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Abstract

There are a wide range of models capable of generating scale-free networks
with a given degree distribution. Another important parameter of networks
besides the γ parameter describing the degree distribution is the rich-club
coefficient. However, there are no models which could modify this parameter
of graphs in an intuitive way. In the present paper we propose a network
generating model which can generate random networks with a given rich-club
coefficient.



Chapter 1

Introduction

Networks of all sorts are around us including the Internet, power grid net-
works, transport networks and even our very bodies. The interactions of
our cells and proteins can be understood from a network science perspective.
What is interesting is that all these systems are very similar to each other
when regarded as networks. One of the most striking similarities they all
share is that their degree distribution is scale-free with exponent (γ) between
2 and 3.

There are many models capable of generating random graphs which have
scale-free degree distribution with adjustable γ parameter. These models
are capable of generating real-network-like graphs. One of the most famous
of these models is the Barabási model. There are others ones using geomet-
ric aspects to generate such graphs, since (hyperbolic) geometry seems to
describe some properties very deeply.

Another, yet not so wide-spread notion is that of rich-club coefficient.
Contrary to other metrics (e.g. degree distribution, clustering, diameter), in
which real networks exhibit surprising similarity, the rich-club organization
is something that makes networks look way different. In short, the rich-club
coefficient how tightly the hubs (nodes with many links) are connected to
each other. If the rich-club coefficient is big means that there is some sort of
an oligarchy present in the network. The notion applied to a social network
would mean that those who have many friends also know each other well.
However other networks (e.g. the power grid or, protein networks) seems to
lack such rich-clubs.

Despite the high volume of available network models, one couldn’t find a
single one generating graphs with modifiable rich-club coefficient in a simple,
intuitive way. This would be very helpful though, because with a model like
that we could fine-tune the networks not only varying the degree distribution
but the rich-club coefficient as well. In this work we present a model with
the above mentioned capabilities.
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Chapter 2

Overview of network theory

The set of nodes is the fundamental unit of networks. These nodes are
connected among each other with edges which mean some sort of a connection
between the nodes. In case we talk about a social network the edge can mean
friendship between two people, but if the nodes are molecules then an edge
means a possible chemical interaction between them. The edges can be
directed or undirected and we can also assign weights to them signifying the
strength of the interaction between the two vertices. In this paper we will
mainly discuss undirected networks.

In the following I will present the most important features that we can
use to analyze and characterize real-world networks. There are quite a few
such notions which explore graphs from a different point of view each one
offering a different perspective on the network in question. There are many
ways to look at networks each one revealing other properties other measures
may not cover. That’s why it’s important to analyze different aspects of real
graphs. The most influential ones are defined below.

2.1 Properties of real networks

The degree of a node is the number of nodes which are connected to it.
It simply measures how well-connected a given node is. Applied to a social
network a node with low degree would mean someone with hardly any friends.
In case of directed networks we make difference between in-degree and out-
degree based on the distinction of edge direction. In undirected network
we simply count the edges associated with a node. In many cases it is
important to have a general view of the degrees of nodes present in the
network. Keeping count of all nodes with their degrees in a table-like manner
is hard to work with. That’s why some useful measures are introduced to
make it easier to obtain a general view of the network’s degree properties.
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2.1.1 Degree distribution

We define nk as the number of nodes with degree above k. The relation
between nk and k is the degree distribution of the given network, one of such
useful notions revealing some crucial properties of graphs in an informative
way. In almost all real-life networks the degree distribution is scale-free
meaning that the nk-k relation is a power law (nk ∼ k−γ) function. Such
plots can be seen in Figure 2.1 where the degree distribution of some networks
have been plotted. The degree distribution is very informative, because we
can understand some basic properties of networks at a glance. It can be
observed that all degree distributions are approximately lines in the log-
log plot, hence follow power law functions. The exponent of the power-
law function (γ) of the plots are varying between 2 and 3. A scale-free
distribution intuitively means that most of the nodes have a low degree, but
it’s not uncommon to have some with outstanding degrees. If the degree
distribution would be exponential it would mean that there is almost no
chance to have nodes with significant number of connections.

Figure 2.1: The degree distribution of some real networks are plotted. All
have a power-law degree distribution. The figure is taken from Newman’s
monography on networks [1].

