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Abstract

Modern quasi Linear Parameter Varying (qLLPV) state-space model and Linear Ma-
trix Inequality (LMI) based multi-objective convex optimization aimed control the-

ories and design methods can be basically divided into three steps:

i) identification of the qLPV state-space model
ii) derivation of the polytopic representation from the qLPV model

iii) substitution of the polytopic representation into LMI based control design

methods in order to attain the controller and observer system components

The main focus in the scientific research initiatives was mostly on step 14, addressing
the investigation and manipulation of LMIs to attain the optimized controller and
observer performance, which achieved a significant literature. Moreover, the current
widely accepted standpoint among scientific research is represented by the state-
ment that the LMI based control design methods give an optimal solution on the
identified qLPV model. However, step i, the effect of the procedure deriving the
polytopic model and its effect on the LMI based control design methods was given
less attention. A hypothesis published in 2009 discusses and points out this fact that
beside the procedure deriving the manipulation of the polytopic representation in
step 74 is necessary and has relatively the same extent of significance as step i,
namely the fact that the LMI based control design methods do not give an optimal
solution on the identified qLPV model but rather on the polytopic representation
at hand and the polytopic manipulation therefore leads to further potential opti-
mization possibilities with a relatively similar importance as the LMI based control

design methods.

Goals

In this context the aim of the Scientific Student Conference paper is to systemati-
cally investigate and prove the above mentioned - so far unconfirmed - hypothesis
both for the control and observer design combined with various polytopic manip-

ulation techniques. As a consequence this proof declares the necessity hence the



importance of the polytopic manipulation. In addition a further aim is to show that
the manipulation plays an important role in deriving the optimal solution, since
the polytopic representation is not invariant. The proof of the hypothesis and the
regarding concepts gain further new research directions in the field of qLPV and

LMI based control theory research.

Methodology

In order to achieve the above specified goals the paper presents the systematic
method which was developed and executed for investigating the hypothesis, its re-
sults and consequences which lead to the proof of the hypothesis. The investigation
includes the main factors of the polytopic representation influencing the feasibil-
ity regions of the LMI based control design, specifically i) the manipulation of the
vertexes’ position and i) the size and complexity of the representation, i.e. the num-
ber of the vertexes contained in the TP model type polytopic representation. The
proof is based on a complex control design example, where the influence of these
factors can be clearly indicated. Furthermore the paper shows via the example that
the maximal achievable parameter space of the controller and observer also depend
from these factors. The example model consists of the complex Nonlinear Aeroelastic
Test Apparatus (NATA) model of the three Degree of Freedom (3-DoF) aeroelastic
wing section including Stribeck friction. The methodology is based on the Tensor
Product (TP) model transformation based Control Design Framework that supports

the flexible manipulation of these factors.

Literature references

To discuss the significant paradigm changes described in the preliminaries of the
introduction regarding the mathematical, control theory and system modeling and
identification advancements, the paper cites essential publications from the last 100
years. Concerning the mathematical and control theory formalisms and concepts
utilized in the paper are source to literature of the last 15 years. Lastly, papers in
the reference list published between 2009 and 2014 directly lead to the fundamentals
of the specified goals.

Results and the formulated statement of the Scientific Student

Conference paper

Based on the systematical investigation and results the Scientific Student Conference

paper presents a TP model transformation based solution to prove the hypothesis
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via the following statements:

The manipulation of the polytopic TP model representation’s Linear Time Invari-

ant (LTT) vertexes influence the feasibility of LMI based control design methods:

i)

iii)

The position of the LTI vertexes, defining the convex hull of the TP model
type polytopic representation influence the feasibility of LMI based control

design.

The complexity of the TP model, namely the number of the LTI vertexes
contained in the TP model also influence the feasibility of LMI based control

design.

Statement i) and i) is valid both for the design of the controller and observer
system elements but the influence differs from each other, in fact in certain
cases it influences in an opposite way. This may raise further optimization
questions: since so far the controller and observer have been designed on the
same polytopic representation a design with separate TP model type polytopic

representations may induce further benefits.

The position and number of the LTI vertexes of the polytopic TP model rep-
resentation also influence the size of the achievable parameter space of the

feasible design.

Some details of the statements and the proving results described in the paper

have been presented in the following publications:

Also,

A. Szo6ll6si, P. Baranyi: Influence of Complexity Relaxation and Convex Hull
Manipulation on LMI based Control Design, Proceedings of the 9th IEEE
International Symposium on Applied Computational Intelligence and Infor-
matics (SACI), pp. 145-151., 2014.

A. Szollssi, P. Baranyi, P. Varlaki: Example for Convex Hull Tightening in-
creasing the feasible parameter region at Linear Matrix Inequality based Con-
trol Design, Proceedings of the 18th IEEE International Conference on Intel-
ligent Engineering Systems (INES), pp. 175-180., 2014.

the aspects of the above mentioned statement and proof have been formu-

lated into a comprehensive study which has been submitted to the Asian Journal of

Control international scientific journal (impactfactor: 1.411) for publication.

Budapest, 2014



Structure of the Scientific Student

Conference paper

The Scientific Student Conference paper consists of three main parts: the introduc-
tion in Chapter 1 presents the preliminaries, background and a general overview
which leads to the motivation and goals of the paper. Next, the statement formu-
lated by the author is described in Chapter 2, which is followed by the proof of the
statement in Chapter 3 and 4, containing the theory of the proposed methodology
and its application resulting in the proving results. Finally, the paper is closed with

the conclusion in Chapter 5, and an appendix containing the acronyms is attached.



Chapter 1
Introduction

The introduction consists of two main parts: Section 1.1 presents the preliminaries
and a general overview describing the important conceptual changes which lead
to the specific objectives of the Scientific Student Conference paper and Section 1.2
describes the mathematical notations and methods, which will be applied throughout

the paper.

1.1 Preliminaries and general overview

The Scientific Student Conference paper addresses a topic in connection with the
significant paradigm and conceptual changes in the last decades subject to modern
nonlinear and multi-objective control theory and its associated mathematical con-
cepts described in Section 1.1.1 and system identification theory described in Section
1.1.2. These conceptual changes significantly differ from each other in their concepts
although these fields are closely related, and in most cases are even consecutive
steps following each other sequentially. The difference generates a representational
and formalism gap which makes the sequential application of identification tools

with the control theory apparatus difficult to accomplish. A possible resolving tran-

Sec. 1.1.1 Sec. 1.1.4 Sec. 1.1.2

Conventional formulas based Tensor Product Soft computing based
multi-objective model transformation system modeling and
non-linear control theory | | ... and identification
© Sec. 1.1.3 :

mathematical concepts
SVD, HOSVD ‘
- HOSVD of cont. functions

Figure 1.1: General overview



sition has been the subject of several studies in recent years, a connection would
require an appropriate conversion and a uniform representation. Such a possible
connection and transition can be represented by the Tensor Product (TP) model
transformation and the finite element Tensor Product type polytopic model rep-
resentation. Its mathematical preliminaries will be described in Section 1.1.3 and
the TP model transformation itself, enabling the connection between the significant

conceptual changes will be illustrated in Section 1.1.4.

1.1.1 Multi-objective nonlinear control theory

The modeling and control of nonlinear systems with multiple objectives is a current
challenge in engineering in the present day. One commonly accepted approach is
represented by quasi Linear Parameter Varying (qLPV) modeling and Linear Matrix
Inequality (LMI) based design techniques.

