachability . 9

2.3.2 Linear Temporal Logic . 9

2.4 Automata-theoretic LTL checking . 10

2.4.1 Büchi automata . 10

2.4.2 LTL checking with Büchi Automata 11

2.5 Abstraction-based model checking . 13

2.5.1 Abstraction . 13

2.5.2 Counterexample-guided abstraction refinement 14

2.5.2.1 The abstractor . 15

2.5.2.2 The refiner . 15

2.6 CEGAR algorithm for LTL checking . 17

2.6.1 LTL formula preprocessor . 17

2.6.2 Abstractor . 17

2.6.3 Refiner . 17

2.7 Theta framework . 18

2.8 Related work . 19

3 Abstraction-based algorithms for configurable automata-theoretic model
checking 20
3.1 Overview of the presented abstraction-based LTL-checking approach 20

3.2 Efficient language-emptiness checking . 21

3.2.1 Guided DFS . 21

3.2.2 NDFS for transition-based acceptance 24

3.2.3 Guided DFS for full exploration . 26

3.3 Bounded unrolling for lasso traces . 26

3.4 Theory of the composite formalism . 27

3.5 Abstraction-based linear temporal logic model checking 28

4 Evaluation 29
4.1 Experiment design . 29

4.1.1 Benchmark models . 29

4.1.2 Research questions . 30

4.1.3 Configuration parameters - combinations for specific research questions 30

4.1.3.1 Parameter sets for LTL only benchmarks 31

4.1.3.2 Parameter sets for reachability benchmarks 31

4.1.4 Shortened configuration names . 32

4.1.5 Benchmark environment . 32

4.2 The results of the benchmarks . 32

4.2.1 LTL-only benchmarks . 32

4.2.2 Reachability benchmarks - Research question 4 38

4.2.3 Threats to validity . 38

5 Conclusions 40

Acknowledgements 42

Bibliography 43

Appendix 45
A.1 Acronyms . 45

A.2 Reachability performance of configurations 45

Kivonat

A mindennapi életünk kritikus rendszereken alapszik: ebbe beletartoznak járművek, az
energetikai és közlekedési hálózatok, digitális infrastruktúrák. Ezen rendszerek megbízha-
tósága és biztonsága létfontosságú, mivel még a legkisebb észrevétlen hibák is katasztro-
fális következményekkel járhatnak, szélsőséges esetekben emberéletekbe is kerülhetnek. A
modellellenőrzés lehetővé teszi a tervezőmérnököknek, hogy szigorúan elemezzék és ellen-
őrizzék ezeket a rendszereket helyességük és megbízhatóságuk biztosítása érdekében. A
kritikus rendszerek matematikai modellezésével és ezek kimerítő vizsgálatával a modellel-
lenőrzés segít azonosítani a potenciális hibákat a fejlesztés korai szakaszában.

A Lineáris Temporális Logika (LTL) egy erős követelményspecifikációs nyelv a kri-
tikus rendszerek számára. Az LTL nemcsak elérhetőségi feltételeket, hanem dinamikus
tulajdonságokat is képes kifejezni, például összetett élőségi és stabilizációs követelménye-
ket. Az LTL modellellenőrzés legelterjedtebb megoldása az automatelméleten alapul.

A modellellenőrzés gyakorlati alkalmazását az állapottér-robbanás problémája hátrál-
tatja: a lehetséges állapotok száma akár exponenciális is lehet a változók számában. Egy
gyakran alkalmazott megoldás az állapottér csökkentése absztrakció segítségével. Azonban
az absztrakció potenciális alkalmazása az automatelméleti modellellenőrzés hatékonyságá-
nak növeléséhez még nincs kimerítően feltérképezve a szakirodalomban.

Dolgozatomban hatékony moduláris automatelméleti modellellenőrzési algoritmuso-
kat és fogalmakat mutatok be, amelyeket alapvető építőelemként lehet felhasználni ma-
gasabb szintű absztrakció alapú algoritmusokhoz. (1) Bemutatok egy hatékony új nyel-
vi üresség ellenőrző algoritmust, és összehasonlítom annak teljesítményét egy másik, a
szakirodalomban megtalálható megközelítéssel. (2) Leírok egy új absztrakció finomítási
algoritmust, és összehasonlítom azt egy, a szakirodalomban fellelhetővel. (3) Bővítem a
nyílt forráskódú Theta modellellenőrzési keretrendszert egy új kombinált formalizmussal,
amelyet használhatunk tetszőleges számú címkézett állapotátmeneti rendszer szorzatának
előállításához. A bemutatott algoritmusok moduláris jellegét azzal demonstrálom, hogy
egy kibővített ellenpélda-vezérelt absztrakció finomítási algoritmussá kombinálom őket,
amely képes LTL tulajdonságok ellenőrzésére. Az algoritmusokat a nyílt forráskódú Theta
modellellenőrzési keretrendszerben implementáltam, majd ipari partnerek által biztosított
esettanulmányokon értékeltem ki, mely során teljesítményük ígéretesnek bizonyult.

i

Abstract

We base our everyday life on critical systems: they encompass vehicles, power grids,
transportation networks and digital infrastructure. The reliability and safety of these
systems are vital, as even the smallest of uncontrolled malfunctions might cost much,
possibly human life. Model checking allows engineers and designers to rigorously analyze
and verify these systems to ensure correctness and reliability. By creating mathematical
models of critical systems and subjecting them to exhaustive checks, model checking helps
identify potential flaws early in the development process.

Linear Temporal Logic (LTL) is a powerful requirement specification language for critical
systems. LTL is able to express not only reachability conditions but also dynamic proper-
ties, like complex liveness and stabilization requirements. The most widely used solution
for LTL model checking builds on automata theory.

The practical application of model checking is hindered by the state space explosion prob-
lem: the number of possible states can be exponential in the number of variables. One
commonly used solution is shrinking the state space using abstraction. However, the appli-
cation of abstraction to automata-theoretic model-checking has not yet been thoroughly
explored. In this work, I present efficient modular automata-theoretic model-checking
algorithms and concepts that can be utilized as foundational building blocks of higher-
level abstraction-based algorithms. (1) I present an effective language emptiness checking
algorithm and compare its performance to another approach from the literature. (2) I
describe a novel abstraction refinement algorithm and benchmark it against one found in
the literature. (3) I extend the open-source Theta model checking framework with a new
composite formalism that can be used to generate the product of an arbitrary number of
labeled transition systems. To demonstrate the modularity of these algorithms, I construct
an extended counterexample-guided abstraction refinement algorithm that can verify LTL
properties. I implemented the algorithms in the open-source Theta model checking frame-
work and evaluated them on case studies provided by industrial partners and found the
measured performance to be promising.

ii

Chapter 1

Introduction

We base our everyday life on critical systems: they encompass vehicles, power grids,
transportation networks and digital infrastructure. The reliability and safety of these
systems are vital, as even the smallest of uncontrolled malfunctions might cost much,
possibly human life. The model-based design of these systems enables the use of model
checking. Model checking [7] is a formal method that allows engineers and designers
to rigorously analyze and verify these systems to ensure correctness and reliability. By
creating mathematical models of critical systems and subjecting them to exhaustive checks,
model checking helps identify potential flaws early in the development process.

Linear Temporal Logic (LTL) [1] is a powerful requirement specification language for
critical systems. LTL is able to express not only reachability conditions (e.g. that the
system must not enter an erroneous state) but also dynamic properties, like complex
liveness and stabilization requirements (e.g. that after any disturbance, the system must
return to providing its service correctly). The most widely used solution for LTL model
checking builds on automata theory. This approach represents both the model and the LTL
requirement as automata and reduces the model checking problem to product automaton
calculation and language emptiness checking.

The practical application of model checking is hindered by the state space explosion prob-
lem: the number of possible states can be exponential in the number of variables. One
commonly used solution is shrinking the state space using abstraction, the main idea of
which is to ignore some information about the model. An abstract model is constructed
as a conservative approximation of the original, also called concrete model, by merg-
ing original concrete states into abstract states. With abstraction, the model checking
can be carried out on a smaller state space, however, to be conservative, the abstract
state space can contain extra behaviour that is not present in the original model. The
counterexample-guided abstraction refinement (CEGAR) [6] algorithm aims to iteratively
refine the abstraction precision until the optimum is found where the model contains just
enough information for the examined property to be decided.

Although some preliminary work has been done toward it [22], the application of abstrac-
tion to automata-theoretic model-checking has not yet been thoroughly explored. In this
work, I present efficient modular automata-theoretic model-checking algorithms and con-
cepts that can be utilized as foundational building blocks of higher-level abstraction-based
algorithms.

The contributions of this work are the following:

1

1. I present an effective language emptiness checking algorithm and compare its per-
formance to another approach from the literature.

2. I describe a novel abstraction refinement algorithm and benchmark it against one
found in the literature.

3. I extend the open-source Theta model checking framework with a new composite
formalism that can be used to generate the product of an arbitrary number of
labeled transition systems.

4. To demonstrate the modularity of these algorithms, I construct an extended
counterexample-guided abstraction refinement algorithm that can verify LTL prop-
erties.

5. I implemented the algorithms in the open-source Theta model checking framework
and evaluated them on case studies provided by industrial partners and found the
measured performance to be promising.

The structure of my paper is as follows. Chapter 2 presents the notations I use and the
theoretical background I built upon throughout my work. I also discuss works that are
related to my approach in this chapter. Chapter 3 presents my theoretical contributions.
Chapter 4 presents the practical evaluation of my approach, and in Chapter 5, I draw
conclusions from my work.

2

Chapter 2

Background

In this chapter, I explain the notations I use and the theoretical foundation I built upon
throughout my work.

2.1 Model checking

Model checking is a formal verification technique used to determine whether a given model
of a system satisfies a specific set of properties or requirements. The model is a formal
mathematical representation (e.g. a state transition system or logical formulas) of the
system under evaluation, and the properties to be verified are expressed using a formal
specification language. The model checker then automatically checks whether the model
satisfies the given specifications, by exhaustively exploring all possible behaviors of the
system and comparing them against the requirements. By doing so, if a property is found
to be unsatisfied, the model checker returns a suitable counterexample, which shows how
exactly the model behaves wrong. You can find this workflow visualized on Figure 2.1.

X

Model Property

CEX+✓ ARG+

Model checker

Figure 2.1: The model checking flow

Model checking has proven to be a powerful tool for verifying the correctness of complex
systems, such as computer hardware, software, and protocols. It allows for the automatic
and efficient detection of errors and vulnerabilities in the design of a system before it is
implemented and deployed. This can save time and resources, and prevent costly errors
and defects in the final product.

