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Abstract

Modern quasi Linear Parameter Varying (qLPV) state-space model and Linear Ma-

trix Inequality (LMI) based multi-objective convex optimization aimed control the-

ories and design methods can be basically divided into three steps:

i) identi�cation of the qLPV state-space model

ii) derivation of the polytopic representation from the qLPV model

iii) substitution of the polytopic representation into LMI based control design

methods in order to attain the controller and observer system components

The main focus in the scienti�c research initiatives was mostly on step iii, addressing

the investigation and manipulation of LMIs to attain the optimized controller and

observer performance, which achieved a signi�cant literature. Moreover, the current

widely accepted standpoint among scienti�c research is represented by the state-

ment that the LMI based control design methods give an optimal solution on the

identi�ed qLPV model. However, step ii, the e�ect of the procedure deriving the

polytopic model and its e�ect on the LMI based control design methods was given

less attention. A hypothesis published in 2009 discusses and points out this fact that

beside the procedure deriving the manipulation of the polytopic representation in

step ii is necessary and has relatively the same extent of signi�cance as step iii,

namely the fact that the LMI based control design methods do not give an optimal

solution on the identi�ed qLPV model but rather on the polytopic representation

at hand and the polytopic manipulation therefore leads to further potential opti-

mization possibilities with a relatively similar importance as the LMI based control

design methods.

Goals

In this context the aim of the Scienti�c Student Conference paper is to systemati-

cally investigate and prove the above mentioned - so far uncon�rmed - hypothesis

both for the control and observer design combined with various polytopic manip-

ulation techniques. As a consequence this proof declares the necessity hence the
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importance of the polytopic manipulation. In addition a further aim is to show that

the manipulation plays an important role in deriving the optimal solution, since

the polytopic representation is not invariant. The proof of the hypothesis and the

regarding concepts gain further new research directions in the �eld of qLPV and

LMI based control theory research.

Methodology

In order to achieve the above speci�ed goals the paper presents the systematic

method which was developed and executed for investigating the hypothesis, its re-

sults and consequences which lead to the proof of the hypothesis. The investigation

includes the main factors of the polytopic representation in�uencing the feasibil-

ity regions of the LMI based control design, speci�cally i) the manipulation of the

vertexes' position and ii) the size and complexity of the representation, i.e. the num-

ber of the vertexes contained in the TP model type polytopic representation. The

proof is based on a complex control design example, where the in�uence of these

factors can be clearly indicated. Furthermore the paper shows via the example that

the maximal achievable parameter space of the controller and observer also depend

from these factors. The example model consists of the complex Nonlinear Aeroelastic

Test Apparatus (NATA) model of the three Degree of Freedom (3-DoF) aeroelastic

wing section including Stribeck friction. The methodology is based on the Tensor

Product (TP) model transformation based Control Design Framework that supports

the �exible manipulation of these factors.

Literature references

To discuss the signi�cant paradigm changes described in the preliminaries of the

introduction regarding the mathematical, control theory and system modeling and

identi�cation advancements, the paper cites essential publications from the last 100

years. Concerning the mathematical and control theory formalisms and concepts

utilized in the paper are source to literature of the last 15 years. Lastly, papers in

the reference list published between 2009 and 2014 directly lead to the fundamentals

of the speci�ed goals.

Results and the formulated statement of the Scienti�c Student

Conference paper

Based on the systematical investigation and results the Scienti�c Student Conference

paper presents a TP model transformation based solution to prove the hypothesis
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via the following statements:

The manipulation of the polytopic TP model representation's Linear Time Invari-

ant (LTI) vertexes in�uence the feasibility of LMI based control design methods:

i) The position of the LTI vertexes, de�ning the convex hull of the TP model

type polytopic representation in�uence the feasibility of LMI based control

design.

ii) The complexity of the TP model, namely the number of the LTI vertexes

contained in the TP model also in�uence the feasibility of LMI based control

design.

iii) Statement i) and ii) is valid both for the design of the controller and observer

system elements but the in�uence di�ers from each other, in fact in certain

cases it in�uences in an opposite way. This may raise further optimization

questions: since so far the controller and observer have been designed on the

same polytopic representation a design with separate TP model type polytopic

representations may induce further bene�ts.

iv) The position and number of the LTI vertexes of the polytopic TP model rep-

resentation also in�uence the size of the achievable parameter space of the

feasible design.

Some details of the statements and the proving results described in the paper

have been presented in the following publications:

- A. Szöll®si, P. Baranyi: In�uence of Complexity Relaxation and Convex Hull

Manipulation on LMI based Control Design, Proceedings of the 9th IEEE

International Symposium on Applied Computational Intelligence and Infor-

matics (SACI), pp. 145-151., 2014.

- A. Szöll®si, P. Baranyi, P. Várlaki: Example for Convex Hull Tightening in-

creasing the feasible parameter region at Linear Matrix Inequality based Con-

trol Design, Proceedings of the 18th IEEE International Conference on Intel-

ligent Engineering Systems (INES), pp. 175-180., 2014.

Also, the aspects of the above mentioned statement and proof have been formu-

lated into a comprehensive study which has been submitted to the Asian Journal of

Control international scienti�c journal (impactfactor: 1.411) for publication.

Budapest, 2014
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Structure of the Scienti�c Student

Conference paper

The Scienti�c Student Conference paper consists of three main parts: the introduc-

tion in Chapter 1 presents the preliminaries, background and a general overview

which leads to the motivation and goals of the paper. Next, the statement formu-

lated by the author is described in Chapter 2, which is followed by the proof of the

statement in Chapter 3 and 4, containing the theory of the proposed methodology

and its application resulting in the proving results. Finally, the paper is closed with

the conclusion in Chapter 5, and an appendix containing the acronyms is attached.

6



Chapter 1

Introduction

The introduction consists of two main parts: Section 1.1 presents the preliminaries

and a general overview describing the important conceptual changes which lead

to the speci�c objectives of the Scienti�c Student Conference paper and Section 1.2

describes the mathematical notations and methods, which will be applied throughout

the paper.

1.1 Preliminaries and general overview

The Scienti�c Student Conference paper addresses a topic in connection with the

signi�cant paradigm and conceptual changes in the last decades subject to modern

nonlinear and multi-objective control theory and its associated mathematical con-

cepts described in Section 1.1.1 and system identi�cation theory described in Section

1.1.2. These conceptual changes signi�cantly di�er from each other in their concepts

although these �elds are closely related, and in most cases are even consecutive

steps following each other sequentially. The di�erence generates a representational

and formalism gap which makes the sequential application of identi�cation tools

with the control theory apparatus di�cult to accomplish. A possible resolving tran-

multi-objective

Soft computing based

system modeling and

and identification

Tensor Product

model transformation

SVD, HOSVD

HOSVD of cont. functions

mathematical concepts

Sec. 1.1.1 Sec. 1.1.2Sec. 1.1.4

non-linear control theory

Conventional formulas based

Sec. 1.1.3

Figure 1.1: General overview
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sition has been the subject of several studies in recent years, a connection would

require an appropriate conversion and a uniform representation. Such a possible

connection and transition can be represented by the Tensor Product (TP) model

transformation and the �nite element Tensor Product type polytopic model rep-

resentation. Its mathematical preliminaries will be described in Section 1.1.3 and

the TP model transformation itself, enabling the connection between the signi�cant

conceptual changes will be illustrated in Section 1.1.4.

1.1.1 Multi-objective nonlinear control theory

The modeling and control of nonlinear systems with multiple objectives is a current

challenge in engineering in the present day. One commonly accepted approach is

represented by quasi Linear Parameter Varying (qLPV) modeling and Linear Matrix

Inequality (LMI) based design techniques.

Nonlinear modeling through qLPV models

The qLPV representation of a model has the ability to describe nonlinear systems.

This is achieved through a Linear Time Invariant (LTI) state-space model where

the system matrix S(p) incorporates a parameter variance through the vector p,

which can contain both internal - e.g. elements of the state vector - and external

dependencies. The parameter variance can hold both continuous functions p1,2,...(t)

or discrete state variables p1,2,...[k] as elements. The theory of qLPV system repre-

sentations appeared in connection with aerospace control where the representation

describes a systematical approach to gain scheduling control for nonlinear systems

[1] in 1991. Further advances extended the topic of qLPV systems such as passivity

and H∞ theories, robust adaptive control [2], switching control systems [3] and in-

telligent control [4, 5] through the 2000s. The method of qLPV representation can

be applied to a wide range of problems and applications.

