
A System for Increasing Con�dence in
Digital Signatures

Authors

Dorottya Papp, Balázs Kócsó, Bálint Molnár,
Milán Unicsovics

Supervisors

Dr. Levente Buttyán, Dr. Tamás Holczer

October 22, 2014

Contents

1 Introduction 2

2 State-of-the-Art 5

2.1 EFF SSL Observatory . 5
2.2 ICSI Certi�cate Notary . 6
2.3 EFF Sovereign Keys . 7
2.4 Perspectives . 7
2.5 Convergence . 8
2.6 Google Certi�cate Transparency . 9

3 Architecture 11

3.1 Data Collection . 12
3.1.1 Crawlers . 12
3.1.2 Downloading . 13

3.2 Data Processing . 15
3.2.1 Public keys and Certi�cates . 19
3.2.2 Portable Executables . 22
3.2.3 Java Archives and Android Packages 24

3.3 Data Storage . 27
3.3.1 Metadata . 27
3.3.2 Big Data . 29

3.4 Alert System . 31
3.4.1 Simple Alerts . 32
3.4.2 Signing Key Usage Alerts . 32

3.5 User Interface . 33
3.5.1 Upload . 34
3.5.2 Search . 34
3.5.3 Alerts . 36

4 Case Study 39

4.1 Duqu . 41
4.2 Flame . 41

5 Conclusion and Future Work 43

Bibliography 46

1

1. Introduction

Recent targeted malware attacks, e.g., Stuxnet, Duqu, and Flame, used digitally signed
components that appeared to originate from legitimate software makers. In case of
Stuxnet and Duqu, the private code signing keys of legitimate companies were suspected
to be compromised and used by the attackers. In case of Flame, the attackers generated
a fake certi�cate that appeared to be a valid code signing certi�cate issued by Microsoft,
and used the corresponding private key to sign their malware [4]. This actually allowed
Flame to masquerade as a Windows Update Proxy, and to infect computers on a local
network by exploiting the automatic update procedure of Windows.

The purpose of code signing is to ensure the authenticity and integrity of software
packages, however, ultimately the e�ectiveness of code signing as a security mechanism
also depends on the security of the underlying Public Key Infrastructure (PKI). As the
examples above show, attackers have already started to exploit weaknesses in the PKI
system supporting code signing, and we expect that this trend will become stronger. The
reason is that new versions of Windows (and other platforms as well) require software to be
signed, otherwise, they ask for a con�rmation of the user before the software is installed.
Hence, attackers can bene�t from signing their malware, as it allows for stealthy infection
of victim systems.

Consequently, there is an urgent need to strengthen the PKI which code signing relies
on. The di�culty is that this infrastructure is global, involving many participants in
di�erent countries (e.g., di�erent CAs and software makers), and a multitude of procedures
and practices. It is di�cult to enforce common rules in such an environment and meet the
same standards across the entire system. Also, the evolution of the system is uncontrolled,
often governed by major, powerful stakeholders, and this can lead to suboptimal solutions
(e.g., hundreds of root certi�cates that are all implicitly trusted by the users). Changing
the entire system overnight is not feasible, and thus, one needs a solution that can be
gradually deployed. In addition, given its size and complexity, making the entire PKI
system 100% secure is illusionary, and one should rather adopt a best e�ort approach
that raises the bar for the attackers even if attacks cannot be completely eliminated.

Motivated by the Stuxnet, Duqu, and Flame cases, the speci�c problem that we ad-
dress in our project is that standard signature veri�cation procedures used in today's PKI
systems do not allow for detecting key compromise and fake certi�cates. Therefore, the
objective of the project is to augment the standard signature veri�cation work�ow with
checking of reputation information on signers and signed objects.

For this purpose, we decided

� to build a data collection framework for signed software and code signing certi�cates,

� to build a data repository that can handle large amount of signed objects e�ciently,
and that supports a �exible query interface,

2

1. INTRODUCTION ROSCO

� to use the repository for providing reputation information for signed objects, such
as when a given signed object has been �rst seen and how often it was looked up
by users,

� to provide alert services for private key owners that help them detecting when their
signing keys were illegitimately used, and hence, probably compromised.

Our system, called Repository of Signed Code (ROSCO), does not aim at replacing
the entire code signing infrastructure. Rather, in accordance with the best e�ort principle
and the requirement of gradual deployment, ROSCO complements existing PKI functions
with useful services that can be used by di�erent participants to increase their con�dence
in the legitimacy of signed code. In particular, ROSCO provides the following advantages
to the di�erent participants:

� For software makers, the weaknesses of the code signing procedure undermine the
trust in their code. An independent repository of signed code and accompanying cer-
ti�cates enables software makers to maintain trust in their code. More importantly,
such a repository can be used to detect the malicious use of a software maker's
signing key. This early detection capability is a unique property of such a global
repository and cannot be achieved using the traditional PKI.

� For software platform operators, such as operating system providers and global
software service providers, the repository is an indispensable source of information
about the trustworthiness of installed code. As mentioned earlier, recent versions of
Microsoft Windows, for example, require valid signatures for seamless installation
of software packages. Cross-checking the code signing certi�cate, and thus, the
integrity of the software code in our certi�cate repository is a major step ahead in
protecting the integrity of the Windows operating system.

� For end users, the bene�ts are obvious: our repository serves them when they have
to decide about the trustworthiness of a to-be-installed code.

� The code signing repository could be an invaluable source of information for security
companies too. Based on the collected information, they can detect malicious cam-
paigns and trends in signing malicious code. This repository could nicely integrate
with many of the security o�ering available on the market.

� Finally, regulators and other authorities �nd an inherent value in making software
more trustworthy. Similar to security companies, authorities can derive longitudinal
statistics about malicious code and use it as an input when de�ning global defense
strategies and coordination mechanisms.

Finally, we should mention again that the repository complements the existing code
signing infrastructure, and there's no requirement whatsoever to change the operating
principles of participants that do not want to use it. This opt-in approach allows for the
possibility of gradual deployment. We expect, however, that as the size of our repository
grows, the services that we can provide become more useful, and this will attract more
participants to use our system. So potentially, the adoption cycle can be fast, and many
participants can bene�t from the strengthened code signing infrastructure in a short time.

The organization of our paper is the following: in Section 2 we will give a short review
on the state of the art. In Section 3 we will discuss the architecture of the repository. We

3

1. INTRODUCTION ROSCO

will show possible ways of data gathering and processing and how to store the processed
�le. We will also give a review on the part of the system responsible for sending noti�cation
and on how to interact with the repository in Sections 3.4 and 3.5. To present the real
life strength of the repository, we also included two case studies of the infamous pieces
of malware Duqu and Flame in Section 4. We will discuss how our system would have
helped in their detection.

4

2. State-of-the-Art

In this chapter, we will give a short overview of previous analysis, projects and results
regarding digital certi�cates and their primal usage: proving authenticity. These works
have di�erent aims and goals such as shedding light on the inconsistencies of the Certi�ca-
tion Authority (CA) system, mitigating Man-in-the-Middle attacks and detecting stolen
or malicious certi�cates.

Firstly, projects focusing on analysis and providing data will be discussed: Section
2.1 discusses SSL Observatory by Electronic Frontier Foundation and Section 2.2 reviews
the ICSI Certi�cate Notary by University of California, Berkeley. Following the results
of these projects is a proposal by Electronic Frontier Foundation for a structural change
in web authentication in Section 2.3: Sovereign Keys. Sections 2.4 and 2.5 discusses two
projects whose implementation would replace the CA system, mitigate Man-in-the-Middle
attacks and improve Trust-on-�rst-use authentication. At last, Section 2.6 reviews the
Google Certi�cate Transparency. At the end of each section, we give a short comparison
of the discussed project and our work, ROSCO.

2.1 EFF SSL Observatory

Electronic Frontier Foundation (EFF) launched the project SSL Observatory to document
CA behavior and search for vulnerabilities connected to digital certi�cates. To achieve
this goal, EFF needed to collect certi�cates and build a large database to analyze the
collected data. [8]

To collect certi�cates, IP address on TCP port 443 was contacted. If a server answered,
the SSL Handshake protocol was run without the key agreement part. This resulted in a
large number of network packages with SSL certi�cates inside them.

The collected certi�cates were stored in a MySQL database and were analyzed thor-
oughly for inconsistencies. The built data set was also made public and could be down-
loaded for a time from the website of EFF. While the links pointing to torrents are
functioning at the time of write, the available torrents cannot connect to any peers to get
the data anymore.

Table 2.1 shows similarities and di�erencies between SSL Observatory and our project,
ROSCO. Both projects work with digital certi�cates, however, ROSCO not only focuses
on certi�cates involved in SSL communications but on certi�cates used for code signing
and accepts user submission as well. Furthermore, our work is not limited to digital
certi�cates and stores information about signed code as well. One of the aims of SSL
Observatory was to analyze the collected data. ROSCO has no such goal, we wish to
provide information for researchers, end users and to notify organizations.

5

2. STATE-OF-THE-ART ROSCO

SSL Observatory ROSCO

Sources SSL communications
SSL scans of the Internet, digi-
tally signed code, user submis-
sion

Information
about

Certi�cates
Certi�cates and digitally
signed code

Analysis 3 7

Table 2.1: Comparison of SSL Observatory and ROSCO

2.2 ICSI Certi�cate Notary

The International Computer Science Institute (ICSI) of University of California, Berkeley
started their Certi�cate Notary in April 2012. The aim is to help their clients to identify
malicious certi�cates by providing a third-party perspective on what they should expect.
[27]

While similar to the SSL Observatory of EFF (reviewed in Section 2.1), ICSI Cer-
ti�cate Notary collects passively from live upstream tra�c. As of July 31, 2014, more
than 2 million certi�cates are stored in their database. Using the collected certi�cates,
ICSI also built the Tree of Trust to visualize connections between root and intermediate
Certi�cation Authorities.

To collect the certi�cates, ten organizations agreed to instrument their border gateways
with a monitoring infrastructure based on the open-source Bro network monitor. The
monitoring infrastructure inspects outgoing connections to extract SSL certi�cates into
Bro logs. Logs are sent to ICSI and are stored in a database in an internal network. A
text zone �le is generated based on the database in DNSBL format and transferred to the
externally visible Demilitarized Zone.

Clients wishing to query the database are able connect to the notary via a public DNS
interface. The DNS service operates in two modes which employ A and TXT records. In
both modes, the NXDOMAIN answer indicates that the certi�cate has not been encoun-
tered yet. In A mode, if the answer is 127.0.0.1, then the certi�cate has been seen, while
the answer of 127.0.0.2 means that a valid chain can be constructed to a root certi�cate
from the Mozilla root store. In TXT mode, the notary replies with details in form of
space separated key-value pairs. Details include when the certi�cate was �rst and last
seen, how many times the certi�cate was encountered and whether the certi�cate has been
validated.

ICSI also logs notary accesses for statistical purposes. To provide anonymity, only the
IP address of the resolver is seen but not the querier. If users wish to mask their locations,
they can switch to public DNS services.

The notary has an auxiliary interface to the now defunct Google Certi�cate Catalogue.
ICSI Certi�cate Notary and ROSCO are very similar in a sense that both are notaries.

