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Kivonat

Moduláris robotok alatt olyan robotokat értünk, amelyek képesek újrakonfigurálni
felépítésüket – önállóan vagy külső segítséggel – az elvégzendő feladathoz igazodva.
A moduláris robotika története az 1972-es évig nyúlik vissza, de ipari környezetben
való alkalmazásuk nem jellemző. Ez nem is meglepő, hiszen a legtöbb ilyen robot nem
arra lett tervezve, hogy az iparban használt robotok feladatait ellássák. Sok moduláris
robotot arra terveznek, hogy extrém körülmények között – például a világűrben, a
mélytengereken vagy nukleáris erőművekben – használják. Felhasználva azt, hogy a robot
képes a meghibásodott alkatrészét kicserélni, vagy átkonfigurálni magát.

A kiinduló kérdés az volt, hogy hogyan tudna egy robot, amely az elvégzendő feladathoz
igazodva épül fel, helytállni egy ipari környezetben. Egy robotszimulációs szoftverrel gyor-
san lehet tesztelni olyan ötleteket, amelyeket a valóságban eszközök megvétele nélkül nem
lehet megvalósítani.

A munkám célja egy olyan robot bemutatása, amely képes az adott feladathoz iga-
zodva manuálisan átkonfigurálni magát. Ehhez a Gazebo szimulációs szoftvert használtam,
amellyel hatékonyan lehet szimulálni komplex környezeteket. Valamint Robot Operating
Systemet (ROS) használtam, amely egy robot alkalmazásfejlesztő platform.

Bemutatom egy ilyen moduláris robotnak a megépítését, amelyhez egy UR10 robotkart
használok fel. Példákat mutatok a robotkar lehetséges használatára, valamint a robotkar
építőelemeinek egy másik lehetséges felhasználására.
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Abstract

The history of modular robotics dates back to 1972, but their application in industrial
environment is not common. This is not surprising since most of these robots are not
designed to handle the roles of the industrial robots. Many modular robots are designed
to be used in extreme conditions such as space, deep sea or nuclear power plants utilizing
their ability that the robot can replace its defective component or reconfigure itself.

Our goal is to investigate if a modular robot could be applied in an industrial en-
vironment. We present a robot that is capable of self-reconfiguration in a task specific
way. Our analysis is performed on a robot simulation software, Gazebo interacting with
ROS. Gazebo is an open source simulation software that can be used to simulate com-
plex environments. Robot Operating System (ROS) is a robotic application development
platform.

In this paper, we discuss the assembly process of a modular robotic arm. The parts
are gathered with an UR10 robot arm and the remote-controlled connectors are used to
fix them together. Finally, we present some alternative assembly setups of the modular
robotic kits.
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Chapter 1

Introduction

In the past few years, there has been an increasing demand from customers towards the
manufacturing industry to provide more and more customized products [1]. Personal-
ized production is one of the key motivations for manufacturers to start leveraging new
technologies that enable to increase, for instance, the flexibility of production lines. High
flexibility in general is needed to realize cost effective and customized production by sup-
porting fast reconfiguration of production lines, as well as easy application development.

Applying standard, expensive industrial robots in a highly varying production line is
not practical in the long run as it will only be used for a particular task and will be doing
nothing the rest of the time. A modular self-reconfigurable robot cell optimized for task
specific deployment is the desired state in the future [2]. Manifold requirements are needed
to be fulfilled technologically:

• low energy consuming actuators;

• some embedded intelligence in the local controller;

• capable of any kind of IoT communication.

If we aim for a completely self-contained robot module, it should be also self-propelled
by internal battery and remotely controlled via wireless access. The advances in battery
technologies can provide the first, while the upcoming 5G supports the latter. Application
of such a wireless technology in manufacturing enables, for instance, to reduce cabling
in a factory. Cableless communication is a real enabler of many applications that is diffi-
cult to achieve with production systems depending on wired connections e.g., jet engine
manufacturing during the milling of the blades [3].

One can argue that it is difficult to fulfil the same requirements by modular robotics
that is provided by industrial grade arms. The industrial robot has many metrics and
measurable characteristics, which will have a direct impact on the robustness of the robot
during the execution of its tasks. The main measurable characteristics are repeatability
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and accuracy. In a nutshell, the repeatability of a robot might be defined as its ability
to achieve repetition of the same task. While, accuracy is the difference (i.e., the error)
between the requested task and the realized task (i.e., the task actually achieved by the
robot). Practically, repeatability is doing the same task over and over again, while accu-
racy is hitting your target each time. For more details about the calculation of accuracy
and repeatability, see [4]. The objective is to have a robot that can repeat its actions
while hitting the target every time. When the current mass production assembly lines are
designed, robots are deployed to repeat a limited set of tasks as accurately and the fastest
possible to maximize the productivity and minimize the number of faulty parts. The re-
programming of the robots rarely occurs e.g., per week, per month basis and it takes a
long time e.g., days and it is a difficult task requiring lot of expertise.

We argue that there can be tasks identified in a robotic cell that needs relaxed require-
ments and by speeding up the whole process it is beneficial for the overall Manufacturing
Cycle Time [5] of the robotic cell. In this work we go for the identification of these tasks.
To achieve this we test a some use cases in a simulator.

Recent advances in simulator technology go beyond process level simulation e.g., [6]
and with the application of rigid body simulation, a detailed, close-to-real world imple-
mentation study can be performed. We chose Gazebo as our target robot simulation envi-
ronment. Gazebo [7] offers the ability to efficiently and accurately simulate a great number
of robots in complex indoor and outdoor environments. It has a robust physics engine,
convenient programmatic and graphical interfaces and high-quality graphics. Gazebo is
free and widely used among robotic experts. The physics engine is used to model the be-
haviors of objects in space. These engines allow the simulation of different types of bodies
to be affected by various physical stimuli. There are two types of physics engines: real-time
and the high precision. Most real-time engines are inaccurate and only provide reduced
approximation of the real world, while most high-precision engines are too slow for every-
day applications. Physics engines are based on the laws of classical mechanics. The used
models determine how accurate these simulations are in dynamical simulations. Gazebo
uses the later, sacrificing performance over accuracy, which can be fine-tuned by several
parameters.