Multi-objective control design theories through LMIs

In addition modern LMI based controller and observer design methods have the

ability to e�ciently handle the controller and observer design process expanding also

the possibilities with multi-objective requirements, e.g. constraints such as overshoot

constraint, settling time constraint, etc. This makes this numerical computation

based method also for a wide range of problems and applications e�ective. This

new approach was established and elaborated through the e�orts of Gahinet, Balas,

Chilai, Boyd, and Apkarian [6, 7, 8, 9, 10] during the 1990s and the geometrical

representation of convex optimization was introduced by József Bokor [11]. Also,
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the solution (feasibility) of LMIs can be reinterpreted as a convex optimization

problem. Simultaneously e�cient numerical mathematical methods and algorithms

were developed for solving the convex optimization problems for LMIs [12].

The topics of qLPV models and theit polytopic representation based LMI convex

optimization methods are expanding to a rich literature of control theory to the

present day.

1.1.2 System modeling and identi�cation theory

David Hilbert gave a speech at the Paris Conference of the International Congress

of Mathematicians in 1900, where he presented 23 hypotheses regarding unsolved

mathematical problems [13, 14, 15, 16]. He assumed these hypotheses would be the

unanswered issues of the 20th century. The 13th hypothesis states that continuous

multi-variable functions would exist which could not be decomposed as a �nite su-

perposition of continuous functions of a smaller number of variables. This statement

was proven false in 1957 by V. I. Arnold [17]. Also, a general representation the-

orem with an attached proof was developed by the mathematician Kolmogorov in

the same year which allows a decomposition of continuous multi-variable functions

into one-dimensional functions [18], see also [19] and [20]. Kolmogorov's proof was a

legitimate evidence for the existence of universal approximators, which induced fur-

ther research: during the last decades it has been proven that the di�erent concepts

of neural networks, genetic algorithms and fuzzy logic systems exist as universal

approximator systems [20, 21, 22, 23, 24]. Thus soon these concepts proved to be

e�ective applied theories in system modeling and identi�cation theory extending

the possibilities besides the conventional theorems of e.g. black-box identi�cation,

engineering considerations etc.

These identi�cation concepts and the powerful control design and optimization

techniques described previously in Section 1.1.1 signi�cantly di�er in their concept

and mathematical representations. Neural networks are basically graphs with a set

of connections and the weights of these interconnections, fuzzy logic is basically a

database of linguistic rules equipped with an inference technique and evolutionary

algorithms are basically algorithms, which are all rather far from analytic closed-

form expressions applied in LMI based control theory.

1.1.3 Mathematical advancements

In order to connect the signi�cant paradigm and conceptual changes subject to mod-

ern multi-objective nonlinear control theory and system modeling and identi�cation

theory the mathematical concepts will be described in this section including the re-
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cent advancements in multi-linear algebra concerning Singular Value Decomposition

(SVD) and Higher-Order Singular Value Decomposition (HOSVD) followed by the

concept of the decomposition of continuous functions through HOSVD and the TP

model transformation as the overall uniting concept.

Multi-linear algebra concerning SVD and HOSVD

A generalized method for matrix diagonalization and component separation is repre-

sented by the Singular Value Decomposition (SVD): it represents a concept, where

a general matrix is diagonalized through decomposing it into a diagonal matrix

containing the main components (singular values) and two orthonormal bases. The

history of SVD dates back to the 1850s [25] and the elaboration was presented

by Golub in 1965 and the 1970s [26, 27, 28]. SVD gained popularity in various

scienti�c �elds [29, 30, 31, 32, 33] from signal processing, image processing, statis-

tics, etc. Regarding the advancements in computing technology through the decades

the improvements made the addressing of large scale multi-dimensional problems

possible, which lead to a further generalization: the Higher-Order Singular Value

Decomposition (HOSVD) or multi-dimensional SVD published in 2000 by Lieven

De Lathauwer [34] can decompose also a general, but N-dimensional tensor into

also a matrix containing the main, higher order components (higher order singular

values) and an orthonormal basis system. This is attained in L2 norm. In summary,

HOSVD has the ability to determine the structure and the signi�cance of each con-

tained component of a given tensor. The �rst event where HOSVD was handled as

a key topic was the Workshop on Tensor Decompositions and Applications held in

Luminy, Marseille, France, in 2005. Implicitly HOSVD and its concepts has been

formulated and presented also in fuzzy approximation [35, 36] during the 1990s and

as independent component analysis (ICA) in [37], as well as dimension reduction for

higher-order factor analysis-type problems to decrease computational complexity in

[38] also during the 1990s.

HOSVD of multi-variable continuous functions and Tensor Product model

transformation

Following the publication of HOSVD soon the de�nition of HOSVD for multi-

variable continuous functions and the associating de�nition of rank regarding the

importance and contribution of the corresponding variables has been presented in

2006 [39, 40, 41]. Similar to HOSVD, the HOSVD for multi-variable continuous

functions constructs a higher order ranking of products consisting of orthonormal

weighting function systems for each in the function included variables. These weight-

ing functions are the singular functions similar to the singular matrices and vectors in
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SVD and HOSVD. Similarly the same way the higher order singular values indicate

the importance, contribution and rank of each associated singular vector product in

Frobenius norm in case of HOSVD, the singular values in case of HOSVD of contin-

uous functions also indicate these attributes for the singular functions through the

continuous variant of the Frobenius norm. In summary the HOSVD of continuous

functions inherits many attributes from HOSVD. In this context the application

is performed also in a similar sense, e.g. main component analysis, noise �ltering,

trade-o� between complexity and accuracy, etc.

The TP model transformation introduced in 2006 [42, 43, 44, 45] is a numeri-

cally executable method which is able to convert a model given through a set of

continuous functions into a set of TP functions by reconstructing the HOSVD of

the continuous functions [40]. The TP model transformation also inherits many at-

tributes from HOSVD which re�ects on its features: it has the ability to determine

the fundamental structure and the signi�cance of each component contained in the

set of TP functions. The TP model transformation has been extended with di�erent

convex manipulation techniques to be able to generate convex variants of the TP

function. These convex manipulation techniques enable the possibility to construct

a convex combination, which consists of the combination of the elements of the

core tensor (termed as vertexes) and the one variable weighting function products.

This convex combination forms thereby a geometric polytopic structure, which is

de�ned through its vertex points. The TP model transformation and the convex

manipulation will be detailed in the next section.

1.1.4 The Tensor Product model transformation connecting

the di�erent concepts and representations

As previously described in Section 1.1.2, identi�cation techniques based on soft-

computing concepts can prove to be e�ective approaches considering system model-

ing and identi�cation problems throughout di�erent engineering �elds, particularly

in such circumstances where formulating the model through analytic closed form

formulas - e.g. through physical or engineering considerations - would seem di�cult.

As a consequence a number of identi�cation methods have appeared and spread:

e.g. neural networks, fuzzy theory, genetic algorithms, etc. However, due to the

conceptual di�erences in structure and representation, which may also prove to be

problem-dependent, it is di�cult to continue with the control system design theories

described in Section 1.1.1.

In this context the construction of TP models is motivated by the fact that com-

monly applied and well developed frameworks and design techniques exist to �nd

the e�cient solutions to engineering problems, which are compatible with the struc-
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ture of TP models. This enables that the modern polytopic and LMI based control

theories can be basically directly applied on TP models. As previously described

in Section 1.1.3 the mathematical conversion to attain TP models is accomplished

through the TP model transformation which reconstructs the HOSVD of continuous

functions and the uniform representation is established through the �nite element

TP type polytopic model representation (TP model).

In addition it is also worth mentioning that measurement based identi�cation

methods or identi�cation through engineering and physical considerations - exclud-

ing some special cases - may contain signi�cantly larger errors (in many cases the

relatively small, but non-zero singular values may represent a distorting noise in the

system) in their results than the model attained through the TP model transfor-

mation. There may exist cases, where a given model does not possesses an exact

TP model, however it can be still approximated, even with still a smaller scale

error than that resulting of the identi�cation. Therefore, executing the TP model

transformation and validating the resulting TP model could be more bene�cial than

identi�cation. In cases, where the identi�cation contains e�cient methods, it still

may be bene�cial to execute a conversion to the TP model and validating it instead

of the identi�ed model, since the TP model still incorporates relatively smaller er-

rors of a given model instead of the identi�ed model, or even none if there exists an

exact TP model. In summary, it can be concluded, that the TP model transforma-

tion could be a last step of identi�cation and as a general interface, a preprocessing

step for control design.

The TP model transformation includes the following features:

• The TP model transformation can be executed irrespective to the form of the

initial model, which can be given through analytic closed-form expressions,

neural networks, fuzzy logic, etc., the only requirement consists of the fact

that the identi�ed model has to be able to be discretized over a grid.

• If the TP model representation exist, the transformation generates the exact

TP model representation of the given model. If the TP model representation

does not exist, an approximate representation of the model is derived.