However, while ICSI Certi�cate Notary provides information and meta data about cer-
ti�cates only, ROSCO augments this concept with signed code. Just like the Certi�cate
Notary, ROSCO implements the Tree of Trust through veri�cation and extends it with
signed code. Not only relations between certi�cates but between certi�cates and digital
signatures on �les are visualized as well. These di�erences are shown on Table 2.2.

6

2. STATE-OF-THE-ART ROSCO

ICSI Certi�cate Notary ROSCO

Sources Live upstream
SSL scans of the Internet,
digitally signed code, user
submission

Collection Passive Passive and active
Information
about

Certi�cates
Certi�cates and digitally
signed code

Metadata pro-
vided

Date of �rst and last en-
counter, number of times of
encounter, validation

Date of �rst encounter,
count of views, date of
last view, count of explicit
searches, date of last search

Tree of Trust 3 3(extended)

Table 2.2: Comparison of ICSI Certi�cate Notary and ROSCO

2.3 EFF Sovereign Keys

Sovereign Keys by Electronic Frontier Foundation is a proposal to �x structural insecu-
rities. The design would allow clients and servers to use cryptographic protocols without
having to depend on any third parties. It would also remove certi�cate warnings. [19]

The proposal provides an optional and very secure way of associating domain names
with public keys. In the design, Sovereign Keys are created by writing to a semi-
centralized, veri�ably append-only data structure. The requesting party has to control
a CA-signed certi�cate for the relevant domain, or has to use a DNSSEC-signed key to
prove their control of that domain.

Master copies of the append-only data structure are kept on machines called timeline
servers. As a result, Sovereign Keys are preserved as long as at least one server has
remained good. For scalability, veri�cation and privacy purposes, lots of copies of the
entire append-only timeline structure are stored on machines called mirrors.

Clients learn about Sovereign Keys by sending (encrypted) queries to mirrors. Once a
client knows a Sovereign Key for a domain, that fact can be cached for a very long time,
with only occasional queries to check for revocations.

Sovereign Keys and ROSCO are fundamentally di�erent. While the former aims for
a structural change, the goal of the latter is to aggregate information about signed code
and hasten the detection of misuse.

2.4 Perspectives

The Computer Science Department at Carnegie Mellon University started the Perspectives
Project as a new approach to secure communications on the Internet. It gives users the
ability to choose a group they trust, plus it improves on the basic Trust-on-�rst-use (Tofu)
authentication. [6]

The �rst requirement of Perspectives is to have public notary servers that regularly
monitor SSL certi�cates. Each network notary server is connected to the Internet and
builds a public history of SSL certi�cates used by each website. The design has a de-
centralized model so anyone can run one or more network notary servers. Notaries exist
independently of both clients and servers. As a result, no structural changes are needed.

7

2. STATE-OF-THE-ART ROSCO

The design also calls for Notary Authorities. These organizations have to determine
which machines are legitimate notary servers and publish the public keys of these notaries
via out-of-band communication channels. Notary Authorities must also distribute a list
about legitimate notary servers as this is only way users can learn about notaries.

Users can choose which group(s) of network notaries they trust. Instead of using the
CA system to validate a certi�cate, the browser checks the consistency of certi�cates
observed by network notaries over time. If network notaries are spread around the world,
this approach gives the 'network perspective' of a server, making the execution of Man-
in-the-Middle attacks signi�cantly harder.

While the project does improve Trust-on-�rst-use authentication, it has some short-
comings. One structural problem is related to privacy: by contacting a notary each time
the user wishes to access a site, the client is leaking browsing history. Another problem is
known as the 'notary lag': if a site changes certi�cates between probings, the result will
be invalid until a next pull. A third short-coming is that the design works for only the
initial connection and does not work for anything in the background e.g. JavaScript.

Perspectives and ROSCO have not many things in common because both aims and
solutions di�er. Perspectives builds a history of public keys and connects them to a
website. This enables the elimination of self-signed certi�cate warnings and mitigation
of Man-in-the-Middle attacks while improving Tofu authentication. ROSCO does not
connect certi�cates and public keys to websites but to signed code. While the meta
data provided for each piece of code may help users to determine the trustworthiness
of previously unseen applications, the main goals is to provide research data and help
organizations keep track of what they sign.

2.5 Convergence

When Perspectives was published, the creators also included an implementation. Moxie
Marlinspike used this implementation to further improve Perspectives and called his
project Convergence. His aim was to implement trust agility: not only could individ-
ual users decide where to anchor their trust, they also revise their trust decision any time.
He also created a new protocol and a new client-server implementation for Perspectives.
[16]

The �rst improvement was to cease notary lag. With Convergence, when the user
requests consistency check for a website, they also supply the certi�cate they have seen
for that website. The notary does not need periodical probing this way. Instead when a
user contacts the notary with a certi�cate, the notary contacts the website and checks its
certi�cate. If the two match, the answer is positive, otherwise negative.

The second was the privacy problem mentioned before. The �rst part of the solution
is local caching. When a notary gives a positive answer, that certi�cate can be cached for
some time. The next time the user connects to the same website, the cache can be used to
check consistency. The only time the notary should be contacted is when a certi�cate �rst
appears or a site changed certi�cates. The second part of the solution is notary bounce:
one trusted notary acts as a proxy to all the other notaries. The chosen proxy knows who
asks but not about which site, while the notaries know which site they have to check but
not for whom.

Convergence was designed to be extensible. For this reason, both the client and the
notary implementations were changed. Notaries are contacted through a REST API and
the notary may work in any way its deploying organization wishes. It may use DNSSEC,

8

2. STATE-OF-THE-ART ROSCO

verify CA signatures, etc. On the client side, the user can con�gure the trust threshold:
an answer is accepted if the minority/majority of the notaries agree, or if the notaries are
in consensus.

However, Convergence is not without problems either. The most immediate problem
is called the 'Citibank problem'. Citibank has a large number of certi�cates and each time
a connection is made to one of its servers, the server replies with a di�erent certi�cate
with high probability. This case is identical to the Man-in-the-Middle attack and results
in a false positive alert in the browser. Another serious problem is connected to captive
portals. At hotels or airports, clients cannot connect to the Internet until they provide
some sensible data. But users would not provide the data without their notaries out on
the Internet. This problem may be solved by implementing Convergence upon the DNS
level as captive portals usually let DNS queries through.

As Convergence builds upon Perspectives, it is even more alien from ROSCO than
Perspectives. All the di�erences mentioned at the end of Section 2.4 between Perspectives
and ROSCO hold here as well.

2.6 Google Certi�cate Transparency

Google launched the Certi�cate Transparency project to provide an open framework for
monitoring and auditing SSL certi�cates in nearly real time. The framework has two
main goals. The �rst goal is to detect SSL certi�cates that have been mistakenly issued
by a CA or maliciously acquired from an otherwise unimpeachable CA. The second aim
is to identify CAs that have gone rogue and are maliciously issuing certi�cates. [2]

Certi�cate Transparency has three main components: certi�cate logs, monitors and
auditors.

Certi�cate logs are simple network services which maintain cryptographically assured,
publicly auditable and append-only records. There records can be submitted and queried
by anyone and consist of certi�cate chains rooted in a known CA certi�cate. When a
chain is submitted to a log, a signed timestamp is returned, which can be later used as
evidence for clients that the chain has been submitted.

Monitors are publicly run servers that periodically fetch data from all log servers and
watch for suspicious certi�cates. As a result, most monitors have complete copies of the
logs they monitor. A monitor needs to, at least, inspect every new entry in each log it
watches. Some monitors will be run by companies and organizations while others will be
subscription services that domain owners and CAs can buy into.

Auditors are lightweight software components that typically perform two functions:
veri�cation of log behavior and cryptographic consistency, plus veri�cation of the inclusion
of a particular certi�cate in a log. They take partial information about a log as input
and verify that this information is consistent with other partial information they have.
Auditors could be an integral component of the TLS client of browsers, a standalone
service, or a secondary function of a monitor. Anyone can create an auditor, although
CAs are likely to run the bulk of all auditors as they have an e�cient way to gain insight
into the operational integrity of all CAs.

The �rst goal of Certi�cate Transparency corresponds with ROSCO as both aim to
identify accidentally issued and stolen certi�cates. ROSCO extends this aim to signed
code. However, their solutions are completely di�erent: Certi�cate Transparency pro-
vides a decentralized open framework to scan untrustworthy SSL certi�cates. On the
other hand, ROSCO uses a centralized model: if an organization wishes, it can receive

9

2. STATE-OF-THE-ART ROSCO

Certi�cate Transparency ROSCO
Solution model Decentralised Centralised

Detection of Malicious certi�cates
Malicious certi�cates and
possible pieces of malware

Monitored orga-
nizations

Certi�cation Authorities
Certi�cation Authorities,
Code signing companies

Table 2.3: Comparison of Certi�cate Transparency and ROSCO

noti�cations about encountered signed objects (whether it is a certi�cate or a signed ap-
plication) which can be chained back to it. Our solution of alerts is also a solution for the
second aim of Certi�cate Transparency: through noti�cations, Certi�cation Authorities
can monitor both their own certi�cates as well as the behavior of intermediate CAs. Fur-
thermore, our alert system can be used by code signing companies as well. As a result, not
only certi�cates are monitored but their usage as well. The above mentioned similarities
are summarized in Table 2.3.

10

3. Architecture

To achieve the goals set in Chapter 1, the built system has to meet the following design
requirements. The system must be able to accept X.509 certi�cates, Portable Executables,
Java Archives and Android Packages from user submission as well as download them from
the Internet. It must also be able to process the above mentioned type of �les and store
information about them. The stored information must be accessible for clients through a
browser. To hasten the detection of misused keys, the system must be able to notify users
about objects possibly signed by them. Of course, it is the decision of the user whether
they wish to receive such noti�cations and in which way or not at all.

In the rest of the chapter, we will give the high-level overview of the built system which
meets the design requirements set in the previous paragraph. In each section, modules
of the architecture are grouped as they achieve certain goals together, for example data
collection. Section 3.1 is about data collection: the signi�cance of crawlers and the
downloading script to get possibly signed applications from the Internet. Processing of
collected applications is reviewed in Section 3.2. Thirdly, Section 3.3 discusses SQL and
no-SQL database technologies and their useage to store metadata and signed objects
respectively. The operation of the Alert System in found in Section 3.4. At last, Section
3.5 presents the User Interface.

Figure 3.1: High level outline of ROSCO

Figure 3.1 shows the high level outline of the system. The architecture consists of

11

3. ARCHITECTURE ROSCO

�ve major modules illustrated by rounded rectangles. These modules are: Crawlers,
Downloader, Preprocessor, User Interface and Alert System. Two databases are used for
data storage: MariaDB and HBase. Arrows between modules and databases visualize
data �ow between them.

Crawlers periodically access �le sharing websites on the Internet and look for signed
applications: Portable Executables, Java Archives and Android Packages. If a crawled
URL or the HTML code of a website contains a URL that might possibly lead to a signed
application, crawlers save the URL to MariaDB.