A rigid body simulator would be difficult to apply for the evaluation of complex robotic
cell task, but due to a recent robotic competition, Gazebo starts to gain new features to
support this. A recent competition Agile Robotics for Industrial Automation Compe-
tition (ARIAC)[8] targets industrial related applications. ARIAC is a simulation-based
competition designed to promote agility in industrial robotics using the latest develop-
ments in artificial intelligence and robot planning. The general goal of the first and second
editions (2017, 2018) of the ARIAC competition were to motivate further development and
adoption of agile industrial robotics by providing an environment where teams could work
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on solutions towards more productive and autonomous robots that would also require less
time from shop floor workers. The competition involved a simulation of the infrastructure
where teams would have to complete a set of tasks. The simulation infrastructure was
built on top of Gazebo [7] and ROS [9]. The tasks were made to comprehend four specific
areas: failure identification and recovery, automated planning, fixtureless environment,
and plug and play robots. The tasks or challenges were explored with different simulation
trials, which represent the configuration of the simulated environment as well as its goals.
ARIAC tasks revolve around collecting a set of part pieces and placing them on a tray to
be sent for assembling.

We started our journey to evaluate the feasibility of a pick and place use case performed
by modular robots in a robotic cell. In this work we discuss the very first steps, preparing
modular functional robot blocks that can be interconnected, assembled and perform any
non-trivial action integrated in a robotic cell. This requires the implementation of new
features into the existing framework and a lot of difficult integration steps. The paper
introduces these steps and discusses them.

In the long run, we would like to perform quantitative measurements to check if any
improvement of the ARIAC KPIs is feasible with the modular robotic arms.
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Chapter 2

Related work

Authors of [10] collected and discussed many papers in their survey. The design trends of
modular reconfigurable robots in terms of docking, powering, reconfiguration, communi-
cations, locomotion, DoF, size, and control have been analyzed, reaching some common
conclusions that are summarized in the following paragraphs.

Regarding reconfiguration, it has been shown that although the trends have usually
been to build self-reconfigurable robots, in the last years many manually configurable
robots have also appeared. Although self-reconfigurable robots seem to have general pur-
poses, manually configurable robots are usually task specific. Communication has two clear
trends. The first one is to use intramodule communication protocols because the module
complexity is increasing and there is a growing need to interconnect several devices (mainly
micro-controllers and dedicated controllers) inside the module. The second one is to use
wireless protocols (WiFi, Bluetooth, and even ZigBee) for communication between mod-
ules and external controllers. The use of wireless controllers simplifies the docking design
and allows free movements (no cable dependency). The drawback is that it is not possible
to power the robot through a cable. Regarding the size feature, it highly depends on the de-
sign of the power-source and the actuators used, overlooking the tasks for which the robot
is being designed. While external power source can help in reducing the size of modules,
the use of LiPo batteries can also derive in autonomous modules of tenths of centimetres
large. Brushless motors are being intensively used to provide modules with actuated joints,
without compromising the weight and size but with the drawback of the power consump-
tion. The designs presented in the last 15 years tend to be cubic or spherical. However, this
feature is utterly established based on the tasks meant for the robotic system which may
not follow the previous statement. There seems to be no clear trends in terms of docking,
powering and DoF use. Docking presents no clear trend in the design, and nowadays there
are several technologies used: permanent magnets, magnetic, electromagnetic, mechanical,
electromechanical, and so on. It is the same case in powering, where most robots seem to
use a tether to power the system, but it is not usually pointed out in the published papers.
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Modular robots that use batteries use different types: lead acid, NiCd, Lithium, and so on.
About the use of DoF, trend in chain-type modules remains stable, using one or at most
two DoF. But recent lattice-type modules show higher flexibility with higher degree of con-
nectivity and autonomy. In terms of locomotion, micro-locomotion for module autonomy
a trend can be seen in recent chain-type and hybrid-type modular robots. Wheel-based
locomotion for both micro- and macro-locomotion is also a new trend in chain- and hybrid-
type modular robots. Locomotion through self-reconfiguration in lattice-type systems has
remained unchanged, although some recent hybrid-type systems have demonstrated loco-
motion capability of individual modules on 2D and 3D surfaces, embedded with docking
units. In the early days of modular robotics, controllers tend to be more central and less
scalable. In the recent years, the focus has been to develop highly distributed and scalable
controllers. Controllers have always been highly dependent on intermodule communication
for synchronization and coordination among modules. A recent trend in controllers also
reflects on biologically inspired control models.

Authors of [11] reviewed the history and state of the art of Reconfigurable Modular
Robots (RMR). After analyzing various designs, they found that the concepts of modu-
larity and reconfigurability have been penetrating the design of all the RMRs. Te article
made a classification of the existing RMRs: modular mobile robots and modular restruc-
tured robots. The two major categories can be further divided into several sub-categories:
joint-motion robots and joint-reconfiguration robots; macro-sized reconfigurable manipu-
lators and mini-sized reconfigurable or self-reconfigurable robots (chain, lattice, and hybrid
types). Two comparative analyses was demonstrated to clarify the typical characteristics
of RMRs. These characteristics contain module shape, module DOF, module attribute,
connection mechanism, interface autonomy, locomotion mode, and workspace. Advantages
and weaknesses of different sub-categories have been discussed. Furthermore, an evolution-
ary cobweb evaluation model has been proposed to assess the autonomy level of selected
robots. The key technologies, the design methodology of modules and robot configurations,
the challenge, and the self-reconfiguration algorithms were also summarized in this survey.

Authors of [12] discuss the application of modular robots in industry to reach hazardous
environments. In large facilities there is a with wide range of tasks and modular robots
are a flexible robot solution. Some of the tasks to be performed can vary from achieving
locomotion with different modular robot (M-Robot) configurations or the execution of
cooperative tasks such as moving objects or manipulating objects with multiple modular
robot configurations (M-Robot colony) and existing robot deployments. The coordination
mechanisms enable the M-Robots to perform cooperative tasks as efficiently as specialised
or standard robots. The approach is based on the combination of two communication
types i.e., Inter Robot and Intra Robot communications. Through this communication ar-
chitecture, tight and loose cooperation strategies are implemented to synchronise modules
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within an M-Robot configuration and to coordinate M-Robots belonging to the colony.
These cooperation strategies are based on a closed-loop discrete time method, a remote
clock reading method and a negotiation protocol. The coordination mechanisms and co-
operation strategies are implemented into a real modular robotic system, SMART. The
need for using such a mechanism in hazardous section of large scientific facilities is pre-
sented along with constraints and tasks. Locomotion execution of the mobile M-Robots
colony in a bar-pushing task is used as an example for cooperative task execution of the
coordination mechanisms and results are presented.

Authors of [13] consider the issue of increasing the number of robots working in sectors
characterized by dynamic and unstructured environments. Specifically, the paper deals
with a modular robotics based approach to allow the fast deployment of robots to solve
specific tasks. They claim that some other authors have proposed modular architectures,
mostly in laboratory settings, but their design was usually based on what could be built
instead of what was necessary for industrial operations. In this paper they consider the
problem by defining the industrial settings the architecture is aimed at and extract the
main features that would be required from a modular robotic architecture to operate suc-
cessfully in these kinds of environments. These requirements are then taken into account
to design a particular heterogeneous modular robotic architecture and a laboratory im-
plementation of it. A prototype is also built in order to test its capabilities and show
its versatility using a set of different configurations including manipulators, climbers and
walkers.