• The TP model transformation numerically constructs the HOSVD based TP

model form of a given qLPV model [39, 40, 41] with the following attributes:

� The multi-variable continuous functions result in products consisting of

orthonormal one-variable weighting function systems.
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� The number of LTI vertexes, which determine the fundamental structure

and the signi�cance of each component are minimized.

� The LTI vertexes are constructed into an orthogonal basis system.

� The LTI vertexes and weighting function systems are constructed into a

higher order ranking corresponding to the signi�cance of each component.

• Based on component analysis indicating the importance and contribution of

each corresponding LTI vertex component a trade-o� between complexity and

accuracy in L2 norm [46, 47] is also featured. Through disposing the compo-

nents which hold a small extent of contribution a complexity decrease at the

expense of accuracy is possible, and vice versa.

• The TP model transformation is also able to generate di�erent convex TP

model representations, therefore di�erent polytopic representations of a same

given model. The polytopic representation given its structure is directly exe-

cutable with LMI based control design theorems.

1.2 The mathematical notations and methods applied in the

paper

In this Section the mathematical notations and methods applied in the Scienti�c

Student Conference paper will be recalled from source [42]. Since the Scienti�c Stu-

dent Conference paper's investigations are subject to a control design example of a

given qLPV model, the applied mathematical notations and methods will be there-

fore described in its accordance.

Notations

The following notations are used within this paper:

n = 1 . . . N index values, the upper bound is denoted through a capital letter

Ω = ω1 × · · · × ωN parameter space de�ned through each dimension n = 1 . . . N

G = G1 × . . .×GN discretization grid de�ned through each dimension n = 1 . . . N

a, b, . . . scalar values

a,b, . . . vectors

A,B, . . . matrices

A,B, . . . tensors

FD(Ω,G) tensor containing the discretized variant of function f(x) over Ω and G

V,W, . . . matrix containing the discretized variant of f(x)

A×n Un tensor multiplication along dimension n with matrix Un

A×1 U1 · · · ×N UN tensor multiplication along dimension 1 . . . N with matrices U1 . . .Un

A
N

�
n=1

Un compact tensor multiplication interpreting A×1 U1 · · · ×N UN

13



A �
n∈N

Un equivalent compact tensor multiplication notation, N : {1 . . . N}

Rn = rankn() rank of tensor along the n-th dimension

qLPV model

Assume a state-space model is given with u(t) ∈ RK input, y(t) ∈ RL output,

x(t) ∈ RM state vector, p(t) ∈ Ω ⊂ RN parameter vector with dimension N ,

parameter space Ω = ω1 × · · · × ωN along each dimension n = 1 . . . N and system

matrix S(p(t)) ∈ R(M+K = O)×(M+L = I):(
ẋ(t)

y(t)

)
= S(p(t))

(
x(t)

u(t)

)
. (1.1)

where the system matrix S(p(t)) is:

S(p(t)) =

(
A(p(t)) B(p(t))

C(p(t)) D(p(t))

)
.

If the parameter vector p(t) includes elements of the state vector x(t), the system

belongs to the class of nonlinear qLPV models. In contrast, if the parameter vector

p(t) does not include elements of the state vector x(t), then the model belongs to

the class of LPV systems.

Finite element Tensor Product type polytopic model representation -

Tensor Product model representation

The TP model transformation converts a model given through a set of functions,

in case of qLPV models through the system matrix S(p(t)) from equation (1.1) for

any parameter p(t) into the �nite element Tensor Product type polytopic model

S(p(t)) =

I1∑
i1=1

I2∑
i2=1

· · ·
IN∑
iN=1

wn,in(pn(t))Si1,i2,...,iN =

= S
N

�
n=1

wn (pn (t)) ,

(1.2)

which represents a parameter-dependent convex combination of linear time-invariant

(LTI) system matrices, or vertex systems S ∈ RO×I and weighting functions wn(pn(t)),

where

∀n, i, pn(t) : wn,i(pn(t)) ∈ [0, 1],

∀n, in, pn(t) :
In∑
i=1

wn,in(pn(t)) = 1.
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The (N+2) dimensional coe�cient of the core tensor S ∈ RI1×...×In×O×I is con-

structed from the LTI vertex systems Si1,...,iN and the row vector wn (pn (t)) con-

taining the one variable weighting functions wn,in(pn(t)), in = 1 . . . IN . Figure 1.2

illustrates a polytopic representation with the system matrix S(p(t)) of a qLPV

model, vertex points Si1,...,iN and polytopic convex hull de�ned by the position of

the vertexes.

S1

S2

. . .

S(p(t))

S3

Figure 1.2: Polytopic representation of S(p(t))

SNNN type Tensor Product model representation

The TP model representation possess an SNNN (sum normalized, non-negative)

type convex hull if its weighting functions satisfy Equation 1.3-1.4:

SN condition: ∀n, in, pn(t) : wn,in(pn(t)) ∈ [0, 1] (1.3)

NN condition: ∀n, in, pn(t) :
In∑
i=1

wn,in(pn(t)) = 1. (1.4)

NO and CNO type Tensor Product model representation

The TP model representation possess an NO (normalized) type convex hull if its

weighting functions are normalized, that is if it satis�es 1.3, 1.4, and the largest value

of all weighting functions is 1. The convex TP model is a CNO (close to normal) type

if it also satis�es both 1.3 and 1.4 and the largest value of all weighting functions is

1 or close to 1.

The n-mode rank of a given function

The n-mode rank of function Y = f(x) ∈ RO×I and x ∈ Ω ⊂ RN is represented by

Rn = rankn(Y ,Ω). This indicates the number of non-zero singular values along the

n-th dimension, therefore Rn = rankn(Y ,Ω) = rankn(S), where tensor S is derived

through the HOSVD of continuous functions, namely f(x) = S
N

�
n=1

wn(xn).
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In case of qLPV models the n-mode rank of a given function is represented simi-

larly through Rn = rankn(S(p(t)),Ω), which also indicates the number of non-zero

singular values included in the TP model representation along the n-th dimension,

therefore Rn = rankn(S(p(t)),Ω) = rankn(S), where tensor S is derived through

the HOSVD of continuous functions, namely S(p(t)) = S
N

�
n=1

wn(pn(t)).

Discretization space D(Ω, G)

D(Ω, G) represents the discretization space where a given model with parameter

space Ω = ω1 × . . . × ωN is discretized with grid G = G1 × . . . × GN along each

dimension n = 1 . . . N .

Discretized function

For each continuous function Y = f(x) ∈ RO×I , x ∈ Ω ⊂ RN describing a given e.g.

qLPV model, tensor FD(Ω,G) ∈ RG1×...×GN represents the discretized variant of the

function in the discretization space D(Ω, G).

Row vector gn de�nes the - typically but not necessarily equidistant - positions

of the grid as

gn =
(
gn,1 = ωminn · · · gn,Gn = ωmaxn

)
(1.5)

along each dimension n = 1 . . . N . The elements Fi1,...,iN ∈ RO1×...×OK of tensor

FD(Ω,G) are Fi1,...,iN = f(x), where vector x =
(
g1,i1 · · · gN,iN

)
.

Similarly if the row vector w(x) is given as

w(x) =
(
w1(x) · · · wI(x)

)
, (1.6)

incorporating the discretized variants of the weighting functions wi(x), where i =

1, . . . , I.

Then matrix WD(ω,G) ∈ RGn×I with column vectors representing the discretized

variants of the weighting functions wi(x) can be de�ned for each dimension n =

1 . . . N as:

WD(ω,G) =
(

(w
D(ω,G)
1 )T · · · (w

D(ω,G)
I )T

)
, (1.7)

where

w
D(ω,G)
i =

(
wi(g1) · · · wi(gG)

)
. (1.8)

Resulting in

WD(ω,G) =


w1(g1) · · · wI(g1)

...
. . .

...

w1(gG) · · · wI(gG)

 . (1.9)
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General Tensor Product model transformation

According to sources [45] assume a model given through a set of functions Yl = fl(x),

l = 1, . . . , L, where x ∈ Ω ⊂ RN . In case of qLPV models fl(x) represents the system

matrix Sl(p(t)). Ω = ω1×. . .×ωN represents the space upon which the discretization

is executed with discretization grid G = G1 × . . . × GN , where Gn represents the

number of gridpoints through each dimension n = 1 . . . N . The distinct functions

may possess di�erent dimensionality and size, therefore Y = fl(x) ∈ ROl,1×...×Ol,Kl ,

where k ∈ {1, . . . , Kl} = Kl. It is irrespective what kind of functions or equations

de�ne the model, the only requirement for the TP model transformation consists

of the fact that the functions have to be discretizable over the discretization space

D(Ω, G) resulting in the discretized functions FD(Ω,G)
l . The goal is to �nd the �nite

element TP type polytopic model representation in Equation 1.2.