Nonlinear modeling through qLPV models

The qLLPV representation of a model has the ability to describe nonlinear systems.
This is achieved through a Linear Time Invariant (LTI) state-space model where
the system matrix S(p) incorporates a parameter variance through the vector p,
which can contain both internal - e.g. elements of the state vector - and external
dependencies. The parameter variance can hold both continuous functions p; o (%)
or discrete state variables p; o [k] as elements. The theory of qLPV system repre-
sentations appeared in connection with aerospace control where the representation
describes a systematical approach to gain scheduling control for nonlinear systems
[1] in 1991. Further advances extended the topic of qLPV systems such as passivity
and H,, theories, robust adaptive control 2|, switching control systems [3] and in-
telligent control [4, 5] through the 2000s. The method of qLPV representation can

be applied to a wide range of problems and applications.

Multi-objective control design theories through LMIs

In addition modern LMI based controller and observer design methods have the
ability to efficiently handle the controller and observer design process expanding also
the possibilities with multi-objective requirements, e.g. constraints such as overshoot
constraint, settling time constraint, etc. This makes this numerical computation
based method also for a wide range of problems and applications effective. This
new approach was established and elaborated through the efforts of Gahinet, Balas,
Chilai, Boyd, and Apkarian [6, 7, 8, 9, 10] during the 1990s and the geometrical

representation of convex optimization was introduced by Jozsef Bokor [11]. Also,



the solution (feasibility) of LMIs can be reinterpreted as a convex optimization
problem. Simultaneously efficient numerical mathematical methods and algorithms
were developed for solving the convex optimization problems for LMIs [12].

The topics of qLPV models and theit polytopic representation based LMI convex
optimization methods are expanding to a rich literature of control theory to the

present day.

1.1.2 System modeling and identification theory

David Hilbert gave a speech at the Paris Conference of the International Congress
of Mathematicians in 1900, where he presented 23 hypotheses regarding unsolved
mathematical problems [13; 14, 15, 16]. He assumed these hypotheses would be the
unanswered issues of the 20th century. The 13th hypothesis states that continuous
multi-variable functions would exist which could not be decomposed as a finite su-
perposition of continuous functions of a smaller number of variables. This statement
was proven false in 1957 by V. I. Arnold [17]. Also, a general representation the-
orem with an attached proof was developed by the mathematician Kolmogorov in
the same year which allows a decomposition of continuous multi-variable functions
into one-dimensional functions [18], see also [19] and [20]. Kolmogorov’s proof was a
legitimate evidence for the existence of universal approximators, which induced fur-
ther research: during the last decades it has been proven that the different concepts
of neural networks, genetic algorithms and fuzzy logic systems exist as universal
approximator systems [20, 21, 22, 23, 24]. Thus soon these concepts proved to be
effective applied theories in system modeling and identification theory extending
the possibilities besides the conventional theorems of e.g. black-box identification,
engineering considerations etc.

These identification concepts and the powerful control design and optimization
techniques described previously in Section 1.1.1 significantly differ in their concept
and mathematical representations. Neural networks are basically graphs with a set
of connections and the weights of these interconnections, fuzzy logic is basically a
database of linguistic rules equipped with an inference technique and evolutionary
algorithms are basically algorithms, which are all rather far from analytic closed-

form expressions applied in LMI based control theory.

1.1.3 Mathematical advancements

In order to connect the significant paradigm and conceptual changes subject to mod-
ern multi-objective nonlinear control theory and system modeling and identification

theory the mathematical concepts will be described in this section including the re-



cent advancements in multi-linear algebra concerning Singular Value Decomposition
(SVD) and Higher-Order Singular Value Decomposition (HOSVD) followed by the
concept of the decomposition of continuous functions through HOSVD and the TP

model transformation as the overall uniting concept.

Multi-linear algebra concerning SVD and HOSVD

A generalized method for matrix diagonalization and component separation is repre-
sented by the Singular Value Decomposition (SVD): it represents a concept, where
a general matrix is diagonalized through decomposing it into a diagonal matrix
containing the main components (singular values) and two orthonormal bases. The
history of SVD dates back to the 1850s [25] and the elaboration was presented
by Golub in 1965 and the 1970s [26, 27, 28]. SVD gained popularity in various
scientific fields [29, 30, 31, 32, 33| from signal processing, image processing, statis-
tics, etc. Regarding the advancements in computing technology through the decades
the improvements made the addressing of large scale multi-dimensional problems
possible, which lead to a further generalization: the Higher-Order Singular Value
Decomposition (HOSVD) or multi-dimensional SVD published in 2000 by Lieven
De Lathauwer [34] can decompose also a general, but N-dimensional tensor into
also a matrix containing the main, higher order components (higher order singular
values) and an orthonormal basis system. This is attained in L, norm. In summary,
HOSVD has the ability to determine the structure and the significance of each con-
tained component of a given tensor. The first event where HOSVD was handled as
a key topic was the Workshop on Tensor Decompositions and Applications held in
Luminy, Marseille, France, in 2005. Implicitly HOSVD and its concepts has been
formulated and presented also in fuzzy approximation [35, 36] during the 1990s and
as independent component analysis (ICA) in [37], as well as dimension reduction for
higher-order factor analysis-type problems to decrease computational complexity in
[38] also during the 1990s.

HOSVD of multi-variable continuous functions and Tensor Product model

transformation

Following the publication of HOSVD soon the definition of HOSVD for multi-
variable continuous functions and the associating definition of rank regarding the
importance and contribution of the corresponding variables has been presented in
2006 [39, 40, 41]. Similar to HOSVD, the HOSVD for multi-variable continuous
functions constructs a higher order ranking of products consisting of orthonormal
weighting function systems for each in the function included variables. These weight-

ing functions are the singular functions similar to the singular matrices and vectors in
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SVD and HOSVD. Similarly the same way the higher order singular values indicate
the importance, contribution and rank of each associated singular vector product in
Frobenius norm in case of HOSVD, the singular values in case of HOSVD of contin-
uous functions also indicate these attributes for the singular functions through the
continuous variant of the Frobenius norm. In summary the HOSVD of continuous
functions inherits many attributes from HOSVD. In this context the application
is performed also in a similar sense, e.g. main component analysis, noise filtering,
trade-off between complexity and accuracy, etc.

The TP model transformation introduced in 2006 [42, 43, 44, 45| is a numeri-
cally executable method which is able to convert a model given through a set of
continuous functions into a set of TP functions by reconstructing the HOSVD of
the continuous functions [40]. The TP model transformation also inherits many at-
tributes from HOSVD which reflects on its features: it has the ability to determine
the fundamental structure and the significance of each component contained in the
set of TP functions. The TP model transformation has been extended with different
convex manipulation techniques to be able to generate convex variants of the TP
function. These convex manipulation techniques enable the possibility to construct
a convex combination, which consists of the combination of the elements of the
core tensor (termed as vertexes) and the one variable weighting function products.
This convex combination forms thereby a geometric polytopic structure, which is
defined through its vertex points. The TP model transformation and the convex

manipulation will be detailed in the next section.

1.1.4 The Tensor Product model transformation connecting

the different concepts and representations

As previously described in Section 1.1.2, identification techniques based on soft-
computing concepts can prove to be effective approaches considering system model-
ing and identification problems throughout different engineering fields, particularly
in such circumstances where formulating the model through analytic closed form
formulas - e.g. through physical or engineering considerations - would seem difficult.
As a consequence a number of identification methods have appeared and spread:
e.g. neural networks, fuzzy theory, genetic algorithms, etc. However, due to the
conceptual differences in structure and representation, which may also prove to be
problem-dependent, it is difficult to continue with the control system design theories
described in Section 1.1.1.

In this context the construction of TP models is motivated by the fact that com-
monly applied and well developed frameworks and design techniques exist to find

the efficient solutions to engineering problems, which are compatible with the struc-
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ture of TP models. This enables that the modern polytopic and LMI based control
theories can be basically directly applied on TP models. As previously described
in Section 1.1.3 the mathematical conversion to attain TP models is accomplished
through the TP model transformation which reconstructs the HOSVD of continuous
functions and the uniform representation is established through the finite element
TP type polytopic model representation (TP model).