The Downloader module reads MariaDB for URLs to download from. After download,
it checks whether the application has been seen by the system and if not, the module saves
the �le.

It is the job of the Preprocessor to extract information about signed objects. The
module reads saved �les and processes headers, meta information and digital signatures.
The extracted information is then stored in HBase.

The User Interface implements users interaction with the repository through their
browsers. It interprets search �elds and contacts HBase to access the necessary informa-
tion which is then returned to the user. Clients can also de�ne what requirements a signed
object must meet in order to notify them in form of alerts. They can also contribute to
the collected information by uploading signed �les and digital certi�cates.

The Alert System is tasked to interpret user-de�ned alerts and look for signed objects
matching the speci�ed criteria. When an alert triggers, the Alert System noti�es the
client via e-mail or RSS feed. The way of noti�cation is decided by the user.

3.1 Data Collection

In this section, we will discuss how to collect data actively and in an automated manner.
Firstly, Section 3.1.1 will review Scrapy, a Python-written crawling framework, and

mention several websites from which signed application can be downloaded. We crawl the
Internet using Scrapy and collect URLs which may lead us to signed application. These
URLs are stored in a database for download.

Secondly, the Downloader module in Section 3.1.2 is tasked with downloading possibly
signed applications from collected URLs. The URLs are accessed from a database and
downloaded only if they have never been seen by the system.

3.1.1 Crawlers

As mentioned before, users may submit signed applications and digital certi�cates to the
system but this is not the only way to collect data. There are numerous signed applications
on the Internet which can be collected in an automated way with crawlers. A crawler is
essentially a small robot which browses the Internet and collects information. The most
widely known case is the Google search engine which uses crawlers to index webpages to
the database of the company.

In our case, each crawler should only crawl a prede�ned part of the Internet, a single
domain. Also, the crawler needs to inspect every webpage it browses whether the site is
a link to a signed application or it references a signed object. The easiest way to achieve
this is through regular expressions as URLs often contain the name of the application and
thus a �le extension.

12

3. ARCHITECTURE ROSCO

Scrapy is a high-level web crawling framework with all the features we mentioned
above. [24] The usage of this tool is extremely easy, writing a crawler is like creating
con�guration �les. The developer needs to give the domain in which the crawler should
work and state which domains must be excluded. Once the crawler runs, it feeds the
engine of the framework with the HTML codes of the visited sites. The engine forwards the
HTML codes to a developer-created method, a callback. This callback method inspects
the site and determines whether it meets the requirements. If it does, the URL to the
webpage is stored in a database. The work �ow is shown in Figure 3.2.

Figure 3.2: High-level Operation of a Crawler

Data samples are collected from various �le sharing sites including SourceForge, Down-
load3000, Github, Googlecode and APK�les. To write an e�ective crawler, the URL
handling of the site must be examined before creating the robot. Namely, used URL
conventions and references to other domains in the HTML code. Once conventions are
known, regular expressions can be used to detect applications in the URL or HTML code
using �le extensions, e.g. EXE, JAR, APK, SYS, etc.

The collected URLs are stored in a database for the Downloader module.

3.1.2 Downloading

The Downloader module is tasked with downloading applications from the collected URLs.
However, collected links may be dead or may not contain the necessary resource. As a
result, the Downloader must be able to di�erentiate between acceptable and unacceptable
resources.

Figure 3.3 shows the �owchart of the module. It works as an in�nite loop: if there is
a link in the database, it processes the link, if not, it waits. The module tries to connect
to the URL and waits for a response. There might be redirection in the background but
that does not a�ect processing. If the connection could not been created or the returned
HTTP Status code is not 200 (which is OK), the link is considered unnecessary and is
deleted from the database. In case of a successful connection, the processing of the link
can start.

What the module needs to determine is whether a URL points to an application or
not. To determine if an application is signed is the responsibility of the Preprocessor
in Section 3.2. The easiest way to determine if the content is indeed an application is
the Content-Type header of the HTTP response. If the header is present, it contains
information about the body of the response. If it is set to 'application', the URL indeed
points to an application. Unfortunately, this header is not always included in the response.
If that is case, it is known that applications are binary data and thus contain unprintable
non-ASCII characters. Testing the content of the HTTP response against this criteria
tells with a high percent of accuracy whether the processed URL points to an application.
If either of this tests fail, the link is deleted from the database.

13

3. ARCHITECTURE ROSCO

Figure 3.3: Downloader Module

After determining that the downloaded data is an application, the module checks the
�le name and calculates its SHA-256 hash value. There are two places which may contain
the �le name: the Content-Disposition header and the URL itself. As is the case with
the Content-Type header, the Content-Disposition header contains meta data about the
underlying application, one of which is the �le name. This is the same �le name as what
is used on the server. If the header is missing, the URL itself may contain the �le name,
e.g. http://somesite.com/an_application.exe.

There is only one last check to be performed: whether the system has already processed
this �le. If it has, the link is deleted. If not, the application is saved to the hard disk and

14

3. ARCHITECTURE ROSCO

meta data about the URL is gathered. Meta data include the link to which the module
originally tried to connect and URL it was redirected to. Meta data is again saved to the
hard disk in JSON format for the Preprocessor.

3.2 Data Processing

As mentioned in Section 3.1.2, previously unknown applications are saved to the hard disk
with meta-data in JSON format. The Preprocessor reads new applications and processes
them with meta data into the repository.

In this section, we will review the collected �le formats and their digital signatures
as well as give the high-level overview of the Preprocessor and a basic tutorial on digital
signatures. Firstly, we will discuss digital signatures as they appear in textbooks and
the standard that regulates its use in applications. Next is the high-level overview of
the Preprocessor. Thirdly, in Section 3.2.1, public keys and digital certi�cates will be
reviewed. In Section 3.2.2 the Portable Executable (PE) �le format is discussed. At last,
Section 3.2.3 gives a short introduction to Java Archives (JARs) and Android Packages
(APKs).

Figure 3.4: Creating and Verifying a Digital Signature

Digital signatures are used to provide authenticity. Each signer possesses a key-pair:
the private key is kept secret, while the public key is made known to everyone in the in-
frastructure. To create a digital signature, the signer computes the hash value (also known
as �ngerprint value or message digest) of the data with a message digesting algorithm.
The resulting bit-string is encrypted with the private key and appended to the data as
shown in Figure 3.4. During veri�cation, the hash value is computed again from the data
and the signature is decrypted with the public key. If the decrypted and computed hash
values match, the signature is considered valid.

15

3. ARCHITECTURE ROSCO

The structure of a digital signature in binary applications is regulated by RFC 2315 [1],
commonly known as the Public-key Cryptography Standards #7: Cryptographic Message
Syntax. The standard enables multiple signers to sign the same data and supply their
public keys to end-users. There are two structures that contain digital signatures: the
SignedData and the SignedAndEvelopedData structures. The latter is the combination of
SignedData and EnvelopedData but the structure and usage of EnvelopedData is outside
of the scope of this paper.

SignedData ::= SEQUENCE {

version Version,

digestAlgorithms DigestAlgorithmIdentifiers,

contentInfo ContentInfo,

certificates

[0] IMPLICIT ExtendedCertificatesAndCertificates

OPTIONAL,

Crls

[1] IMPLICIT CertificateRevocationLists OPTIONAL,

signerInfos SignerInfos }

DigestAlgorithmIdentifiers ::=

SET OF DigestAlgorithmIdentifier

ContentInfo ::= SEQUENCE {

contentType ContentType,

content

[0] EXPLICIT ANY DEFINED BY contentType OPTIONAL }

ContentType ::= OBJECT IDENTIFIER

SignerInfos ::= SET OF SignerInfo

The ASN.1 de�nition of SignedData is found above. It has a version information
which is always 1 at the moment but may change in future versions. All the message
digest algorithms are listed that were used by all signers. The Content �eld may be
anything, so some signing techniques make use of this �eld to sign more �les at once (see
Section 3.2.2). If it is set, then the signature is computed with it as input. If not, the
speci�cation of the �le format tells which �elds the signature is computed on. All the
certi�cates used by signers are listed as well and certi�cate revocation lists may be added.
At last, information about signers is added along with the computed digital signature as
Signer Info structures.

Figure 3.5: Notation of the Extended Tree of Trust

16

3. ARCHITECTURE ROSCO

Relationships between public keys and signed objects can be represented by a graph. In
the graph, public keys and signed objects are represented as nodes and relations between
them are edges. There are two types of edges: 'in' stands for a signed object (digital
certi�cate) containing a public key and 'veri�ed_by' means that the signature of a signed
object can be veri�ed by a public key. Our notation for the graph is shown in Figure 3.5.

Certain rules and constraints can be de�ned for the resulting graph. The aim of the
Preprocessor is to store signed objects, public keys and relations in a way that the graph
can be reconstructed. Such relations and scenarios include:

1. Self-signed certi�cate

2. Certi�cate chain

3. The digital certi�cate of a signed object is veri�ed by the public key contained in a
digital certi�cate

4. A public key is contained in a digital certi�cate

5. Add new element to a chain

6. Two public keys must not verify the same signature. Else the signature scheme is
broken

7. Two or more digital signatures may contain the same public key

The scenarios mentioned above are depicted by Figure 3.6.

Figure 3.6: Semantics of the Extended Tree of Trust

Figure 3.7 shows the high level overview of the Preprocessor for a single �le. There are
four kinds of signed objects the module handles: Portable Executables, Android Packages,
Java Archives and digital certi�cates. The Preprocessor works with presumably signed
objects and runs in an in�nite loop but we will only cover the processing of a single �le.
The �rst step is determining the �le type. If a �le format is unknown to the Preprocessor,
it throws an exception and halts. For a known �le format, the module checks whether it
is digitally signed according to its speci�cation. If it is not, processing ends and the �le
is deleted from the server. Certi�cates are extracted from each signed �le and processed

17

3. ARCHITECTURE ROSCO

separately. When the certi�cates are stored in the database, veri�cation is run on the �le.
This enable us to reconstruct a Tree of Trust similar to ICSI Certi�cate Notary. However,
our Tree is extended with the processed signed �les.

If the input �le is a Portable Executable, the Preprocessor inspects its header for in-
formation about the �le. If the input is and Android Package (APK), it is �rst processed
as if it was a Java Archive (JAR) as APKs are based on JARs. Then the AndriodMan-
ifest.xml is inspected to recover information connected to the execution on Andriod OS.
In case of JARs, the META-INF folder has almost every information needed: application
related data, digital signatures and �le hashes. These �les are compressed conforming to
the ZIP standard, so compression data can also be extracted. For digital certi�cates, the
X.509 standard regulates �elds and attributes. The Preprocessor follows the guidelines of
this standard to parse digital certi�cates.

Figure 3.7: High-level Review of the Preprocessor

18

3. ARCHITECTURE ROSCO

3.2.1 Public keys and Certi�cates

This section discusses di�erent digital signatures and related public key types. To under-
stand the need for digital certi�cates, we need to take a look at the history of cryptography.
Until 1976, only symmetric key cryptography existed. In this symmetric key cryptogra-
phy, encryption and decryption uses the same key. It is fast and its algorithms use less
resources but the key must be negotiated before its actual usage. This poses a signi�cant
drawback: there are millions of Internet users who wish to communicate securely. It is
unrealistic to assume that keys can be generated for each pair in advance. Whit�eld
Di�e and Martin Hellman found the solution and published their new idea of public-key
cryptography in [28].