Since the General Tensor Product model transformation incorporates the Pseudo

Tensor Product model transformation [43, 44, 45] it can be assumed a set of previ-

ously derived one variable weighting functions wd(xd) for dimensions d ∈ D ⊆ N are

given, or their discretized variantswh(xh), where h ∈ H ⊆ N in the form ofW
D(ωh,Gh)
h

[42]. The General TP model transformation takes the following procedure:

Algorithm 1 - General Tensor Product model transformation

Assume a model Yl = fl(x) ∈ ROl,1×...×Ol,Kl , x ∈ Ω ⊂ RN , k ∈ {1, . . . , Kl} = Kl, l =

1, . . . , L, wd(xd), d ∈ D ⊆ N, W
D(ωh,Gh)
h , h ∈ H ⊆ N, Ω are given and ∀k : FD(Ω,G)

l

exist. The General TP model transformation results in

Yl = fl(x) = Sl �
n∈N

wn(xn). (1.10)

• STEP 1: Discretization

� Determine tensor FD(Ω,G)
l and matrix W

D(ωd,Gd)
d ∈ RGd×Id.

� Reorder the elements of tensor FD(Ω,G)
l ∈ ROl,1×...×Ol,K into vectors fl,j1,...,jN

∈ R1×Ol,1Ol,2...Ol,Kl .

� Compose elements mj1,...,jN =
(
f1,j1,...,jN . . . fL,j1,...,jN

)
which will be

incorporated into tensorM.

• STEP 2: Construction of the Tensor Product structure

� Incorporate the previously derived weighting functions or their discretized

variants W
D(ωd,Gd)
d

S ′ =
(
M �

d∈D

(
W

D(ωd,Gd)
d

)+
)

�
h∈H

(
W

D(ωh,Gh)
h

)+

. (1.11)
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� Execute Compact HOSVD (CHOSVD) by disposing all zero singular val-

ues, for each dimension n = 1 . . . N , where n /∈ D ∪H of S ′:

S ′ = S ′′ �
n∈N,n/∈D∪H

Un. (1.12)

� Denoting matrix W
D(ωn,Gn)
n = Un, where also n ∈ N, n /∈ D ∪ H. The

structure of the TP model representation results in:

M = S ′′ �
n∈N

WD(ωn,Gn)
n . (1.13)

� Tensor S ′′ can be partitioned along the N + 1-th dimension in accordance

to the length of vectors fl,j1,...,jN . Reordering the j1, . . . , jN -th vectors into

Ol,1 × × . . . × Ol,Kl, and incorporating these elements into tensor Sl op-
posite to Step 1, tensor FD(Ω,G)

l results in:

FD(Ω,G)
l = Sl �

n∈N
WD(ωn,Gn)

n . (1.14)

� If a complexity reduction is preferred, RHOSVD can be executed by dis-

posing the non-zero singular values and its associated weighting functions,

which leads to an approximated model. Also, the transformation is not ex-

act if the rank of any W
D(Ω,G)
d , d ∈ D ∪ H is smaller than the d-mode

rank ofM.

• STEP 3: Reconstruction of the weighting functions

� Let W
D(ωn,Gn)
n = Un. All points of the one variable weighting functions

wn(xn) in equation 1.10 can be constructed from the discretised variants

W
D(Ω,G)
n with any resolution in ωn. E.g. calculating the weighting func-

tions wd(xd) along dimension d over a given point xd: through de�ning a

new discretisation grid G′ as G1× . . .×Gd−1× 1×Gd+1× . . .×GN and

restricting the discretization space to xd as Ω′ = ω1 × . . . × ωd−1 × xd ×
ωd+1 × . . .× ωN , and de�ning FD(G′,Ω′), xd results in:

wd(xd) = F
D(G′,Ω′)
(d)

(
Q(d)

)+
, (1.15)

where

Q = S �
n∈N
n 6=d

WD(ωn,Gn)
n . (1.16)

Here subscript "()(d)" denotes the unfolding along dimension d, accoridng

to HOSVD by Lathauwer [34].
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Remark 1 Transformation error

A �nal numerical step can be executed to check the accuracy of the resulting

TP model over a large number of random points in the parameter space Ω.
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Chapter 2

Statement of the Scienti�c Student

Conference paper

Modern quasi Linear Parameter Varying (qLPV) state-space model and Linear Ma-

trix Inequality (LMI) based multi-objective convex optimization aimed control the-

ories and design methods can be basically divided into three steps:

i) identi�cation of the qLPV state-space model

ii) derivation of the polytopic representation from the qLPV model

iii) substitution of the polytopic representation into LMI based control design

methods in order to attain the controller and observer system components

The main focus in the scienti�c research initiatives was mostly on step iii, addressing

the investigation and manipulation of LMIs to attain the optimized controller and

observer performance, which achieved a signi�cant literature. Moreover, the current

widely accepted standpoint among scienti�c research is represented by the state-

ment that the LMI based control design methods give an optimal solution on the

identi�ed qLPV model. However, step ii, the e�ect of the procedure deriving the

polytopic model and its e�ect on the LMI based control design methods was given

less attention. A hypothesis published in 2009 [48] discusses and points out this fact

that beside the procedure deriving the manipulation of the polytopic representation

in step ii is necessary and has relatively the same extent of signi�cance as step iii,

namely the fact that the LMI based control design methods do not give an optimal

solution on the identi�ed qLPV model but rather on the polytopic representation

at hand and the polytopic manipulation therefore leads to further potential opti-

mization possibilities with a relatively similar importance as the LMI based control

design methods.
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Goals

In this context the aim of the Scienti�c Student Conference paper is to systemati-

cally investigate and prove the above mentioned - so far uncon�rmed - hypothesis

both for the control and observer design combined with various polytopic manip-

ulation techniques. As a consequence this proof declares the necessity hence the

importance of the polytopic manipulation. In addition a further aim is to show that

the manipulation plays an important role in deriving the optimal solution, since

the polytopic representation is not invariant. The proof of the hypothesis and the

regarding concepts gain further new research directions in the �eld of qLPV and

LMI based control theory research.

Methodology

In order to achieve the above speci�ed goals the paper presents the systematic

method which was developed and executed for investigating the hypothesis, its re-

sults and consequences which lead to the proof of the hypothesis. The investigation

includes the main factors of the polytopic representation in�uencing the feasibil-

ity regions of the LMI based control design, speci�cally i) the manipulation of the

vertexes' position and ii) the size and complexity of the representation, i.e. the num-

ber of the vertexes contained in the TP model type polytopic representation. The

proof is based on a complex control design example, where the in�uence of these

factors can be clearly indicated. Furthermore the paper shows via the example that

the maximal achievable parameter space of the controller and observer also depend

from these factors. The example model consists of the complex Nonlinear Aeroelastic

Test Apparatus (NATA) model of the three Degree of Freedom (3-DoF) aeroelastic

wing section including Stribeck friction. The methodology is based on the Tensor

Product (TP) model transformation based Control Design Framework that supports

the �exible manipulation of these factors.

Results and the formulated statement of the Scienti�c Student

Conference paper

Based on the systematical investigation and results the Scienti�c Student Conference

paper presents a TP model transformation based solution to prove the hypothesis

via the following statements:

The manipulation of the polytopic TP model representation's Linear Time Invari-

ant (LTI) vertexes in�uence the feasibility of LMI based control design methods:

i) The position of the LTI vertexes, de�ning the convex hull of the TP model
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type polytopic representation in�uence the feasibility of LMI based control

design.

ii) The complexity of the TP model, namely the number of the LTI vertexes

contained in the TP model also in�uence the feasibility of LMI based control

design.

iii) Statement i) and ii) is valid both for the design of the controller and observer

system elements but the in�uence di�ers from each other, in fact in certain

cases it in�uences in an opposite way. This may raise further optimization

questions: since so far the controller and observer have been designed on the

same polytopic representation a design with separate TP model type polytopic

representations may induce further bene�ts.

iv) The position and number of the LTI vertexes of the polytopic TP model rep-

resentation also in�uence the size of the achievable parameter space of the

feasible design.
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Chapter 3

The Methodology for proving the

statements

As previously stated the proof in the present paper is based on a control design

example of a complex dynamic qLPV system. A TP model representation of the

given qLPV system is derived upon which a systematical manipulation and analysis

is executed. In accordance to this systematical manipulation LMI based control

design theories are applied and the feasibility is checked how it is varying. The

manipulation takes the following key points into account:

1) The design is executed both on an exact and on a relaxed TP model repre-

sentation. The exact representation of the model is derived via the TP model

transformation where the number of the vertexes are minimized [39, 40, 41].