Authors of [14] propose a modular robot platform which relied on a designed module
library based on the screw theory and module theory. Then, the configuration design
method of the modular robot was proposed and the different configurations of modular
robot system were built, including industrial mechanical arms, the mobile platform, six-
legged robot and 3D exoskeleton manipulator. Finally, the simulation and verification
of one system among them have been made, using the analyses of screw kinematics and
polynomial planning. The overlook of a high level Matlab simulation is discussed shallowly.

In all the above papers the common point is that modular robotics is considered only if
no industrial grade solution is available on the market e.g., surveying robots in catastrophe
areas. They are not recognized as real options if there is an existing solution but a one-
fit-for all type robot which can perform any kind of task in a tolerable success rate. In
this paper we argue the about the opposite: there are tasks in which modular robots can
outperform even the industrial grade ones or at least greatly improve the robotic cell total
performance.
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Chapter 3

Background

This chapter describes the basics of Robot Operating System, the packages used in our
work, the UR10 robot arm, and the Gazebo simulation software.

3.1 Robot Operating System
Robot Operating System (ROS)[15] is used to control the movement of the robot arm.
ROS is an open-source, meta-operating system for robot software development. It pro-
vides standard services that would be expected from an operating system, including hard-
ware abstraction, low-level device control, implementation of commonly-used functionality,
message-passing between processes, and package management. It also provides tools and
libraries for obtaining, building, writing, and running code across multiple computers.

ROS is not a real-time framework, though it is possible to integrate ROS with real-time
code.

ROS was designed to be as distributed and modular as possible, so the users can use
as much or as little of ROS as they desire. The distributed nature of ROS also fosters a
large community of user-contributed packages that add a lot of value on top of the core
ROS system. At last count there were over 3,000 packages in the ROS ecosystem This is
only the ROS packages that people have taken the time to announce to the public. These
packages range in fidelity, covering everything from proof-of-concept implementations of
new algorithms to industrial-quality drivers and capabilities. The ROS user community
builds on top of a common infrastructure to provide an integration point that offers access
to hardware drivers, generic robot capabilities, development tools, useful external libraries,
and more.

The ROS framework is easy to implement in any modern programming language. It is
already implemented it in Python, C++, and Lisp, and there are experimental libraries
in Java and Lua.
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ROS currently only runs on Unix-based platforms. Software for ROS is primarily tested
on Ubuntu and Mac OS X systems, though the ROS community has contributed support
for Fedora, Gentoo, Arch Linux and other Linux platforms. [9, 16]

3.1.1 ROS Concepts
ROS has three levels of concepts: the Filesystem level, the Computation Graph level, and
the Community level. [17]

3.1.2 ROS Filesystem Structure
3.1.2.1 Packages

Packages[18] are the main unit for organizing software in ROS. In the file system they are
represented by folders which contain a package manifest.

A package may contain ROS runtime processes (nodes), a ROS-dependent library,
datasets, configuration files, or anything else that is usefully organized together. Packages
are the most atomic build item and release item in ROS. Meaning that the most granular
thing you can build and release is a package.

ROS packages tend to follow a common structure.

• include/package_name: C++ include headers

• msg/: Folder containing Message (msg) types

• src/package_name/: Source files, especially Python source that are exported to other
packages.

• srv/: Folder containing Service (srv) types

• scripts/: executable scripts

• CMakeLists.txt: CMake build file

• package.xml: Package manifest

• CHANGELOG.rst: Many packages will define a changelog which can be automati-
cally injected into binary packaging and into the wiki page for the package

3.1.2.2 Catkin

ROS utilizes a custom build system, catkin[19], that extends CMake to manage depen-
dencies between packages.
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The build system is needed, because ROS is a very large collection of loosely federated
packages. That means lots of independent packages which depend on each other, utilize
various programming languages, tools, and code organization conventions.

Because of this, the build process for a target in some package may be completely
different from the way another target is built. catkin specifically tries to improve devel-
opment on large sets of related packages in a consistent and conventional way. In other
words, both rosbuild and now catkin aim to make building and running ROS code easier
by using tools and conventions to simplify the process. Efficiently sharing ROS-based code
would be more difficult without it.

3.1.2.3 Message types

Message descriptions, stored in .msg files, define the data structures for messages sent in
ROS.[20]

This description makes it easy for ROS tools to automatically generate source code for
the message type in several target languages. Message descriptions are stored in .msg files
in the msg/ subdirectory of a ROS package.

There are two parts to a .msg file: fields and constants. Fields are the data that is sent
inside of the message. Constants define useful values that can be used to interpret those
fields (e.g. enum-like constants for an integer value). Each field consists of a type and a
name, separated by a space:

For example:

fieldtype1 fieldname1
fieldtype2 fieldname2
fieldtype3 fieldname3

The field name determines how a data value is referenced in the target language. For

int32 x
int32 y

example, a field called ’pan’ would be referenced as ’obj.pan’ in Python, assuming that
’obj’ is the variable storing the message.

Field types can be:

• a built-in type, such as "float32 pan" or "string name"

• names of Message descriptions defined on their own, such as "geome-
try_msgs/PoseStamped"

• fixed- or variable-length arrays (lists) of the above, such as "float32[] ranges" or
"Point32[10] points"
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• the special Header type, which maps to std_msgs/Header

ROS provides the special Header type to provide a general mechanism for setting
frame IDs for libraries like tf. While Header is not a built-in type (it’s defined in
std_msgs/msg/Header.msg), it is commonly used and has special semantics. If the first
field of your .msg is "Header header", it will be resolved as std_msgs/Header.

3.1.2.4 Service types

Service descriptions, stored in a.srv files[21], define the request and response data struc-
tures for services in ROS. A service description file consists of a request and a response
msg type, separated by ’—’. Any two .msg files concatenated together with a ’—’ are a
legal service description.

string str
---
string str

3.1.3 Other important ROS concepts
3.1.3.1 Client Library

A ROS client library [22] is a collection of code that eases the job of the ROS programmer.
It takes many of the ROS concepts and makes them accessible via code. In general, these
libraries let you write ROS nodes, publish and subscribe to topics, write and call services,
and use the Parameter Server. Such a library can be implemented in any programming
language, though the current focus is on providing robust C++ and Python support. Main
client libraries are roscpp, rospy and roslisp.