Public-key cryptography uses a key-pair: a private and a public key. The generation
of such a key-pair is based on mathematical problems thought to be extremely hard to
solve such as the discrete logarithm problem or large prime factorization. These problems
are also trapdoor one-way functions: the inversion of the function is computationally
infeasible unless some secret information, the trapdoor (the private key), is known.

The �rst and still the most widely used public key scheme was created by R. L. Rivest,
A. Shamir and L. Adleman. [23] The name of this scheme comes from the surname of
its creators: RSA. The security of RSA keys is based on the large integer factorization
problem. Even though the problem has never been proved to be di�cult, mathematicians
have been working on a general solution for more than three hundred years. The public
key has two components: a modulus (n) and an exponent (e) as shown in Table 3.1.

Rivest-Shamir-Adleman

Components

of the public

key

� n - Modulus
� e - Exponent

Table 3.1: RSA Public Keys

The National Institute of Standards and Technology (NIST) in the United States
published the Digital Signature Algorithm (DSA). [17] The standard was revised several
times since then, the most recent paper was published in July 2013. The algorithm is
patented, the owner is the United States of America. The secrecy is based on the discrete
logarithm problem (DLP) in prime-order subgroups of Zp

∗ which is believed to be di�cult.
No general method is known to solve the problem on conventional computers. The digital
signature is computed using a set of domain parameters and a per-message secret number
k. Table 3.2 summarizes the public key.

Digital Signature Algorithm

Components

of the public

key

� p - Prime modulus
� q - Prime divisor of (p− 1)
� g - a generator of a subgroup of order q in the
multiplcative group of GF(p)

Table 3.2: DSA Public Keys

19

3. ARCHITECTURE ROSCO

Elliptic curve cryptosystems were invented in 1985. They are elliptic curve analogues
for the discrete logarithm cryptosystems where the subgroup of Zp

∗ are replaced by a group
of points on an elliptic curve over a �nite �eld. Just like the discrete logarithm problem,
the elliptic curve discrete logarithm problem (ECDLP) is also believed to be unsolvable
by conventional computers. However, ECDLP appears to be signi�cantly harder than
DLP so the same level of security can be achieved with smaller parameters. ECDSA was
�rst proposed in 1992 and by 2000, it has been accepted as ISO, ANSI, FIPS [17] and
IEEE standards. NIST recommends three types of curves but domain parameters may
be generated according to X9.62. An ECDSA key pair consists of a private key d and a
public key Q with associated domain parameters. The public key itself is a point on the
elliptic curve, given by its coordinates. d and Q are in mathematical relation with their
domain parameters. Table 3.3 summarizes the public key of ECDSA scheme. [7]

Elliptic Curve DSA

Components

of the public

key

� x - X coordinate of the point on the curve
� y - Y coordinate of the point on the curve
� curve_name - Name of the used elliptic curve

Table 3.3: ECDSA Public Keys

To preprocess a public key, it must be loaded from a certi�cate. After load, the key
type must be determined. If the key is an RSA public key, the modulus (n) and he
exponent (e) are extracted from the key with the key-length. In case of DSA public keys,
the prime modulus (p), the prime divisor (q) and the generator (g) are extracted. The
last expected key-type is ECDSA public keys in which case the coordinates (x, y) of the
key and the curve name are extracted. In each case, extracted information is stored in
the database along with the length of key in bits. There are other types of public keys as
well, but their occurrence is such a rare event that we decided not to support them.

In a Public Key Infrastructure, public keys need to be distributed between parties.
While con�dentiality is not an issue, authenticity is of vital importance as public keys must
be associated with entities in the infrastructure. The concept of certi�cates was invented
by Kohnfelder in 1978 [10] and its basic idea is to bind subject identi�cation information
with the public key via the digital signature of a trusted entity, the Certi�cation Authority
(CA).

The International Telecommunications Union - Telecommunication Standardization
Sector standardized digital certi�cates in X.509: RFC 2459 [22] records �elds, extensions
and constraints. A certi�cate contains information about its owner (Subject) and the
issuing authority (Issuer). The standard does not state mandatory sub�elds in names,
only that the resulting name must be unique. The PublicKey �eld contains the public
key discussed before while the validity is given by the ValidFrom and ValidTo �elds. The
information of the certi�cate must be considered valid in this period. To protect the
integrity of the certi�cate, it is signed with the private key of the issuer; the signature and
the used algorithm are stored in the Signature and SignatureAlgorithm �elds, respectively.
Extensions were introduced in RFC 5280 [5] in May, 2008. The standard de�nes the most
commonly used ones but organizations may de�ne their own. Table 3.4 summarizes these
�elds as well as the attributes stored in our repository.

Digital certi�cates can be collected from various sources: instances of the SSL Hand-

20

3. ARCHITECTURE ROSCO

shake protocol, projects similar to SSL Observatory and digitally signed �les. We used
the data set of Project Sonar, an Internet-wide scan of SSL certi�cates by Rapid7 Labs
[13] as well as the December, 2010 data dump of SSL Observatory. Using crawlers, we
also collected numerous signed applications which contain certi�cate chains.

CERTIFICATE

Serial Number Used to uniquely identify the certi�cate with respect to
the issuer

Issuer

The entity that veri�ed the information and issued the
certi�cate
CN: stands for common name
ST: state of residence
O: organization
C: country of residence
E: email address
T: locality
OU: organization unit
STREET: street address
ALL: complete distinguished name

ValidFrom The date the certi�cate is valid from.
ValidTo The expiration date.

Subject

The entity for whom the certi�cate was issued
CN: stands for common name
ST: state of residence
O: organization
C: country of residence
E: email address
T: locality
OU: organization unit
STREET: street address
ALL: complete distinguished name

PublicKey Public key
Signature The digital signature which is used to verify that that

the certi�cate came from the referenced issuer.
SignatureAlgorithm The algorithm used to create the signature: a message

digest algorithm with an encryption algorithm
Extensions

ExtensionType Type of the extension.
Value Value of the extension.
IsCritical Is this extension critical?

Table 3.4: Fields of Digital Certi�cates

When the �elds in a certi�cate have been extracted, veri�cation is run. Our database
is searched for the certi�cate of the issuer and any other signed object the public key
may have signed. Unfortunately, there is no standardized way to construct a certi�cate
chain. RFC 4158 [11] contains optimization best practices but the recommendations only
show how to exclude certi�cates from the candidate pool. Our database holds millions of

21

3. ARCHITECTURE ROSCO

certi�cates so exclusion would still yield such a large candidate set that validating each
member of the set would likely take several months. What we need is a straightforward
way to �nd the pool of possible matches with the least cardinality. After much considera-
tion, we settled for searching by Common Name �elds. This will not give us the complete
list, however, as each digital signature is veri�ed by the textbook method mentioned in
the introduction, relations found are always correct.

3.2.2 Portable Executables

Microsoft introduced the Portable Executable �le format as part of the Win32 speci�ca-
tions, even though it is derived from the earlier Common Object File Format (COFF).
The term 'Portable Executable' was chosen because the intent was to have a common �le
format for all Windows operating systems, on all supported CPUs. The addition of 64-bit
Windows required some modi�cations, and the resulting format is called PE32+.

Figure 3.8: Portable Executable File Format

22

3. ARCHITECTURE ROSCO

Thanks to the PE �le format, executables and dynamically linked libraries (DLLs)
di�er in only a single bit. Even the extension is arti�cial e.g. Control Panel applets (CLP
�les) are DLLs in fact.

Figure 3.8 illustrates the typical layout of a Portable Executable and its digital sig-
nature. [15, 14] The �le begins with the MS-DOS stub for backward compatibility with
MS-DOS systems. However, if a PE were to be run on an MS-DOS operating system, an
error message would be printed: 'This program cannot be run in DOS mode'. The stub
contains the �le o�set to the new header stub: PE File Headers. This stub begins with
the PE signature (which is not the digital signature), the letters 'P' and 'E' followed by
two null bytes. This stub contains several smaller stubs. The COFF stub has important
data about the executable such as the target CPU, the creation date and time of the �le
and attribute �ags. Following the COFF stub is the Optional Header that provides in-
formation to the loader. It states among others the linker version, the required operating
system and subsystem versions. The Section Headers after the Optional Header may be
omitted. Some sections contain code or data that the program declared and uses directly,
while other data sections are created by the linker and librarian, and contain information
vital to the operating system. The rest of the �le is the raw data.

Most data stored in the header is important for the operating system and the loader.
However, certain �elds carry information which can be interpreted by end users as well.
We extract these information from the header and store them in the database. Table 3.5
summarizes the �elds which contain such information. The characteristics of a PE is a
number, the result of OR operation of 15 �ags. Machine stands for the CPU type the
�le was complied for, and is a number as well. The association between numbers and
CPU types can be found in [15]. Compile date shows when the PE was compiled and the
LinkerVersion tells which version of the linker was used. The minimum operating system
requirement can also be found in the header as well as information about the PE type
(EXE, DLL or driver).

PORTABLE EXECUTABLE

Characteristics Characteristics of PE (15 �ags OR-ed together)
Machine Target CPU
CompileDate Datetime of compiling
LinkerVersion Version of the linker used to create the �le (major

and minor)
MinimumOS Minimum operating system version requirement

(major and minor)
Type Whether the �le is an EXE, a DLL, a driver or

unknown

Table 3.5: Stored Attributes of Portable Executables

Microsoft created the Authenticode technology to digitally sign Portable Executables.
As mentioned in the introduction of the chapter, the technology makes use of the Content
�eld in the PKCS #7 structure. As a result, there are two types of signatures for Portable
Executables: embedded and detached.

In case of embedded signatures, the digital signature is placed inside the PE header.
It can be found in the Certi�cates Table entry in the Optional Header and the associated
Attribute Certi�cate Table. The Content �eld of the PKCS #7 structure is set to a

23

3. ARCHITECTURE ROSCO

Microsoft speci�c structure called SpcIndirectDataContent and contains the hash value
of the �le, �le descriptions and various optional or legacy ASN.1 �elds.

However, thanks to the �exibility of the PKCS #7 standard, the signature may not
be present in the �le but instead, it may be contained in a di�erent �le. Authenticode
calls this �les catalogs and stores their information in a central database on the computer.
A catalog �le is essentially a PKCS #7 structure with its Content �elds set to another
Microsoft speci�c structure called Certi�cate Trust List. Unfortunately, it is not well
documented and everything we know about it comes from our experience. The Certi�cate
Trust List (CTL) contains several SpcIndirectDataStructures with �le hashes. If the
signature of the catalog �le is considered valid, then all �les with their hashes listed
inherit the valid signature. When a product ships with a catalog �le, it must be installed
on the target system via the Windows API. The catalog is stored in a central database
and each time the shipped application is run, Windows veri�es its signature by searching
for a valid catalog in which the �le is listed.

