
Budapest University of Technology and Economics
Faculty of Electrical Engineering and Informatics

Performance modelling and
analysis of distributed P2P

download systems

Juhos Attila

Supervisor:

Dr. Levendovszky János
Department of Networked Systems and Services

October 26, 2017



Contents

1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i

2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

3 Background and Related Work . . . . . . . . . . . . . . . . . 3
3.1 Peer group size and number of packets available for download 4
3.2 BitTorrent warming up period . . . . . . . . . . . . . . . . . . 5

4 General stochastic model of a P2P system . . . . . . . . . . 9
4.1 Population model for deterministic K packet strategy . . . . . 15
4.2 Population model for deterministic V block strategy . . . . . 15
4.3 Population model for unlimited cache strategy . . . . . . . . 15
4.4 Population model for random V block strategy . . . . . . . . 15

5 Numerical results and analysis . . . . . . . . . . . . . . . . . . 18
5.1 Comparison of cache strategies . . . . . . . . . . . . . . . . . 18
5.2 Relationship between peer birth rate and minimum server

capacity needed . . . . . . . . . . . . . . . . . . . . . . . . . . 21

6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

A Appendix: Simulation Package . . . . . . . . . . . . . . . . . . 25



1 Abstract

The objective of the paper is to develop a stochastic model for P2P download
processes and investigate the performance and scalability of such a system.
Based on this analysis and the corresponding simulation results, one can
evaluate the necessary server capacity as well as the proper cache size to
provide a given population of P2P users with fast download services.

In P2P systems peers negotiate to download parts (packets) of a desired
file from other peers that already possess those packets. A peer will only turn
to the server for a packet if it cannot be downloaded from the other peers.
An inappropriate design of the system, in terms of ill-founded download- and
packet storing mechanisms, may easily result in a heavily overloaded server
that will ultimately refuse to serve the demands of the clients, leading to
system overflow and break-down of QoS. Nonetheless, a well-designed system
minimises the load of the server enabling efficient system scaling.

The peer birth rate of P2P download systems is assumed to be of Poisso-
nian nature characterised by a single parameter, λ. This parameter along
with the applied download and cache strategies will determine the minimum
server capacity (C) required to serve the peers. Up to the present date,
however, only few studies have been conducted in calculating the minimum
capacity needed by a server to maintain a flawless download process. Fur-
thermore, these analyses are mostly based on oversimplified models and can
lead to ill-founded conclusions. As a result, in this paper, a general stochastic
download model is introduced, in which framework the relationship between
the minimum required server capacity, the cache size and download strategy
are sought.

The results are treated in the following structure:

At first, a system model was created, from which we determined a
recursive formula calculating the download state of peers. The state
transition depends on the birth rate of peers and on the cache strategy.

a)

A complex simulation package was produced in order to evaluate the
system performance numerically in case of different peer birth rate
protocols and cache strategies. The software calculates the distribution
of clients in the system for the entire time of interest. Besides that,
we could plot and analyse the entropy of peer distribution in different
download states, which provides a major quality characteristic of the
system.

b)

Based on this model, we derived the state transitions of the system as
well as the average progress of download, which proves to be an important
quality parameter of the system.

i



The numerical experiments have demonstrated that the system perfor-
mance depends greatly on the cache size and strategy as well as on the server
capacity, i.e.

1. in the case of deterministic cache strategy, one is prompted to provide
a fairly large server capacity (e.g. multiple times the mean of the peer
birth rate distribution).

2. or design a cache strategy that focuses on retaining those packets that
are the most scarcely possessed by the set of peers.

The findings of the paper may offer insight into the optimisation of cache
strategies for real-world download systems. An elaborate design may help to
implement a system that remains robust against massive user populations.
As far as the future work is concerned, the model may as well be extended
to the use of network coding technologies. Any future research in the field of
efficiently scaling P2P download systems will potentially lead to the global
application of this technology.

ii



2 Introduction

From the early onset of networking, designers were well aware that the
current network configuration and the capacity of server environments do not
facilitate the transfer of large data files over the internet to multiple users.
Soon peer-to-peer (P2P) file exchanging protocols arose to support large
data traffic. The concept behind these protocols resides in the utilisation
of end user upload capacity. With the guidance of the central server, users
can exchange data without interfering with the server any more, thus taking
over the burden of overloaded servers. This development has proven to
be instrumental to present day networking as well, when mobile (e.g. 5G)
networking is aiming at better server utilisation and energy awareness. Thus
P2P file downloads can decrease server load and utilize network resources
more efficiently.

Many file-sharing systems have already been developed, but BitTorrent
has proven to outperform most of them. It is worth recalling that early
peer-to-peer systems supported users (peers) uploading their content only
as soon as the file was downloaded in its entirety. The disadvantage of this
approach is that peers tend to leave the system as soon as the download has
been finished, thus the download process could not be maintained easily.
In contrast, BitTorrent-protocol shares files fragmented into smaller chunks
(which are usually called packets, fragments, pieces) and the download is
taking place on a packet-by-packet basis. The advantage of this mechanism
is that peers may as well start sharing the received content no matter how
advanced they are in the downloading process.