3.1.3.2 Coordinate frames

In a robotic system there are multiple coordinate frames that change in time. Converting
vectors between them correctly is not simple.

tf[23] (and its successor tf2[23] ) is a package that lets the user keep track of multiple
coordinate frames over time. tf maintains the relationship between coordinate frames in
a tree structure buffered in time, and lets the user transform points, vectors, etc between
any two coordinate frames at any desired point in time.

3.1.3.3 Unified Robot Description Format

The Unified Robot Description Format (URDF)[24] is an XML specification to describe
a robot. It is designed to be as general as possible, but obviously the specification cannot
describe all robot. Only tree structures can be represented, ruling out all parallel robots.
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The specification assumes the robot consists of rigid links connected by joints; flexible
elements are not supported. The format can be used to specify the kinematic and dynamic
description of the robot, the visual representation of the robot and the collision model of
the robot.

3.1.3.4 Plugins

The pluginlib[25] package provides tools for writing and dynamically loading plugins using
the ROS build infrastructure. To work, these tools require plugin providers to register their
plugins in the package.xml of their package.

It is a C++ library for loading and unloading plugins from within a ROS package.
Plugins are dynamically loadable classes that are loaded from a runtime library (i.e. shared
object, dynamically linked library).

With pluginlib, one does not have to explicitly link their application against the library
containing the classes – instead pluginlib can open a library containing exported classes at
any point without the application having any prior awareness of the library or the header
file containing the class definition. Plugins are useful for extending/modifying application
behavior without needing the application source code.

3.1.4 ROS Computation Graph
The ROS Computation Graph is a peer-to-peer network of processes (potentially dis-
tributed across machines) that are loosely coupled using the ROS communication infras-
tructure. The basic Computation Graph concepts of ROS are Master, nodes, Parameter
Server, messages, services, topics, and bags, all of them provide data to the Graph in
different ways.

3.1.4.1 Master

The ROS Master[26] acts as a nameservice in the ROS Computation Graph. It stores
topics and services registration information for ROS nodes. Nodes communicate with the
Master to report their registration information. As these nodes communicate with the
Master, they can receive information about other registered nodes and make connections
appropriate. The Master will also make callbacks to these nodes when this registration
information changes, which allows nodes to dynamically create connections as new nodes
are run.

The Master is implemented via XMLRPC[27], which is a stateless, HTTP-based pro-
tocol. XMLRPC was chosen primarily because it is relatively lightweight, does not require
a stateful connection, and has wide availability in a variety of programming languages.
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3.1.4.2 Parameter Server

The parameter server[28] is a shared, multi-variate dictionary that is accessible via net-
work APIs. It runs inside of the ROS Master. Nodes use this server to store and retrieve
parameters at runtime. As it is not designed for high-performance, it is best used for static,
non-binary data such as configuration parameters. It is meant to be globally viewable so
that tools can easily inspect the configuration state of the system and modify if necessary.

The Parameter Server API is also implemented via XMLRPC[27]. The use of XML-
RPC enables easy integration with the ROS client libraries and also provides greater
type flexibility when storing and retrieving data. The Parameter Server can store ba-
sic XML-RPC scalars (32-bit integers, booleans, strings, doubles, iso8601 dates), lists,
and base64-encoded binary data. The Parameter Server can also store dictionaries (i.e.
structs).

3.1.4.3 Nodes

Nodes[29] are processes that perform computation. ROS is designed to be modular at a
fine-grained scale; a robot control system usually comprises many nodes. Nodes are com-
bined together into a graph and communicate with one another using streaming topics,
RPC services, and the Parameter Server. The use of nodes in ROS provides several ben-
efits to the overall system. There is additional fault tolerance as crashes are isolated to
individual nodes. Code complexity is reduced in comparison to monolithic systems. Im-
plementation details are also well hidden as the nodes expose a minimal API to the rest
of the graph and alternate implementations, even in other programming languages, can
easily be substituted.

Every node has a URI, which corresponds to the host:port of the XMLRPC server it is
running[27]. The XMLRPC server is not used to transport topic or service data: instead, it
is used to negotiate connections with other nodes and also communicate with the Master.
This server is created and managed within the ROS client library, but is generally not
visible to the client library user. The XMLRPC server may be bound to any port on the
host where the node is running.

A ROS node is written with the use of a ROS client library, such as roscpp or rospy.

3.1.4.4 Messages

Nodes communicate with each other by publishing messages to topics[30]. A message is a
simple data structure, comprising typed fields. Standard primitive types (integer, floating
point, boolean, etc.) are supported, as arrays of primitive types. Messages can include
arbitrarily nested structures and arrays.

They are defined by .msg files that are simple text files specifying the data structure of
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a message. The ROS Client Libraries implement message generators that translate .msg
files into source code, so the messages are programming language independent.

3.1.4.5 Topics

Messages are routed via a transport system with publish / subscribe semantics[31]. A node
sends out a message by publishing it to a given topic. The topic is a name that is used
to identify the content of the message. A node that is interested in a certain kind of data
will subscribe to the appropriate topic. There may be multiple concurrent publishers and
subscribers for a single topic, and a single node may publish and/or subscribe to multiple
topics. In general, publishers and subscribers are not aware of each others’ existence. The
idea is to decouple the production of information from its consumption. Logically, one can
think of a topic as a strongly typed message bus. Each bus has a name, and anyone can
connect to the bus to send or receive messages as long as they are the right type.

ROS currently supports TCP/IP-based and UDP-based message transport. The
TCP/IP-based transport is known as TCPROS and streams message data over persistent
TCP/IP connections. TCPROS is the default transport used in ROS and is the only
transport that client libraries are required to support. The UDP-based transport, which
is known as UDPROS and is currently only supported in roscpp, separates messages into
UDP packets. UDPROS is a low-latency, lossy transport, so is best suited for tasks like
teleoperation.

For example, the sequence by which two nodes begin exchanging messages is:[27]

1. Publisher node registers with the Master by sending its name, XMLRPC host:port,
topic to publish to and topic type. [XMLRPC]

2. Subscriber node registers with the Master by sending its name, XMLRPC host:port,
topic to subscribe to and topic type. [XMLRPC]

3. Master notices that there is a node that is interested in a topic that has a publisher,
so it sends the XMLRPC address of the publisher to the subscriber. [XMLRPC]

4. The Subscriber sends a connection request to the XMLRPC address of the Publisher,
sending its name, the topic name and a list of supported protocols. [XMLRPC]

5. The Publisher responds with a selected protocol and the address which uses the
negotiated protocol. [XMLRPC]

6. The Subscriber connects to the address using the negotiated protocol.

7. The connection is established, data is sent from the publisher to the subscriber.
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Figure 3.1: The sequence of connection

The Master keeps track of the publishers and subscribers of all topics, so when there
is a new publisher to a topic, it can notify the subscribers of that topic to connect to that
publisher. Also, when there is a new subscriber, it will send all publishers address to it so
it can connect to them all.