To verify an Authenticode signature, three structures need to be hashed together:
the ContentType, the DigestInfo and the SpcSpOpusInfo. The �rst one is part of the
SignedData structure, the second is found in the SpcIndirectDataStructure and the latter
is an authenticated attribute for each signer. Their ASN.1 de�nition can be found below.

DigestInfo ::= SEQUENCE {

digestAlgorithm AlgorithmIdentifier,

digest OCTETSTRING

}

SpcSpOpusInfo ::= SEQUENCE {

programName [0] EXPLICIT SpcString OPTIONAL,

moreInfo [1] EXPLICIT SpcLink OPTIONAL,

} --\#public--

3.2.3 Java Archives and Android Packages

Both Java Archives and Android Packages are based on the ZIP �le format. ZIP is a
cross-platform, interoperable �le storage and transfer format. [20] It is one of the most
widely used �le formats for compression. The compressed data must be created from at
least one �le.

ZIP SPECIFIC ATTRIBUTES

CreateDatetime It is an interval of the �rst and last created archive mem-
bers' creation date and time

CompressType It is a set of members' compression type attributes
CreateSystem It is a set of what kind operating system was used to

create its members
CreateVersion It is a set of values which de�ne what version of the

compression tool was used when creating the members
ExtractVersion It is a set of values which de�ne what version of the de-

compression tool can be used to decompress the mem-
bers

Table 3.6: Stored attributes of ZIP Archives

24

3. ARCHITECTURE ROSCO

Inside the container, compressed �les have local �le headers and encryption headers.
The local �le header contains several �elds such as the version needed to extract, com-
pression method, date and time of last modi�cation and so on. As these information
apply to a single compressed �le, these information are stored as intervals or sets in our
repository. For each Java Archive and Android Package, we give the intervals and sets of
members' ZIP speci�c attributes. Table 3.6 summarizes these �elds.

As mentioned before, the Java Archive (JAR) �le format is based on the ZIP �le
format and aggregates many �le into one. [18] In many cases, it is not simply an archive
but used as a building block for other applications and extensions. It contains the special
META-INF folder which stores con�guration data and packages. Three �les are of interest
for our project:

� MANIFEST.MF

� x.SF where x is the �le name

� digital signature

The MANIFEST.MF is referred to as the manifest �le and de�nes extension con�guration
and package related data. The manifest �le can be split into two halves: the main
section and the list of sections for contained �les (individual sections). The main section
contains security and con�guration information about the whole archive plus the extension
or application the JAR depends on, if there is any. Individual sections de�ne various
attributes for packages and/or �les they refer to. Not all �les in the archive need to be
listed, but the signed ones must.

Files with .SF extension are signature �les and specify which �les the digital signature
protects. Its structure is similar to the manifest �le: it has a main section and a list of
individual �les. The main section includes information supplied by the signer but this
information is not speci�c to any �le. Each individual entry contains a hash value of the
corresponding entry in the manifest �le.

The digital signature is computed over the signature �le and contained in a separate �le
with varying extension but the �le name is the same. In case of .RSA, the digital signature
way created by using the SHA-256 message digest algorithm with RSA encryption. If the
signature was created with the Digital Signature Algorithm, the extension is .DSA. For
every other method of signature creation, the �le begins with SIG-. There may be more
than one signer for a single Java Archive in which case each signature �le and digital
signature pair have di�erent �le names.

While processing a Java Archive, the Preprocessor extracts ZIP speci�c information
about the compressed member of the archive according. This information is stored as
intervals for dates and sets for any other arbitrary data. The module than parses the
Manifest and Signature �les according to its speci�cation and computes the SHA-256
message digest of members. Table 3.7 summarizes the stored information.

Veri�cation of the digital signature in case of Java Archives is well de�ned in the spec-
i�cation. However, the method is quite complex and is usually done by the jarsigner tool.
This tool not only veri�es the digital signature on a �le but also performs security checks
to check their integrity. As a result, we need to determine only the signing certi�cate to
place the application into the Tree of Trust, any other checks can be performed by the
tool. This can be done by running the textbook veri�cation shown in Figure 3.4 with the
contents of the Signature �le as input.

25

3. ARCHITECTURE ROSCO

One interesting thing about Java Archives is that not all members of the archive must
be signed. In this case, veri�cation can only be successful partially. While performing
security checks, the jarsigner tool also focuses on the problem and returns a warning mes-
sage to signal the issue. If a signature protects an archive only partially, the information
is stored in the repository as it is a vital information for users of that application.

JAVA ARCHIVES

Main section of
Manifest �le

Manifest-
Version

De�nes the manifest �le version

Created-By De�nes the version and the vendor of the Java im-
plementation on top of which this manifest �le is
generated. This attribute is generated by the jar
tool

Class-Path The value of this attribute speci�es the relative
URLs of extensions or libraries this application or
extension needs.

Main section of
Signature File(s)

Created-By The version and vendor of the signing software.
(Typically information about jarsigner)

InnerFiles-
AndHashes

Files and their SHA-256 hashes in the JAR

Table 3.7: Stored attributes of Java Archives

Android is a popular mobile platform in more than 190 countries and with a constantly
growing number of users. Android applications are distributed and stored in Android
Packages (APKs) which are based on the Java Archive �le format but introduce some
restrictions. These restrictions specify what folders and �les a package must have. As
for the META-INF folder, there can be only one signer for an APK. The package must
contain the AndroidManifest.xml �le in its root directory which is a binary XML. It
stores essential information about the application to the Android System such as the
name, version, access rights and referenced library �les of the application. [9]

ANDROID MANIFEST FILE

Permissions A restriction limiting access to a part of the code or to
data on the device

Package name Names the Java package for the application
Android version Minimum level of Android API that the application re-

quires
Activities Implements part of the applications visual user interface
Services Implements long-running background operations or

communications API
Receivers Enables applications to receive information that are

broadcast by the system or other applications
Providers Supplies structured access to data managed by the ap-

plication

Table 3.8: Stored attributes of Android Packages

26

3. ARCHITECTURE ROSCO

To store information about Android Packages, the Preprocessor processes the �le as
a Java Archive and extracts information from the AndroidManifest.xml �le. Table 3.8
summarizes these information.

Veri�cation of Android Packages can be done the same way as with Java Archives.
The only restriction is: an APK must only have one signer.

3.3 Data Storage

In this section, data storage technologies and practices used by ROSCO will be discussed.
In the �rst part, the SQL-based MariaDB will be reviewed in which metadata about users
and alerts are stored. Discussed in the second part, the non-SQL HBase is used to store
information about signed objects and public keys.

3.3.1 Metadata

There are tree types of metadata in our project: links to be downloaded, data about
alerts, and user data. The download links are URLs which may or may not point to
signed code. It is the responsibility of Crawlers to search for these URLs and save them.
The Downloader module uses these links to download applications for the Preprocessor.
Each alert used by the Alert System is a row in the database. They are connected to a
user and contain criteria about signed object. The Alert System uses these criteria when
it searches for matching objects. User data is used by both the User Interface and the
Alert System. It contains user names, passwords and e-mail addresses.

We use the SQL-based MariaDB to store metadata. MariaDB is an enhanched re-
placement for MySQL which improves speed and has more included storage engines. [12]
It is also open-source. For example, the Aria storage engine enables faster complex queries
(queries which normally use disk-based temporary tables). It is used for internal tempo-
rary tables, which should give a speedup when doing complex selects. Aria is usually
faster for temporary tables when compared to the basic MyISAM because Aria caches
row data in memory and normally doesn't have to write the temporary rows to disk.

MariaDB is a good choice for metadata storage because SQL-based databases generally
perform better in heavily transactional environment. Both the Alert System and the
Downloader can be considered heavily transactional applications as the data requested
by them has to arrive in one piece. How could we download a �le if only a part of the
URL was given? Not to mention the complex select statements used by the Alert System.
Because of the CAP theorem (see Section 3.3.2), non-SQL databases could not perform
even remotely as well as SQL-based ones do.

Downloadable links are stored separately from user related data. As such, they are in
a separate database, contained in a single table as depicted by Figure 3.9. The table has
two columns: id and link. The column link contains the URL from which the resource
has to be downloaded. Its type is text as RFC 2616 (Hypertext Transfer Protocol �
HTTP/1.1) impose no limitation on the length of URLs. [21] On the other hand, the
de facto limit is 2000 characters, popular browsers do not support more. However, this
number is not exact and while the probability of �nding a URL with more than 2000
characters is extremely low, it cannot be excluded. Unfortunately, MySQL and thus
MariaDB are unable to index variable length columns such as text. As a result, a dummy
column was created to act as the primary key.

27

3. ARCHITECTURE ROSCO

Figure 3.9: Table of Downloadable Links

Figure 3.10 shows SQL tables related to users. The table user contains all information
about a single account: user name, password, e-mail address and the creation date of the
account. The table login stores information about when and how users interacted with
the system, the time of login and logout.

Figure 3.10: User Related Metadata in the Database

SQL tables shown in Figure 3.11 are related to alerts: noti�cations about signed
objects for users. As all alerts must be connected to a user, the table user is shown in the
�gure.

The alert table contains information about alerts. Users can name their alerts for ease
of interaction with the system as well as activate, deactivate and later reactivate them
as they �nd convenient. Users can de�ne in which way they want to be noti�ed: e-mail,
RSS, both or neither. There are two kinds of alert: simple alerts and signing key usage
alerts. With a simple alert, clients can get noti�cations whenever certain �elds in an
object matches their criteria. For this purpose, the column string stores the criteria while
columns hb_table and hb_column contain the table and column of HBase in which to
search for matching objects. If a user wishes to be noti�ed when the system encounters
objects signed by a speci�c private key, they de�ne signing key usage alerts. In this case,
the column kid stores the identi�er of the supplied public key in HBase.

Signed objects which triggered alerts are stored in the table matched. Using this table,
objects matching a speci�c alert can be retrieved from the database. Even if a user does
not de�ne a way for noti�cation, they can see matching objects on the User Interface (see
Section 3.5) with the date and time of match.

The new_signed_objects table stores signed objects identi�ers for which alerts need
to be run. The only column of the table stores the identi�er of the newly processed object
in HBase.

28

3. ARCHITECTURE ROSCO

Figure 3.11: Alerts in the Database

3.3.2 Big Data

Sometimes the sheer complexity and size of the stored data can cause problems. This is
called the Big Data problem. The collection of signed objects faces this problem as there
are millions of signed applications and certi�cates out on the Internet. As mentioned in
Section 2.1, SSL Observatory scanned the IPv4 address space and collected more than
4.3 million valid certi�cate chains. Using Zmap, Project Sonar scanned IPv4 addresses
too and collected 66 million certi�cates. And these do not include any applications and
their contained certi�cates.

The solution to Big Data is a distributed system. A distributed system makes the
execution of a certain task possible on multiple machines thus increasing speed, capacity
and availability. Distributed systems have a better fault-tolerance than single machine
systems because if one computer fails, others can still execute the given task.

Our project focuses on storage so what we need is a distributed data store. Such a
system was designed to store large amount of replicated data across multiple computers.
A distributed data storage usually ships with a distributed �le system to manage the
stored data. The architecture may follow the client-server scheme: there are one or more
master servers which store information about the slaves (nodes). These masters store the
hierarchic structure of the �le system, metadata and the location of each �le. In practice,
at least two masters are deployed for redundancy.