Model checking can also be used to optimize the performance and reliability of a system,
by identifying and eliminating sub-optimal or unnecessary behaviors. It can be applied at

3

different stages of the development process, from early design and prototyping to testing
and validation.

2.2 Modeling formalisms

Different modeling formalisms are used to represent systems with different characteristics.
Model checking can be used on models that are defined with mathematical precision. Due
to this constraint, a lot of models are quite low-level, resulting in simple definitions, but
offering no complex design structure out of the box. Higher-level models usually provide
possibilities for more human-friendly declarations, which are typically mapped to lower-
level representations through a series of model transformations.

2.2.1 Kripke structures

Kripke structures [7] serve as the mathematical foundation of how we think about the
state space of a system in a model checking problem. Kripke structures are not directly
used for modeling systems, but the higher-level formalisms introduced below can all be
transformed into Kripke structures.

Definition 1 (Kripke Structure). A Kripke structure is a ⟨S, I, R, L⟩ tuple defined
over atomic propositions AP where:

• S = s1, s2, ... is the set of states

• I ⊆ S is the set of initial states

• R ⊆ S × S is the set of transitions, where ∀s ∈ S ∃s′ : (s, s′) ∈ R

• L : S → 2AP is the labeling function �

A Kripke structure is a directed graph, whose nodes correspond to the states of the system
and whose edges represent the potential state changes. A path in a Kripke structure that
starts in one of the initial states corresponds to an execution trace in the system.

2.2.2 More complex data states using variables

While Kripke structures can represent more complex systems, it is rather inconvenient to
define everything using simple atomic propositions. To get a step closer to higher levels, we
introduce the concept of variables and First Order Logic (FOL) to modeling formalisms.

Suppose the set of variables in a given system is V = {v1, v2, . . . , vn} with domains
Dv1 , Dv2 , . . . , Dvn . A data state s ∈ S ⊆ Dv1 × Dv2 × · · · × Dvn is an interpretation
that assigns a value s(v) ∈ Dv to each variable v ∈ V of its domain Dv. A data state can
also be regarded as a tuple of values (s(v1), s(v2), . . . , s(vn)). Given a FOL formula φ, let
s |= φ denote that assigning the variables in φ with the values in s evaluates to true. For
example (x = 0, y = 0) |= x ≥ 0. Similarly, let s ̸|= φ denote that φ in s evaluates to false.

Data states can always be mapped to atomic proposition representations. The most simple
example would be to create an atomic proposition for each possible value for each variable.
When a variable has a certain value, the atomic proposition bound to that value is con-
sidered to be true, while all other propositions for said variable are considered false. This
allows us to reason about models using data states as we would about Kripke structures.

4

2.2.3 Symbolic Transition System

Symbolic Transition Systems (STSs) [16] aim to provide a simple way of representing the
set of states, transitions and initial states. Besides data states, STS uses FOL formulas to
represent transitions in the system too. A symbolic transition system is a tuple STS =
(V, Inv, Tran, Init), where:

• V = {v1, v2, . . . , vn} is the set of variables

• Inv is the invariant formula over V , which must hold for every state

• Tran is the transition formula over V ∪ V ′, which describes the transition relation
between the current state (V) and the successor state (V ′)

• Init is the initial state formula, which describes the values of the variables in the
initial states

V ′ represents the primed version of variables. The prime notation allows for the reassigning
of variables, thus allowing for modeling running systems. For example if V = {x, y}, then
Tran ≡ x′ = x + y ∧ y′ = y + 1 describes a transition, which increases the value of x by
the value of y, and the increases the value of y by 1.

The set of initial states is S0 = {s | s |= Init ∧ Inv}. For example, if Init ≡ x =
0 ∧ (y >= 0 ∨ y < 10) and Inv ≡ y < 2, then S0 = {(x = 0, y = 0), (x = 0, y = 1)}. A
transition exists between two states s and s′, if (s, s′) |= Inv ∧ Tran∧ Inv′. For example.
if Tran ≡ x′ = x+1∧y′ = y, then a transition exists between the states s = (x = 0, y = 0)
and s′ = (x = 1, y = 0).

A concrete path is a finite sequence of concrete states σ = s1, s2, ..., sn, for which
(s⟨1⟩

1 , s
⟨2⟩
2 , ..., s

⟨n⟩
n) |= Init⟨1⟩ ∧

∧
1≤i≤n Tran⟨i⟩ ∧

∧
1≤i≤n Inv⟨i⟩, i.e. the path starts in an

initial state. The successor states satisfy the transition relation. A concrete state s is
reachable if a path σ = s1, s2, ..., sn exists with s = sn for some n.

2.2.4 Operation-based formalisms

To be able to reason about systems even more efficiently, operations are introduced to con-
trol the transitions in the system. These help move formalisms closer to human intuition,
allowing engineers to create straightforward models faster.

2.2.4.1 Operations

Operations op ∈ Ops describe the transitions between the data states of the system, where
Ops is the set of all possible transitions. An operation op ∈ Ops can also be interpreted
over V ∪ V ′ as a logical formula, denoted by tran(φ). By applying the formula to a data
state, the primed variables from the formula construct the following data state, but only if
the formula evaluates to true. The execution of the operations is atomic in the sense that
they either get executed in their entirety or not at all. In my work, I used the following
basic operations defined in [21]:

• Assignments of the form v := φ assign a deterministic value to a single variable. Here
v ∈ V is a variable, φ is an expression of type Dv, and var(φ) ⊆ V . The semantics
of assignments are the following: tran(v := φ) ≡ v′ = φ ∧

∧
vi∈V \{v} v′

i = vi. This

5

formula expresses that the value of v in the successor state is φ, and all other variables
stay unchanged. For example, if V = {x, y}, then tran(x := 1) ≡ x′ = 1 ∧ y′ = y;

• Assumptions of the form [φ], where φ is predicate with var(φ) ⊆ V . Assumptions act
as guards, as they can be evaluated to false, thus rendering the operation unusable.
The semantics are the following: tran([φ]) ≡ φ ∧

∧
v∈V v′ = v. In other words,

assumptions check a condition and leave the values of all variables unchanged. For
example, if V = {x, y}, then tran([y < 0]) ≡ y < 0 ∧ x′ = x ∧ y′ = y.

• Havocs of the form havoc(v), where v ∈ V . Havocs are nondeterministic assignments,
where a variable v gets assigned to a nondeterministic value of its domain Dv. The
semantics are tran(havoc(v)) ≡

∧
vi∈V \{v} v′

i = vi, which means that v can have any
value, while all other variables keep their value. For example, if V = {x, y}, then
tran(havoc(x)) ≡ y′ = y.

Composite operations can contain other operations and can be used to model even more
complex control flows. Note that the execution of these operations is still atomic in the
sense, that they either get executed in their entirety or not at all. There are two composite
operations:

• Sequences of the form op1, op2, ..., opn, where opi ∈ Ops are lists of operations that
are executed in order after each other. Each operation of the sequence operates on
the result of the previous operation. For example, x := 2, [y < 0]; x := x + 1 is a
sequence that contains 3 inner operations.

• Choices model nondeterministic choices between multiple operations. One and only
one branch is selected for execution, which cannot contain failing assumptions. This
means that if all branches of the choice contain failing assumptions, then the choice
operation fails as well. Choices have the following form: {op1} or {op2} or ... or {opn},
where opi ∈ Ops are basic or composite operations. For example, {[y > 0], x :=
1} or {x := 0} is a choice with 2 branches.

Refer to [21] for the detailed semantics of composite operations.

2.2.4.2 Structural and concrete states

To support complex control flow even more, modeling formalisms usually provide extra
structural information. This is an arbitrary set B and its elements b ∈ B are called
structural states. This structural information adds depth to the formalism. The concrete
state is the combination of the current structural state and data state. Thus the set of all
possible concrete states for data states D is S = D ×B.

Operation-based models use their concrete states to reason about the exact possible be-
havior of the system. To do so, they also need to define the set of initial structural states,
the structural init function ιB ⊆ B1.

2.2.4.3 Actions

Even though structural states describe the structural information, they can’t implicitly
model the control flow. Actions are used that take these structural states into account

1Even though it is not strictly a function, it is called that to have a consistent naming scheme

6

and can decide which operations are allowed to happen to the data state, and how the
structural state changes. So formalisms define an action function α : S → 2Ops×B that:

• limits the possible mutation of the data state based on the structure of the model

• is capable of mutating the structural state

2.2.4.4 Interface of operation-based formalisms

Now putting together everything so far from Section 2.2.4, an interface can be defined for
Operation-based formalisms.

Definition 2 (Operation-based formalism interface). A modeling formalism is an
operation-based formalism with the tuple (V, D, B, S, ιB , α) where:

• V = {v1, v2, . . . , vn} is the set of variables with domains Dv1 , Dv2 , . . . , Dvn

• D are the data states over V

• B is the set of structural states

• S = D ×B is the set of concrete states

• ιB ⊆ B is the structural init function

• α : S → 2Ops×B is the action function

if it can provide the tuple (V, B, ιB, α). �

In the following parts, two formalisms that fulfill this interface are going to be introduced.

2.2.4.5 eXtended Symbolic Transition System

The eXtended Symbolic Transition System (XSTS) formalism was created to serve as
the intermediate representation of component-based reactive systems, such as statechart
compositions. XSTS partitions the transition relation into two parts: the inner transition
relation models the behavior of the system, and the environmental transition relation
models the system’s environment. XSTS [21] is a tuple xsts = (V, VC , Init, T r, En),
where:

• V = {v1, v2, . . . , vn} is the set of variables with domains Dv1 , Dv2 , . . . , Dvn . For
example, V = {x, y}. The possible domains are integers, booleans, and custom
enums. Integers correspond to mathematical integers, meaning that their domain is
“unbounded”: unlike to “machine integers”, they cannot over- or underflow;

• VC ⊆ V is the set of control variables. These variables are always tracked explicitly
if tracked;

• Init is the initial state formula, which describes the values of the variables in the
initial states;

• Tr ⊆ Ops is a set of operations representing the inner transition relation. This set
describes the internal behavior of the system;

7

• En ⊆ Ops is a set of operations representing the environmental transition relation.
This is used to model the environment of the system.

XSTS uses a flag as structural information, that tells whether the last executed transition
came from Tr or En, so B = {Le, Lt}. Since the model alternates between environmental
and inner transitions, this is the information used in the action function: αxsts(s) =
Tr × {Lt} if Le ∈ s and αxsts(s) = En × {Le} if Lt ∈ s. XSTS starts with its inner
transitions, so ιB = {Le}.