Consequently, the order in which the nodes are registered does not matter, simplifying
the startup processes of complicated computation graphs.

3.1.4.6 Services

The publish / subscribe model of topics is a very flexible communication paradigm, but its
many-to-many, one-way transport is not appropriate for request/reply interactions, which
are often required in a distributed system. Request/reply is done via services[32] , which
are defined by a pair of message structures: one for the request and one for the reply.
A providing node offers a service under a name and a client uses the service by sending
the request message and awaiting the reply. ROS client libraries generally present this
interaction to the programmer as if it were a remote procedure call. Services are defined
using .srv files, which like .msg files are compiled into source code by a ROS client library.

3.1.4.7 Actions

In any large ROS based system, there are cases when someone would like to send a request
to a node to perform some task, and also receive a reply to the request. This can currently
be achieved via ROS services. In some cases, however, if the service takes a long time
to execute, the user might want the ability to cancel the request during execution or
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get periodic feedback about how the request is progressing. The actionlib package[33]
provides tools to create servers that execute long-running goals that can be preempted. It
also provides a client interface in order to send requests to the server.

3.1.4.8 Bags

Bags [34] are a format for saving and playing back ROS message data. Bags are an im-
portant mechanism for storing data, such as sensor data, that can be difficult to collect
but is necessary for developing and testing algorithms. Bags are usually created using the
rosbag command-line tool.

3.1.5 ROS Community
There are ROS resources that enable separate communities to exchange software and
knowledge.

3.1.5.1 Distributions

ROS Distributions[35] are collections of versioned stacks that you can install. Distributions
play a similar role to Linux distributions: they make it easier to install a collection of
software, and they also maintain consistent versions across a set of software. There are 4
distributions that are maintained at the time of writing.

Table 3.1: Recent distributions

Distribution Release Date End of Life Date
ROS Melodic Morenia May 23rd, 2018 May, 2023
ROS Lunar Loggerhead May 23rd, 2017 May, 2019
ROS Kinetic Kame May 23rd, 2016 May, 2021
ROS Indigo Igloo July 22nd, 2014 April, 2019

Melodic Morenia and Kinetic Kame are LTS (Long Term Support) distributions, mean-
ing they receive updates for 5 years. Lunar Loggerhead, not being LTS release, is only
updated for 2 years.

3.1.5.2 ROS Wiki

The ROS community Wiki[36] is the main forum for documenting information about ROS.
Anyone can sign up for an account and contribute their own documentation, provide
corrections or updates, write tutorials, and more.
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3.1.6 ROS Names
3.1.6.1 Graph Resource Names

Graph Resource Names[37] provide a hierarchical naming structure that is used for all
resources in a ROS Computation Graph, such as Nodes, Parameters, Topics, and Services.

They are an important mechanism in ROS for providing encapsulation. Each resource
is defined within a namespace, which it may share with many other resources. In gen-
eral, resources can create resources within their namespace and they can access resources
within or above their own namespace. Connections can be made between resources in dis-
tinct namespaces, but this is generally done by integration code above both namespaces.
This encapsulation isolates different portions of the system from accidentally grabbing the
wrong named resource or globally hijacking names.

Names are resolved relatively, so resources do not need to be aware of which namespace
they are in. This simplifies programming as nodes that work together can be written as if
they are all in the top-level namespace.

Any name within a ROS Node can be remapped when the node is launched at the
command-line.

3.1.7 Package Resource Names
Package Resource Names[37] are used in ROS with Filesystem level concepts to simplify
the process of referring to files and data types on disk. Package Resource Names are very
simple: they are just the name of the Package that the resource is in plus the name of the
resource. For example, the name "std_msgs/String" refers to the "String" message type in
the "std_msgs" Package.

3.2 Gazebo
Gazebo[7] is a 3D dynamic simulator with the ability to accurately and efficiently simulate
populations of robots in complex indoor and outdoor environments. While similar to game
engines, Gazebo offers physics simulation at a much higher degree of fidelity, a rich library
of robot models and environments, a suite of sensors, and interfaces for both users and
programs. Gazebo is free and widely used among robotic experts.

Typical uses of Gazebo include: testing robotics algorithms, designing robots, perform-
ing regression testing with realistic scenarios.
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Figure 3.2: Gazebo simulation of an UR5 robot arm

3.3 UR10 Robot arm
The UR10[38] robot arm designed by Universal Robots has 6 degrees of freedom with its 6
rotating joints. Its payload can be up to 10 kg. It has a reach of 1300 mm. It is controlled
by sending text commands to it using a TCP/IP connection. The commands are in a
special script language called URScript[39]. By sending commands you can control the
robot’s Cartesian position, velocity, joint angle and velocity.

3.4 Used ROS packages
To avoid reinventing the wheel, multiple ready made packages were used to create our
setup.

3.4.1 universal_robot package
The universal_robot metapackage[40] contains packages that provide nodes written in
Python for communication with Universal’s industrial robot controllers and URDF models
for various robot arms (UR3, UR5, UR10).

• ur_description: This package contains the model of the robot. The urdf and the
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mesh files are describing the robot links;

• ur_gazebo:This package contains files that aid in starting a robot simulation.

3.4.2 ros_control package
Ros_control [41] is a set of packages defining a set of interfaces, which are designed to
abstract away differences between robot hardware.

Figure 3.3: Overview of ros_control [41]

There are controllers, which provide standard ROS interfaces (topic or service) in order
to allow communication between the robot and other ROS nodes using not robot-specific
topics, and messages. The controllers are not robot specific, but they are using interfaces
that are C++ classes to read and write. These interfaces represent hardware elements
(e.g., VelocityJointInterface that can represent a joint that can be controlled by using
velocity commands). The interfaces are basically shared memory where command can be
written to and state can be read from.

The controllers for example can use PID controllers to control the interfaces, that
way they can for example receive position commands from a topic, and through a PID
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controller it can control a VelocityJointInterface.
The controller can also read from the interface, so it can publish information about

the hardware represented by the interface (e.g., joint state, torque information).
The interfaces are implemented in a hardware specific driver extending hard-

ware_interface::RobotHW, that takes care of communicating with the robot using its
hardware specific communication method (serial, Modbus, Ethernet, USB).

The controllers and drivers are implemented using the pluginlib package to make them
dynamically loaded.