In addition it is also worth mentioning that measurement based identification
methods or identification through engineering and physical considerations - exclud-
ing some special cases - may contain significantly larger errors (in many cases the
relatively small, but non-zero singular values may represent a distorting noise in the
system) in their results than the model attained through the TP model transfor-
mation. There may exist cases, where a given model does not possesses an exact
TP model, however it can be still approximated, even with still a smaller scale
error than that resulting of the identification. Therefore, executing the TP model
transformation and validating the resulting TP model could be more beneficial than
identification. In cases, where the identification contains efficient methods, it still
may be beneficial to execute a conversion to the TP model and validating it instead
of the identified model, since the TP model still incorporates relatively smaller er-
rors of a given model instead of the identified model, or even none if there exists an
exact TP model. In summary, it can be concluded, that the TP model transforma-
tion could be a last step of identification and as a general interface, a preprocessing

step for control design.

The TP model transformation includes the following features:

e The TP model transformation can be executed irrespective to the form of the
initial model, which can be given through analytic closed-form expressions,
neural networks, fuzzy logic, etc., the only requirement consists of the fact
that the identified model has to be able to be discretized over a grid.

e If the TP model representation exist, the transformation generates the exact
TP model representation of the given model. If the TP model representation

does not exist, an approximate representation of the model is derived.

e The TP model transformation numerically constructs the HOSVD based TP
model form of a given qLPV model [39, 40, 41] with the following attributes:

— The multi-variable continuous functions result in products consisting of

orthonormal one-variable weighting function systems.

12



— The number of LTI vertexes, which determine the fundamental structure

and the significance of each component are minimized.
— The LTI vertexes are constructed into an orthogonal basis system.

— The LTI vertexes and weighting function systems are constructed into a

higher order ranking corresponding to the significance of each component.

e Based on component analysis indicating the importance and contribution of
each corresponding L'TT vertex component a trade-off between complexity and
accuracy in Ls norm [46, 47| is also featured. Through disposing the compo-
nents which hold a small extent of contribution a complexity decrease at the

expense of accuracy is possible, and vice versa.

e The TP model transformation is also able to generate different convex TP
model representations, therefore different polytopic representations of a same
given model. The polytopic representation given its structure is directly exe-

cutable with LMI based control design theorems.

1.2 The mathematical notations and methods applied in the
paper

In this Section the mathematical notations and methods applied in the Scientific
Student Conference paper will be recalled from source [42]. Since the Scientific Stu-
dent Conference paper’s investigations are subject to a control design example of a
given qLPV model, the applied mathematical notations and methods will be there-

fore described in its accordance.

Notations

The following notations are used within this paper:

n=1...N index values, the upper bound is denoted through a capital letter
D=w; X - XwN parameter space defined through each dimension n=1... N
G =G X...x Gy discretization grid defined through each dimension n =1... N

a,b,... scalar values

a,b,... vectors

A B,... matrices

A B, ... tensors

FDE©.G) tensor containing the discretized variant of function f(x) over  and G
0,20, ... matrix containing the discretized variant of f(z)

A x, U, tensor multiplication along dimension n with matrix U,

Ax1U;--- x5y Uy tensor multiplication along dimension 1... N with matrices U; ... U,

N
A &1 U, compact tensor multiplication interpreting A x; Uy --- xy Uy
n—=

13



A &N U, equivalent compact tensor multiplication notation, N : {1...N}
ne

R,, = rank,() rank of tensor along the n-th dimension

qLPV model

Assume a state-space model is given with u(t) € R¥ input, y(t) € R output,
x(t) € RM state vector, p(t) € Q© C RY parameter vector with dimension N,

parameter space {} = w; X --+ X wy along each dimension n = 1... N and system
matrix S(p(t)) € RIMHE = O)x(M+L =1),

x(t)) _ x(t)
(40) s (2], "

where the system matrix S(p(t)) is:

If the parameter vector p(t) includes elements of the state vector x(t), the system
belongs to the class of nonlinear qLPV models. In contrast, if the parameter vector
p(t) does not include elements of the state vector x(t), then the model belongs to
the class of LPV systems.

Finite element Tensor Product type polytopic model representation -

Tensor Product model representation

The TP model transformation converts a model given through a set of functions,
in case of qLPV models through the system matrix S(p(t)) from equation (1.1) for
any parameter p(t¢) into the finite element Tensor Product type polytopic model

S(p(t)) = Z Z T Z Wiy, (pTL(t))Sil,iz,“.,iN =
i1=lig=1  iy=1 (1.2)
=5 8w (5 (1),

which represents a parameter-dependent convex combination of linear time-invariant
(LTT) system matrices, or vertex systems S € RO*! and weighting functions w,, (p,(t)),

where
Vn, i, pn(t) © wai(pa(t)) € 10,1],

In
i=1

14



The (N+2) dimensional coefficient of the core tensor S € R XInxOxI jg cop.
structed from the LTT vertex systems S;, ;. and the row vector w,, (p, (t)) con-
taining the one variable weighting functions w,,;, (p,(t)), i, = 1...Iy. Figure 1.2
illustrates a polytopic representation with the system matrix S(p(¢)) of a qLPV

model, vertex points S;, and polytopic convex hull defined by the position of

ooy TN

the vertexes.

S(p(t))

S3
So
Figure 1.2: Polytopic representation of S(p(t))

SNNN type Tensor Product model representation

The TP model representation possess an SNNN (sum normalized, non-negative)

type convex hull if its weighting functions satisfy Equation 1.3-1.4:

SN condition:  Vn, i, pn(t) : wy,, (pa(t)) € [0, 1] (1.3)
Iﬂ,

NN condition: ¥, in, pa(t) 1 > wn, (pu(t)) = 1. (1.4)
=1

NO and CNO type Tensor Product model representation

The TP model representation possess an NO (normalized) type convex hull if its
weighting functions are normalized, that is if it satisfies 1.3, 1.4, and the largest value
of all weighting functions is 1. The convex TP model is a CNO (close to normal) type
if it also satisfies both 1.3 and 1.4 and the largest value of all weighting functions is

1 or close to 1.

The n-mode rank of a given function

The n-mode rank of function Y = f(x) € R/ and x € Q C RY is represented by
R, = rank,(Y,2). This indicates the number of non-zero singular values along the

n-th dimension, therefore R,, = rank, (Y, Q) = rank,(S), where tensor S is derived

N
through the HOSVD of continuous functions, namely f(x) =S @1 Wy, (7).

15



In case of qLPV models the n-mode rank of a given function is represented simi-
larly through R, = rank,(S(p(t)),2), which also indicates the number of non-zero
singular values included in the TP model representation along the n-th dimension,
therefore R, = rank,(S(p(t)),2) = rank,(S), where tensor S is derived through

N
the HOSVD of continuous functions, namely S(p(t)) =S @1 Wy, (pn(t)).

Discretization space D(f2,G)

D(2, G) represents the discretization space where a given model with parameter
space ) = w; X ... X wy is discretized with grid G = G; x ... x Gy along each

dimension n=1...N.

Discretized function

For each continuous function Y = f(x) € R/ x € Q c RY describing a given e.g.
qLPV model, tensor FPG) ¢ RG1%-XGN represents the discretized variant of the
function in the discretization space D(£2, G).