Theorem 1 (XSTS is an operation-based formalism). An XSTS X =
(V, VC , Init, T r, En) fulfills the operation-based formalism interface with the tuple
(V, {Le, Lt}, {Le}, αX). �

2.2.4.6 Control Flow Automaton

Control Flow Automaton (CFA) is a modeling formalism widely used in model checking
of software systems. It provides a structured representation of the control flow within a
program, enabling systematic exploration of all possible execution paths and verification
of desired properties. We define CFA as the following [15]:

Definition 3 (CFA). A CFA is a cfa = (V, L, l0, T) tuple where

• V = {v1, v2, . . . } is the set of variables appearing in the program

• L = {l0, l1, . . . } is the set of control locations modeling the actual position of the
program counter

• l0 ∈ L is the initial location representing the entry point of the program

• T ⊆ L × Ops × L is a set of directed edges between the locations, annotated with
operations over the variables that get executed when control flows from one location
to another �

A CFA is a directed graph. Its nodes correspond to locations, representing the different
values of the program counter register. Its edges capture the flow of control during program
execution and the executed instructions. That means, for a CFA structural states consist
of the locations, B = L, and the action function returns the operations of all the edges
from the current location, i.e., αcfa(s) = {{o, lt}|{l, o, lt} ∈ T, l ∈ s}.

Theorem 2 (CFA is an operation-based formalism). A CFA C = (V, L, l0, T) ful-
fills the operation-based formalism interface with the tuple (V, L, l0, αC) �

See the example on Figure 2.2, where a valid C algorithm is transformed into a CFA. The
formal description would include V = {x, odd}, L = {l0, l1, . . . , l6, lf}. For each edge, there
exists an element in T . The arrow with no source node on the top left corner identifies
our initial location, l0.

2.3 Requirement specifications

Apart from models with mathematically well-defined semantics, model checking also needs
a mathematically precise requirement specification.

8

1 bool odd = false;
2 int x = 0;
3 while (x < 4) {
4 x = x + 1;
5 if (x % 2 == 1)
6 odd = true;
7 else
8 odd = false;
9 }

(a) Example C program

𝑙1 𝑙2

𝑙3

𝑙4

𝑙5

𝑙7𝑙6

𝑙8

odd:= false

odd:= false odd:= true

x:= 0

[x < 4]

[x%2 != 1] [x%2 == 1]

[!x < 4]

x:= x + 1

(b) CFA equivalent

Figure 2.2: Usage of CFA

2.3.1 Safety - reachability

Safety requirements specify unwanted states of a system. Checking such requirements is
called reachability model checking, as the model checking problem in the case of safety
properties is deciding whether such states can be reached from the initial states. For
location-based models, such as the Control Flow Automaton, reachability requirements are
usually specified by introducing extra locations, called error locations. Another possibility
is to define an invariant property over the data variables, which is supposed to hold in
every state of the model execution, like battery > 0 could mean that we need the battery
always to be charged. In reachability model checking, if a requirement is deemed to not
be met, the counterexample trace must be a sequence of concrete states, where the last
state violates the requirement, i.e. :

• for invariant φ the trace is ({d0, b0}, {d1, b1}, ..., {dn, bn}) such that 0 ≤ i < n : si |= φ
and sn ̸|= φ

• for error location lf the trace is (s0, s1, ..., sn) such that 0 ≤ i < n : lf ̸∈ si and
lf ∈ sn

2.3.2 Linear Temporal Logic

Linear Temporal Logic (LTL) is used to reason about a (possibly infinite) sequence
(s1, s2 . . .) of states over a set AP of atomic propositions. For the sake of simplicity,
let’s make a state exactly equal to the set of propositions that hold in that state, so
sn ⊆ AP . LTL builds on top of propositional logic, so an atomic proposition and propo-
sitional logical formulas with operators ¬,∧ over these propositions are considered LTL
formulas. Many more logical operators can be derived from these [1]. The LTL formula φ
evaluates to true on state s and is written s |= φ, if swapping every proposition in φ that
is ∈ s to true, and the rest to false makes the formula true. Otherwise, s ̸|= φ.

9

Being a temporal logic, LTL also uses temporal operators [1]. Let us look at the more
common ones:

• X(φ) is an LTL formula and sn |= X(φ) ⇐⇒ sn+1 |= φ. X is from the word
“neXt”.

• F(φ) is an LTL formula and is given by the recursive definition sn |= F(φ) ⇐⇒
(sn |= φ∨sn |= X(F(φ))). F is from the word “Future”, and formalizes the eventual
occurrence of a state.

• G(φ) standing for “Globally” is an LTL operator, and sn |= G(φ) ⇐⇒ sn |=
¬F(¬φ). It is used for properties that must hold throughout the whole trace.

As I mentioned earlier, LTL can be used to reason about a single run of a model. We can
use it for whole models by stating we want all of the model’s runs to satisfy the formula.
We will see later what kind of problems that proposed and what solutions exist to tackle
the challenges.

Let us see an example. Take the CFA from Figure 2.2. Let us say we have a single atomic
proposition, conveniently the boolean variable of that model. So AP = {odd}, where odd
holds ⇐⇒ odd evaluates to true in the CFA. We can state a requirement against our
model: I want that after some time, odd to remain false forever. This requirement can be
represented with the following LTL formula:

FG(¬odd)

2.4 Automata-theoretic LTL checking

In automata-theoretic LTL checking, the system behavior is modeled as a finite-state
automaton, and the LTL properties are translated into a second automaton called a Büchi
automaton. The Büchi automaton represents the negation of the LTL property and its
acceptance condition defines the set of system behaviors that violate the property.

Let us see first what a Büchi automaton looks like, then go into detail over how it can be
used for LTL checking.

2.4.1 Büchi automata

Finite automata work great to check if certain words are part of a language. When
we want to check infinite words over infinite alphabets, we need ω-automata, capable
of handling infinitely long inputs. One such automaton is the Non-Deterministic Büchi
Automaton (NDBA), which can describe ω-languages effectively [5].

Definition 4 (Non-Deterministic Büchi Automaton). A Non-Deterministic Büchi
Automaton (NDBA) is a tuple of A = ⟨Q, Σ, ∆, I, F ⟩, where

• Q = {q0, q1, . . . } a set of the states of the automaton

• Σ is a finite set called the alphabet of the NDBA

• ∆ ⊆ Q× Σ×Q is the transition relation

• I ⊆ Q is the set of the initial locations

10

• F ⊆ Q is the acceptance condition �

NDBAs can also have transition-based acceptance with a slight modification. The accep-
tance condition needs to become F ⊆ ∆. For ease of handling, it is beneficial to define a
ACC(e = {qa, x, qb}) predicate, that returns e ∈ F for transition-based acceptance, and
qb ∈ F for state-based acceptance.

To be able to reason about infinitely long words in writing, we can use the ω-notation.
For example, if Σ = {a, b}, then bb(ab)ω means the word that begins with a double b, then
repeats ab forever. Σω denotes all infinite words over Σ. Also, let wi denote the i. letter
of the word w.

In an NDBA A = ⟨Q, Σ, ∆, I, F ⟩ the sequence (e1, e2, ...), ei ∈ ∆ is a run for the word
w ∈ Σω if

• e1 = {q0, w, q1} =⇒ q0 ∈ I

• ∀i ∈ N : wi ∈ ei

An NDBA accepts an infinitely long word if there exists a run for it that causes the
automaton to be in an accepting state or transition infinitely many times, i.e., L(A) =
{w ∈ Σω|(∃run(e1, e2, ...)for w)(̸ ∃k ∈ N)[

∨
i>k ACC(ei) = false]}.

Definition 5 (Lasso trace). For an NDBA A = ⟨Q, Σ, ∆, I, F ⟩, σL(w) = ⟨T, H, L⟩ is
a lasso trace for the word w ∈ Σω with the run

(
e1, e2, ..., (en, ..., em)ω

)
, m ≥ n, where

T = (e1, ..., en−1) is called the tail of the trace, L = (en, ..., em) is called the loop of the
trace and if en = {qa, x, qb}, then H = qa is called the honda2 of the trace. A lasso trace
is an accepting lasso trace, if ∃e ∈ L such that ACC(e) evaluates to true. �

Theorem 3. For an NDBA A = ⟨Q, Σ, ∆, I, F ⟩, the following two statements are equiv-
alent:

(i) No accepting lasso trace can be shown

(ii) L(A) = ∅ �

Proof: The two statements are bound together by the definition of runs and both ways
can be proven indirectly.
(i) → (ii) Suppose there exists an accepting lasso trace σL(w) = ⟨T, H, L⟩ in the NDBA
A = ⟨Q, Σ, ∆, I, F ⟩. From the definition, they repeat a transition infinitely many times,
that either is accepting itself, or points to an accepting state (for transition- and state-
based acceptance, respectively). That implies, that w is accepted by A, which means
w ∈ L(A) =⇒ L(A) ̸= ∅.
(ii)→ (i) It is the same as the other way, just mirrored backwards. Suppose the language
is not empty, i.e., there is a w ∈ L(A). It means, that there is a run for w that repeats an
accepting transition infinitely many times (or a transition pointing to an accepting state).
Such run is a σL(w). □

2.4.2 LTL checking with Büchi Automata

Since LTL is a subset of regular ω-languages, any formula can be represented as a NDBA.
The transformation process might involve multiple steps [13] and it is out of the scope of
this paper to go over it in detail.

2https://en.wikipedia.org/wiki/Lasso

11

https://en.wikipedia.org/wiki/Lasso

𝑞0 𝑞1

true

¬odd

¬odd

(a) FG(¬odd)

odd

¬odd

¬odd

𝑞0

odd

𝑞1

(b) GF (odd)

Figure 2.3: NDBA representation of different LTL formulae

𝑙1𝑞0

𝑙2𝑞1

𝑙8𝑞1

𝑙3𝑞1

𝑙6𝑞1

𝑙6𝑞0

𝑙4𝑞1

𝑙5𝑞1 𝑙7𝑞1

𝑙4𝑞0

𝑙5𝑞0

𝑙3𝑞0

𝑙7𝑞0

𝑙8𝑞0

Figure 2.4: Product of the examples, with the only valid run annotated dashed

Rather just see the example formula from Section 2.3.2 displayed as an NDBA on Fig-
ure 2.3a.

The idea of model checking is to look for counterexamples, so not only the malfunction
of the model can be proven, but aid can be provided on how to correct it. To find a
suitable counterexample in our modelM against a requirement specified in LTL, we need
the following steps:

1. Negate the original formula

2. Create the Negational Normal Form (NNF) of it (most importantly no negation in
front of temporal operators)

3. Transform the NNF into a NDBA, call it A

4. Construct the product of our model and the resulting NDBA, M×A = P

Now if the resulting automaton accepts no word, L(P) = ∅, we can say that our original
model conforms to the requirement. However, if there are runs that get accepted by the
product, then ∀π ∈ L(P), π is a counterexample.