3.4.2.1 joint_state_controller/JointStateController

This is a controller that reads state data (joint angles, velocities, efforts) from JointStateIn-
terfaces, and publishes them in sensor_msgs/JointState messages to the /joint_state
topic.

3.4.2.2 velocity_controllers/JointTrajectoryController

It is a controller for executing joint-space trajectories on a group of joints. Trajectories are
specified as a set of waypoints to be reached at specific time instants, which the controller
attempts to execute as well as the mechanism allows. Waypoints consist of positions, and
optionally velocities and accelerations.

3.4.3 gazebo_ros_pkgs package
gazebo_ros_pkgs[42] is a set of ROS packages that provide the necessary interfaces to
simulate a robot in the Gazebo 3D rigid body simulator for robots. The package integrates
with ROS using ROS messages, services and dynamic reconfigure.

It contains a converter that converts URDF into SDF which is the world description
language that Gazebo uses. This way there is no need to maintain two sets of models.

gazebo_ros_pkgs package

gazebo_ros_pkgs also contains the gazebo_ros_control_package which is a ROS package
for integrating the ros_control controller architecture with the Gazebo simulator.

It provides a Gazebo plugin which instantiates a ros_control controller manager and
connects it to a Gazebo model. The Gazebo plugin also loads in the DefaultRobotH-
WSim plugin through pluginlib which creates the hardware_interfaces (position, velocity
or effort) for each joint as defined in the loaded URDF.
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3.4.4 xacro package
The xacro package[43] is most useful when working with large XML documents such as
URDFs. Xacro is an XML macro language. With xacro, you can construct shorter and
more readable XML files by using macros that expand to larger XML expressions.

3.4.5 roslaunch package
roslaunch[44] is a tool for easily launching multiple ROS nodes locally and remotely via
SSH, as well as setting parameters on the Parameter Server. It includes options to auto-
matically respawn processes that have already died. roslaunch takes in one or more XML
configuration files (with the .launch extension) that specify the parameters to set and
nodes to launch, it is also possible to upload configurations to the Parameter Server from
YAML files.

3.4.6 ariac package
The ariac package contains the simulation environment and the GEAR interface [45].
GEAR provides a ROS interface to control all available actuators, read sensor information
and send/receive notifications.

3.4.7 hebiros package
The hebiros package [46] is an API provided by Hebi Robotics as source code that can be
compiled into a node in a catkin workspace. The package contains the hebiros node and
several example nodes to demonstrate the use of the API. The hebiros node is responsible
for controlling modules and for creating and maintaining communication. The examples
show how to:

• identify robot modules on the network,

• receive feedback from the modules,

• send commands to the robot,

• execute trajectories,

• simulate the robot arm with Gazebo[7],

• integrate and visualize trajectory planning with MoveIt[47].
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Chapter 4

Implementation

4.1 Implementation of a modular robotic archi-
tecture

In this section we provide a brief description of the solutions we have adopted in order
to implement a modular architecture. We follow the division as [13] uses to divide the
architecture of a modular system.

4.1.1 Actuator modules
We used the X-Series Actuators [48] (see Figure 4.1) of Hebi Robotics, which are ’smart’
series-elastic actuators that integrate a brushless motor, geartrain, spring, encoders, and
control electronics into a compact package that run on standard DC voltages.

Figure 4.1: Hebi Robotics’ X-Series Actuators
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4.1.2 Connection mechanism
Hebi Robotics connects the actuators to other building blocks with bolts. Our connection
mechanism is able to join two modules mechanically in a few seconds. This solution is
explained in more details in the 4.4 chapter.

4.1.3 Energy
In this work, we aim to design a fully autonomous and flexible modular architecture,
without the need for any wire or tether, which would limit the resulting robots’ motions
and their independence.

However the real world modules run on DC voltages between 24V-48V. The actuators
can operate from external power supply, battery, or Power over Ethernet (PoE). The
internal electronics of the modules are designed to control and automatically scale motor
control parameters as the bus voltage changes.

4.1.4 Sensors
All of the actuators contain specific sensors to measure the position as well as an accelero-
meter to provide their spatial orientation. The modules send feedback on their status,
e.g.:

• the amount of current draw of the motor of an actuator,

• sensed position,

• sensed velocity,

• sensed force or torque.

4.1.5 Communications
The X-Series Actuators run firmware that allow them to communicate over a standard
10/100Mbps Ethernet connection. In our solution we communicate using ROS topics over
TCP.

4.1.6 Control
Hebi actuator modules can be controlled by using position, velocity, and effort. Typically,
the best performance can be achieved by coordinating and controlling a combination of
commanded positions, velocities, and effort. To combine these control inputs, PID control
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loops are used on position, velocity, and effort. These controllers can be cascaded and
combined in different preset configurations.

A controller was made by Hebi Robotics that can be used for simulation purposes, but
it was not suitable for our modular approach, therefore we have revised it according to
our needs. For more information, see chapter 4.2.

4.2 Controller for our modular approach
In order to control the modular robot, we created a controller that is capable of controlling
the servos of the robot arm without pre-assigning the number of elements to control. Hebi
Robotics’ solution was not suitable for our modular approach because the degree of freedom
of the modular robot arm is not constant, therefore the number of servos to be controlled
is not constant either.

We created a control interface that processes the received commands and sends position
command to the right servo. At he beginning of the simulation when the models spawn a
hebiros node is created for each servo. The original code contained one hebiros node that
controls all servos. Our hebiros node is responsible for controlling only one servo. Each
servo is controlled by a proportional-integral-derivative (PID) controller.

Figure 4.2: A hebiros node from the system, the oval circle denotes the nodes,
and the rectangles are the topics

The controlling interface called "gazebo_controller_node" receives the number of ser-
vos from the parameter server. With this solution, the control system is independent of
the number of servos in the simulation. It is not self-evident what element in the control
vector represents which module. The developer is responsible to provide the correct com-
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mand to the right servo through the control interface. The 4.2 figure shows which topics
are connected to the hebiros node and the controller interface.

It is possible to send position commands by command-line interfaces or programmati-
cally. Command-line example:
rostopic pub / hebiros / commands /mine hebiros_6dof_ariac / ServoCommandMsg ’[.NAN , .NAN

↪→ , .NAN , .NAN ,NAN , .NAN , .NAN , .NAN , .NAN ]’ ’3’

If NaN value is sent then the servo status remains unchanged. It is important that the
input vector has the same size as the number of servos in the simulation. The unit of
values of the vector is radian and the last value is second. The last value determines how
much time the controller gets to set to the specified position. The possible values are not
limited because the servos can turn around more than once.