Row vector g, defines the - typically but not necessarily equidistant - positions

of the grid as

gn = ( Gng =W e gy, = Wi > (1.5)
along each dimension n = 1...N. The elements F; ;. € RO1%-xOk of tensor
FPEEG) are Fi, in = f(x), where vector x = < Griy " ONin )

Similarly if the row vector w(x) is given as

w(z) = ( wi(z) - wi(z) > ; (1.6)

incorporating the discretized variants of the weighting functions w;(x), where ¢ =
1,..., 1.
Then matrix 20°@¢) € RE*! with column vectors representing the discretized

variants of the weighting functions w;(x) can be defined for each dimension n =
1...N as:

P w.a) < (mlD(w,G))T (mID(“”G))T > , (L.7)
where
oD = (wlg) - wilge) ). (18)
Resulting in
wi(gr) - wi(gr)
wi(gg) -+ wi(ga)

16



General Tensor Product model transformation

According to sources [45] assume a model given through a set of functions )V, = fi(x),
l=1,...,L, where x € Q C R¥. In case of qLPV models f;(x) represents the system
matrix S;(p(t)). 2 = wy X ... Xwy represents the space upon which the discretization
is executed with discretization grid G = G; x ... X Gy, where GG, represents the
number of gridpoints through each dimension n = 1...N. The distinct functions
may possess different dimensionality and size, therefore ) = f;(x) € RO1X-xOur;
where k € {1,..., K;} = K. It is irrespective what kind of functions or equations
define the model, the only requirement for the TP model transformation consists
of the fact that the functions have to be discretizable over the discretization space
D(Q, G) resulting in the discretized functions ]:ZD(Q’G). The goal is to find the finite
element TP type polytopic model representation in Equation 1.2.

Since the General Tensor Product model transformation incorporates the Pseudo
Tensor Product model transformation [43, 44, 45| it can be assumed a set of previ-
ously derived one variable weighting functions wy(x4) for dimensions d € D C N are
given, or their discretized variants wy,(z;,), where h € H C N in the form of QﬁhD(wh’Gh)

[42]. The General TP model transformation takes the following procedure:

Algorithm 1 - General Tensor Product model transformation
Assume a model Y, = fi(x) € RO*->O0ur xc QC RN, ke {l,...,. K} =K, =
1,...,L, wg(xzq), d € D CN, Qﬁf(wh’Gh), h € HCN, Q are given and Vk : ]—"ZD(Q’G)

exist. The General TP model transformation results in
yl = fl(x) = Sl n?an(mn) (110)

e STEP 1: Discretization

— Determine tensor ]:lD(Q’G) and matrix QUdD(wd’Gd) € RGax1a,

D(QL,G .
— Reorder the elements of tensor F, (@.6) ¢ ROLIX--XOuk into vectors 150 in
c RIXOZ,IOZ,Q-HOLKZ.

— Compose elements m;, ;. = <f1,j17---7jN fL,jh.--JN) which will be

incorporated into tensor M.
e STEP 2: Construction of the Tensor Product structure

— Incorporate the previously derived weighting functions or their discretized

, D(wa,G
variants 205 “+ %)

S = (M B (QHdD(“d’Gd))+> X (wf(”h’Gh’)+. (1.11)



— Ezecute Compact HOSVD (CHOSVD) by disposing all zero singular val-
ues, for each dimensionn =1...N, wheren ¢ DUH of §':

=8 K U,. (1.12)

neEN,n¢ DUH

— Denoting matriz Qﬂg(w"’G”) = U,, where alson € N,n ¢ DU H. The

structure of the TP model representation results in:

M =8" ® QPenGn) (1.13)

neN
— Tensor 8" can be partitioned along the N + 1-th dimension in accordance
to the length of vectors f; ;, ;.. Reordering the ji, ..., jn-th vectors into
O11 X X ... % Ok, and incorporating these elements into tensor S; op-

posite to Step 1, tensor ED(Q’G) results in:

FO =8 ® appencn), (1.14)

— If a complexity reduction is preferred, RHOSVD can be executed by dis-
posing the non-zero singular values and its associated weighting functions,
which leads to an approzimated model. Also, the transformation is not ex-
act if the rank of any QUdD(Q’G)7 d € DUH is smaller than the d-mode

rank of M.

e STEP 3: Reconstruction of the weighting functions

— Let 9p2emCn) — U,,. All points of the one variable weighting functions
W, (x,) in equation 1.10 can be constructed from the discretised variants
QIL?(Q’G) with any resolution in w,. E.g. calculating the weighting func-

tions wg(xq) along dimension d over a given point x4: through defining a

new discretisation grid G' as G1 X ... X Gg_1 X 1 X Ggy1 X ... X Gy and

restricting the discretization space to x4 as ) = wy X ... X Wg_1 X Tg X

. ’ / .
Wap1 X ... X wy, and defining FPEY) | x4 results in:

D(G' +
wa(zq) = 3((1% "(Qw) ", (1.15)
where
Q=38 R e, (1.16)
n#d

Here subscript "()(q) " denotes the unfolding along dimension d, accoridng
to HOSVD by Lathauwer [34].
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Remark 1 Transformation error
A final numerical step can be executed to check the accuracy of the resulting

TP model over a large number of random points in the parameter space €.
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Chapter 2

Statement of the Scientific Student

Conference paper

Modern quasi Linear Parameter Varying (qLPV) state-space model and Linear Ma-
trix Inequality (LMI) based multi-objective convex optimization aimed control the-

ories and design methods can be basically divided into three steps:
i) identification of the qLPV state-space model
ii) derivation of the polytopic representation from the qLPV model

iii) substitution of the polytopic representation into LMI based control design

methods in order to attain the controller and observer system components

The main focus in the scientific research initiatives was mostly on step 4, addressing
the investigation and manipulation of LMIs to attain the optimized controller and
observer performance, which achieved a significant literature. Moreover, the current
widely accepted standpoint among scientific research is represented by the state-
ment that the LMI based control design methods give an optimal solution on the
identified qLPV model. However, step i, the effect of the procedure deriving the
polytopic model and its effect on the LMI based control design methods was given
less attention. A hypothesis published in 2009 [48| discusses and points out this fact
that beside the procedure deriving the manipulation of the polytopic representation
in step 22 is necessary and has relatively the same extent of significance as step i,
namely the fact that the LMI based control design methods do not give an optimal
solution on the identified qLPV model but rather on the polytopic representation
at hand and the polytopic manipulation therefore leads to further potential opti-
mization possibilities with a relatively similar importance as the LMI based control

design methods.
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Goals

In this context the aim of the Scientific Student Conference paper is to systemati-
cally investigate and prove the above mentioned - so far unconfirmed - hypothesis
both for the control and observer design combined with various polytopic manip-
ulation techniques. As a consequence this proof declares the necessity hence the
importance of the polytopic manipulation. In addition a further aim is to show that
the manipulation plays an important role in deriving the optimal solution, since
the polytopic representation is not invariant. The proof of the hypothesis and the
regarding concepts gain further new research directions in the field of qLPV and

LMI based control theory research.

Methodology

In order to achieve the above specified goals the paper presents the systematic
method which was developed and executed for investigating the hypothesis, its re-
sults and consequences which lead to the proof of the hypothesis. The investigation
includes the main factors of the polytopic representation influencing the feasibil-
ity regions of the LMI based control design, specifically i) the manipulation of the
vertexes’ position and i) the size and complexity of the representation, i.e. the num-
ber of the vertexes contained in the TP model type polytopic representation. The
proof is based on a complex control design example, where the influence of these
factors can be clearly indicated. Furthermore the paper shows via the example that
the maximal achievable parameter space of the controller and observer also depend
from these factors. The example model consists of the complex Nonlinear Aeroelastic
Test Apparatus (NATA) model of the three Degree of Freedom (3-DoF') aeroelastic
wing section including Stribeck friction. The methodology is based on the Tensor
Product (TP) model transformation based Control Design Framework that supports

the flexible manipulation of these factors.