Despite the obvious advantages of distributed systems, real-life implementations has
serious problems. These problems were summarized by Eric Brewer in 2000. He stated
that it is impossible for a distributed system to provide the following three guarantees:

� Consistency: there is no di�erence between read and written data

� Availability: the system always answers to a query

� Partition-tolerance: the system is able to tolerate the scenario in which it disinte-
grates

29

3. ARCHITECTURE ROSCO

Figure 3.12 shows where distributed data storages stand with respect to the CAP-theorem.
The distributed data storage we use is Hadoop, a Google BigTable clone with read-

optimization and consistency. [26] It is consistent, distributed, multidimensional, sorted,
stores key-value pairs and columns may be omitted (there is no NULL value). As shown
in Figure 3.12, it has a tabular structure. It is ideal for our use case as there are small-size
updates to the database and fast look-ups are needed at scale.

Figure 3.12: Distributed Data Storages and the CAP-theorem

HBase was designed on top of Hadoop, an Apache framework for distributed processing
of large data sets. Hadoop has its own �le system, the block-based Hadoop Distributed
File System (HDFS). Each machine in the cluster has a single task to perform, an HDFS
role. Most of the time there is only one Name Node in a cluster to store and manage
metadata. This server knows where folders and �les are located in the �le system. The
Secondary Name Node helps the Name Node to manage data. Data Nodes store data
blocks. However, machines are single points of failure: if an error occurs, the data stored
by that machine becomes unavailable. HBase has mandatory access to HDFS, that is why
it is able to answer queries in milliseconds.

Just as machines have HDFS roles, they are assigned HBase roles as well. Such a
role is a Region Server which manages a part of the key space in a sorted manner. The
machine with the HBase role Master keeps track of which Region Server manages which
keys. Because keys are sorted on a Region Server, searching by keys take logarithmic
time and only one Region Server is needed to perform the task. On the other hand, if
we wished to search by other columns, the whole data set on all Region Servers would
need to be searched in linear time. Considering that the data set is Big Data, linear-time
search can take massive amount of time. As a result, to work with HBase, the queries

30

3. ARCHITECTURE ROSCO

must be de�ned before creating any tables and anything worthy of search should be made
a key.

In ROSCO, HBase is the bulk of the repository. All the data about signed objects
processed by the Preprocessor is stored here in several tables. In addition, we store
message digests of signed objects calculated with SHA-256, SHA-1 and MD5.

3.4 Alert System

In this chapter we will discuss the Alert System, the module responsible for notifying
users when objects of their interest arrives to the system. We will give the high-level
overview of the system and discuss two alert types: simple alerts and signing key usage
alerts.

Newly de�ned alerts apply to signed objects processed after the creation of the alert.
This module performs its task separately from other modules and runs in an in�nite loop.
Figure 3.13 shows the high level overview.

Figure 3.13: High-level Overview of Alert System

At the start of its execution, the Alert System needs to establish database connections
to both HBase and MariaDB. The connection to MariaDB is used to extract alert speci�c
metadata as discussed in Section 3.3.1. The System needs user information and de�ned
criteria of each users from MariaDB. On the other hand, HBase is needed to access newly
processed signed objects to match criteria.

In each loop, the System checks whether there are active alerts in the system. If there
are none, the table storing newly processed objects can be truncated as no alerts need to
be run for them. If there are any, the System begins checks alerts with respect to the newly
processed signed object. At �rst, signing key usage alerts are applied: the System checks

31

3. ARCHITECTURE ROSCO

HBase for any relationship between the supplied public key and other signed objects.
Then come simple alerts: using the identi�er of the signed object, the module retrieves
its attributes from HBase and matches user-de�ned criteria.

At the end of a loop, the System sends noti�cation to users whose alert triggered.
Noti�cation is done in two ways: the module sends an e-mail message to the supplied
address or the user can subscribe to an RSS feed. Users may ask to receive noti�cations
in both or neither ways. Even if users ask for no noti�cation, they have a chance to see
matched objects: the System keeps track of signed objects triggering the alert.

3.4.1 Simple Alerts

In this section we will discuss simple alerts. This type of alert enables user to de�ne
criteria for attributes of signed objects. If the system encounters a signed object whose
attribute matches the de�ned criteria, it sends a noti�cation.

Simple alerts can be de�ned for searchable attributes of all signed objects handled by
the repository. This includes certi�cates, Portable Executables, Java Archives, Android
Packages and public keys. There is a limitation, however, that the alert can apply to
only a single attribute of the signed object. The de�ned criteria is a substring: if the
provided substring is present in the attribute, the alert triggers and the System noti�es
the de�ning user. The chosen attribute is stored in a column of an HBase table in the
repository, so the System saves the column and table names. This information is later
used during checks and the alert triggers if the attribute contains the speci�ed criteria.
In implementation, the match is performed with regular expressions. Unfortunately, this
implementation may be exploited to make the system dump every newly processed data to
the user. The substring '*' as a regular expression matches everything - all signed objects
of the given type would match and would become available to the user. As a counter-
measure, we decided that only alphanumerical characters, '.' and '-' are supported and
they are escaped on the server-side.

Simple alerts are useful for users who wish to acquire information about certain com-
panies or organizations and their signed products. This type of alerts can also be used to
track signed code of a speci�c environment such as operating system.

3.4.2 Signing Key Usage Alerts

In this section we will discuss signing key usage alerts. These are the alerts that enable
companies to gain advantages by using our system. They provide a way for companies
and organizations to keep track of their signed code. This feature also reduces the time
needed to realize a key compromise. If the company receives a noti�cation stating the
an object was signed with their private key but the company did not perform the signing
operation, then their key pair is compromised and needs to be revoked.

The question arises: how to determine if a signature was created with a private key?
As the name suggests, these keys are kept from the public and should be known by the
owner only. The answer is veri�cation: if the public key is known, veri�cation proves that
the corresponding private key was used to generate the signature (see Section 3.2).

Users must make their public keys available for the repository to get noti�cations
about their signed code. Since certi�cates play a huge part in the distribution of public
keys, we request the certi�cate containing the public key in question. The certi�cate is
processed as any other certi�cate (see Section 3.2.1) and the identi�er of the key in the

32

3. ARCHITECTURE ROSCO

repository is stored in MariaDB for further use.
While processing new signed objects, the provided certi�cate is used in veri�cation

and if the process yields a successful result, the binding between the object and the key
is stored in HBase. Next, the Alert System looks for connections between the currently
checked signed object and public keys provided by users. If a connection exists in HBase,
interested users are noti�ed via the channel they speci�ed.

3.5 User Interface

The User Interface enables users to interact with the repository: uploading �les, searching
and alert de�nition is handled by this module. Interaction with the system is done via
the browser and the User Interface is essentially a webserver with additional modules to
increase �exibility.

In this section, we will discuss how the module is embedded to the repository and how
users can interact with it. We will present the high-level overview of the User Interface
and its building components. At �rst, we will cover uploads to the repository in Section
3.5.1. Section 3.5.2 discusses data queries and information gathering from the database.
At last, users can manage their alerts as discussed in Section 3.5.3.

Figure 3.14 shows the high level overview of the User Interface. As mentioned before,
users can interact with the database through their browser. The browser send HTTP
requests to the repository and the webserver, Tornado, answers with HTTP replies in a
synchronous or asynchronous manner depending on the request. If the request concerns
metadata i.e. login data or alerts, the webserver uses the MariaDBManager written by
us to interact with MariaDB. Should the user however request data stored in HBase,
Torando uses the HBaseManager also written by us.

MariaDBManager is responsible for managing a database connection to MariaDB and
issue SELECT, INSERT or UPDATE statements to the database. The need for HBaseM-
anager is much larger as there is no operation in key-value databases equal to SQL JOIN.
As a result, intersection of multiple query results must be done outside of the database.
It is mentioned that requests to the webserver may be synchronous and asynchronous.
Simple requests such as de�ning a new alert, which can be processed with a single MySQL
statements are synchronous. Queries to HBase, however, are asynchronous because inter-
section may take a lot of time. For example, a user wishes to see all certi�cates whose
Issuer's Common Name begins with 'a' and was issued a month ago. As there is no
join, two separate queries are run in HBase: search for all certi�cates where the Issuer's
Common Name begins with 'a' and return all certi�cates which was issued a month ago.
HBase returns two sets and HBaseManager must perform the intersection. But it must
not be forgotten, that storing digital certi�cates is a big data problem: either set may
contain thousands of certi�cates. Even if the algorithm runs in time O(n), the algorithm
must process so much data, that linear time may take minutes which is unfortunate from
the user's point of view. As a result, queries have a timeout: if the repository is unable
to reply in the given window of time, the query must be repeated.

The separation of webserver and database management is a question of implemen-
tation. They could have been integrated into one big webserver interacting with both
databases but we would have lost the �exibility this design provides. This solution has
the advantage of easily development: new functions not used by Tornado can be imple-
mented without changing the webserver.

33

3. ARCHITECTURE ROSCO

Figure 3.14: High-level Overview of the User Interface

3.5.1 Upload

Users can upload �les through the User Interface. These �les are placed into queues from
which the Preprocessor takes and processes them into the database. As seen in Section
3.2, this queue is essentially a folder in the �le system of the repository. Clients may
upload digital certi�cates, Portable Executables, Java Archives and Android Packages.

Uploading is done by multipath synchronous requests to the webserver. Essentially,
the �le is not sent as one HTTP POST request as the �le size may be too big to be handled
e�ciently. Instead, the �le is split into smaller parts which travel through the network
independently increasing the speed of uploading. On server side, the parts are collected,
the original �le is put together and it is placed into the queue of the Preprocessor.

3.5.2 Search

Searching is one of the main usage of the User Interface. This feature allows users to
acquire information about signed objects by specifying some criteria their attributes must
meet. Single and multiple attributes are allowed as well but not all attributes can be
searched by.

Basically, all signed object type stored in the repository can be searched for. However,
not all attributes can be used while searching. As mentioned before in Section 3.3.2,
everything worthy of search should be made key to a table. It is also worthy of note,
that rows in an HBase table may have unlimited amount of columns, it can only have a
single row key. The row key is similar to a primary key in SQL. Often a single column is
not enough to became the row key, so composite keys are permitted. So why not make
all columns part of the row key? Because the most e�cient queries specify the row key
exactly. Should the user only provide the information that the signed object in question
is a DLL and the type of the PE is not the �rst column, it would not limit the space
in which the result is located. All Portable Executables would be needed to read in the
database.

To overcome this problem, information about signed objects are stored in di�erent
tables. There is a master table for which the SHA-256 digest value is key and contains all
information about the di�erent signed objects. To make queries more e�cient, so called
'inverse' tables are present, which connect particular information to the SHA-256 message
digest. With this solution the search for DLLs would result result in one e�cient query
to get SHA-256 hash values and several other also e�cient queries to access information
speci�ed by the digest value.