4.3 Hints to identify our contribution
In order to use the Hebi Robotics components in the ARIAC environment, the contents of
the hebiros package had to be modified to serve only one module. The name of the module
is given at the beginning of the simulation. Thus, each module has a unique identifier so
every module can communicate on separate topics. We had to create one unified control
interface to send commands to all modules.

Figure 4.2 shows the topics for the modules. It can be seen that the beginning of
each topic is the same as the module name. Figure 4.3 shows only the ROS nodes and
the connection between them. The modules and the control interface were highlighted
with green. Table 4.1 presents which files had to be created or modified in the ARIAC and
hebiros packages. ur_action and hebi_action files are mainly motion control functions, but
include service calls as well as callback functions. The scheduler organizes coordination
between the two robots.
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Figure 4.3: System overview
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Table 4.1: A brief summary of the files that are needed to be written or modified

File name Number of lines /
added lines Package Programming

language
hebiros_node 54/1 hebiros_package cpp
hebiros_actions 117/10 hebiros_package cpp
hebiros_clients 60/4 hebiros_package cpp
hebiros_parameters 92/12 hebiros_package cpp
hebiros_publishers 57/4 hebiros_package cpp
hebiros_publishers_gazebo 20/1 hebiros_package cpp
hebiros_services 154/3 hebiros_package cpp
hebiros_services_gazebo 165/10 hebiros_package cpp
hebiros_subscriber_gazebo 61/3 hebiros_package cpp
hebiros_gazebo_controller 441/14 hebiros_package cpp
hebiros_gazebo_group 93/6 hebiros_package cpp
hebiros_gazebo_joint 24/3 hebiros_package cpp
hebiros_gazebo_plugin 198/15 hebiros package cpp
hebiros_gazebo_controller_node 254/254 hebiros package cpp
ur_actions 1613/1613 ariac_package python
scheduler 164/164 ariac_package python
hebi_actions 141/141 ariac_package python

4.4 Attaching the parts with vacuum grippers
A simulated pneumatic gripper was attached to each robotic part. These can be remotely
controlled by ROS services. An object will be attached to the gripper if they are mak-
ing contact. The gripper regularly publishes its status. The published message contains
whether the suction is enabled or disabled or whether there is an object attached to the
gripper. For example:

$ rostopic echo / hebi_servo_1 / gripper / state
enabled : False
attached : False
---

The idea of using vacuum grippers for binding object together originates from the 2018
Agile Robotics for Industrial Automation Competition (ARIAC) where the same gripper
was attached to the end effector of the UR10[38] robot arm.

4.5 Issues with the servos
In the simulation, we have noticed that the servos get infinite acceleration from even little
forces, for example from falling from a low altitude. This issue is related to the inertia
of the models. We assumed that the given values are correct and by increasing the mass,
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the inertia will change in a direct proportion. However we have increased the mass of the
servos the issue was still persisted.

The inertia tensor encodes both the mass and the distribution of mass, so it does depend
on the mass of the object and also where it is located. Each tensor is defined relative to a
coordinate frame or set of axes. Determining the correct values can be performed by using
CAD software that includes this feature or manually for simple objects. It is required to
have a good approximation for these values to get an accurate simulation in Gazebo.

We assumed that the servos are homogeneous bodies and the shape is proximate to a
cuboid. This is not a drastic simplification because, except for the part where Ethernet
cables can be connected, the servos are shaped like a cuboid. Calculating the inertia tensor
for a 4.4 cuboid is quite simple by the 4.1 formula.

I =


1
12m(h2 + d2) 0 0

0 1
12m(w2 + d2) 0

0 0 1
12m(w2 + h2)

 (4.1)

Figure 4.4: Solid cuboid of width w, height h, depth d, and mass m

4.6 Real time factor optimization
Real time factor (RTF) is the ratio of simulation time to real time. It is important to
keep this number as high as possible otherwise the simulations will last much longer. This
factor can be increased by simplifying the environment or using a better computer. Our
problem was that high number of robot parts significantly reduced the RTF when there
was no change in the environment. The reason is that the collision and visual model are
the same in the URDF[24] file.

We need to reduce its geometric complexity, creating a geometry with the same shape
but with less triangles (or points). For this purpose we used MeshLab [49] which is an
open source software for 3D triangular mesh editing. In Meshlab one can choose from
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many simplification algorithms. We used Quadric Edge Collapse Decimation which is able
to preserve the boundary and normal of a 3D mesh. We significantly reduced the face
number of our models. We simplified a 2.5 MB file 4.5a to a 45.5 kB (see 4.5c) which is
one-sixtieth of the original file. This method was able to improve the real time factor by
0.18.

(a) Original model (b) Original model in wireframe view

(c) Simplified model (d) Simplified model in wireframe view

Figure 4.5: The images show that the detail-rich model was simplified to the
unrecognizability

An example of models before and after simplification is shown in the figure 4.5. Another
way to improve the RTF is to simplify the complexity of our system. Instead of creating
a separate interface for each servo controller, one can combine the interfaces to achieve a
better performance.
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Chapter 5

Results and evaluation

5.1 Building a modular robotic arm
Our first goal is to build a robot arm which has at least 4 degrees of freedom. We placed a
base with vacuum gripper on which the assembly will take place. The parts spawn in the
yellow storage bins at the beginning of the simulation. To prevent the components from
slipping, the parts are placed on the lower edge of the containers. By this method we can
guarantee that the parts will always be in the same place in the simulation.

To ensure that the modular robots perform closest to the industrial grade counterparts
we rely the self-reconfiguration task on a regular industrial robotic arm. Its existence is
considered as a baseline in the ARIAC 2018 cell. It can ensure that the assembly of the
robotic modules with the links are accurate. Still there can be accuracy issues which cannot
be addressed solely by the application of the industrial robotic arm, for example eccentric
assembly of the links on the vacuum gripper due to the one-fit-for-all parameterized PID
controllers, but we intend to deal with those in the further work.

The robot arm is made up of three types of components: servo, bracket and tube. The
parts are moved by the UR10 robot arm.

Figure 5.1: Robotic parts are all equipped with a vacuum gripper
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The assembly can be divided into three main steps:

1. the robot arm moves to the right storage bin,

2. it picks up the robotic part,

3. it attaches the component to the robot arm.