2.1.2 Diameter

The diameter [1] of a network is defined as the length of the longest of all
shortest paths between the nodes. All networks observed around us have a
relatively small diameter thus they have the so called small-world property
meaning that from any node you can get to any other in a small number
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(proportional to the logarithm of the number of nodes in the graph) of steps.
This concept projected to a social network means that a random person
chosen from Budapest is likely to know one of your friends of your friends.
Karinthy estimated that the network of all people on Earth has a diameter
of 6 meaning that if you would like to send a letter to someone in Japan
you have never met by sending it to one of your friends who send it to
one of his friends and so on then your letter can get to its destination in 6
steps. Experiments like the one described here have been carried out in the
US confirming this surprising property. Having a small diameter is crucial
is real networks as it allows information to travel fast between nodes. In
Figure 2.2 the notion of small-world property is presented in a graphical
manner showing the average distance in real-life graphs plotted against the
size of the network.

Figure 2.2: In this figure the average distance is plotted of some real networks
to demonstrate that the average distance is quite small compared to the
network size. The figure is taken from one of Barabási’s articles [6].

2.1.3 Clustering coefficient

The next definition to be presented is clustering which is also called tran-
sitivity. The intuition to this comes from the observation that if node A is
connected to B and B is connected to C then A is likely to be connected to
C as well. So clustering measures the strength of groups formation. In the
context of social networks it would mean that two of my friend are likely to
be friends themselves. The formal definition goes like the following:

C =
3x number of triangles in the network
number of connected triples of vertices

Where a connected triple means a single vertex with edges running to
an unordered pair of others. In effect clustering measures the ratio of full
triangles to the number of three-node formations with 2 or 3 edges amongst
them. The interesting thing about this measure that when calculated for
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Network Clustering Rand. graph clust. Multiplier
Internet 0.24 0.00060 400

power grid 0.080 0.00054 148
mathematics collaborations 0.15 0.000015 10000

word co-occurrence 0.44 0.00015 2933
metabolic network 0.59 0.090 7

Table 2.1: In this table the clustering coefficient of some real networks is
compared to the clustering of random graphs with the same number of nodes.
The Multiplier column shows how many times the real network’s clustering
is greater than that of the random graph. The results are taken from one of
Newman’s articles [2].

social and other types of networks yields a considerably greater value then for
a random network. This is further extended in Table 2.1 where real networks
are compared to random graphs from this perspective. So clustering seems
to reveal some very fundamental features of networks.

2.1.4 Rich-club organization

The final but crucial definition I will give is that concerning the rich-club
parameter [3]. This parameter describes how the hubs of the network are
connected to each other. A big value indicates the presence of a kind of
oligarchy in the network, that is high-degree nodes are connected to each
other. If the rich-club coefficient’s value is small it means that influential
elements in a network don’t know each other. We define rk as

rk =
number of edges in Gk

number of all possible edges in Gk

Where Gk represents the subgraph of G which only contains the nodes
whose degree is greater than k. However these values are usually normed
with the ones we would get from a random graph. With this slight mod-
ification it is easier to distinguish between the different kinds of rich-club
coefficients. In contrast to the above mentioned measures of networks the
rich-club coefficient is really different for different real networks. This huge
diversity can be seen in Figure 2.3.

The primary motivation of graph generating models is to give a way to
make networks which are very similar to real ones. The network’s measures
defined in this chapter all serve the function of comparison that can tell
how close are real networks to our generated graph. There are a number
of models for generating networks each of which explain a different set of
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Figure 2.3: This figure shows rich-club coefficient plots from real world
graphs. The rich-club coefficients of these three graphs are really different
while their degree distributions are highly similar.

properties of real-life networks. With the help of the we could understand
some important processes of networks formation.