Results and the formulated statement of the Scientific Student

Conference paper

Based on the systematical investigation and results the Scientific Student Conference
paper presents a TP model transformation based solution to prove the hypothesis
via the following statements:

The manipulation of the polytopic TP model representation’s Linear Time Invari-

ant (LTI) vertexes influence the feasibility of LMI based control design methods:
i) The position of the LTI vertexes, defining the convex hull of the TP model
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iii)

type polytopic representation influence the feasibility of LMI based control

design.

The complexity of the TP model, namely the number of the LTI vertexes
contained in the TP model also influence the feasibility of LMI based control

design.

Statement ¢) and i) is valid both for the design of the controller and observer
system elements but the influence differs from each other, in fact in certain
cases it influences in an opposite way. This may raise further optimization
questions: since so far the controller and observer have been designed on the
same polytopic representation a design with separate TP model type polytopic

representations may induce further benefits.

The position and number of the LTI vertexes of the polytopic TP model rep-
resentation also influence the size of the achievable parameter space of the

feasible design.
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Chapter 3

The Methodology for proving the

statements

As previously stated the proof in the present paper is based on a control design
example of a complex dynamic qLPV system. A TP model representation of the
given qLPV system is derived upon which a systematical manipulation and analysis
is executed. In accordance to this systematical manipulation LMI based control
design theories are applied and the feasibility is checked how it is varying. The

manipulation takes the following key points into account:

1) The design is executed both on an exact and on a relaxed TP model repre-
sentation. The exact representation of the model is derived via the TP model
transformation where the number of the vertexes are minimized [39, 40, 41].
The relaxed TP model representation is derived from the exact representation
through disposing the vertexes from the model which have low contribution
in order to gain a trade-off between accuracy and complexity for further de-
sign steps [49]. Note that the relaxed TP model representation is only an ap-
proximation of the given model, however its stability verification is performed

involving the exact model.

2) The convex hull defined by the position of the vertexes of the TP model repre-
sentation is systematically modified and analyzed separately for the controller

and the observer design.

For each systematically modified case the LMI based control design theory is
applied and the feasibility is checked how it is varying. The design method applied
in the paper is based on the General TP model transformation based Control Design
Framework with the TP model type polytopic formulas [42] and LMI based control
design theorems [50, 51].
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3.1 The Concepts of the Systematical TP model Manipula-

tion and Investigation

Assume a qLPV state-space model is given as described in 1.1.

x(0)) (1)
(ﬂw>—smm>ﬁw).

Aim is to control and observe this model. Figure 3.1 shows the system structure

with the integrated controller and observer.

Lyl x Controller System J
u u
oz F(p(t) S(p(?)) Yy Y Observer

K(p(1)) 3

u

Figure 3.1: System structure containing the model, controller and
observer system components

Further details of the model and the control design structure will be described in
detail later in the present section and in Section 3.1.3. The given model and system

components controller and observer take the following TP model structure:

S(p(t) =S B Wa(pa(0), (3.1)
F(p(t) = F & walpa(t), (32)
K(p(1)) = K B wa(pa(0), (33)

where S(p(t)) denotes the model, F(p(t)) denotes the controller and K(p(t)) denotes

the observer.

3.1.1 Step-I: Complexity Relaxation through the main TP
model Component Analysis based approach

As a first step of the analysis, the HOSVD based TP model form [39, 40, 41] of the

given qLPV model is obtained. Here each singular value represents the relevance of

each vertex of the polytopic TP model. By selecting the main TP model components

a trade-off between accuracy and complexity is granted in terms of Ly norm [49).

The complexity relaxation of the model is based on this trade-off: the number of
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vertexes contained in the model is decreased through disposing the small singular
values and corresponding vertexes which have low contribution.

Thus executing the TP model transformation on S(p(¢)) in Equation 3.1 the
following HOSVD based form [39, 40, 41| is acquired:

S(p() = °S B “wu(palt)), (3.4)
S c Rle ><QN><O><I.

Here @, is the n-th mode rank of S(p(t)) c.f. [42] and the superscript "E" denotes
that the HOSVD based form of the model is exact, containing all of the non-zero
singular values.

On the other hand the relaxed model, represented by the superscript "R", is
acquired as well through disposing the singular values and corresponding vertexes

with low contribution:

S(p(t)) =S ® an(pn<t>>= (3.5)

neN

where RS € RF1x - xEaxOXI and Vn: R,, < I,,, In: R, < I,,.

3.1.2 Step-II: Convex Hull Manipulation through Interpola-
tion

The LMI design theories applied require a convex TP model representation of the
model S(p(t)) [42, 50]. This being the case the exact and relaxed HOSVD based
forms are converted to the convex TP model representation where S(p(t)) and
S(p(t)) are contained and enclosed within their convex hulls defined through the
vertexes of their TP models for all p(t) € 2.

The systematical analysis of the convex hulls defined by the position of the ver-
texes of the TP model representation in the present paper is based on an interpo-
lation technique between two different TP model representations, one with a tight
(CNO) and one with a loose (SNNN) convex hull, of the same given qLPV model.

To simplify matters instead of directly interpolating between the two separate
convex hulls the interpolation is executed via an interpolation between the two
weighting function systems of the two different TP model forms as given in the

following: assume two different TP model representations "X" and "Y" of the model
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S(p(t)) are derived through TP model transformation for any parameter p(t) € Q:

S(p(t)) = *s n?N Xwn(pn(t))a (3.6)
S(p(t)) = S X ywn(pn(t)>' .

neN

The two different TP model representations "X" and ")" each possess two different
convex hulls specified by the vertexes of the TP model. Aim is to obtain an inter-
polated TP model representation between these two TP models corresponding to a

modifiable interpolation parameter A € [0, 1]:

S(p(1)) ="M B FVw,(pa(t)). (3.7)
ne
Superscript "Z(A)" represents that the TP model representation is interpolated.

Here the weighting function system is interpolated as

W, (pa(t) = (1= A) - “Walpa(t) + XY wa(pa(t)),

and WS is obtained corresponding to Equation 3.7 by means of the pseudo TP

model transformation cf. [45].

Remark 2 Computational aspects of the interpolation: The TP model trans-
formation generates the discretized variants XQUS(Q’G) and wa(Q,G) (see Equation
3.18) on the parameter space Q0 with grid Gy X --- x Gy of the weighting func-
tions *w,(pa(t)) and Yw,(p,(t)) (see Equation 3.6), respectively. The discretized

a . .
) are also the n-mode singular matrices

variants of the weighting functions D)1
QBE(Q’G) = U,. Thus the interpolation is simplified and the interpolated discretized
weighting functions take the following form:

D(Q,G)

Z0gp? Y — (1 = 2y AgP D 4\ vepP )

In the case if I(A)QBS(Q’G) and S(p(t)) are available TNS and TMNw, (p,(t)) for
Equation 3.7 can be similarly determined with the help of the pseudo TP model

transformation as mentioned in Section 3.1.2.

3.1.3 Step-III: LMI Based Design Theorems

As previously described in Section 3.1 the aim is to control and observe the given
qLPV model. Since in the model only a part of the state variables are measurable an
output feedback based control design structure is applied and the rest of the state

variables are approximated by an observer. Because the parameter vector p(t) does
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not include elements from the estimated state-vector x(t), the following controller

and observer structure is applied [51, 50, 42]:

The observer is required to satisfy the convergence for stability x(t) — x(t) —
0 as t— oo.

As previously mentioned one of the main benefits of the General TP model trans-
formation based Control Design Framework is that the controller and observer sys-
tem components can be acquired separately. This ensures that the convex hull anal-
ysis can be performed also separately for the controller and the observer.