The relaxed TP model representation is derived from the exact representation

through disposing the vertexes from the model which have low contribution

in order to gain a trade-o� between accuracy and complexity for further de-

sign steps [49]. Note that the relaxed TP model representation is only an ap-

proximation of the given model, however its stability veri�cation is performed

involving the exact model.

2) The convex hull de�ned by the position of the vertexes of the TP model repre-

sentation is systematically modi�ed and analyzed separately for the controller

and the observer design.

For each systematically modi�ed case the LMI based control design theory is

applied and the feasibility is checked how it is varying. The design method applied

in the paper is based on the General TP model transformation based Control Design

Framework with the TP model type polytopic formulas [42] and LMI based control

design theorems [50, 51].
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3.1 The Concepts of the Systematical TP model Manipula-

tion and Investigation

Assume a qLPV state-space model is given as described in 1.1.(
ẋ(t)

y(t)

)
= S(p(t))

(
x(t)

u(t)

)
.

Aim is to control and observe this model. Figure 3.1 shows the system structure

with the integrated controller and observer.

S(p(t))
Observer

SystemControllerx

x̂
u u

x

u

y y

x̂

F(p(t))

K(p(t))

Figure 3.1: System structure containing the model, controller and
observer system components

Further details of the model and the control design structure will be described in

detail later in the present section and in Section 3.1.3. The given model and system

components controller and observer take the following TP model structure:

S(p(t)) = S �
n∈N

wn(pn(t)), (3.1)

F(p(t)) = F �
n∈N

wn(pn(t)), (3.2)

K(p(t)) = K �
n∈N

wn(pn(t)), (3.3)

where S(p(t)) denotes the model, F(p(t)) denotes the controller andK(p(t)) denotes

the observer.

3.1.1 Step-I: Complexity Relaxation through the main TP

model Component Analysis based approach

As a �rst step of the analysis, the HOSVD based TP model form [39, 40, 41] of the

given qLPV model is obtained. Here each singular value represents the relevance of

each vertex of the polytopic TP model. By selecting the main TP model components

a trade-o� between accuracy and complexity is granted in terms of L2 norm [49].

The complexity relaxation of the model is based on this trade-o�: the number of
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vertexes contained in the model is decreased through disposing the small singular

values and corresponding vertexes which have low contribution.

Thus executing the TP model transformation on S(p(t)) in Equation 3.1 the

following HOSVD based form [39, 40, 41] is acquired:

S(p(t)) = ES �
n∈N

Ewn(pn(t)), (3.4)

S ∈ RQ1× ... ×QN×O×I .

Here Qn is the n-th mode rank of S(p(t)) c.f. [42] and the superscript "E" denotes

that the HOSVD based form of the model is exact, containing all of the non-zero

singular values.

On the other hand the relaxed model, represented by the superscript "R", is
acquired as well through disposing the singular values and corresponding vertexes

with low contribution:

Ŝ(p(t)) = RS �
n∈N

Rwn(pn(t)), (3.5)

where RS ∈ RR1× ... ×Rn×O×I and ∀n: Rn ≤ In, ∃n: Rn < In.

3.1.2 Step-II: Convex Hull Manipulation through Interpola-

tion

The LMI design theories applied require a convex TP model representation of the

model S(p(t)) [42, 50]. This being the case the exact and relaxed HOSVD based

forms are converted to the convex TP model representation where S(p(t)) and

Ŝ(p(t)) are contained and enclosed within their convex hulls de�ned through the

vertexes of their TP models for all p(t) ∈ Ω.

The systematical analysis of the convex hulls de�ned by the position of the ver-

texes of the TP model representation in the present paper is based on an interpo-

lation technique between two di�erent TP model representations, one with a tight

(CNO) and one with a loose (SNNN) convex hull, of the same given qLPV model.

To simplify matters instead of directly interpolating between the two separate

convex hulls the interpolation is executed via an interpolation between the two

weighting function systems of the two di�erent TP model forms as given in the

following: assume two di�erent TP model representations "X" and "Y" of the model

25



S(p(t)) are derived through TP model transformation for any parameter p(t) ∈ Ω:

S(p(t)) = XS �
n∈N

Xwn(pn(t)),

S(p(t)) = YS �
n∈N

Ywn(pn(t)).
(3.6)

The two di�erent TP model representations "X" and "Y" each possess two di�erent

convex hulls speci�ed by the vertexes of the TP model. Aim is to obtain an inter-

polated TP model representation between these two TP models corresponding to a

modi�able interpolation parameter λ ∈ [0, 1]:

S(p(t)) = I(λ)S �
n∈N

I(λ)wn(pn(t)). (3.7)

Superscript "I(λ)" represents that the TP model representation is interpolated.

Here the weighting function system is interpolated as

I(λ)wn(pn(t)) = (1− λ) · Xwn(pn(t)) + λ · Ywn(pn(t)),

and I(λ)S is obtained corresponding to Equation 3.7 by means of the pseudo TP

model transformation cf. [45].

Remark 2 Computational aspects of the interpolation: The TP model trans-

formation generates the discretized variants XW
D(Ω,G)
n and YW

D(Ω,G)
n (see Equation

3.18) on the parameter space Ω with grid G1 × · · · × GN of the weighting func-

tions Xwn(pn(t)) and Ywn(pn(t)) (see Equation 3.6), respectively. The discretized

variants of the weighting functions W
D(Ω,G)
n are also the n-mode singular matrices

W
D(Ω,G)
n = Un. Thus the interpolation is simpli�ed and the interpolated discretized

weighting functions take the following form:

I(λ)W
D(Ω,G)

n = (1− λ) · XWD(Ω,G)

n + λ · YWD(Ω,G)

n .

In the case if I(λ)W
D(Ω,G)

n and S(p(t)) are available I(λ)S and I(λ)wn(pn(t)) for

Equation 3.7 can be similarly determined with the help of the pseudo TP model

transformation as mentioned in Section 3.1.2.

3.1.3 Step-III: LMI Based Design Theorems

As previously described in Section 3.1 the aim is to control and observe the given

qLPV model. Since in the model only a part of the state variables are measurable an

output feedback based control design structure is applied and the rest of the state

variables are approximated by an observer. Because the parameter vector p(t) does
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not include elements from the estimated state-vector x̂(t), the following controller

and observer structure is applied [51, 50, 42]:

ˆ̇x(t) = A(p(t))x̂(t) + B(p(t))u(t) + K(p(t))(y(t)− ŷ(t))

ŷ(t) = C(p(t))x̂(t)

u(t) = −F(p(t))x(t),

(3.8)

otherwise written as:(
ˆ̇x(t)

ŷ(t)

)
= S(p(t))

(
x̂(t)

u(t)

)
+

(
K(p(t))

0

)
(y(t)− ŷ(t))

u(t) = −F(p(t))x(t).

(3.9)

The observer is required to satisfy the convergence for stability x(t) − x̂(t) →
0 as t→∞.

As previously mentioned one of the main bene�ts of the General TP model trans-

formation based Control Design Framework is that the controller and observer sys-

tem components can be acquired separately. This ensures that the convex hull anal-

ysis can be performed also separately for the controller and the observer.

The aim through the LMI based design is to acquire controller vertex gains

Fi1, i2, ..., iN stored in F from vertex gains Si1, i2, ..., iN stored in I(λc)S

S(p(t)) = I(λc)S �
n∈N

I(λc)wn(pn(t))

and observer vertex gains Ki1, i2, ..., iN stored in K from Si1, i2, ..., iN stored in I(λo)S

S(p(t)) = I(λo)S �
n∈N

I(λo)wn(pn(t)),

in a way that the stability and the desired multi-objective control performance

requirements are guaranteed. The superscripts "I(λc)" and "I(λo)" represent the

proportion along the interpolation for both controller and observer cases, respec-

tively.

Various LMI theorems are accessible for controller and observer design. For the

separate design the following LMI theorems have been chosen [50].

Theorem 1 Globally and asymptotically stable controller: Assume the poly-

topic model (3.1) with a controller of structure (3.2) is given. This output-feedback

control structure is globally and asymptotically stable if the matrices P1 > 0 and Mr

exist, (r = 1, . . . , R where R denotes the number of LTI vertex systems) satisfying
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equations:

P1A
T
r −MT

rB
T
r + ArP1 −BrMr < 0,

P1A
T
r −MT

sB
T
r + AsP1 −BrMs+

P1A
T
s −MT

rB
T
s + AsP1 −BsMr < 0

for r < s ≤ R, except the pairs (r, s) such that ∀p(t) : wr(p(t))ws(p(t)) = 0, and

where Mr = FrP1. The controller feedback gains can then be obtained from the

solution of the above LMIs as Fr = MrP
−1
1 .