2.2 Network models

2.2.1 Erdős-Rényi model

The first model I will present is the Erős-Rényi model [4]. This model is
using two parameters to generate random graphs: the number of nodes and
the number of edges. The nodes are connected to each other by the edges
each possible edge being equally likely until we reach the predefined number
of edges. One such graph generation could go like the following: We have 6
points and we would like to make a random graph from them using 10 edges.
Let’s decide where the edges will go by throwing two dices. The numbers
of the dices will tell the two nodes the edge will connect. In case the two
numbers are the same or the edge already exists then we throw again, since
we would like to avoid self-loops and double edges. So we start by throwing
the dices. We get numbers 2 and 5, so we connect nodes 2 and 5 with an
edge. We have 9 edges left to add. We keep doing this procedure until we
have used all of our edges and then we have our Erdős-Rényi random graph.
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It is interesting to see that such a simple model can itself account for some
central properties of real networks. From the detailed analysis of this model
the relatively small diameter of the resulting graphs come out but it fails to
explain the formation of hubs and clustering observed in real-life networks.

2.2.2 The small-world model

The Watts and Strogatz model [5] was designed to address these two pri-
mary limitations of the Erdős-Rényi model. The algorithm goes like equally
placing N nodes on a circle and connecting each one to its k closest neigh-
bors (k/2 on each side). Then for each node take each of its edges one after
another and replace it with probability β. The new edge’s one vertex stays
at that given node from which it was evaluated and the second one is placed
to some other node with equal probability avoiding self-loops. So each time
we get to a new edge we calculate a random number in the [0, 1] interval.
If our random number is smaller than β then we decide on the new target
node by the throwing of an N -side dice the starting node staying the same.
With β parameter converging to 1 the model reproduces the Erdős-Rényi
model, because all edges are replaced randomly none of them staying at its
original place. The formation of the graph during this process can be fol-
lowed in Figure 2.4. The produced graph has a very small diameter scaling
linearly with the system size. The clustering coefficient also approaches the
one observed in nature explaining groups formation. The drawback of the
system is that it produces an unrealistic degree distribution which we earlier
saw was a crucial component of a nature-like graph.

Figure 2.4: The Watts-Strogatz model in function at two different stages.
(a) The nodes are placed on the circle and each one connected to its k closest
neighbors. (b) Using the p parameter some edges are replaced.

2.2.3 Barabási-Albert (BA) model

What follows is the Barabási model [6] which generates scale-free graphs
using a preferential attachment mechanism. This model incorporates two
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concepts which exist widely in nature: growth and preferential attachment.
Growth in this case means that we don’t have all of our nodes at hand
during the whole process, but nodes come one after another. The concept
of preferential attachment is that the nodes already present in the network
have a sort of wealth quantity and nodes are more likely to attach to those
that are wealthier. In this case this wealth quantity is the degree of the
given node. The algorithm begins from an initial network and adds nodes
one after another and connects them to m other nodes in the network. The
possibility that the new node will be connected to the node is proportional to
its degree. Thus the nodes with higher degree have more chance to get new
connections and that’s how hubs are formed in the system. The Barabási
model explains the small diameter in real networks and produces scale-free
degree distribution.

2.2.4 Malkov’s model

There is a geometric model which can reproduce these results proposed by
Malkov [7]. Malkov’s model goes like the following: to an Euclidean disk
of radius R add points one after another to random locations equally dis-
tributed on the disk. Upon adding a new node it is connected to it’s k closest
neighbors. The distance is calculated by dividing the Euclidean distance by
the square root of the degree of the target point. This distance definition
is based on the intuition that nodes with big degrees are closer to other
points in some sense. What results from this is a scale-free network with a
γ parameter of 3. The k parameter’s value is equal to the average degree of
nodes in the network, because in each iteration k new edges are added.

2.2.5 Summary of network models

Table 2.2 summerizes the different properties of these networks showing
which network properties they can explain. Network generating models is a
rapidly developing brach in network science with new models appearing each
few months explaining real networks in a different way. There are models
which are grounded in hyperbolic geometry taking advantage of a different
kind of space while other approaches use fractals with much success but we
shall not dwell on such matters here. My model extends Malkov’s approach
with a small, yet remarkable step which allows changing the rich-club coef-
ficient of the resulting network leaving all the other properties unchanged.
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Network Degree distr. Small-world Clustering Rich-club
Erős-Rényi X

Watts-Strogatz X X
Barabási X X
Malkov X X X

Our model X X X X

Table 2.2: Comparison of network models.
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Chapter 3

The Model

The basic idea is that long edges are infeasible so they are only implementable
by adding also a bridge node to the midpoint of the edge. A practical example
of this notion comes from the power grid network, where the power cannot
be transmitted effectively to long distances without transformation.