The aim through the LMI based design is to acquire controller vertex gains
stored in F from vertex gains S;, ;, ., stored in ZX)S

i1, 12, -y IN

ceey

S(p(t)) =TS B FIw, (pa(1))

and observer vertex gains K, i, stored in K from S;, 4, stored in T3S

e iN o i

S(p(1)) =S B 0w, (pu(1),

in a way that the stability and the desired multi-objective control performance
requirements are guaranteed. The superscripts "Z(A.)" and "Z(),)" represent the
proportion along the interpolation for both controller and observer cases, respec-
tively.

Various LMI theorems are accessible for controller and observer design. For the

separate design the following LMI theorems have been chosen |50].

Theorem 1 Globally and asymptotically stable controller: Assume the poly-
topic model (3.1) with a controller of structure (3.2) is given. This output-feedback
control structure is globally and asymptotically stable if the matrices P1 > 0 and M,
exist, (r =1, ..., R where R denotes the number of LTI vertex systems) satisfying

27



equations:

P, A" —-M!'Bl + A,P, -B,M, <0,

P, AT - MIB? + A,P, — B,M,+
P,AT -M'BT + A,P, -B.M, <0

for r < s < R, except the pairs (r,s) such that ¥Yp(t) : w,.(p(t))ws(p(t)) = 0, and
where M, = F,Py. The controller feedback gains can then be obtained from the
solution of the above LMIs as F, = M, P;".

Theorem 2 Globally and asymptotically stable observer: Assume the poly-
topic model (3.1) with an observer of structure (3.3) is given. This observer structure
is globally and asymptotically stable if the matrices Py > 0 and N, exist, (r = 1,

..., R where R denotes the number of LTI vertex systems) satisfying equations:

ATP, - CIN' +P,A, - N,C, <0,

ATP, - CIN! + P,A, — N, C,+
ATP, - CINT +P,A, - N,C, <0

for r < s < R, except the pairs (r,s) such that Vp(t) : w.(p(t))ws(p(t)) = 0, and
where N, = PoK,.. The observer gains can then be obtained from the solution of the
above LMIs as K, = P;lNr.

Computing the controller and observers via the LMI based design Theorems 1

and 2 one attains the results:

ME(p(1) = F B EOIw (pa(1)), (3.10)
MK(p(1) = K BT (pa(0)). (3.11)

It is worth mentioning that various further control objectives and constraints can

be incorporated to the design via properly selected LMIs as well.

3.1.4 Step-1V: Exact System Reconstruction

To verify the stability of the system LMI based stability verification theorems can
be executed with the system elements (3.1-3.3). Here a uniform structure is required

from the system components to be able to execute the stability verification theorems
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for the system. However the uniform structure is not provided, due to the system-
atical complexity (Section 3.1.1) and convex hull (Section 3.1.2) manipulation the

system components have different weighting functions varying in number and form:

S(p(1)) = %S & “walra(0), (312)
FE(p(t) = *F B T wn(pa(t), (3.13)
YK(p(t)) = A”’CEN W (pn (1)) (3.14)

Here “w,,(pn(t)) = TOIw,(p,(t)) and *w,(p.(t)) = TP)w,(p.(t)). As a conse-
quence an additional step is required to unify the structure of the system elements
to be able to execute the LMI based stability verification theorems.

It is important to mention that the exact model represented by superscript "E"
is used for the stability verification. This means that the manipulated and analyzed
controller and observer vertexes may differ from the exact model in their number
along some dimensions. In this context in order to apply the LMI based stability
verification techniques a common weighting function system has to be attained. One
way to do this is to apply the general stability verification method based on the Multi
TP model transformation [45]. However because during the calculations the discrete
variants of the interpolated weighting functions will be available a less complicated
procedure can be applied to unify the weighting functions.

Thus in this context the aim is to convert Equations 3.12-3.14 to 3.15-3.17:

S(p(t) = °5' B w,(pu(1)), (3.15)
MF(p(t) = F B wa(pa(t)), (3.16)
YK(p(t) =K B W (pa(t))- (3.17)

As a first step a matrix H,, for each dimension is created as:
H, = [FQpP(2.6) TRo)qpD(2.6) EqpD(@.6)] (3.18)

where 205 are the discretized variants of the weighting functions of the TP
model over the parameter space ) with sampling grid G [45]. Executing a compact

SVD on matrix H,, one attains:
H,=U,D,V! =U,T,.

Since system elements (3.12-3.14) require a convex representation, the SVD is ex-
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tended with a CNO transformation [42]|. This leads to:
H = UCNOT/

where USNO is the discretized variant of the unified weighting function.

D(2,G) _ T1CNO
WHE) — YN,
Partitioning the matrix T’,, according to the extent of the blocks of H,, (Equation

3.18), one acquires:
T/n - []:Tna ’CTna ng]a

which results in

I(Ac)mD(Q,G) — UCN(’) . ]:T
IO0)gD(R.G) _ [JCNO K

5@5(9@?) — Ug/\/@ . 5Tn7

and

S(p(t)) = £5 & FwP@9) =

neN

=48 ® UNO.°T, =
neN

=[S ® °T,] ® UNO =
neN

neN

=48 K UM =

neN

=8 ® ),

neN

F(p(t)) = °F B ) =

neN

=¢F B UNO.fT, =
neN

=[F R °T,] ® UNO =
neN

neN

=¢F R UNO =

neN

=¢F X hee)

neN
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K(p(t)) =k 1 fapteo) =

neN

=K B UNO.eT, =

neN

=[FK R ¢T,] B UNO =

neN nenN

=K B UNO =
neN

=K ® 9.
neN "
Finally, the continuous weighting functions w,(p,(t)) can also be obtained through
the Pseudo TP model transformation [45] as described in Step-II in Section 3.1.2.

3.1.5 Step-V: LMI based stability verification

Acquiring the system components ¢S, 78" and XS’ with unified weighting function
systems WY the LMI based stability verification can be readily applied. The
vertices of the TP model of the exact model, controller and observer can be substi-
tuted into the previously described LMI theorems in Section 3.1.3 and the solution
can be checked, namely if all of the LMI theorems are simultaneously feasible. This
step is less complicated in a sense that the matrices N and M need not to be found,

only the matrices P; and P, need to be found.

3.2 The Example Model

In this section the state-space qLPV model of the three Degree of Freedom (3-DoF)
aeroelastic wing section model including Stribeck friction of the complex Nonlinear
Aeroelastic Test Apparatus (NATA) model [52, 53, 54] will be described. Active
control of aeroelasticity has been a major topic of discussion in aerospace and control
engineering for several years. Several studies can be found discussing the analysis
and different control design strategies of the aeroelastic wing section [55, 56, 57,
58, 59, 60, 61, 62, 63, 54, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76]. The
aeroelastic wing section model is an effective example for discussing the analysis and
different control design strategies of aeroelasticity. The TP model transformation
based control solutions to the 2-DoF and the 3-DoF aeroelastic wing section are
given in [62, 63, 77, 52].

The state-space qLPV model of the 3-DoF aeroelastic wing section including
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Figure 3.2: 3-DoF aeroelastic wing section and state variables [42]

friction [52] is given similarly to Equation 1.1:
x(t) x(t)
=S :
(y@)) (o() (u(t)>

x(t)z(xl(t) xo(t) x3(t) x4(t) x5(t) xﬁ(t)>T
—(h & B nas).