Sticking to our example, we can check if our model on Figure 2.2 conforms to the require-
ment FG(¬odd). Let us do the steps in order.

1. !FG(¬odd)

2. GF (odd)

3. See the NDBA on Figure 2.3b

12

4. The product can be seen on Figure 2.4

Notice that to make the visualization more compact, the steps of the two automata
are merged. For example, the transition l5q1 → l7q1 represents {l5, [x%2 == 1], l7 and
{q1,¬odd, q1} (showing only the relevant part of the combined states).

Now if we were to check our product, we would find the single valid run seen on Figure 2.4.
Converting it to a lasso trace, we would find that the tail is (omitting the words of the tran-
sitions)

(
{l1q0, _, l2q1}, {l2q1, _, l3q1}, ({l3q1, _, l4q1}, . . . , {l6q0, _, l3q1})4, {l3q1, _, l8q1}

)
,

the loop is {l8q1, _, l8q1} and the honda is l8q1. Since ACC({l8q1, _, l8q1}) returns false,
the lasso trace is not accepting. We can conclude that no accepting lasso traces can be
shown, which means, the language of the product automaton is empty and the requirement
is fulfilled.

2.5 Abstraction-based model checking

The state space of a system represents all possible configurations or states that the system
can be in during its execution. In model checking, the state space is typically explored
by exhaustively traversing all possible states to verify if a given specification holds for the
entire system behavior. However, as systems become larger and more complex, the state
space that needs to be explored during model checking grows exponentially, giving rise to
a significant challenge known as the state space explosion problem.

To overcome the state space explosion problem, abstraction-based model-checking tech-
niques have emerged as a promising solution. Abstraction involves creating a simplified,
yet faithful, representation of the original system that captures only the essential aspects
necessary for verifying the desired properties. By abstracting away irrelevant details, the
state space can be significantly reduced, enabling more efficient model checking.

2.5.1 Abstraction

Abstraction can be defined over abstract domains, precisions, and transfer functions [15].

Definition 6 (Abstract domain). An abstract domain D = (D,⊤,⊥,⊑, expr) consists
of the following:

• the lattice D of abstract states

• ⊤ ∈ D top element

• ⊥ ∈ D bottom element

• ⊑ ⊆ D ×D partial order conforming to the lattice

• expr : D → FOL expression function concretizing the abstract states �

The arbitrary set Π holds the possible precisions, where an element π ∈ Π defines the
current precision of the abstraction. Defining precision so superficially keeps the definition
of transfer functions simple.

Definition 7 (Transfer function). The transfer function T for an abstract domain D =
(D,⊤,⊥,⊑, expr) is a function T : D×Ops×Π→ 2D , calculating the successor abstract
states for an abstract state given a precision and operation. �

13

There are two abstract domains I used throughout my work. Explicit value abstraction [2]
tracks only a subset of the variables. Predicate abstraction [14] on the other hand tracks
only the truth value of predefined predicates over the variables.

Recalling our example CFA from Figure 2.2, one can easily calculate how huge the state
space would be. Considering the standard integer from C, the state space would contain
8·2·216 = 1048576 states. Applying explicit value abstraction on the variable odd however,
would result in a state space sized a mere 8·2 = 16 states, which can be seen on Figure 2.5a.

(a) The state space of the CFA with ab-
straction

(b) An abstract counterexample for the
reachability of ⟨lf , true⟩

Figure 2.5: Abstract state space and an infeasible counterexample in it

2.5.2 Counterexample-guided abstraction refinement

Abstraction in itself does not solve our problems. By over-abstracting the model’s state
space and running model checking so, we can only be sure the model is good if we didn’t
find any counterexamples. However, if we do find one, it is going to be only an abstract
counterexample. One can not be sure without further examination, whether the original
model behaves the same way: as the abstract state space is an over-approximation of the
original state space, it can contain extra behaviour.

The example in Section 2.5.1 demonstrates this problem. If we want to know, if odd can
be true in the finishing location, a check with that abstraction would return an abstract
counterexample as seen on Figure 2.5b.

CounterExample-Guided Abstraction Refinement (CEGAR) [6] is an algorithm, that tries
to utilize abstraction to efficiently check models, while also solving the problem stated
above. The main idea is that we start with a very inaccurate precision of abstraction.
Once we find a counterexample, we need to check if it is feasible in the concrete state space.
If it is not, we need to refine our precision, which would eliminate the counterexample.

14

CEGAR Loop

RefinerAbstractor

Abstract
CEX

Refined
precision

X

Model Property

CEX+✓ ARG+

Figure 2.6: The CEGAR model checking flow

Once that is done, we can build a new abstract state space and go on in this loop until we
either find a feasible counterexample and conclude the requirement to not hold, or find no
counterexample at all. You can see the extended flow on Figure 2.6.

2.5.2.1 The abstractor

The abstractor part of the algorithm is responsible for applying a given precision of ab-
straction over the model and then looking for counterexamples in the generated abstract
state space. Since most of the time CEGAR is used for reachability checks, the counterex-
ample provided by the abstractor is usually a finite trace of abstract states, from which
the last contains the concrete state desired to be unreachable.

2.5.2.2 The refiner

Once the abstractor finds an abstract counterexample, it is the refiner’s job to determine
if the counterexample defines any valid runs in the original model. In that case, the
refiner finds the abstract counterexample feasible and returns the concrete trace as a valid
counterexample.

If the abstract counterexample is found to be infeasible, the refiner needs to reason about
why the run specified by the abstract counterexample can not be replicated in the concrete
state space. Out of the many ways used in the literature to achieve an efficient behavior,
my work relies on interpolation-based refinement [16].

Definition 8 (Craig interpolant [10]). Let A and B be FOL formulas, where A∧B |=
⊥. A FOL formula I is an interpolant for A and B if:

• A =⇒ B, i.e. A implies B

• A ∧B |= ⊥, i.e. A and B are unsatisfiable together

• I only refers to variables that appear in both A and B �

It is proven [10], that there always exists at least one interpolant for two mutually exclusive
formulas. Interpolants are used to invalidate an infeasible abstract counterexample, by
providing a formula that appended to the current precision prevents this counterexample
from occurring again.

15

Refinement is done with the help of Satisfiability Modulo Theories (SMT) solvers. SMT
solvers are tools, that take a sequence of logical constraints over indexed variables as
inputs, and output whether any valuation of the variables exists, such that the constraints
are satisfied. If not, they are capable of providing an interpolant. The refiner converts the
trace into a sequence of constraints, and sequentially checks with the solver, whether the
trace is concretizable or not.

Given the following:

• an abstract domain D = (D,⊤,⊥,⊑, expr)

• a trace σ = (d0, o1, d1, o2, d2, . . . , on, dn), di ∈ D, oi ∈ Ops

• an SMT solver solver, which has the following operations:

– put(φ): appends the FOL constraint φ to the constraints on the solver
– check: returns whether the constraints currently on the solver are satisfiable
– itp(φ1, φ2): given two FOL formulas, φ1 and φ2, that are unsatisfiable together,

returns a Craig interpolant explaining their unsatisfiability
– model: returns a satisfying assignment (model) if the constraints on the solver

are satisfiable

• an operation unfold(φ, i) that returns an indexed FOL formula from the primed
FOL formula φ, by substituting v unprimed variables with their indexed version vi,
and primed variables v′ with their indexed version vi+1

• we also define the unfold operation for paths. Given a trace σ =
d0, o1, d1, o2, d2, . . . , on, dn, the operation unfold(σ) returns unfold(d0, 0) ∧
unfold(o1, 1) ∧ · · · ∧ unfold(on, n) ∧ unfold(dn, n), i.e. the conjunction of ap-
plying the unfold operation to all operations and states of the trace, with their
index as the i parameter

the refinement algorithm is:

Algorithm 1 Refinement
1: solver.put(unfold(expr(d0), 0))
2: for i← 1, n do
3: solver.put(unfold(oi, i))
4: solver.put(unfold(expr(di), i))
5: if ¬solver.check then
6: itp← solver.itp(unfold(d0, o1, . . . , oi−1, di−1), unfold(oi, i) ∧ unfold(di, i))
7: refutation← create refutation from itp:
8: replace all vi ∈ itp with v
9: return {infeasible, refutation}

10: return {feasible, ⊥}

The algorithm returns whether the received trace if feasible or not, and if the trace was
found unfeasible, then also a FOL formula called refutation, which is created from the
interpolant returned by the solver by removing the indices from the variables. This is
formula is then used to refine the precision: in the case of predicate abstraction, the
refutation formula is introduced as a new predicate into the precision and the case of
explicit value abstraction, the variables that appear in the refutation formula are added
to the precision.

16

2.6 CEGAR algorithm for LTL checking

By combining the algorithms in Section 2.4.2 and Section 2.5.2, one can achieve effective
LTL model checking on complex models [22]. This algorithm utilizes CEGAR on the
product model, which of course requires some modifications to the abstractor and refiner
components of the simple CEGAR algorithm.

2.6.1 LTL formula preprocessor

Since by definition LTL formulas reason about atomic propositions, more complex prop-
erties given by FOL formulas need to be converted, before being able to be translated
into NDBAs. This is done[22] by traversing the syntax tree, non-ltl type formulas are all
swapped to new atomic propositions. The mapping from these Atomic Propositions (APs)
to the original FOL formulas is preserved for later reconstruction. Please refer to [22] for
more details.

2.6.2 Abstractor

Algorithm 2 Nested DFS

1: procedure nested_dfs
2: dfs_blue(q0)

3: procedure dfs_blue(q)
4: q.blue← true
5: if q ∈ F then
6: dfs_red(q, q)
7: for all t ∈ post(q) do
8: if ¬t.blue then dfs_blue(t)

Require: q, seed ∈ Q
9: procedure dfs_red(q, seed)

10: q.red← true
11: for all t ∈ post(q) do
12: if ¬t.red then dfs_red(t, seed)
13: else
14: if t = seed then
15: report cycle

The abstractor’s job becomes a little bit more complex than that of Section 2.5.2.1. It is
the abstractor’s responsibility to find an accepting lasso trace if such exists. If the state
space is depicted as a graph, a lasso trace is essentially a strongly connected component
that is reachable from one of the initial states. To find accepting states that are part of
a strongly connected component, Nested Depth-First Search (NDFS)[9] can be used, by
looking for an accepting state, and then searching for a way from it back into itself. This
algorithm can be seen on Algorithm 2.

2.6.3 Refiner

The refiner also gains some extra complexity. It takes a lasso trace σL(w) = ⟨T, H, L⟩ as
an input and returns it as a valid counterexample or a refined precision that the abstractor
can use to avoid this trace. First, it needs to check if the trace would even exist in the
concrete state space. For that, it works exactly as defined in Section 2.5.2.2, but on the
flattened T ∪ L. If it is found to be feasible, it is proven that the lasso as a trace is
traversable in the concrete model.