The generation of the graph is determined by four parameters, namely
the number of nodes (N), radius of the disk(R), the connection parameter(k)
and the threshold parameter(th). The N parameter determines the number
of nodes in the network. The total number of nodes will be N plus the bridge
nodes we add to cut long edges in half. The R parameter is the radius of the
disk on which the nodes will be equally distributed. The k parameter says
the number of the closest neighbors to which a new node will be connected.
Finally, the th parameter is the one which serves as a distance limit for new
edges. If an edge is longer than that then it will be cut in half with a new
node placed in the middle. This parameter was not originally present in
Malkov’s model and is at the core of our model.

The pseudo code of the model can be seen below.

Algorithm 1 The Model - parameters:N , R, k, th
for i=0, i<N do

add a new node by placing it to a random location on the disk
angle = random(0, 2π )
radius =

√
pR2 , where p =random(0, 1)

for j in k closest neighbors do
distj = EuclideanDistance(i, j)/

√
degreej

if distj < th then
connect them directly

else
place a node to the midpoint
connect both nodes to this extra node

In Figure 3.1 a network generated by this model is plotted. It can ob-
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served in the figure that there are only a few nodes with outstanding degrees
the majority of nodes having small connections.

Figure 3.1: A network generated by the model. The size of the node is
proportional to its degree.

The time evolution of the model is presented in Figure 3.2 where two
added nodes are examined. It gives an intuitive explanation that no extra
bridge nodes will be added after a certain number of iterations.

In case we set the threshold parameter to a large value we get back
Malkov’s original model because we will never insert new nodes to the graph.
Our expectation is that these extra nodes will play the roles of bridge nodes
in the system. The bridges nodes are those which connect hubs. In many
cases in real-life networks great hubs are connected via one (or few) bridge
nodes whose degree is considerably smaller than that of hubs. These special
types of nodes have a crucial role in the dynamics of the network for this
very reason connecting hubs. The threshold parameter is the tool in our
hands with which we can influence the rich-club coefficient of the graph.
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Figure 3.2: In the left figure initial nodes in blue are present in the network
when we add a third one (green). The red circle represents the threshold
around the new node. Either of the two blue nodes is within the threshold
so extra nodes are (red) are inserted to the midpoint of the edges. While in
the right figure which shows us the same network in a later stage no extra
node is inserted, because there are many nodes falling within the threshold.
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Chapter 4

Results

In this section we present a detailed analysis of the graphs obtained from the
model. We will analyze three representative simulation results of threshold
parameter of 6, 30 and 60 on a disk of radius 30. We will compare these
networks to each other as well as to real networks to find out what the model
is capable of.

4.1 Degree distribution

The obtained networks have a scale-free degree distribution. In Figure 4.1
the degree distributions of three networks which were generated with our
model with different threshold parameters are plotted. It can be seen that
the degree distributions don’t differ remarkably from each other, because the
threshold parameter in not modifying the degree distribution.

A way to prove that the degree distribution won’t differ remarkably from
that of the Malkov model is that the number of bridge nodes we added are
very small in number compared to the number of nodes in the network.
For this reason the overall degree distribution of the graph does not change
considerably. The approximated number of bridge nodes at each iteration of
the network generation can be calculated as follows.

Lemma 1. The number of bridge nodes converges to a relatively small value
compared to the network size during the generation of the graph.

Proof. The following function gives us the probability that if we already have
j nodes in the network and another node is given there will be 1, 2...N − 1
nodes within a circle of radius th.

min(N − i, j − i)

(
j

i

)
pipj−i
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Figure 4.1: The degree distributions are plotted for different threshold pa-
rameters generated by the model. The degree distributions of these networks
are almost the same.

Where N is the number of nodes we want to have in the graph, j is
the number of nodes we already inserted, p is a probability which comes
from the threshold parameter. The idea is that we assume that the nodes
already placed on the disk are distributed equally. From this follows that
when we add a new node the probability that another node is closer to it
then the threshold value (th) is the area of a small circle of radius equal to
the threshold parameter divided by the area of the full disk. This is how
we calculate the p value. And finally the binomial distribution gives us the
probability that a new bridge node needs to be inserted at all.