The state vector consists of

where h symbolizes the plunge, oo symbolizes the pitch and 5 symbolizes the trailing-
edge surface deflection of the aeroelastic wing section. The elements can be seen in
Figure 3.2. The time varying parameter vector consists of p(t) = <U(t) a(t) ﬂ(t)) '
€ Q. U(t) represents the wind speed, «(t) represents the above mentioned pitch and
A(t) is introduced by the friction model. As the parameter vector p(t) contains ele-
ments of the state vector x(t), the state-space model belongs to the class of qLPV
state-space systems. The elements of S(p(t)) are:

Alp(t)) = (—M—lc<p<t>> —M—1K<p<t>>> |

| 0

o (MF

=, | (3.19)
C:(o 000 1 0),

D=0

where the matrices M, C, K and F are the mass, damping, stiffness and forcing

matrices of the equation of motion:
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h h h

Mla|+C|a |+K|al|=Fu (3.20)
B B s
These matrices take the following form:
mp + me +mg MaTab + mpgrs + mpag mgars
M = | max.b + mgrg + mpxgs I, + fg + mg'r’% + 2wmerp fg + xgmpgrg |
mgrga Ig + xgmprp Iy

cp + pbSC U (% — a) bpbSC, U 0

C=|-p*SCy, ., U ca—(5—0a)bph*’SCy, ., U 0 ;
0 0 CBacrvo

kp, pbSC; U? pbSCy, U?
K=[0 kia)=—pb*SCy, ,U> —pb*SCy, . U* |,

0 0 Buervo
F—

ﬁservo

The model is attained from the equation of motion through the following, substi-
tuting the matrices M, C, K and F into the equation of motion:

mpy + Mme + mg MaTeb + mgrg + mgxg mgrg h
Mateb +mgrg +mprs I+ I+ mﬁré +2xgmprs Ig+xgmprs | | a |+
mgrg fg + xgmprs fg B
ch 0 0 h kn 0 0 h ~L
+10 ¢, 0 a |+ 0 kola) 0 a | = M ,
0 0 oo/ \B 0 0 kg / \B K,ervoDdes

where k,(«) is obtained in [54] by curve fitting on the measured displacement-
moment data for a nonlinear spring k,(a) = 25.55 — 103.19 + 543.24a2. Tt is
important to emphasize that the order of the polynomial defining k,(«) does not
influence the control design methodology. Hence, one can apply a higher order poly-
nomial to model the non linearity of the spring, which can be found in [58] dealing
with the aeroelastic wing section model .

Quasi-steady aerodynamic force L and moment M are assumed in the same way

found in the sources in their control design approaches:

ho (1 a
L= pUZbCla (Oé + ﬁ + (5 - Cl) bﬁ) + pU2bCZBﬁ (321)
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ho (1 i
M = pU¥*C,., ., (a +ot (5 = a) b%) + pUHC, ., B (3.22)

The above L and M above are accurate for the low-velocity regime.
Based on [54], it is assumed that the trailing-edge servo-motor dynamics can be

represented using a second-order system of the form:

jﬁﬁ + Cﬁse'rvo/B' + kﬂservo/B = kﬁservouﬂ' (323)

By combining equations 3.20, 3.21, 3.22 and 3.23 one obtains:

mp + Mmq +mg MaTab + mpgrg + mpgrg mgrg h
Ma2ab +marg +mprg Lo+ 15+ mgr% +2zgmpgrs I+ xgmprs a |+
marg Ig + xgmprglgmxab 1, I51
M
e + pbSCL U (3 —a) bpbSC, .U h
+ | =pb*SCr, ;U ca — (3 —a) bpb*SCrn, ;U 0 a |+
0 0 CBuerve) \B
C
k, pbSCy, U? pbSCy, U? h 0
+1 0 ka(a) —pb*SCh,, ., ,U* —pb*SCpy ., U? a | = 0 u.
0 0 KBservo p KBservo
—_———
K F

where M, C, K and F are the previously mentioned mass, damping, stiffness and
forcing matrices of the equation of motion [54] in Equation 3.20.

The details and definition of each system parameter can be found in [54] and
they have the following values: m; = 6.516 kg; m, = 6.7 kg; mg = 0.537 kg;
To = 0.21; 25 = 0.233; 13 = 0 m; a = —0.673 m; b = 0.1905 m; fa = 0.126
kgm?; I3 =107 ¢, = 27.43 Nms/rad; cq = 0.215 Nms/rad; cg,,,,, = 4.182 %10
Nms/rad; ky, = 2844; kg, = 7.6608 x 107% p = 1.225 kg/m?3; C), = 6.75T;
Coneoypy = =117, Gy = 3.774; Crp,y = —2.15 S = 0.5945 m.

The system matrix S(p(t)) of the given qLPV model includes the Stribeck friction

model defined in the following where F(t) represents the friction force:

sign(v(t)) — Fyv,
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2
1+ e—1000-u(2)
Stribeck velocity, F; represents the static friction force, F, represents the Coulomb

where sign(v(t)) = — 1 and v(t) # 0. The parameter vg represents the
friction force and F, represents the viscous friction force. The values of these elements
were defined based on engineering considerations in order to obtain a realistic friction
model. The values are F, = F, = 4.182 - 10~* Nm for the viscous friction and
Coulomb friction force term, F, = 1.2 - F,. for the Stribeck friction force term and
vs = 0.0075 rad/s for the Stribeck velocity. Further details and definitions of the
parameters can be found in [54, 52|. It is important to mention that the control
design and assessments in this paper is a general method, hence other nonlinear

friction models can also be applied.
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Chapter 4

The Results for proving the

statement

In this section the previously described theoretical analysis concepts will be applied
into practice on the example model of the 3-DoF wing section accompanied by

presenting the proving results.

4.1 Numerical execution of the Tensor Product model trans-

formation based Control Design Framework

The TP model transformation is performed on the state-space qLPV model of the
3-DoF aeroelastic wing section model described in Section 3.2. The parameter vector
p(t) is specified through the intervals of the elements U € [4, 64] (m/s) (later this
interval will be systematically modified and investigated), o € [—0.3, 0.3] (rad) and
Be [—1.5,1.5] (rad/s). The grid density G| x G5 X G35 is specified as G; = Gy = 501
and G5 = 7500. The rank of the discretized core tensor SP ) results in 2, 3, 2 in
the first, second and third dimensions, therefore 2 x 3 x 2 = 12 vertexes describe
the exact polytopic TP model representation of the given qLLPV state-space model.
To acquire the relaxed polytopic TP model representation of the given qLPV state-
space model the third singular value 0.02275 in dimension «(t) is disposed. The

singular values along each dimension take the following values:

Dimension U(t): | 1824.42567 | 222.73378
Dimension «(t): | 1837.72468 | 30.12274 0.02275
Dimension f(t): | 1478.89237 | 1091.33713

To systematically modify and analyze the convex hull defined by the position of
the vertexes of the TP model representation through interpolation two types of TP

model representations are determined: one with a loose (SNNN: A = 0%) and one
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with a tight (CNO: A = 100%) type weighting function system. Figure ?? and 77
show the weighting functions for the exact model and Figure 4.3 and 4.4 show the
weighting functions for the relaxed model. This is executed both for a controller and
for an observer investigation. The interpolation at both investigations is executed
with the same resolution of 2% steps - in other words the value of \ is discretized
over 50 points.

For each interpolation resolution point a controller and observer is designed in
accordance to the LMI theorems described in Section 3.1.3, which results in 50

different controllers and 50 different observers.

4.2 Results of the 2D Analysis: Feasibility, Convexity

Figure 4.5 illustrates the relation between feasibility and convexity in case of the
controller and observer design based on the exact TP model. The x-axis illustrates
the convexity, namely the transition from the loose convex hull (SNNN, A\ = 0) to
the tight convex hull (CNO, A = 1) corresponding to the interpolation parameter \.
The y-axis illustrates the feasibility with a line, if the LMI based design resulted in
a feasible solution. The value y = 0 illustrates the case if the design did not yield in
a feasible solution.

The controller was designed on the parameter space U(t) = [6 16] (m/s). The
results on Figure 4.5 in case of the controller show a strong correlation between the
feasibility and the convexity: the feasible LMI designs appear in larger number near
the tight, CNO type convex hull than the loose, SNNN type convex hull. Manipu-
lating the interval of parameter U(t) in a broad scale later in the section the same
phenomenon can be seen.