As mentioned in Section 3.2, relations between signed objects can be represented by a
graph, an extended version of the Tree of Trust. If the client wishes it, the User Interface
is able to show a small portion of the graph to see where the object stands and to whom
is it related. Figure 3.15 shows where the cert�cate issued for thawte Primary Root CA

34

3. ARCHITECTURE ROSCO

Figure 3.15: The thawte Primary Root CA in the Tree of Trust

stands in the Tree. The same public key is contained in three other certi�cates and all of
them are self-signed.

Signed objects can be searched for in a general way: if users know a message digest
value, they can specify it as keyword to search in all stored signed object, regardless of
their type. The hash value may be calculated by SHA-1, SHA-256 and MD5 message
digest algorithms.

Digital certi�cates have the most number of searchable attributes. Users may specify
the serial number and extension type plus the value of the type. Validity is also available:
both start and end dates can be used as the exact date or starting and/or ending points of
a validity range. From the issuer and subject name the most common �elds are searchable:
common name, state, organization and country. Figure 3.16 shows an example of search
for certi�cates.

For Portable Executables, three attributes can be searched by. The minimum operat-
ing system requirement can be chosen from a list with both the internal version code used
by the linker and the commonly known operating system name presented. For example,
Windows 8 is known as 6.2 internally. Search by compilation date works the same way as
validity for certi�cates: both exact date and range can be speci�ed. The type of Portable
Executables is also a list with the values EXE, DLL, DRIVER or UNKNOWN. Figure
3.17 shows an example of search for Portable Executables.

Java Archives and Android Packages can be searched together both by inner mem-
ber digest, and vendor. APK �les have another searchable attribute: permissions the
application needs. Figure 3.17 shows an example of search for Android Packages.

Experienced users can also use the free text search feature. They can choose not to
click through the available search �elds but instead type a search string and get results
that way. For example, to search by the ValidFrom �eld, the validfrom free text �eld

35

3. ARCHITECTURE ROSCO

Figure 3.16: Example of Search for Certi�cates

must conform to the rule YYYY-MM-DD[#before, #after].

3.5.3 Alerts

As mentioned in Section 3.4, there are two kinds of alerts: string alerts and signing key
usage alerts. Users may de�ne and manage their alerts via the User Interface. This
consists of de- or reactivating alerts, seeing which objects matched and accessing the
generated RSS �le.

When de�ning a string alert, the alert is active by default but users may override
this setting via the checkbox. Alerts can be named and the system uses this name to
identify alerts for users. The type of the alert speci�es what kind of signed object the
alert should match while the attribute of the signed object can be chosen from a combo
box. The criteria is supplied in the keyword �eld. There are two more check boxes: notify
stands for noti�cation by e-mail, RSS is for generating RSS feeds. If e-mail noti�cation is
enabled, users can provide an e-mail address di�erent from the default. The last column
is Matched: previously matched objects can be viewed in a list any time. Also, previously
matched objects are given as links, clicking on them results in a query for the matched
object.

Signing key usage alerts can be used to keep track of what a certain private key
signs. This can achieved by verifying the digital signature with the corresponding public
key. De�ning signing key usage alerts are done through the same interface. The Active,
Name, Email, Notify, RSS and Matched �elds are the same. However, instead of de�ning
attributes and criteria, users need to upload a certi�cate with a public key inside through
the File column. The public key is extracted from the certi�cate to create the alert and
the certi�cate is placed into the queue of Preprocessor and its information will be stored
and is made publicly available in the repository.

Noti�cation of users can be done in two ways: e-mail and RSS feed.
RSS is a Web content syndication format and must conform to the XML 1.0 speci-

�cation. An RSS feed is essentially an XML �le published to the Internet. Users can

36

3. ARCHITECTURE ROSCO

Figure 3.17: Search for Portable Executables and Java Archives

subscribe to such a feed and their readers periodically contact the �le. The reader uses
the lastUpdated �eld to see if new content has been added: if such a case occurs, the las-
tUpdated �eld is updated in the �le. Our case can be considered special as the RSS feeds
the system generates are meant to be seen only by the user for whom it was generated.
This is called a private RSS feed, but there is a serious problem: authentication. If the
feed was meant to be seen by only a group of users, each request for the �le has to be
authenticated. This is generally done by redirection: before access is granted to the �le,
users must log in. This approach is su�cient if the reader is a browser but there are other
reader devices. Unfortunately, most RSS readers can not handle redirection and can not
access private RSS feeds.

But there are other ways to authenticate user, our solution uses tokens. When a user
registers to the site, a unique token is generated from the user-provided data using a
symmetric encryption algorithm. This is a secure solution as the symmetric key is known
only to the server so third party may not impersonate a legitimate user. This token is
stored in MariaDB and the private RSS �le of the user is named <token>.xml. If a reader

37

3. ARCHITECTURE ROSCO

Figure 3.18: De�ning Alerts

requests the private �le, the system knows the reader has access to the �le because the
user must have been signed in when the reader subscribed to the feed.

Should users request noti�cation by e-mail, the system includes information about the
signed object in the message. The message format is fairly simple and concentrates on
providing all information needed to determine if the object is of interest.

38

4. Case Study

In this chapter we show how our ROSCO system helps increasing trust in digital signature.
Firstly, we will discuss sime general scenarios. Then we will present the cases of Duqu and
Flame to see a real scenario where the repository could have helped users avoid becoming
victims of malicious code. In both cases, the Alert System plays a signi�cant role as it
signals misuse of certi�cates to trusted companies.

There is a variety of ways our repository increases the amount of trust users place in
digital signatures. Alerts are most useful for software makers as they help to detect the
illegitimate usage of their signing keys. Average users also bene�t from its use: metadata
provided by the system can help them to evaluate trustworthiness of signed software.

In our �rst scenario, a user downloads a signed �le from a freeware sharing site.
However, the user does not trust the signer and would like to know whether there is a
possibility that the �le is malicious. In this case, they can contact our ROSCO system
and search for the �le by, for example, its SHA-256 digest value. If the �le is not known to
the system, the user can upload it. If it is known or has been processed after uploading,
the system will be able to return information about the �le when it is a search result.
The user can view the relevant part of the extended Tree of Trust and see what other
�les are connected to the downloaded one. Viewing the information about the other �les
can help evaluate the trustworthiness of the downloaded one. Should a known malware
be present among the related �les, the user would not run the downloaded �le as there is
a possibility that it is a piece of malware.

To demonstrate the events of the �rst scenario, let us assume that the user downloaded
the APK com.harvesters.linkupwow. The trustworthiness of the �le is measured by Virus-
Total: a free service that analyzes suspicious �les and URLs and facilitates the quick detec-
tion of viruses, worms, trojans, and all kinds of malware. The system runs 45-55 antivirus
software on each user-uploaded �le simultaneously. The result is visualized by a score:
number of detections / number of antivirus software run. For com.harvesters.linkupwow,
this score is 1/47 which is low and the only detection can be thought of as a false positive.
However, the user is still not convinced. They contact our ROSCO system and see on the
graph that eight other �les have been signed by the signer. The public key is contained
in a self-signed digital signature which is valid until Jan 17, 2066 and was created by
ivan from Beijing, China. Using our repository, the user can query VirusTotal for the
trustworthiness of the other �les. Seeing, that six out of the eight related APKs have
been detected as malware by more than nineteen antivirus software (see Table 4.2), all
including Trojan and adware detections, the user can conclude that the downloaded �le
may be a malicious signed software, but the malicious piece of code has not been added
to other antivirus databases yet.

39

4. CASE STUDY ROSCO

Possibly Malicious APKs

SHA-256 message digest Package name VirusTotal score
20B850BDD1CA1CBD
EF40D5B73B5AB6D2
1E5DAF7A77B464A8
9397ACFCBCC49042

com.androidemu.harvemm1 23/55

75B7D2F66112949C
4AE18AFB26A92086
327790EB8DE97A2A
3203F6FE2004157F

com.androidemu.harvespmxd 23/51

F338C44C5D78C204
72E85327F2B2EC50
9EC85B27AA2CD7F7
1679E52F53A5E1A3

com.androidemu.harvedragon3 23/54

8A70B377ADB8CEC0
C8F8F4DF53950D6E
F8E9F42863070705
59B2CCA22BE8A56B

com.harvesters.linkupwow 22/50

51A97AD597E4B484
43BDAFA97BE6244F
0FF48E4512CA6F4D
8EC5F66A20AE146A

com.harvesters.linkupwow 21/54

D6522D0727A41DE3
2D7025565F29A87D
3830BA250D51CDA7
2360AD4C8FD65419

com.androidemu.harvedragon3 20/54

1001E583F33C2473
217BF486795C2759
709EB24AA12D8907
5E19BFD7666900A2

com.androidemu.harvemm1 17/48

C14C3D9E46B54454
086A7482C6E04690
3B45C79D93DE77F8
3959401AF47E2104

com.harvesters.linkupwow 7/52

0523578757C9DDC7
9F61CB8BE9EA4AFD
AFCF70C0AED7970B
18ABBBCF08B651B2

com.harvesters.linkupwow 1/47

Table 4.1: Possibly Malicious APKs and Their VirusTotal Scores

In our second scenario, a user encounters a signed piece of code which was created
�ve years ago. The user contacts the repository, requests the data of the �le in question
and from the provided metadata, learns that nobody has seen the �le in �ve years. Since
signed pieces of code are developed to be used by many users, an unseen �le for �ve years
is more than suspicious and may signal a targeted attack against the user. The metadata
presented by the system helps users to determine how much trust they can place in the
code.

40

4. CASE STUDY ROSCO

4.1 Duqu

Duqu was discovered by the Laboratory of Cryptography and System Security (CrySyS)
[3] during an incident response investigation. The primary goal of this piece of malware
is information gathering. One of its �les is digitally signed driver and veri�cation of the
signature states that it was signed by C-Media Electronics Incorporation. This piece
of malware shares many things in common with Stuxnet: modular design, kernel driver
based rootkit, DLL injection, etc.

Duqu was �rst detected on September 1, 2011 when one of its �le were uploaded to
Virustotal for scanning. Unfortunately, only two antivirus engines were able to detect
it and it was added to other antivirus databases only later. On September 9, a Duqu
driver was uploaded with the valid digital signature of C-Media. Since then, several new
variants have been found including the dropper: the Laboratory of Cryptography and
System Security discovered a Microsoft Word document which exploited a zero day kernel
vulnerability.

The certi�cate of C-Media was issued by VeriSign Inc., a well known and widely trusted
Certi�cation Authority. As a result, infected computers accepted and trusted Duqu. The
compromised key was revoked one and a half month later on October 14, but the detection
of key compromise would have been faster with the help of our repository.

If C-Media had been a client, they would have had a signing key usage alert for their
own private key. When parts of Duqu were uploaded to the repository, the system would
have known the signature belonged to C-Media. Because of the signing key usage alert,
the company would have received a noti�cation either by e-mail or RSS-feed about the
�le. In the wake of this noti�cation, the company would have contacted the system and
would have checked the Portable Executable in question. Knowing that they had not in
fact performed the signing operation for the �le, their logical conclusion would have been
that the private key is compromised and would have requested the revocation of their
certi�cate. Considering that the signed piece of code was �rst contacted by VirusTotal
on September 1 and the revocation took place on October 14, even if the actual check by
the company would have happened several days after the noti�cation, revocation could
have happened at least a month sooner.