The challenge is validating if the loop exists in the concrete state space as a cycle too.
A direct approach [22] can be used, that checks whether the honda can be in the same

17

state before and after the loop. This is done by adding the cycle validity constraint to the
loop. cycval(i, o) returns the following formula:

∧
v∈V vi = vi+o, expressing that in the

i-th and (i + o)-th states all variables have the same values. The extended algorithm is as
follows:

Algorithm 3 Refinement
1: solver.put(unfold(expr(d0), 0))
2: for i← 1, n do
3: solver.put(unfold(oi, i))
4: solver.put(unfold(expr(di), i))
5: if ¬solver.check then
6: itp← solver.itp(unfold(d0, o1, . . . , oi−1, di−1), unfold(oi, i) ∧ unfold(di, i))
7: refutation← create refutation from itp:
8: replace all vj ∈ itp, j ∈ {0, . . . , i} with v
9: return {infeasible, refutation}

10: model← solver.model
11: solver.put(cycval(|T |, |L|))
12: if ¬solver.check then
13: itp← solver.itp(unfold(σ), cycval(|T |, |L|))
14: refutation← create refutation from itp:
15: replace all v|T | ∈ itp with model(v)
16: replace all v|T |+|L| ∈ itp with v
17: return {infeasible, refutation}
18: return {feasible, ⊥}

In this case, creating a refutation from the interpolant is a bit more tricky, because vari-
ables can appear with multiple different indices (|T | and |T |+ |L|) in the interpolant. We
circumvent this by replacing variables that appear with the |T | index with a concrete value
from the satisfying assignment we obtained for the tail previously.

2.7 Theta framework

Theta [23] is “a generic, modular and configurable model checking framework developed
at the Critical Systems Research Group of Budapest University of Technology and Eco-
nomics, aiming to support the design and evaluation of abstraction refinement-based al-
gorithms for the reachability analysis of various formalisms. The main distinguishing
characteristic of Theta is its architecture that allows the definition of input formalisms
with higher level language front-ends, and the combination of various abstract domains,
interpreters, and strategies for abstraction and refinement. Theta can both serve as a
model checking backend, and also includes ready-to-use, stand-alone tools” [12].

Common CFA STS XTA XSTS
Tools cfa-cli sts-cli xta-cli xsts-cli
Analyses analysis cfa-analysis sts-analysis xta-analysis xsts-analysis
Formalisms core, common cfa sts xta xsts
Solvers solver, solver-z3

Table 2.1: An overview of the Theta architecture.

18

Theta is built from the ground up to be as modular as possible. As seen on Table 2.1,
everything formalism-independent is abstracted to the common module, and the modules
of certain formalisms can implement or use features from this common module. This makes
the implementation of new algorithms easier, developers can reuse the implementation of
lower-level concepts.

2.8 Related work

The Spin [17] model checker is a widely used LTL model checker for asynchronous sys-
tems with message-based communication. Spin accepts its input models in the Promela
language and employs decision-diagram representations and partial order reduction tech-
niques for efficient model checking.

Model checking algorithms and tools that only support the verification of reachability
properties can also be used to verify liveness and temporal logic properties through the
liveness to safety [4] transformation. In this case, the model is augmented with additional
variables that encode the extra information that is required to decide the more complex
properties.

In [20], automata-theoretic LTL-checking is combined with another symbolic model check-
ing algorithm: saturation. In decision diagram-based symbolic model checking algorithms,
the model states and the transition relation are represented with decision diagrams, and
the fixpoint of repeatedly applying the transition relation to the reached set of states is
calculated. The saturation algorithm can calculate this fixpoint particularly efficiently in
the case of distributed systems whose behavior is mainly local.

In [11], automata-theoretic LTL checking is combined with abstraction in the domain of
computer programs. They limit the scope of the verification to terminable programs and
define an alternate version of LTL that is interpreted over finite paths. These alternate
LTL formulas can be expressed using deterministic finite automata, which makes their
verification computationally less demanding than regular LTL model checking.

19

Chapter 3

Abstraction-based algorithms for
configurable automata-theoretic
model checking

This chapter discusses my theoretical contributions in creating a modular abstraction-
based automata-theoretic LTL checking algorithm.

CEGAR Loop

Refiner

ModelModel

Abstractor

PreprocessorBA Builder
OWL

Product Builder

AP → FOLLTL

BA

M × BA

Direct
Bounded
unrolling

NDFS
Guided

DFS

Abstract
CEX

Refined
precision

X

Model LTL

CEX+✓ LDG+

Figure 3.1: Overview

3.1 Overview of the presented abstraction-based LTL-
checking approach

Figure 3.1 shows an overview of my configurable abstraction-based algorithm for LTL
model checking. Automata-theoretic LTL model checking needs several components as
building blocks, and I aimed to make each of these as generic as possible so that they

20

can be used in other use cases. The first step is the creation of a Büchi automaton from
the LTL formula given as input. In my approach, the Büchi automaton is represented
in a way that is compatible with the model formalisms. Then we need to represent the
product of the original model and the Büchi automaton. For this, I utilized a generic
product formalism, which can be used to create the product of models of any formalism.
This formalism can also be used to create a composition of submodels, even when they are
represented with different formalisms, and for representing the product with other kinds of
automata used for other properties (e.g. tree automata for CTL, or timed Büchi automata
for verifying timed systems). The resulting product is verified using a CEGAR-based
language emptiness-checking algorithm, designed for finding lasso traces. This component
is highly reusable as well. It can handle both state-based and transition-based acceptance
criteria, and the input need not come from the LTL context. These can also be configured,
as to which algorithms to use. In the abstractor component, I implemented the NDFS
approach introduced in Section 2.6.2, but I also created a novel algorithm. In the refiner
component, I included the algorithm shown in Section 2.6.3, but my refiner algorithm
proposed in this work is available too.

3.2 Efficient language-emptiness checking

As stated in Theorem 3, the language of an NDBA is empty, if no lasso-shaped accepting
runs can be shown. In the following parts, I propose a novel algorithm that provides a
highly efficient solution for the problem. To maintain configurability, it supports both
state-based and transition-based acceptance. For this purpose, I also propose a variant of
NDFS so that it works on transition-based acceptance too.

3.2.1 Guided DFS

In the following part, I present the novel honda-guided search algorithm, aimed at ef-
ficiently finding accepting lasso traces in any kind of state graph. The basis of the
algorithm is Depth-First Search (DFS), where we do only one search with a modified
condition instead of two nested ones compared to NDFS. Let us call encountering an ac-
cepting state/transition an acceptance. In the DFS, while keeping an acceptance counter,
look for a node that is already on the stack and has a smaller value on the counter
than the top of the stack. The simple DFS Algorithm 4 showcases this. Here, q0 de-
notes the initial node, ⟨q1

e−→ q2⟩ denotes an edge e that goes from node q1 to q2,
F = {⟨q1

e−→ q2⟩| e is accepting ∨ q2 is accepting} is the acceptance condition. out(q)
returns the set of all outgoing edges from q. Q is the collection holding all explored nodes.

Terminating the recursion

Algorithm 4 provides an elegant and clean DFS solution, leaving the stop() predicate to
be easily configured. Choosing the right termination condition for this recursive function
is the key to making it efficient. First I examine two simple possibilities, then combine
them with the idea of honda-guidance, to arrive at the final algorithm.

The simplest idea would be to use explored(q)= q ∈ Q, which checks if q is already
explored. It would be fast, but it also would miss potential lassos. This problem can be
seen on Figure 3.2 for both state- and transition-based acceptance. After reaching the

21

Algorithm 4 Simple DFS
Require: q0 an initial node
Ensure: returns safe with ∅, or unsafe with a counterexample

1: function dfs(q0)
2: ▷ Construct a dummy initial edge ◁
3: return search(⟨_ e−→ q0⟩, 0, {})

Require: a ∈ N current acceptance counter
path the nodes and acceptance counters on the stack

4: function search(⟨q1
e−→ q2⟩, a, path)

5: if e ∈ F then a← a + 1 ▷ increment counter of acceptances if needed
6: ▷ Incrementation is done first, to find single element loops ◁
7: if {q2, i} ∈ path ∧ i < a then
8: return {unsafe, path ∪ q2}
9: if stop() then return {safe, {}}

10: Q← Q ∪ {q2}
11: for all ep ∈ out(q2) do
12: result = search(ep, a, path ∪ {q2, a})
13: if result is unsafe then return result
14: return {safe, {}}

(a) Graph before first backtrack (b) Accepting loops missed

Figure 3.2: Graph space progression showcasing the problem of STOP=EXPLORED

22

state shown on Figure 3.2a and backtracking to the second node, the left path is explored.
However, once we reach the node pictured as the bottom one, explored would stop the
algorithm, missing the obvious lasso.

Another possibility would be to use inpath(q, path)= q ∈ path, which evaluates whether
the node is already in the current path. It would be a sufficient criterion, however, it would
not be in itself useful, as preliminary measurements have shown a huge lack of efficiency.

We need a way to tell upon reaching an already explored node, whether it is worth travers-
ing the nodes behind it. We know for sure if we start traversing behind such nodes, we
are only going to encounter nodes that have already been explored too, because of the
DFS nature of the exploration algorithm. Such a node can lead back into our current path
only if that loop is already known. We also know that such a loop can not contain any
acceptance inside, since that would already have concluded our search. We just need the
information about every explored node, which loops it is part of. Hence, by expanding
Algorithm 4 with storing all hondas for every explored node, if we later encounter such
a node, we just need to check if any of its registered hondas are on the current path. If
not, the node is for sure not worth traversing through. The extension can be seen on
Algorithm 5, where Hq denotes the set of marked hondas for node q.

Algorithm 5 Guided DFS
Require: q0 an initial node
Ensure: returns safe with ∅, or unsafe with a counterexample

1: function dfs(q0)
2: ▷ Construct a dummy initial edge ◁
3: return search(⟨_ e−→ q0⟩, 0, {})

Require: a ∈ N current acceptance counter
path the nodes and acceptance counters on the stack

4: function search(⟨q1
e−→ q2⟩, a, path)

5: if e ∈ F then a← a + 1
6: if {q2, i} ∈ path then
7: if i < a then
8: return {unsafe, path ∪ {q2, a}}
9: else

10: Hq1 ← Hq1 ∪ {q2}
11: return {safe, {}}
12: if explored(q2) ∧((∄h ∈ Hq2)[{h, i} ∈ path ∧ i < a]) then
13: return {safe, {}}
14: for all ep ∈ out(q2) do
15: result = search(ep, a, path ∪ {q2, a})
16: if result ← unsafe then return result
17: return {safe, {}}

What makes this simple terminating check an efficiency boost to our search is exactly
the already used search condition. We can not only tell, if traversing through a node
leads back into our path forming a lasso: we can know for sure if such lasso contains an
acceptance in its loop. We just simply need to check if the number of acceptances for said
honda in our current trace is smaller than the acceptance counter at the top of the call
stack, similar to the happy-path termination. Now that we know we can find the accepting
lasso somewhere behind the node, we are still not blind trying to find the trace. The extra
information on the nodes also guides the search right back into the current path, without
taking any misdirection.