Theorem 2 Globally and asymptotically stable observer: Assume the poly-

topic model (3.1) with an observer of structure (3.3) is given. This observer structure

is globally and asymptotically stable if the matrices P2 > 0 and Nr exist, (r = 1,

. . . , R where R denotes the number of LTI vertex systems) satisfying equations:

AT
r P2 −CT

rN
T
r + P2Ar −NrCr < 0,

AT
r P2 −CT

sN
T
r + P2Ar −NrCs+

AT
sP2 −CT

rN
T
s + P2As −NsCr < 0

for r < s ≤ R, except the pairs (r, s) such that ∀p(t) : wr(p(t))ws(p(t)) = 0, and

where Nr = P2Kr. The observer gains can then be obtained from the solution of the

above LMIs as Kr = P−1
2 Nr.

Computing the controller and observers via the LMI based design Theorems 1

and 2 one attains the results:

λcF(p(t)) =
λcF �

n∈N
I(λc)wn(pn(t)), (3.10)

λoK(p(t)) =
λoK �

n∈N
I(λo)wn(pn(t)). (3.11)

It is worth mentioning that various further control objectives and constraints can

be incorporated to the design via properly selected LMIs as well.

3.1.4 Step-IV: Exact System Reconstruction

To verify the stability of the system LMI based stability veri�cation theorems can

be executed with the system elements (3.1-3.3). Here a uniform structure is required

from the system components to be able to execute the stability veri�cation theorems
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for the system. However the uniform structure is not provided, due to the system-

atical complexity (Section 3.1.1) and convex hull (Section 3.1.2) manipulation the

system components have di�erent weighting functions varying in number and form:

S(p(t)) = ES �
n∈N

Ewn(pn(t)), (3.12)

λcF(p(t)) = λcF �
n∈N

Fwn(pn(t)), (3.13)

λoK(p(t)) = λoK �
n∈N

Kwn(pn(t)). (3.14)

Here Fwn(pn(t)) = I(λc)wn(pn(t)) and Kwn(pn(t)) = I(λo)wn(pn(t)). As a conse-

quence an additional step is required to unify the structure of the system elements

to be able to execute the LMI based stability veri�cation theorems.

It is important to mention that the exact model represented by superscript "E"
is used for the stability veri�cation. This means that the manipulated and analyzed

controller and observer vertexes may di�er from the exact model in their number

along some dimensions. In this context in order to apply the LMI based stability

veri�cation techniques a common weighting function system has to be attained. One

way to do this is to apply the general stability veri�cation method based on the Multi

TP model transformation [45]. However because during the calculations the discrete

variants of the interpolated weighting functions will be available a less complicated

procedure can be applied to unify the weighting functions.

Thus in this context the aim is to convert Equations 3.12-3.14 to 3.15-3.17:

S(p(t)) = ES ′
�
n∈N

wn(pn(t)), (3.15)

λcF(p(t)) = λcF ′
�
n∈N

wn(pn(t)), (3.16)

λoK(p(t)) = λoK′
�
n∈N

wn(pn(t)). (3.17)

As a �rst step a matrix Hn for each dimension is created as:

Hn = [I(λc)WD(Ω,G)
n , I(λo)WD(Ω,G)

n , EWD(Ω,G)
n ], (3.18)

where W
D(Ω,G)
n are the discretized variants of the weighting functions of the TP

model over the parameter space Ω with sampling grid G [45]. Executing a compact

SVD on matrix Hn one attains:

Hn = UnDnV
T
n = UnTn.

Since system elements (3.12-3.14) require a convex representation, the SVD is ex-
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tended with a CNO transformation [42]. This leads to:

Hn = UCNOn T′n,

where UCNOn is the discretized variant of the uni�ed weighting function.

WD(Ω,G)
n = UCNOn .

Partitioning the matrix T′n according to the extent of the blocks of Hn (Equation

3.18), one acquires:

T′n = [FTn,
KTn,

ETn],

which results in

I(λc)WD(Ω,G)
n = UCNOn · FTn,

I(λo)WD(Ω,G)
n = UCNOn · KTn,

EWD(Ω,G)
n = UCNOn · ETn,

and

S(p(t)) = ES �
n∈N

EWD(Ω,G)
n =

= ES �
n∈N

UCNOn · ETn =

= [ES �
n∈N

ETn] �
n∈N

UCNOn =

= ES ′
�
n∈N

UCNOn =

= ES ′
�
n∈N

WD(Ω,G)
n ,

F(p(t)) = EF �
n∈N

EWD(Ω,G)
n =

= EF �
n∈N

UCNOn · ETn =

= [EF �
n∈N

ETn] �
n∈N

UCNOn =

= EF ′
�
n∈N

UCNOn =

= EF ′
�
n∈N

WD(Ω,G)
n ,
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K(p(t)) = EK �
n∈N

EWD(Ω,G)
n =

= EK �
n∈N

UCNOn · ETn =

= [EK �
n∈N

ETn] �
n∈N

UCNOn =

= EK′
�
n∈N

UCNOn =

= EK′
�
n∈N

WD(Ω,G)
n .

Finally, the continuous weighting functions wn(pn(t)) can also be obtained through

the Pseudo TP model transformation [45] as described in Step-II in Section 3.1.2.

3.1.5 Step-V: LMI based stability veri�cation

Acquiring the system components ES ′
, FS ′

and KS ′
with uni�ed weighting function

systems W
D(Ω,G)
n the LMI based stability veri�cation can be readily applied. The

vertices of the TP model of the exact model, controller and observer can be substi-

tuted into the previously described LMI theorems in Section 3.1.3 and the solution

can be checked, namely if all of the LMI theorems are simultaneously feasible. This

step is less complicated in a sense that the matrices N and M need not to be found,

only the matrices P1 and P2 need to be found.

3.2 The Example Model

In this section the state-space qLPV model of the three Degree of Freedom (3-DoF)

aeroelastic wing section model including Stribeck friction of the complex Nonlinear

Aeroelastic Test Apparatus (NATA) model [52, 53, 54] will be described. Active

control of aeroelasticity has been a major topic of discussion in aerospace and control

engineering for several years. Several studies can be found discussing the analysis

and di�erent control design strategies of the aeroelastic wing section [55, 56, 57,

58, 59, 60, 61, 62, 63, 54, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76]. The

aeroelastic wing section model is an e�ective example for discussing the analysis and

di�erent control design strategies of aeroelasticity. The TP model transformation

based control solutions to the 2-DoF and the 3-DoF aeroelastic wing section are

given in [62, 63, 77, 52].

The state-space qLPV model of the 3-DoF aeroelastic wing section including
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Figure 3.2: 3-DoF aeroelastic wing section and state variables [42]

friction [52] is given similarly to Equation 1.1:(
ẋ(t)

y(t)

)
= S(p(t))

(
x(t)

u(t)

)
.

The state vector consists of

x(t) =
(
x1(t) x2(t) x3(t) x4(t) x5(t) x6(t)

)T
=
(
ḣ α̇ β̇ h α β

)T
,

where h symbolizes the plunge, α symbolizes the pitch and β symbolizes the trailing-

edge surface de�ection of the aeroelastic wing section. The elements can be seen in

Figure 3.2. The time varying parameter vector consists of p(t) =
(
U(t) α(t) β̇(t)

)T
∈ Ω. U(t) represents the wind speed, α(t) represents the above mentioned pitch and

β̇(t) is introduced by the friction model. As the parameter vector p(t) contains ele-

ments of the state vector x(t), the state-space model belongs to the class of qLPV

state-space systems. The elements of S(p(t)) are:

A(p(t)) =

(
−M−1C(p(t)) −M−1K(p(t))

−I 0

)
,

B =

(
M−1F

0

)
,

C =
(

0 0 0 0 1 0
)
,

D = 0,

(3.19)

where the matrices M, C, K and F are the mass, damping, sti�ness and forcing

matrices of the equation of motion:

32



M

ḧα̈
β̈

+ C

 ḣ

α̇

β̇

+ K

 h

α

β

 = Fu. (3.20)

These matrices take the following form:

M =

 mh +mα +mβ maxab+mβrβ +mβxβ mβrβ

maxab+mβrβ +mβxβ Îα + Îβ +mβr
2
β + 2xβmβrβ Îβ + xβmβrβ

mβrβ Îβ + xβmβrβ Îβ

 ,

C =

 ch + ρbSClαU
(

1
2
− a
)
bρbSClαU 0

−ρb2SCmα,effU cα −
(

1
2
− a
)
bρb2SCmα,effU 0

0 0 cβservo

 ,

K =

kh ρbSClαU
2 ρbSClβU

2

0 kα(α)− ρb2SCmα,effU
2 −ρb2SCmβ,effU

2

0 0 kβservo

 ,

F =

 0

0

kβservo

 .