The observer was designed on the parameter space U(t) = [6 400] (m/s). The
reason to select this unrealistic and large interval of the external parameter wind
speed U(t) is to be able to indicate the influence of the convex hull manipulation on
the feasibility of the observer, which could be detected through this region, since the
observer design in the interval U(t) = [6 16] (m/s) is always feasible. The results on
Figure 4.5 in case of the observer show also a relation between the feasibility and
the convexity: a non feasible segment can be detected at a convex hull transitional
section. Also manipulating the interval of parameter U(t) in a broad scale later in
the section the same phenomenon can be seen.

In this context as a conclusion of this section it can be stated that the convexity
of the polytopic TP model representation strongly influences the feasi-
bility of LMI based designs, moreover as a further conclusion this is valid

both for the controller and observer cases, in a separate, different way.
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Figure 4.5: Controller and observer feasibility regions of the exact model
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Figure 4.6: Controller and observer feasibility regions of the relaxed
model
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4.3 Results of the 3D Analysis: Feasibility, Convexity, Com-
plexity

Figure 4.6 shows the results of the same investigation but based on the relaxed
TP model. The results show that the feasibility regions are different for both the
controller and observer cases from the results of the exact TP model presented in
the previous section: the complexity also interferes with the feasibility. In case of the
controller this region is significantly smaller. In case of the observer the feasibility
region is increased in the present case.

The investigation is further continued for different intervals of the external pa-
rameter wind speed U(t) and the complexity is incorporated into the graphical
illustrations. As a result Figure 4.7 and 4.8 present the relation between feasibil-
ity, convexity and complexity for different intervals of parameter U(t). The x-axis
illustrates the convexity similarly to the previous section, the y-axis denotes the
complexity of the model with the exact and relaxed TP model cases and the z-axis
represents the feasibility, also similarly to the previous section. Figure 4.7 illustrates
the results of the controller, with the parameter interval U(t) = [6 16] (m/s) and
U(t) = [8 33] (m/s) and Figure 4.8 illustrates the results of the observer design with
the parameter interval U(t) = [6 400] (m/s) and U(t) = [8 425] (m/s). The results
show that the complexity of the TP model also interferes with the feasibility.

In case of the controller the feasible designs fall in number if the TP model is
a relaxed model containing fewer vertexes. However, considering the convexity the
feasible designs remain similarly near the tight, CNO type convex hull than the
loose, SNNN type convex hull both for the relaxed and exact TP model cases.

In case of the observer the feasible designs appear in a larger number if the TP
model is a relaxed model containing fewer vertexes in the present parameter interval
U(t) = [6 400] (m/s) and U(t) = [8 425] (m/s) cases. Considering the convexity the
results show similarly to the previous section a relation between the convexity and
feasibility: further feasible and non feasible segments can be detected at different
convex hull transitional sections.

Based on these results as a conclusion the same phenomenon can be observed as
in the previous section with an additional information: besides the convexity of
the polytopic TP model representation the complexity also influences the
feasibility regions of LMI based designs, moreover as a further conclusion
this is valid both for the controller and observer cases, also in a separate,

different way.
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Figure 4.9:
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4.4 Results of the 4D Analysis: Feasibility, Convexity, Com-

plexity, Parameter space

Continuing the investigation further and incorporating the parameter space into
the graphical illustrations as a result the figures 4.9-4.11 and 4.12-4.14 illustrate
the relation between feasibility, convexity, complexity and the parameter space with
the external parameter wind speed U(t). The axes of the figures are the same as
on the figures of the previous sections, the difference is that the z-axis provides
additional information about the external parameter wind speed U(t), namely it
also illustrates the maximal achievable value U,,,, of the interval: a line denotes
if the LMI based design is feasible and the height indicates the value of U, ;.
Figures 4.9-4.11 illustrate the case of the controller with the the parameter intervals
U(t) € [464] (m/s), U(t) € [664] (m/s) and U(t) € [8 64] (m/s) and Figures
4.12-4.14 illustrate the case of the observer with the the parameter intervals U(t) €
[4 600] (m/s), U(t) € [6 600] (m/s)and U(t) € [8 600] (m/s). The investigation was
executed in an iterative manner: an LMI based design is executed for the current
value U,,., of the parameter interval and the feasibility of the design is checked. If
the design is feasible, the maximal value U,,,, of the interval is increased, the LMI
based design is repeated and the feasibility is checked. This is executed until the
design is still feasible. The results show that the size of the parameter space of the
TP model also interferes with the feasibility.

It can be seen in case of the controller that the previously stated phenomenons
considering convexity and complexity are also valid, with an additional statement:
the feasible designs fall in number if the TP model is a relaxed model containing
fewer vertexes, the feasible LMI designs appear in larger number near the tight,
CNO type convex hull, but the feasible results also appear with a higher achievable
parameter interval value U,,,, near the tight, CNO type convex hull. In case of the
controller the achievable parameter interval value U,,,, reaches the value of 64 (m/s)
at the tight, CNO type convex hull, whereas it only reaches a smaller value at the
transitional cases further from the tight, CNO type convex hull.

In case of the observer it can be determined that the relation between the convexity
and feasibility show a similarity to the previous section: feasible and non feasible
segments can be detected at different convex hull transitional sections. Considering
the complexity the feasible designs appear not necessarily in a larger number if the
TP model is a relaxed model containing fewer vertexes but nevertheless a difference
in the feasibility regions can be detected between the exact and relaxed TP model
cases. Lastly, examining from the parameter space’s point of view instead of a peak

seen at the controller’s case in case of the observer rather a crater/pit/hole can be
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detected in the feasibility sections.

In this context as a conclusion the following can be stated: the convexity and
complexity of the polytopic TP model representation strongly influences
the feasibility regions of LMI based designs in a different way for con-
troller and observer, and it also has a strong effect on the achievable
external parameter wind speed U,,,, where the LMI based design is fea-
sible.
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Chapter 5
Conclusion

The Scientific Student Conference paper presented the systematic method which
was developed and executed for investigating the hypothesis, its proving results and
consequences which lead to the proof of the hypothesis based on the control design
example of a quasi Linear Parameter Varying (qLPV) state-space model. The results
illustrate that the manipulation of the vertexes of the polytopic Tensor Product
(TP) model representation strongly influences the feasibility of the Linear Matrix
Inequality (LMI) based control design. The attributes of the vertexes’ influencing
the feasibility regions of the LMI based controller and observer design include the
position and the number of the vertexes contained in the polytopic model. This
confirms the necessity and importance of the polytopic manipulation, namely the
fact that the LMI based control design methods do not give an optimal solution on
the identified qLPV model but rather on the polytopic representation. Furthermore
the paper shows that the vertexes of the polytopic TP model representation also
influence the size of the achievable parameter space where the LMI based design
is feasible. These statements have been proved valid both for the feasibility of the
controller’s and the observer’s LMI based design, but the influence differs in its
characteristics for the controller and the observer system components.

The proved statements and the regarding concepts gain further new research di-
rections in the field of qLPV and LMI based control theory research.

Regarding future work one goal includes the further investigation of the effect of
the polytopic manipulation on the control performance, which may further expand

the statement.
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Appendix

A.1 Acronyms

The following abbreviations are used in the paper:

LPV
qLPV
LTI
LMI
SVD
HOSVD
ICA

TP model
CNO
SNNN
NATA
DoF

Linear Parameter Varying

quasi Linear Parameter Varying
Linear Time Invariant

Linear Matrix Inequality

Singular Value Decomposition
Higher-Order Singular Value Decomposition
Independent Component Analysis
Tensor Product model

Close to Normal

Sum-Normalized Non-Negative
Nonlinear Aeroelastic Test Apparatus

Degree of Freedom
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