23

1
{}

2
{1}

3
{1}

n
{1}

4
{}

…

5 … n - 1

(a) Next edge (red) after the first backtrack
to node 2

1
{}

2
{1}

3
{1}

n
{1}

4
{}

…

5 … n - 1

(b) Next edge (red) after the second back-
track to node 2

Figure 3.3: Example showing the strength of guided DFS

Take for example Figure 3.3. The search first explored the first n−1 nodes in order. Since
it came to a dead-end, the algorithm backtracks to node 3. Here the next recursive call
explores node n and then reaches node 1. There the stop condition terminates, as node 1
is on the current path, however, our acceptance counter is 0 both at node 1 and on the
stack. As we are backtracking to node 2, we mark node 1 as a valid honda on every node.
Now from node 2 the algorithm takes on the edge marked as red on Figure 3.3a. Node
4 is encountered, which is already explored, but not on the current path. After that, the
algorithm checks, if any of the hondas marked on node 4 are on path. Since none, the
execution here terminates, backtracking again to node 2.

Following that, the search continues with the red edge seen on Figure 3.3b. The algorithm
finds, that the honda node 1 marked on node 3 is on the current path. Since the acceptance
counter on the path for node 1 is 0, while on the stack it’s 1, it is clear that traversing
beyond node 3 would lead to a valid lasso trace. First, it takes the blue edge, but there
it terminates for the same reason as before. Then it takes the green edge and using the
same guidance would efficiently reach back to node 1 finding the valid lasso trace.

3.2.2 NDFS for transition-based acceptance

For simple graphs, the same NDFS algorithm could be used after some modification to
the graph. For every accepting edge ⟨q1

e−→ q2⟩, add a new accepting node qn. Remove e

from the graph, and add the edges ⟨q1
eln−−→ qn⟩ and ⟨qn

ern−−→ q2⟩ to the graph. Figure 3.2b
is a great example of this, where the modification on the left graph would result in the
right one.

However, considering that we want to look for lasso traces in a product of multiple state
spaces, creating artificial states is not an option, we need to modify Algorithm 2. The idea
is that once we find an accepting edge, we start the second search for the “from” node of
the found edge. The modification can be seen on Algorithm 6 annotated with blue.

24

Algorithm 6 Nested DFS for transition-based acceptance

1: procedure nested_dfs
2: ▷ Construct a dummy initial edge ◁
3: dfs_blue(⟨_ e−→ q0⟩)

Require: e to be an edge
4: procedure dfs_blue(⟨q0

e−→ q⟩)
5: q.blue← true
6: if e ∈ F then
7: dfs_red(q, q)
8: for all ⟨q ep−→ q2⟩ ∈ out(q) do
9: if ¬q2.blue then dfs_blue(ep)

Require: q, seed ∈ Q
10: procedure dfs_red(q, seed)
11:

q.red← true
12: for all t ∈ post(q) do
13: if ¬t.red then dfs_red(t, seed)
14: else
15: if t = seed then
16: report cycle

Algorithm 7 Guided DFS full exploration
Require: q0 an initial node
Ensure: returns safe with ∅, or unsafe with all counterexamples

1: function dfs(q0)
2: ▷ Construct a dummy initial edge ◁
3: return search(⟨_ e−→ q0⟩, 0, {})

Require: a ∈ N current acceptance counter
path the nodes and acceptance counters on the stack

4: function search(⟨q1
e−→ q2⟩, a, path)

5: if e ∈ F then a← a + 1
6: if {q2, i} ∈ path then
7: if i < a then
8: ▷ return it as a one-element set
9: return

{
unsafe, {path ∪ {q2, a}}

}
10: else
11: Hq1 ← Hq1 ∪ {q2}
12: return {safe, {}}
13: if explored(q2) ∧((∄h ∈ Hq2)[{h, i} ∈ path ∧ i < a]) then
14: return {safe, {}}
15: C ← {}
16: for all ep ∈ out(q2) do
17: result ← search(ep, a, path ∪ {q2, a})
18: if unsafe ∈ result then
19: C ← C ∪ (paths from result)
20: end for
21: if |C| > 0 then
22: return {unsafe, C}
23: return {safe, {}}

25

3.2.3 Guided DFS for full exploration

Guided DFS can be easily configured to explore the whole state space, and return all lasso
counterexamples. Since the algorithm is specifically designed to reduce aimless wandering
in the state space, it should be able to efficiently return all lasso traces right after the
full exploration is done. This possibility opens up the doorway to using multiple coun-
terexamples for refinement [15] in a later work. Please find the modifications annotated in
Algorithm 7. By not stopping upon finding an unsafe result, the algorithm guarantees to
explore the whole state space before terminating. The introduction of a set C before the
recursive calls allows the algorithm to collect all the counterexamples from the exploration.

3.3 Bounded unrolling for lasso traces

The idea of bounded unwinding comes from E. Clarke et al., who defined an algorithm [6]
to detect and refine lasso-shaped traces in the abstract state-space. The idea was that
even though we do not know if an abstract loop directly corresponds to a concrete loop,
we can be sure that the abstract loop can be concretized at most m different ways, where
m is the size of the smallest abstract state in the loop (if we think about abstract states as
sets of concrete states). That is because, if the loop is run m times and is concretizable,
the state that had the smallest number of concrete states has to repeat itself at least once.
The only limitations of the original algorithm were that it was defined for deterministic
operations only.

To slightly mitigate this limitation and be able to use the algorithm, we need to elimi-
nate as many nondeterministic operations as possible. To achieve this, nondeterministic
operations have to be unfolded: they are replaced with all their possible deterministic
counterparts. In this work, we are currently supporting the unfolding of the “choice”
operation.

Another limitation of the original algorithm in our context is that it I am working with
possibly infinite domains, for which m could also potentially evaluate to infinite. To have a
chance to avoid these infinite unwindings, it is worth noting that counting all the concrete
states allowed by the abstract states in the loop is an overapproximation of the number
of all possible different states the concrete loop can reach. If a variable is included in only
such assignments (or no assignments at all) where the expression contains only literals,
that variable has a fixed value throughout the loop. That means, for such variables, just
one unwinding is enough.

To find all the variables that contribute towards the needed number of unwindings, I
created Algorithm 8. It works on a lasso trace σL(w) = ⟨T, H, L⟩, where if o is an
assignment operation, o.var returns the variable that is being assigned the expression
o.expr. The function vars(expr) returns the variables appearing in the expression expr.

Using the variables collected by the algorithm, I can find an even smaller m than defined
by the original algorithm, and check the trace more efficiently. Since infinite bounds can
still be encountered, there is a configurable maximum for the bound. If m would be greater
than that, the refiner defaults to the direct approach introduced in Section 2.6.3.

26

Algorithm 8 Variable collector
1: function collect_vars
2: return collect_vars({})
3: function collect_vars(V)
4: s← |L|
5: for all o ∈ L do
6: if o is Assignment then
7: Ve ← vars(o.expr)
8: v ← o.var
9: if o.var ∈ Ve ∨ V ∪ Ve ̸= ∅ then

10: V ← V ∪ {o.var}
11: if |L| > s then
12: return collect_vars(V)
13: return V

3.4 Theory of the composite formalism

As stated in Section 2.4.2, for automata-theoretic model checking of LTL formulae one
needs the product of the model and the Büchi automaton. However, certain use cases
might include models that should already be products of two or more primitive ones. Also,
the implementation behind the Büchi automaton might change, or for different types of
algorithms, one might need different automata. To proactively tackle these challenges, I
created a composite formalism that is:

1. Indefinitely nestable

2. Generic enough to support a wide variety of components

Even though I was aiming for item 2, composition in this work is limited to operation-
based formalisms. To easily reason about composite models, I introduce the set of sides,
which consists of two atoms for “left” and “right”: sides = {L, R}. I also introduce the
complementer operator for sides, which just returns the other side than the operand, i.e.,
L = R and R = L.

Theorem 4 (Composite formalism). Given the following:

• the left modeling formalism (VL, DL, BL, SL, ιBL, αL)

• the left composite member interface (EL,BL,SL)

• the right modeling formalism (VR, DR, BR, SR, ιBR, αR)

• the right composite member interface (ER,BR,SR)

• a next side function Sd : BL ×BR ×D → {L, R}

• an init side si ∈ {L, R}

the left and right formalisms can be combined into an operation-based composite formalism
(VC , DC , BC , SC , ιBC , αC) such that:

• VC = VL ∪ VR

27

• BC = BL ×BR × {L, R}

• ιBC = ιBL × ιBR × {si}

• αC(s = {{bL, bR, s}, d)} =
{{

o, {b, b
Sd(s), Sd(s)}

}
|{o, b} ∈ αSd(s)({bSd(s), d})

}
�

Note, that we don’t reduce the data state to the variables delegated by a model when
we pass the data state to that model’s action function. From the practical point of view,
this means that if there is a variable reference occurring in only one of the models, it is
considered ignored in the other model. This not only makes the definition more simple
and intuitive but also comes in handy considering our use case.

3.5 Abstraction-based linear temporal logic model checking

Recalling Figure 3.1, I have now formally defined both components in the CEGAR Loop
and the component Product Builder. However, composition only works on operation-based
formalisms. We need an operation-based representation of NDBAs.

Definition 9 (BA). Operation-based BA is a modeling formalism given by the tuple
ba = (V, L, l0, T, Fs) where

• V = {v1, v2, . . . } is the set of variables appearing in the program

• L = {l0, l1, . . . } is the set of control locations modeling the actual position of the
program counter

• l0 ∈ L is the initial location representing the entry point of the program

• T ⊆ L×Opsass×L is a set of directed edges between the locations, annotated with
assume operations over the variables

• F ⊆ L is the state-bassed acceptance condition

• F ⊆ T is the transition-based acceptance condition

BA fulfills the operation-based modeling formalism interface the same way as a CFA does
in Theorem 2. �

Such a BA is created by the BA Builder component. A raw LTL string is first transformed
by the preprocessor mentioned in Section 2.6.1. This yields a map from APs to FOL
formulas, as well as the transformed LTL formula. This transformed formula is fed into
a library called Owl [19], developed at the Technische Universität München. The library
creates an NDBA in Hanoi Omega-Automata Format (HOAF). BA Builder then read
this HOAF and creates a BA, by substituting every atomic proposition with the mapped
FOL formula wrapped inside an assume operation.