The model is attained from the equation of motion through the following, substi-

tuting the matrices M, C, K and F into the equation of motion: mh +mα +mβ maxab+mβrβ +mβxβ mβrβ

maxab+mβrβ +mβxβ Îα + Îβ +mβr
2
β + 2xβmβrβ Îβ + xβmβrβ

mβrβ Îβ + xβmβrβ Îβ


ḧα̈
β̈

+

+

ch 0 0

0 cα 0

0 0 cβservo


 ḣ

α̇

β̇

+

kh 0 0

0 kα(α) 0

0 0 kβservo


 h

α

β

 =

 −L
M

kβservoβdes

 ,

where kα(α) is obtained in [54] by curve �tting on the measured displacement-

moment data for a nonlinear spring kα(α) = 25.55 − 103.19α + 543.24α2. It is

important to emphasize that the order of the polynomial de�ning kα(α) does not

in�uence the control design methodology. Hence, one can apply a higher order poly-

nomial to model the non linearity of the spring, which can be found in [58] dealing

with the aeroelastic wing section model .

Quasi-steady aerodynamic force L and moment M are assumed in the same way

found in the sources in their control design approaches:

L = ρU2bClα

(
α +

ḣ

U
+

(
1

2
− a
)
b
α̇

U

)
+ ρU2bclββ (3.21)
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M = ρU2b2Cmα,eff.

(
α +

ḣ

U
+

(
1

2
− a
)
b
α̇

U

)
+ ρU2bCmβ,eff.β (3.22)

The above L and M above are accurate for the low-velocity regime.

Based on [54], it is assumed that the trailing-edge servo-motor dynamics can be

represented using a second-order system of the form:

Îββ̈ + cβservo β̇ + kβservoβ = kβservouβ. (3.23)

By combining equations 3.20, 3.21, 3.22 and 3.23 one obtains: mh +mα +mβ maxab+mβrβ +mβxβ mβrβ

maxab+mβrβ +mβxβ Îα + Îβ +mβr
2
β + 2xβmβrβ Îβ + xβmβrβ

mβrβ Îβ + xβmβrβ Îβmxαb Iα


︸ ︷︷ ︸

M

ḧα̈
β̈

+

+

 ch + ρbSClαU
(

1
2 − a

)
bρbSClαU 0

−ρb2SCmα,effU cα −
(

1
2 − a

)
bρb2SCmα,effU 0

0 0 cβservo


︸ ︷︷ ︸

C

 ḣ

α̇

β̇

+

+

kh ρbSClαU
2 ρbSClβU

2

0 kα(α)− ρb2SCmα,effU2 −ρb2SCmβ,effU2

0 0 kβservo


︸ ︷︷ ︸

K

 h

α

β

 =

 0

0

kβservo


︸ ︷︷ ︸

F

u.

where M, C, K and F are the previously mentioned mass, damping, sti�ness and

forcing matrices of the equation of motion [54] in Equation 3.20.

The details and de�nition of each system parameter can be found in [54] and

they have the following values: mh = 6.516 kg; mα = 6.7 kg; mβ = 0.537 kg;

xα = 0.21; xβ = 0.233; rβ = 0 m; a = −0.673 m; b = 0.1905 m; Îα = 0.126

kgm2; Îβ = 10−5; ch = 27.43 Nms/rad; cα = 0.215 Nms/rad; cβservo = 4.182 ∗ 10−4

Nms/rad; kh = 2844; kβservo = 7.6608 ∗ 10−3; ρ = 1.225 kg/m3; Clα = 6.757;

Cmα,eff = −1.17; Clβ = 3.774; Cmβ,eff = −2.1; S = 0.5945 m.

The system matrix S(p(t)) of the given qLPV model includes the Stribeck friction

model de�ned in the following where Ff (t) represents the friction force:

Ff (t) = −

Fc +
(Fs − Fc)(

1 +

(
v

vs

)2
)
 sign(v(t))− Fvv,
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where sign(v(t)) =
2

1 + e−1000·v(t)
− 1 and v(t) 6= 0. The parameter vs represents the

Stribeck velocity, Fs represents the static friction force, Fc represents the Coulomb

friction force and Fv represents the viscous friction force. The values of these elements

were de�ned based on engineering considerations in order to obtain a realistic friction

model. The values are Fv = Fc = 4.182 · 10−4 Nm for the viscous friction and

Coulomb friction force term, Fs = 1.2 · Fc for the Stribeck friction force term and

vs = 0.0075 rad/s for the Stribeck velocity. Further details and de�nitions of the

parameters can be found in [54, 52]. It is important to mention that the control

design and assessments in this paper is a general method, hence other nonlinear

friction models can also be applied.
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Chapter 4

The Results for proving the

statement

In this section the previously described theoretical analysis concepts will be applied

into practice on the example model of the 3-DoF wing section accompanied by

presenting the proving results.

4.1 Numerical execution of the Tensor Product model trans-

formation based Control Design Framework

The TP model transformation is performed on the state-space qLPV model of the

3-DoF aeroelastic wing section model described in Section 3.2. The parameter vector

p(t) is speci�ed through the intervals of the elements U ∈ [4, 64] (m/s) (later this

interval will be systematically modi�ed and investigated), α ∈ [−0.3, 0.3] (rad) and

β̇ ∈ [−1.5, 1.5] (rad/s). The grid density G1×G2×G3 is speci�ed as G1 = G2 = 501

and G3 = 7500. The rank of the discretized core tensor SD(Ω,G) results in 2, 3, 2 in

the �rst, second and third dimensions, therefore 2 × 3 × 2 = 12 vertexes describe

the exact polytopic TP model representation of the given qLPV state-space model.

To acquire the relaxed polytopic TP model representation of the given qLPV state-

space model the third singular value 0.02275 in dimension α(t) is disposed. The

singular values along each dimension take the following values:

Dimension U(t): 1824.42567 222.73378
Dimension α(t): 1837.72468 30.12274 0.02275

Dimension β̇(t): 1478.89237 1091.33713

To systematically modify and analyze the convex hull de�ned by the position of

the vertexes of the TP model representation through interpolation two types of TP

model representations are determined: one with a loose (SNNN: λ = 0%) and one

36



−0.2 −0.1 0 0.1 0.2 0.3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

U [m/s]

W
ei

gh
tin

g 
fu

nc
tio

ns  w
3

 w
2

 w
1

−0.2 −0.1 0 0.1 0.2 0.3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

α [rad]

W
ei

gh
tin

g 
fu

nc
tio

ns

 w
2

 w
1

−0.2 −0.1 0 0.1 0.2 0.3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

β̇ [rad/s]

W
ei

gh
tin

g 
fu

nc
tio

ns

 w
1

 w
2

Figure 4.1: CNO type weighting functions of the exact model for each
dimension U [m/s], α[rad], β̇[rad/s]
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Figure 4.2: SNNN type weighting functions of the exact model for each
dimension U [m/s], α[rad], β̇[rad/s]
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Figure 4.3: CNO type weighting functions of the relaxed TP model for
each dimension U [m/s], α[rad], β̇[rad/s]
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Figure 4.4: SNNN type weighting functions of the relaxed TP model for
each dimension U [m/s], α[rad], β̇[rad/s]
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with a tight (CNO: λ = 100%) type weighting function system. Figure ?? and ??

show the weighting functions for the exact model and Figure 4.3 and 4.4 show the

weighting functions for the relaxed model. This is executed both for a controller and

for an observer investigation. The interpolation at both investigations is executed

with the same resolution of 2% steps - in other words the value of λ is discretized

over 50 points.

For each interpolation resolution point a controller and observer is designed in

accordance to the LMI theorems described in Section 3.1.3, which results in 50

di�erent controllers and 50 di�erent observers.

4.2 Results of the 2D Analysis: Feasibility, Convexity

Figure 4.5 illustrates the relation between feasibility and convexity in case of the

controller and observer design based on the exact TP model. The x-axis illustrates

the convexity, namely the transition from the loose convex hull (SNNN, λ = 0) to

the tight convex hull (CNO, λ = 1) corresponding to the interpolation parameter λ.

The y-axis illustrates the feasibility with a line, if the LMI based design resulted in

a feasible solution. The value y = 0 illustrates the case if the design did not yield in

a feasible solution.

The controller was designed on the parameter space U(t) = [6 16] (m/s). The

results on Figure 4.5 in case of the controller show a strong correlation between the

feasibility and the convexity: the feasible LMI designs appear in larger number near

the tight, CNO type convex hull than the loose, SNNN type convex hull. Manipu-

lating the interval of parameter U(t) in a broad scale later in the section the same

phenomenon can be seen.