When the certi�cate revocation list appeared for the research community, our system
could have been used to �nd other pieces of signed code, signed by the same private key.
Should there be other pieces of malware created with the help of the compromised private
key, researchers would have found them earlier.

4.2 Flame

The Laboratory of Cryptography and System Security participated in an international
collaboration to investigate a previously unknown piece of malware: Flame also known
as Flamer and sKyWIper. [25] The goal of Flame is cyber espionage and information
stealing and had been operational since March 2010.

Flame provides a fake Microsoft certi�cate for veri�cation, signed by the Microsoft
LSRA PA Certi�cation Authority. The creators were able to �nd an MD5 collision and
use it to their advantage: the resulting certi�cate could be trusted by all major browsers
and could fool the Windows Update system. When a machine tried to connect to the
updating system, Flame redirected the connection through an infected machine and sent
a fake, malicious Windows Update to the client. The fake update proceeded to download

41

4. CASE STUDY ROSCO

the main body and infect the computer.
After the incident, Microsoft LSRA PA was replaced and the message digest algorithm

was changed to SHA-1.
Our ROSCO system could have alerted Microsoft to the existence of the fake certi�-

cate. If they had had a simple alert for their certi�cates, the system would have noti�ed
them of the fake one as well. Suppose, the company had de�ned a simple alert with the
keyword 'Microsoft LSRA PA' for the Common Name of the Issuer. Each time a signed
object would have arrived to the repository, Microsoft would have been noti�ed of the code
signing certi�cate. In case of Flame, and any other pieces of code, Microsoft could have
checked whether the company had been the true issuer. Founding no evidence of signing
the fake certi�cate, Microsoft could have realized the problem with the Microsoft LSRA
PA and could have revoked the CA certi�cate sooner. As the operating system would not
have accepted the fake certi�cate, Flame could have been rendered nearly useless.

42

5. Conclusion and Future Work

Motivated by recent targeted malware, which used digitally signed components that ap-
peared to originate from legitimate software makers, we developed a respository of signed
code and some related services with the objective of augmenting the standard signature
veri�cation work�ow with checking of reputation information on signers and signed ob-
jects and allowing for the detection of key compromise and fake certi�cates.

Our ROSCO system provides

� a data collection framework for signed software and code signing certi�cates,

� a data repository that can handle large amount of signed objects e�ciently, and
that supports a �exible query interface,

� reputation information for signed objects, such as when a given signed object has
been �rst seen and how often it was looked up by users,

� alert services for private key owners that help them detecting when their signing
keys were illegitimately used, and hence, probably compromised.

ROSCO does not aim at replacing the entire code signing infrastructure, rather, it
tries to complement it with new mechanisms. There is no requirement whatsoever to
change the operating principles of participants that do not want to use our system. This
opt-in approach allows for the possibility of gradual deployment. The services o�ered by
ROSCO will become more useful with the expected increase of the size of our repository.
We hope that this will attract more participants to use our system who can bene�t from
our services when determining the trustworthiness of a signed application.

In this paper, we gave a detailed description of the design and implementation of
ROSCO. We started by introducing its overall architecture, and then described its com-
ponents such as the data collection and processing subsystems, the SQL based data used
for storing meta-data and the noSQL database used for storing the actual signed ob-
jects and their relationships, the alert subsystem, and web based user interface. We also
discussed how ROSCO could have been used to detect the misuse of signatures and cer-
ti�cates in the high pro�le targeted attacks of Stuxnet, Duqu, and Flame, and how it
can be used to identify malicious applications by revealing the bad reputation of their
originators.

The development of ROSCO is still on-going and there are many possibilities for future
work. We plan to extend the set of supported signed objects with certi�cate revocation
lists and timestamps, and the set of supported �le types with signed MS o�ce documents.
We also plan to give access to our system to a selected set of signing and relying parties
for testing purposes, and to open it to the general public later. Finally, from a scienti�c
point of view, the huge amount of signed objects that we collected is a very valuable
resource, on which we intend to perform di�erent analysis tasks with the aim of better
understanding code signing practices.

43

5. CONCLUSION AND FUTURE WORK ROSCO

Acknowledgement

The work of the authors was partially supported by IT-SEC Expert, which received a
NICOP Research Grant from the O�ce of Naval Research Global (ONRG) under award
number N62909-13-1-N243.

44

Bibliography

[1] B. Kaliski. Public-key Cryptography Standards #7: Cryptographic Message Syntax.
http://tools.ietf.org/html/rfc2315, March 1998.

[2] Ben Laurie, Adam Langley, Emilia Kasper. Certi�cate Transparency. http:

//datatracker.ietf.org/doc/rfc6962/, June 2013.

[3] Boldizsár Bencsáth, Gábor Pék, Levente Buttyán, Márk Félegyházi. Duqu: A
Stuxnet-like malware found in the wind. Technical report, Laboratory of Cryp-
tography and System Security, October 2011.

[4] Boldizsár Bencsáth, Gábor Pék, Levente Buttyán, Márk Félegyházi. The Cousins of
Stuxnet: Duqu, Flame, and Gauss. Future Internet 2012, pages 971�1003, 2012.

[5] D. Cooper, S. Santesson, S. Farrell, S. Boeyen, R. Housley, W. Polk. Internet X.509
Public Key Infrastructure Certi�cate and Certi�cate Revocation List (CRL) Pro�le
. https://datatracker.ietf.org/doc/rfc5280/, May 2008.

[6] Adrian Perrig Dan Wendlandt, David G. Andersen. Perspectives: improving ssh-style
host authentication with multi-path probing. In ATC'08 USENIX 2008 Annual Tech-

nical Conference on Annual Technical Conference, pages 321�334. Carnegie Mellon
University, 2008.

[7] Don Johnson, Alfred Menezes. The Elliptic Curve Digital Signature Algorithm.
Technical report, University of Waterloo, Canada, August 1999.

[8] Electronic Frontier Foundation. SSL Observatory. https://www.eff.org/

observatory.

[9] Google Inc. Introduction to Android. http://developer.android.com/guide/

index.html.

[10] Loren M. Kohnfelder. Towards a Practical Public-key Cryptosystem. PhD thesis,
Massachusetts Institute of Technology, 1978.

[11] M. Cooper, Y. Dzambasow, P. Hesse, S. Joseph, R. Nicolas. Internet X.509 Public
Key Infrastructure: Certi�cation Path Building. http://tools.ietf.org/html/

rfc4158, September 2005.

[12] MariaDB Foundation. Introduction to Android. https://mariadb.org/, 2014.

[13] Mark Schlosser, Brian Gamble, Jody Nickel, Claudio Guarnieri, HD Moore. Internet-
Wide Scan Data Repository. https://scans.io/study/sonar.ssl, 2014.

45

http://tools.ietf.org/html/rfc2315
http://datatracker.ietf.org/doc/rfc6962/
http://datatracker.ietf.org/doc/rfc6962/
https://datatracker.ietf.org/doc/rfc5280/
https://www.eff.org/observatory
https://www.eff.org/observatory
http://developer.android.com/guide/index.html
http://developer.android.com/guide/index.html
http://tools.ietf.org/html/rfc4158
http://tools.ietf.org/html/rfc4158
https://mariadb.org/
https://scans.io/study/sonar.ssl

BIBLIOGRAPHY ROSCO

[14] Microsoft Corporation. Windows Authenticode Portable Executable Signature For-

mat, July 2008.

[15] Microsoft Corporation. Microsoft Portable Executable and Common Object File For-

mat Speci�cation, February 2013.

[16] Moxie Marlinspike. Convergence. http://convergence.io/, 2011.

[17] Natioanl Institute of Standards and Technology. Digital Signature Standard (DSS).
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf, July 2013.

[18] Oracle Inc. JAR File Speci�cation. http://docs.oracle.com/javase/7/docs/

technotes/guides/jar/jar.html.

[19] Peter Eckersley. Sovereign Keys: A Proposal to Make HTTPS and Email More
Secure. https://www.eff.org/deeplinks/2011/11/sovereign-keys-proposal-

make-https-and-email-more-secure, November 2011.

[20] PKWARE Inc. .ZIP File Format Speci�cation. http://www.pkware.com/

documents/casestudies/APPNOTE.TXT, September 2012.

[21] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, T. Bernes-Lee.
Hypertext Transfer Protocol � HTTP/1.1. https://www.ietf.org/rfc/rfc2616.

txt, June 1999.

[22] R. Housley, W. Ford, W. Polk, D. Solo. Internet X.509 Public Key Infrastructure.
https://www.ietf.org/rfc/rfc2459, January 1999.

[23] R. L. Rivest, A. Shamir and L. Adleman. A Method for Obtaining Signatures and
Public-Key Cryptosystems. In Communications of the ACM, Vol. 21 Issue 2, pages
120�126, February 1978.

[24] Scrapyhub. Scrapy. http://scrapy.org/.

[25] sKyWIper Analysis Team. sKyWIper (a.k.a. Flame a.k.a. Flamer): A complex mal-
ware for targeted attacks. Technical report, Laboratory of Cryptography and System
Security, May 2012.

[26] The Apache Software Foundation. Apache Hadoop. https://hadoop.apache.org,
2014.

[27] The International Computer Science Institute (ICSI) of University of California,
Berkeley. ICSI Certi�cate Notary. http://notary.icsi.berkeley.edu/, April
2012.

[28] Martin E. Hellman Whit�eld Di�e. New directions in cryptography. In IEEE Trans-

actions on Information Theory, Vol. IT-22, No., pages 644�654, November 1976.

46

http://convergence.io/
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
http://docs.oracle.com/javase/7/docs/technotes/guides/jar/jar.html
http://docs.oracle.com/javase/7/docs/technotes/guides/jar/jar.html
https://www.eff.org/deeplinks/2011/11/sovereign-keys-proposal-make-https-and-email-more-secure
https://www.eff.org/deeplinks/2011/11/sovereign-keys-proposal-make-https-and-email-more-secure
http://www.pkware.com/documents/casestudies/APPNOTE.TXT
http://www.pkware.com/documents/casestudies/APPNOTE.TXT
https://www.ietf.org/rfc/rfc2616.txt
https://www.ietf.org/rfc/rfc2616.txt
https://www.ietf.org/rfc/rfc2459
http://scrapy.org/
https://hadoop.apache.org
http://notary.icsi.berkeley.edu/

	Introduction
	State-of-the-Art
	EFF SSL Observatory
	ICSI Certificate Notary
	EFF Sovereign Keys
	Perspectives
	Convergence
	Google Certificate Transparency

	Architecture
	Data Collection
	Crawlers
	Downloading

	Data Processing
	Public keys and Certificates
	Portable Executables
	Java Archives and Android Packages

	Data Storage
	Metadata
	Big Data

	Alert System
	Simple Alerts
	Signing Key Usage Alerts

	User Interface
	Upload
	Search
	Alerts

	Case Study
	Duqu
	Flame

	Conclusion and Future Work
	Bibliography