Given any operation-based model, we can now effectively check requirements given with
LTL formula on it. The formula is converted to a BA as described above. Then a com-
position is created from the model and the BA. If we have multiple models describing
synchronous systems, they can be composited together, and then a new composition can
be created from the composite submodels and the BA. After that, a configurable CEGAR
loop can check, whether the requirement holds for the model(s).

28

Chapter 4

Evaluation

This chapter presents the experimental evaluation of my theoretical and algorithmic con-
tributions using benchmark models. I have implemented the algorithms and the product
formalism described in this work as a part of the Theta model checking framework 1.

4.1 Experiment design

In this section I introduce all the model and parameter sets I used to benchmark my
implementation.

4.1.1 Benchmark models

I used the following models with LTL properties to run LTL-only benchmarks:

• simple: Simple handcrafted models;

• Weather: Handcrafted model describing a person learning weather patterns to
optimize clothing choices for their day;

• TrafficLight: Generated from a composite statechart network with 2 traffic light
components and a controller component;

• Crossroad: Generated from the model used in the tutorial of the Gamma Statechart
Composition Framework2;

• Mission: Generated from a composite SysML statechart model modeling a space-
craft that communicates with a ground station;

• COID: A composite statechart network modeling components of railway safety
equipment. Provided by a confidential partner of the university;

The following models were created for verifying reachability properties, which I automat-
ically transformed to equivalent LTL queries (property φ to LTL formula G(φ):

• simple: Simple handcrafted models that cover all language constructs and features;
1https://github.com/ftsrg/theta
2http://inf.mit.bme.hu/en/gamma

29

http://inf.mit.bme.hu/en/gamma

• TrafficLight: Generated from a composite statechart network with 2 traffic light
components and a controller component;

• Spacecraft: Generated from the SysML statechart model modeling a spacecraft
from [18];

• INPE3: A composite system modeling two components of a communication protocol
inside a nanosatellite;

• COID: A composite statechart network modeling components of railway safety
equipment. Provided by a confidential partner of the university;

• PIL: A composite statechart network that models components of railway safety
equipment. Models in this set are more complex than the COID set. Provided by
a confidential partner of the university;

• mcaas: These models are generated from the open-source model of the Thirty Meter
Telescope [8]. The models were modified by hand to remove language elements
currently not supported by the mcaas framework;

• mcaas-sliced: These models were created by hand from the models in the mcaas
set by splitting up the single monolithic transition into 80 smaller transitions. The
models express equivalent behaviour.

4.1.2 Research questions

To evaluate my apprach and its implementation, I proposed the following research ques-
tions:

RQ1: How do Nested DFS and Guided DFS compare regarding CPU time? Does any of
them outperform the other?

RQ2: How do the direct and bounded unrolling refinement strategies compare regarding
CPU time? Does any of them outperform the other?

RQ3: Which config suits LTL checking the best? Does that depend on specific model
types?

RQ4: What is the overhead of using the LTL-checking algorithm for reachability analysis
compared to the dedicated reachability algorithm?

4.1.3 Configuration parameters - combinations for specific research
questions

For the benchmarks, I used the XstsCli tool of the Theta framework. It already had a lot
of configuration options, from which I reused all that were applicable to my algorithms. So
I only needed to define three new parameters, two regarding the algorithm selections for
the LTL CEGAR loop, and one to actually select LTL CEGAR checking instead of regular
reachability. A summary can be seen on Table 4.14. The searchLTL value NDFS refers to
Algorithm 2 in Section 2.6.2, while the value DFS is the guided DFS from Algorithm 5.

3INPE (Instituto Nacional de Pesquisas Espaciais) refers to the brazilian National Institute for Space
Research, who provided the INPE model set, see http://www.inpe.br

4For more detailed description of the options, see: https://github.com/ftsrg/theta/blob/master/d
oc/CEGAR-algorithms.md

30

http://www.inpe.br
https://github.com/ftsrg/theta/blob/master/doc/CEGAR-algorithms.md
https://github.com/ftsrg/theta/blob/master/doc/CEGAR-algorithms.md

The refinementLTL value MONDOK is the counterpart of Algorithm 3 from Section 2.6.3
and BOUNDED_UNROLLING is the algorithm detailed in Section 3.3.

Parameter Possible values Description

algorithm CEGAR, LTLCEGAR Define whether to use LTL or
reachability checking

searchLTL NDFS, DFS Define which language emptiness
checking algorithm to use

refinementLTL MONDOK,
BOUNDED_UNROLLING

Select LTL refinement algorithm
from direct approach or bounded

unrolling

domain EXPL, PRED_CART,
PRED_SPLIT, PRED_BOOL

Choose an abstract domain

refinement BW_BIN_ITP, SEQ_ITP Define to use binary or sequence
interpolation

predSplit WHOLE, ATOMS Define whether to split new
predicates after refinement

Table 4.1: Configuration parameters used, new ones above horizontal line

4.1.3.1 Parameter sets for LTL only benchmarks

Bound parameters:

• algorithm = LTLCEGAR

• domain = PRED_SPLIT

• predSplit = ATOMS

Free parameters:

• searchLTL: {NDFS, DFS}

• refinementLTL: {BOUNDED_UNROLLING, MONDOK}

4.1.3.2 Parameter sets for reachability benchmarks

Free parameters:

• algorithm: {CEGAR, LTLCEGAR}

• domain: {EXPL, PRED_CART, PRED_SPLIT, PRED_BOOL}

• predSplit: {WHOLE, ATOMS}

• refinement: {SEQ_ITP, BW_BIN_ITP}

• searchLTL: {NDFS, DFS}

• refinementLTL: {BOUNDED_UNROLLING, MONDOK}

31

4.1.4 Shortened configuration names

All configurations are encoded into a short name using the first few letters of the param-
eters.

For LTL-only benchmarks, configuration names are of the form: L_{M | BU}_{D | N}.
For the middle part, BU denotes that the refinement strategy selected was bounded un-
rolling, whereas M denotes the direct refinement approach, adapted from the work of
Mondok et. al. [22]. The last letter is D for Guided Depth-First Search (GDFS) and N
for NDFS.

4.1.5 Benchmark environment

The measurements were carried out using virtual machines in the BME cloud.
BenchExec [3] was used to ensure the reliability of the results.

LTL-only benchmarks were executed on a single machine with the following configuration:

• OS: Ubuntu 18.04

• CPU: 4 cores

• RAM: 8192 MB

• Set timeout: 1800 seconds (30 minutes)

As the reachability benchmark set contained much more models, the related measurements
were performed on a distributed benchmark environment in the cloud, where BenchExec
was used to constrain the RAM to 15 GB and the number of CPU cores to 3. The timeout
for these measurements was set to 900 seconds (15 minutes).

4.2 The results of the benchmarks

I used LTL-only benchmarks to find the answers to research questions 1-3. Then I used
the results of reachability checking benchmarks to answer research question 4.

4.2.1 LTL-only benchmarks

Research question 1

As the pairwise plot on Figure 4.1 shows, GDFS was able to outperform NDFS in many
model categories. This shows that my algorithm is viable.

Research question 2

As seen on the pairwise plot Figure 4.2, the direct approach and the new bounded unrolling
do not show real differences. I suspect this is because bounded unrolling has a hard limit
on the number of unwinding and when that is reached, the refinement defaults to the
direct approach.

32

Figure 4.1: Measurement results for RQ1

Research question 3

Based on the heatmap seen on Figure 4.3, we can see that there are some model categories
in which guided DFS could outperform NDFS. There are also categories where the per-
formance is almost identical. The quantile plot seen on Figure 4.4 also shows the same,
that guided DFS is slightly better performing. The pairwise plot on Figure 4.5 shows huge
potential with the explicit value abstraction domain.

33

Figure 4.2: Measurement results for RQ2

34

Figure 4.3: Heatmap illustrating measurement results for RQ3

35

Figure 4.4: Quantile plot illustrating measurement results for RQ3

36

Figure 4.5: Pairwise plot illustrating measurement results for RQ3

37

4.2.2 Reachability benchmarks - Research question 4

The quantile plot on Figure 4.6 shows what was expected, that for reachability the classic
CEGAR algorithm is way better and more efficient, being able to solve more problems.
However, the pairwise plot on Figure 4.7 suggests that there are certain models where

Figure 4.6: Quantile plot illustrating measurement results for RQ4

4.2.3 Threats to validity

Since I had access to only few models with well-defined LTL properties, the sample size
and the representativity of the models limits the generalizability of my evaluations.

The results might have been impacted by the fact that the benchmarks were run in cloud
configurations. I made every effort to counteract it by using BenchExec, and running
the benchmarks in periods when the general usability of the cloud was the lowest, mainly
outside of business hours.

38

Figure 4.7: Pairwise comparison of LTL-based reachability with the dedicated reahca-
bility algorithm for RQ4

39

Chapter 5

Conclusions

In this chapter, I draw conclusions from my work and outline some possible future direc-
tions it can be expanded in.

Theoretical contributions

To create a flexible LTL model checking workflow, I introduced the following concepts
that can be used as building blocks of abstraction-based automata-theoretic algorithms:

• I defined what operation-based formalisms are, based on which I was able to give
a formal definition of a composite formalism that supports the composition of an
arbitrary number of nested models. I also defined how a Büchi automaton can be
regarded as a state-based formalism. Using all these, products of Büchi automata
and other models can be created;

• I introduced a novel language-emptiness checking algorithm called guided DFS;

• I presented a novel refinement algorithm for lasso-shaped traces based on the
bounded unwinding algorithm proposed by Clarke in [6].

Combining the aforementioned algorithms and the composite formalism, I proposed an
extension of the CEGAR algorithm that is capable of finding lasso-like traces. I then
explained, how the lasso searching CEGAR algorithm can be used on the product to
verify requirements given in the LTL formal specification language.

Practical contributions

I implemented my approach in the open source Theta framework. I specifically paid
attention to making most of my contributions highly configurable and reusable, so that
they could be part of any other type of workflow. The generic nature of my product
formalism opens the door to many different approaches, such as modeling concurrent
systems as standalone components. The implementations of the two lasso abstracting
algorithms and the two refinement algorithms allow us to look for loops in any model, not
just a product for LTL checking.

I made the following further modifications to the Theta framework to support my ap-
proach:

40

• I implemented an efficient data structure for the abstract state space used in lasso
searching.

• In the Theta framework previously enum-like custom types were transformed inte-
gers. I introduced a new implementation of these types that uses the sort type of
the SMT solver.