The observer was designed on the parameter space U(t) = [6 400] (m/s). The

reason to select this unrealistic and large interval of the external parameter wind

speed U(t) is to be able to indicate the in�uence of the convex hull manipulation on

the feasibility of the observer, which could be detected through this region, since the

observer design in the interval U(t) = [6 16] (m/s) is always feasible. The results on

Figure 4.5 in case of the observer show also a relation between the feasibility and

the convexity: a non feasible segment can be detected at a convex hull transitional

section. Also manipulating the interval of parameter U(t) in a broad scale later in

the section the same phenomenon can be seen.

In this context as a conclusion of this section it can be stated that the convexity

of the polytopic TP model representation strongly in�uences the feasi-

bility of LMI based designs, moreover as a further conclusion this is valid

both for the controller and observer cases, in a separate, di�erent way.
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Figure 4.5: Controller and observer feasibility regions of the exact model
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Figure 4.6: Controller and observer feasibility regions of the relaxed
model
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4.3 Results of the 3D Analysis: Feasibility, Convexity, Com-

plexity

Figure 4.6 shows the results of the same investigation but based on the relaxed

TP model. The results show that the feasibility regions are di�erent for both the

controller and observer cases from the results of the exact TP model presented in

the previous section: the complexity also interferes with the feasibility. In case of the

controller this region is signi�cantly smaller. In case of the observer the feasibility

region is increased in the present case.

The investigation is further continued for di�erent intervals of the external pa-

rameter wind speed U(t) and the complexity is incorporated into the graphical

illustrations. As a result Figure 4.7 and 4.8 present the relation between feasibil-

ity, convexity and complexity for di�erent intervals of parameter U(t). The x-axis

illustrates the convexity similarly to the previous section, the y-axis denotes the

complexity of the model with the exact and relaxed TP model cases and the z-axis

represents the feasibility, also similarly to the previous section. Figure 4.7 illustrates

the results of the controller, with the parameter interval U(t) = [6 16] (m/s) and

U(t) = [8 33] (m/s) and Figure 4.8 illustrates the results of the observer design with

the parameter interval U(t) = [6 400] (m/s) and U(t) = [8 425] (m/s). The results

show that the complexity of the TP model also interferes with the feasibility.

In case of the controller the feasible designs fall in number if the TP model is

a relaxed model containing fewer vertexes. However, considering the convexity the

feasible designs remain similarly near the tight, CNO type convex hull than the

loose, SNNN type convex hull both for the relaxed and exact TP model cases.

In case of the observer the feasible designs appear in a larger number if the TP

model is a relaxed model containing fewer vertexes in the present parameter interval

U(t) = [6 400] (m/s) and U(t) = [8 425] (m/s) cases. Considering the convexity the

results show similarly to the previous section a relation between the convexity and

feasibility: further feasible and non feasible segments can be detected at di�erent

convex hull transitional sections.

Based on these results as a conclusion the same phenomenon can be observed as

in the previous section with an additional information: besides the convexity of

the polytopic TP model representation the complexity also in�uences the

feasibility regions of LMI based designs, moreover as a further conclusion

this is valid both for the controller and observer cases, also in a separate,

di�erent way.
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Figure 4.7: Controller feasibility for external parameter wind speed
U(t) = [6 16] (m/s) and U(t) = [8 50] (m/s)
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Figure 4.8: Observer feasibility for external parameter wind speed
U(t) = [6 400] (m/s) and U(t) = [8 425] (m/s)
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Figure 4.9: Controller feasibility regions and achievable external pa-
rameter wind speed investigated over the interval U(t) ∈
[4 64] (m/s)
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Figure 4.10: Controller feasibility regions and achievable external pa-
rameter wind speed investigated over the interval U(t) ∈
[6 64] (m/s) results
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rameter wind speed investigated over the interval U(t) ∈
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rameter wind speed investigated over the interval U(t) ∈
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Figure 4.13: Observer feasibility regions and achievable external pa-
rameter wind speed investigated over the interval U(t) ∈
[6 600] (m/s)
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Figure 4.14: Observer feasibility regions and achievable external pa-
rameter wind speed investigated over the interval U(t) ∈
[8 600] (m/s)

46



4.4 Results of the 4D Analysis: Feasibility, Convexity, Com-

plexity, Parameter space

Continuing the investigation further and incorporating the parameter space into

the graphical illustrations as a result the �gures 4.9-4.11 and 4.12-4.14 illustrate

the relation between feasibility, convexity, complexity and the parameter space with

the external parameter wind speed U(t). The axes of the �gures are the same as

on the �gures of the previous sections, the di�erence is that the z-axis provides

additional information about the external parameter wind speed U(t), namely it

also illustrates the maximal achievable value Umax of the interval: a line denotes

if the LMI based design is feasible and the height indicates the value of Umax.

Figures 4.9-4.11 illustrate the case of the controller with the the parameter intervals

U(t) ∈ [4 64] (m/s), U(t) ∈ [6 64] (m/s) and U(t) ∈ [8 64] (m/s) and Figures

4.12-4.14 illustrate the case of the observer with the the parameter intervals U(t) ∈
[4 600] (m/s), U(t) ∈ [6 600] (m/s) and U(t) ∈ [8 600] (m/s). The investigation was

executed in an iterative manner: an LMI based design is executed for the current

value Umax of the parameter interval and the feasibility of the design is checked. If

the design is feasible, the maximal value Umax of the interval is increased, the LMI

based design is repeated and the feasibility is checked. This is executed until the

design is still feasible. The results show that the size of the parameter space of the

TP model also interferes with the feasibility.

It can be seen in case of the controller that the previously stated phenomenons

considering convexity and complexity are also valid, with an additional statement:

the feasible designs fall in number if the TP model is a relaxed model containing

fewer vertexes, the feasible LMI designs appear in larger number near the tight,

CNO type convex hull, but the feasible results also appear with a higher achievable

parameter interval value Umax near the tight, CNO type convex hull. In case of the

controller the achievable parameter interval value Umax reaches the value of 64 (m/s)

at the tight, CNO type convex hull, whereas it only reaches a smaller value at the

transitional cases further from the tight, CNO type convex hull.

In case of the observer it can be determined that the relation between the convexity

and feasibility show a similarity to the previous section: feasible and non feasible

segments can be detected at di�erent convex hull transitional sections. Considering

the complexity the feasible designs appear not necessarily in a larger number if the

TP model is a relaxed model containing fewer vertexes but nevertheless a di�erence

in the feasibility regions can be detected between the exact and relaxed TP model

cases. Lastly, examining from the parameter space's point of view instead of a peak

seen at the controller's case in case of the observer rather a crater/pit/hole can be
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detected in the feasibility sections.

In this context as a conclusion the following can be stated: the convexity and

complexity of the polytopic TP model representation strongly in�uences

the feasibility regions of LMI based designs in a di�erent way for con-

troller and observer, and it also has a strong e�ect on the achievable

external parameter wind speed Umax where the LMI based design is fea-

sible.
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Chapter 5

Conclusion

The Scienti�c Student Conference paper presented the systematic method which

was developed and executed for investigating the hypothesis, its proving results and

consequences which lead to the proof of the hypothesis based on the control design

example of a quasi Linear Parameter Varying (qLPV) state-space model. The results

illustrate that the manipulation of the vertexes of the polytopic Tensor Product

(TP) model representation strongly in�uences the feasibility of the Linear Matrix

Inequality (LMI) based control design. The attributes of the vertexes' in�uencing

the feasibility regions of the LMI based controller and observer design include the

position and the number of the vertexes contained in the polytopic model. This

con�rms the necessity and importance of the polytopic manipulation, namely the

fact that the LMI based control design methods do not give an optimal solution on

the identi�ed qLPV model but rather on the polytopic representation. Furthermore

the paper shows that the vertexes of the polytopic TP model representation also

in�uence the size of the achievable parameter space where the LMI based design

is feasible. These statements have been proved valid both for the feasibility of the

controller's and the observer's LMI based design, but the in�uence di�ers in its

characteristics for the controller and the observer system components.

The proved statements and the regarding concepts gain further new research di-

rections in the �eld of qLPV and LMI based control theory research.

Regarding future work one goal includes the further investigation of the e�ect of

the polytopic manipulation on the control performance, which may further expand

the statement.
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Appendix

A.1 Acronyms

The following abbreviations are used in the paper:

LPV Linear Parameter Varying

qLPV quasi Linear Parameter Varying

LTI Linear Time Invariant

LMI Linear Matrix Inequality

SVD Singular Value Decomposition

HOSVD Higher-Order Singular Value Decomposition

ICA Independent Component Analysis

TP model Tensor Product model

CNO Close to Normal

SNNN Sum-Normalized Non-Negative

NATA Nonlinear Aeroelastic Test Apparatus

DoF Degree of Freedom
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