If we multiply it with N − i as sum it based on i then we obtain the
estimated number of bridge nodes at this stage of generation.

min(N−i,j−i)∑
i=0

min(N − i, j − i)

(
j

i

)
pipj−i

One more aspect to take into consideration is that the distance is cal-
culated by dividing the Euclidean distance by the square root of the node.
This means that the radius of the circle should not be the same during the
whole process, but should grow proportional to the average degree of the
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graph. Such growth would indicate that the nodes are closer to each other
in a sense resulting from the degree-growth of nodes. This concept is taken
into account in the calculation resulting in a varying value of p.

In Figure 4.2 we plotted the calculated theoretical number of bridge nodes
in each iteration together with the simulation result for the same parameters.
The two plots are really close to each other.
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Figure 4.2: The theoretical number of bridge nodes in each iteration is plot-
ted with the simulated values.

4.2 Clustering

The generated networks have a high clustering-coefficient with a value very
close to real networks. When compared to each other the difference is so
slight that we can say that the threshold parameter does not change the
clustering coefficient of the networks having effect only on the rich-club pa-
rameter.

Network Clustering coefficient
Generated threshold=6 0.57
Generated threshold=30 0.67
Generated threshold=60 0.68

Metabolic network 0.67
Physics Co-authorship 0.56

Internet 0.39
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4.3 Diameter

The diameter of all three generated graphs is equal to 8, which is relatively
small compared to the number of nodes being 500. This shows that the
model produces networks with the small-world property reproducing one of
the central features of real networks.

We also analyze the diameter and average distance in the resulting num-
bers for varying node numbers. The calculated values are plotted against
the theoretical expectations. Both the diameter and the average distance
should grow logarithmically with the number of nodes. The plot can be seen
in Figure 4.3.
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Figure 4.3: The average distance of the network is plotted against the number
of nodes. The simulation results clearly show that a logarithmic function fits
on them.

4.4 Rich-club coefficient

The simulation results in Figure 4.4 clearly show that the generated graphs
differ greatly in their rich-club coefficient depending on the threshold param-
eter we set for it. We can generate graphs with a big diversity of rich-club
coefficients mirroring real world networks which also show a great diversity in
this respect. While the protein-protein interaction network has a really low
rich-club coefficient meaning that the hubs are not well connected to each
other, the flight graph has a significant rich-club value. But there are many
examples for different rich-club values in nature. This diversity is demon-
strated in the left of Figure 4.4 where there networks are examined from
this point of view. On the right a very similar picture can be seen. These
plots however were obtained from the graphs generated by our model, show-
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ing how it can produce very different networks by adjusting the threshold
parameter.
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Figure 4.4: The left figure shows three plots of rich-club coefficient from
graphs generated by the model with different threshold parameters. With the
help of the model we can generate graphs with rich-club parameters in a wide
spectrum imitating real world graphs. While in the right figure a very similar
plot can be seen, but taken from real networks. This plot demonstrates
that the model is capable of generating graphs with really different rich-club
coefficients imitating this important property of real networks.

This is the main result of the paper presenting that apart from preserving
all important features of real networks present in previous models the model
is capable of modifying the rich-club parameter of the resulting graphs. Our
geometric approach explains how it is possible to set the rich-club parameter
of the graph by setting a single parameter.
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Chapter 5

Conclusion and future work

There are many models which can generate random graphs that mimic real
networks in one way or another. Yet no remarkable improvement has been
made in the direction of generating graphs with adjustable rich-club coeffi-
cient. However, the rich-club coefficient seems to be an important aspect of
network analysis, because there are great differences in rich-club coefficient
values among real networks. So this parameter could possibly account for
the diversity in networks we see around us.

In the paper we presented a new network model, the modification of
a homophilic method, which can generate networks with a big diversity of
rich-club coefficient values while preserving crucial properties like scale-free
degree distribution, small-world property and high clustering present in real
networks. Our model generates scale-free graphs with a γ parameter close to
3. We would like to improve on the model that would allow the γ parameter
to be modified. The concept of cutting long edges in half by placing a node
between can by applied to other models as well for example to some using
hyperbolic geometry. Some early results show that it can be a promising
direction as well.
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