Each operation requires a unique movement, but these movements can be split into smaller
elementary operations, for example: move to a yellow storage container, go above the parts
or go out of the container. The control code[45] for the UR10 robot arm is provided by Open

Figure 5.2: The finished 5 DOF robot arm
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Source Robotics Foundation (OSRF) in the 2018 Agile Robotics for Industrial Automation
Competition (ARIAC). The controller of the UR10 is subscribed to a topic that can be used
to control all of the joints of the robot arm. Desired position, velocity acceleration and/or
effort for each joint can be sent to this topic using the trajectory_msgs/JointTrajectory
message type. The controller sets the specified values.

std_msgs / Header header
string [] joint_names
trajectory_msgs / JointTrajectoryPoint [] points

Rqt’s Joint Trajectory controller is a graphical user interface for controlling the UR10
robot arm. We used it to design and test trajectories. This interface is shown in Figure
5.3.

Figure 5.3: This is the graphical user interface for executing joint-space tra-
jectories on a group of joints

One can manually set the value for each joint and the speed of the action execution.
This is a very useful tool for testing and developing. If we know the desired joint states
from the graphical interface, it is also possible to set these value programmatically. We
divided a function to more atomic movements, for example picking up a part that we can
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reuse for other parts as well.
It is also necessary to control the servos while assembling the modular robot arm,

otherwise the two elements will be unevenly connected. In some cases the UR10 robot
arm would not have access to the element to which it should be attached. Thanks to
the vacuum grippers topic one can check when the two parts are in contact. This could
be useful when the robot arm is fixed in order to keep the attached part in the proper
position.

The completed robot arm has 5 degrees of freedom. Every joint of the modular robot
arm can rotate without restrictions. The assembled robot arm is depicted in the figure 5.2.

5.2 Demonstrating the capabilities of the robot
arm

Although the completed robot arm demonstrates modularity in itself, it does not present
the possibilities that it can achieve. We came up with a few tasks that can be performed
with the modular robot arm.

5.2.1 Lift the box
The first task is that a robot arm should be able to pick an object. Next to the modular
robotic arm, there is a conveyor belt that can be controlled by service calls. Activating the
conveyor belt, the shipping box on it can be moved to the robot, which will be lifted and
thrown away. It is worth to observe that once the vacuum gripper releases the box, the
robot arm swings in the opposite direction. This can be explained by that it takes time
for the controller of the modules to adjust the correct torque to the current load. This
operation is shown in the figure 5.4.

(a) The beginning of the action (b) The end of the action before release

Figure 5.4: Demonstrating that the modular robot arm can lift and throw ob-
jects
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Figure 5.5: Angular velocity in X-,Y-,Z-direction of the wrist module of the
modular robot arm after releasing the shipping box

The Figure 5.5 shows the speed of the module at the end of the robot arm at its x-,
y-, z-direction. It is shown in the figure what happens when the robot arm releases the
shipping box. The last module of the robot arm swings in the Y-direction. The robot arm
slowly controls itself back into the initial state, which requires a considerable amount of
time because all modules have their own controller that does not take into account the
effects of the other controllers.

5.2.2 Step
The modular robot arm is not permanently attached to a static base. It is possible that
another robot arm or even itself will change its position. We have created a stepping
feature. From the point where the assembly took place, the robot arm steps to another
platform. This simple example demonstrates that the movement of the robot arm is not
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limited and there are many opportunities to take advantage of by moving the arm. This
action is shown in the figure 5.4.

(a) (b) (c)

Figure 5.6: Demonstrating that the modular robot arm can change its position
without external intervention

5.2.3 Alternative use case of the robot parts
One of the most important features of the servos is that it can rotate without restriction.
This can be exploited to rotate the wheel of a car. Naturally, this is a very schematic model,
not a real car, but it is good for example to demonstrate the modularity and reusability
of the modular robotic parts.

To create the car we had to modify the URDF files of the servos. The vacuum gripper
is moved to the other side of the servo and the cylinder is rotated not the vacuum gripper.
In order to smoothly rotate the wheel its inertia matrix 5.1 had to be determined. For a
cylindrical body (see Figure 5.7) this can be calculated by hand.

I =


1
12m(3r2 + h2) 0 0

0 1
12m(3r2 + h2) 0

0 0 1
2mr2

 (5.1)
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Figure 5.7: Solid cylinder of radius r, height h and mass m

The base of the car is a cuboid with a vacuum gripper on top. The purpose of the
gripper is to allow the car to carry equipment or another robot. The car’s assembly consists
of two steps:

1. the UR10 robot arm takes the body of the car to the assembly site

2. it attaches the wheels to the base of the car

After assembly, the UR10 robot arm moves the modular robot arm to the car (see
Figure 5.8a). The robot arm exerts a greater torque on the UR10 that it could compensate.
This will result that we have to wait for each movement of the robot arm to move to the
correct position. After the robot arm is attached to the car, the UR10 moves them onto
the conveyor belt (see Figure 5.8b) where the car can move freely (see Figure 5.8c).

(a) (b) (c)

Figure 5.8: The demonstration of what else can be assembled from the robot
components.
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Chapter 6

Conclusion and further work

Conclusion
This work presents a possible approach to modular robotics that can be used in industrial
environments. We used robotic parts provided by Hebi Robotics to implement a modular
robotic architecture. The parts are gathered with an UR10 robot arm and a simulated
pneumatic gripper was attached to each robotic part to join two modules mechanically.
Hebi Robotics’ solution is not suitable for our modular approach as the degree of freedom
of the modular robot arm is not constant, therefore the number of servos to be controlled
is not constant either. In order to control the modular robot, we created a controller that
is capable of controlling the servos of the robot arm without pre-assigning the number of
elements to control.

Our first goal was to build a robot arm which could be applied in an industrial en-
vironment. The completed robot arm is capable of reconfiguration in a task specific way.
Every joint of the modular robot arm can rotate without restrictions, thus the robot arm
is able to move in a much larger state space than a conventional robot arm. Although the
robot arm demonstrates modularity in itself, it does not present the possibilities that it
can achieve. We came up with a few tasks that can be performed with the modular robot
arm. It was tested for simple operations such as manipulation, walking or transportation.
The results demonstrate the success of our modular architecture to execute similar task
like the conventional robots, combined with the flexibility to reconfigure itself to another
task.
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Further work
As a next step we would like to perform quantitative measurements to check if any im-
provement of the ARIAC KPIs is feasible with the modular robotic arms. To achieve this
we have to achieve that the same ARIAC tasks are solved with the modular robotics
approach. That needs a lot of study and work including robotic planning, actuation in
Cartesian space and interfacing with various parts of ROS.

Another direction is the issue with accuracy and repeatability. While the servos provide
industrial grade accuracy, the assembly inaccuracies of the robot arm can lead to inaccurate
pick and place actions. This issue can be addressed during the fine tuning of the assembly
task and the fine tuning of the arm movement of the misassembled arm as well. Techniques
with learning the inverse kinematics of robotic arms are widely applied nowadays e.g., [50,
51].
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