I evaluated my approach on a diverse set of models that included both handcrafted ex-
amples and real-life models that were provided by industrial partners of the university.
The benchmarking yielded promising results, and also helped my identified areas where
my approach could be further improved.

Future work

The most important would be to run the benchmarks on a wider set of models and con-
figurations, to truly get a whole picture on how the algorithms perform. The bounded
unrolling algorithm could be generalized to work on nondeterministic operations.

There are many directions the concepts in this work could be evolved. It is clear, that
the “counter” problem is not solved. Given predicate abstraction and an integer slowly
increasing in value in the concrete state space, the CEGAR algorithm needs multiple whole
cycles to come to a precision that eliminates the false counterexample for that loop. To
solve this issue, one could use the concept of weakest preconditions, to eliminate such
loops earlier.

A new refiner algorithm could also be introduced, that is capable of taking advantage
of the multiple lasso traces the full exploration can yield. I would also like to introduce
generalized Büchi automata and compare their performance to NDBAs. An interesting
idea would be to achieve slight optimizations, to use some of the Büchi automatons transi-
tions as initial precisions, since most of the first few iterations in the CEGAR loop usually
return those.

41

Acknowledgements

Many many special thanks to both of my advisors, Milán and Dániel. They sacrificed
countless hours to introduce me into the depth of formal verification methods, helped me
understand every part of the theta framework, and were there generally at any given time
to aid me when I was lost. If I didn’t understand something, they made sure to stay with
me until I got grasp of the theme. It was a pleasure being advised by them.

Project no. 2019-1.3.1-KK-2019-00004 has been implemented with the partial support
provided from the National Research, Development and Innovation Fund of Hungary,
financed under the 2019-1.3.1-KK funding scheme.

42

Bibliography

[1] Christel Baier and Joost-Pieter Katoen. Principles of Model Checking. The MIT
Press, 2008. ISBN 026202649X.

[2] Dirk Beyer and Stefan Löwe. Explicit-state software model checking based on cegar
and interpolation. In Fundamental Approaches to Software Engineering. Springer
Berlin Heidelberg, 2013. ISBN 978-3-642-37057-1.

[3] Dirk Beyer, Stefan Löwe, and Philipp Wendler. Reliable benchmarking: require-
ments and solutions. Int. J. Softw. Tools Technol. Transf., 21(1):1–29, 2019. DOI:
10.1007/S10009-017-0469-Y. URL https://doi.org/10.1007/s10009-017-046
9-y.

[4] Armin Biere, Cyrille Artho, and Viktor Schuppan. Liveness checking as safety check-
ing. In Rance Cleaveland and Hubert Garavel, editors, FMICS 2002, ICALP 2002
Satellite Workshop, volume 66 of Electronic Notes in Theoretical Computer Science,
pages 160–177. Elsevier, 2002. DOI: 10.1016/S1571-0661(04)80410-9.

[5] J. Richard Büchi. On a Decision Method in Restricted Second Order Arithmetic.
1990. ISBN 978-1-4613-8928-6. DOI: 10.1007/978-1-4613-8928-6_23.

[6] Edmund Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith.
Counterexample-Guided Abstraction Refinement. In Computer Aided Verification,
2000. ISBN 978-3-540-45047-4.

[7] Edmund Clarke, Orna Grumberg, and Doron Peled. Model Checking. 01 2001. ISBN
978-0-262-03270-4.

[8] TMT Observatory Corporation. Thirty Meter Telescope SysML model. URL https:
//github.com/Open-MBEE/TMT-SysML-Model. Last accessed on 2023-10-31.

[9] C. Courcoubetis, M. Vardi, P. Wolper, and M. Yannakakis. Memory-efficient algo-
rithms for the verification of temporal properties. Formal Methods in System Design,
1, 1992.

[10] William Craig. Three uses of the herbrand-gentzen theorem in relating model theory
and proof theory. J. Symb. Log., 22, 1957. DOI: 10.2307/2963594.

[11] Zhao Duan, Cong Tian, and Zhenhua Duan. Verifying temporal properties
of c programs via lazy abstraction. 2017. ISBN 978-3-319-68689-9. DOI:
10.1007/978-3-319-68690-5_8.

[12] FTSRG. Theta framework GitHub repository. https://github.com/ftsrg/theta,
2023. Accessed: 2023-10-31.

43

http://dx.doi.org/10.1007/S10009-017-0469-Y
https://doi.org/10.1007/s10009-017-0469-y
https://doi.org/10.1007/s10009-017-0469-y
http://dx.doi.org/10.1016/S1571-0661(04)80410-9
http://dx.doi.org/10.1007/978-1-4613-8928-6_23
https://github.com/Open-MBEE/TMT-SysML-Model
https://github.com/Open-MBEE/TMT-SysML-Model
http://dx.doi.org/10.2307/2963594
http://dx.doi.org/10.1007/978-3-319-68690-5_8
https://github.com/ftsrg/theta

[13] R. Gerth, D. Peled, M. Y. Vardi, and P. Wolper. Simple On-the-fly Automatic
Verification of Linear Temporal Logic. 1996. ISBN 978-0-387-34892-6. DOI:
10.1007/978-0-387-34892-6_1.

[14] Susanne Graf and Hassen Saidi. Construction of abstract state graphs with pvs. In
Computer Aided Verification, 1997. ISBN 978-3-540-69195-2.

[15] Ákos Hajdu and Zoltán Micskei. Efficient strategies for cegar-based model check-
ing. Journal of Automated Reasoning, 64, 2020. ISSN 1573-0670. DOI:
10.1007/s10817-019-09535-x.

[16] Ákos Hajdu, Tamás Tóth, András Vörös, and István Majzik. A configurable CEGAR
framework with interpolation-based refinements. volume 9688 of Lecture Notes in
Computer Science, 2016. DOI: 10.1007/978-3-319-39570-8_11.

[17] Gerard J. Holzmann. The model checker spin. IEEE Trans. Softw. Eng., 23, 1997.
ISSN 0098-5589. DOI: 10.1109/32.588521.

[18] Benedek Horváth, Bence Graics, Ákos Hajdu, Zoltán Micskei, Vince Molnár, István
Ráth, Luigi Andolfato, Ivan Gomes, and Robert Karban. Model checking as a
service: Towards pragmatic hidden formal methods. In Proceedings of the 23rd
ACM/IEEE International Conference on Model Driven Engineering Languages and
Systems: Companion Proceedings, MODELS ’20, 2020. ISBN 9781450381352. DOI:
10.1145/3417990.3421407.

[19] Jan Kretínský, Tobias Meggendorfer, and Salomon Sickert. Owl: A library for ω-
words, automata, and LTL. In Automated Technology for Verification and Analysis
- 16th International Symposium, ATVA 2018, Los Angeles, CA, USA, October 7-10,
2018, Proceedings, volume 11138 of Lecture Notes in Computer Science, 2018. DOI:
10.1007/978-3-030-01090-4_34.

[20] Vince Molnár, András Vörös, Dániel Darvas, Tamás Bartha, and István Majzik.
Component-wise incremental ltl model checking. Form. Asp. Comput., 28, 2016.
ISSN 0934-5043. DOI: 10.1007/s00165-015-0347-x.

[21] Milán Mondok. Formal verification of engineering models via extended symbolic
transition systems, 2020. Bachelor’s Thesis, Budapest University of Technology and
Economics.

[22] Milán Mondok and András Vörös. Abstraction-based model checking of linear tem-
poral properties. In Proceedings of the 27th PhD Mini-Symposium, 2020.

[23] Tamás Tóth, Ákos Hajdu, András Vörös, Zoltán Micskei, and István Majzik. Theta:
a framework for abstraction refinement-based model checking. In Proceedings of the
17th Conference on Formal Methods in Computer-Aided Design, 2017. ISBN 978-0-
9835678-7-5. DOI: 10.23919/FMCAD.2017.8102257.

44

http://dx.doi.org/10.1007/978-0-387-34892-6_1
http://dx.doi.org/10.1007/s10817-019-09535-x
http://dx.doi.org/10.1007/978-3-319-39570-8_11
http://dx.doi.org/10.1109/32.588521
http://dx.doi.org/10.1145/3417990.3421407
http://dx.doi.org/10.1007/978-3-030-01090-4_34
http://dx.doi.org/10.1007/s00165-015-0347-x
http://dx.doi.org/10.23919/FMCAD.2017.8102257

Appendix

A.1 Acronyms

FOL First Order Logic . 4
AP Atomic Proposition . 17
CFA Control Flow Automaton . 8
LTL Linear Temporal Logic . 9
STS Symbolic Transition System . 5
XSTS eXtended Symbolic Transition System . 7
NDBA Non-Deterministic Büchi Automaton . 10
CEGAR CounterExample-Guided Abstraction Refinement 14
NNF Negational Normal Form . 12
DFS Depth-First Search . 21
NDFS Nested Depth-First Search . 17
GDFS Guided Depth-First Search . 32
SMT Satisfiability Modulo Theories . 16
HOAF Hanoi Omega-Automata Format . 28

A.2 Reachability performance of configurations

45

Figure A.2.1: The performance of the different configurations on reachability problems

46

	Kivonat
	Abstract
	Introduction
	Background
	Model checking
	Modeling formalisms
	Kripke structures
	More complex data states using variables
	Symbolic Transition System
	Operation-based formalisms
	Operations
	Structural and concrete states
	Actions
	Interface of operation-based formalisms
	eXtended Symbolic Transition System
	Control Flow Automaton

	Requirement specifications
	Safety - reachability
	Linear Temporal Logic

	Automata-theoretic LTL checking
	Büchi automata
	LTL checking with Büchi Automata

	Abstraction-based model checking
	Abstraction
	Counterexample-guided abstraction refinement
	The abstractor
	The refiner

	CEGAR algorithm for LTL checking
	LTL formula preprocessor
	Abstractor
	Refiner

	Theta framework
	Related work

	Abstraction-based algorithms for configurable automata-theoretic model checking
	Overview of the presented abstraction-based LTL-checking approach
	Efficient language-emptiness checking
	Guided DFS
	NDFS for transition-based acceptance
	Guided DFS for full exploration

	Bounded unrolling for lasso traces
	Theory of the composite formalism
	Abstraction-based linear temporal logic model checking

	Evaluation
	Experiment design
	Benchmark models
	Research questions
	Configuration parameters - combinations for specific research questions
	Parameter sets for LTL only benchmarks
	Parameter sets for reachability benchmarks

	Shortened configuration names
	Benchmark environment

	The results of the benchmarks
	LTL-only benchmarks
	Reachability benchmarks - Research question 4
	Threats to validity

	Conclusions
	Acknowledgements
	Bibliography
	Appendix
	Acronyms
	Reachability performance of configurations