In spite of BitTorrent being a more or less mature technology, there
is still room for development of specialised applications of P2P protocols.
There have been recent attempts to introduce peer-to-peer protocols into
live streaming services, an environment fairly different from the usual one,
where the file of interest is totally available. [1] outlines the importance of
these recent ideas, since live streaming data traffic is becoming more and
more prevailing. For instance, sport events often gather so many online
spectators that the system is responsible for serving hundreds of thousands
of users. According to [4], internet video traffic represented more than the
half of total internet traffic in 2016 and this percentage further increases,
reaching 67.64% by 2021 (depicted in figure 1).

Therefore, P2P system designers are in an urgent need for developing a
more realistic model of such a system in order to determine the basic design
parameters, such as the server capacity and (in case of a live streaming con-
text) the optimal cache strategy as well as the forward windows size. These
parameters are crucial for well-performing download systems, since the full

1Source: [4]

1



Figure 1: Internet traffic from 2016 till 2021 foreseen by Cisco 1

range of client needs (e.g. continuous video quality with no interrupts, re-
latively low latency) must be addressed when the scale of user population
exceeds bounds no less than hundreds of thousands. [3] reports the example
of a PPLive network ([5]) which was found to have kept connection with
over 100.000 clients. Moreover, besides facing serious system design prob-
lems, service providers are also challenged by the competitive nature of the
market. [1] points out the fluctuation of peers to other providers whenever
large deviations from a flawless service are encountered.

The key objective of this work is to provide designers with an analytical
model of P2P systems that is more precise and more plausible than the
outcome of previous attempts. Before commencing with the discussion, the
major issues of a BitTorrent session are outlined. [2] focuses on some key
features, two of which are the scalability, i.e. the handling of massive user
population and efficiency, namely at what pace peers download the desired
content and how well their bandwidths are utilised.

The rest of the paper is organised as follows. In section 3, a brief de-
scription of the BitTorrent protocol is discussed. We refer to the background
knowledge and related work, namely we are going to outline previous results
on the importance of peer group size and number of fragments. Besides, the
warming up period of P2P systems is examined. Section 4 introduces our
approach and our stochastic model of P2P systems. The key contribution of
our work is the generality provided by our model since parameters like the
applied cache size or the cache strategy are changeable and experimenting
with various peer birth models is possible, as well. Section 5 outlines the
numerical results achieved by the previously designed model.

2



3 Background and Related Work

In this section, existing P2P systems are briefly summarised and compared
to our work according to papers [1, 2].

One of the implementations of P2P systems is the BitTorrent ([6]) proto-
col. The basic unit of service in BitTorrent is called session, which consists
of a file and a dynamic set of clients/users, the so-called peers that aim
at downloading the file, the desired content. The large set of peer forma-
tion is usually called a swarm, which is populated by leechers (peers in a
session that are still downloading) and seeders (peers in a session that fin-
ished downloading but still offer their upload bandwidth so that other clients
could receive the file). In order to join a session, peers must obtain a torrent
file that includes the list of fragments in which the file was broken. Peers
also receive a list of participant peers to which they can build and maintain
communication links. This is the first stage, when newly born peers can
indeed start downloading effective content.

Peers send download requests to some of their connections. Although
peers maintain connection to 40 to 100 peers (depending on implementation
and the actual size of the swarm), they only upload content to a handful
of peers, due to limited upload bandwidth. This means that not all of the
download requests will be accepted, they need to be filtered. Two major
upload-download policies are applied in BitTorrent-like systems. First of
all, peers solicit fragments that are the least available among other peers.
This policy is often referred to as the rarest-first-download policy ([1]). Sec-
ondly, peers bombarded with multiple concurrent download requests prefer
uploading data to peers that prove to be uploading content at the fastest
rate. This tactic is named Tit-for-Tat upload policy. This rule of thumb
is considered by [1] and others([7]) the reason of BitTorrent’s overwhelming
and general success.

Much work has also been done in the field of optimistic unchoking, a
mechanism to select unknown peers for download. Although this field is not
connected closely to our topic, it gives an insight into how the dynamics
of BitTorrent systems works. Tit-for-Tat policy discriminates most of the
peers that they have link to, without periodically measuring their upload
bandwidth, which might have changed meanwhile. Moreover, freshly arrived
peers are underscored due to their incapability to upload data, no matter
how rich they are in upload capacity. To solve this issue, peers regularly
run optimistic unchoking algorithms to get some of these isolated peers
involved into the system. The pure purpose of this algorithm is to randomly
select a peer for bidirectional data transfer. The selection is considered
random, since little is known about the upload capacity or willingness of the
chosen peer. This selection is periodically run, every 30 seconds([2]). The
drawback of such a policy is the abuse of the system’s cooperative nature

3



by malicious peers, often called free-riders. Free-riders are only concerned
about acquiring the file without contributing their resources to the system
by making their upload bandwidth unavailable. As demonstrated in [9],
free-riders can achieve the fifth of a normal peer download rate by making
use of optimistic unchoking. [8] suggests a new algorithm to handle such
peers more efficiently. It basically maintains information about previously
unchoked peers and their contribution to the network, this way favouring
good peers or ignoring free-riders.

From the previous arguments one can deduce that there are two basic
static models of P2P systems. The first of them is proposed by [2] and it
divides the user population into several little groups, which exchange data
exclusively among themselves. The second model, applied by [1], commences
from a one-cluster model, where peers participate in a connected network.
Since the latter makes possible to deduce information about the multi-group
model, we are going to adopt the one-cluster model in the forthcoming
sections.

It is also a key feature of BitTorrent-like systems, that they split the data
file into numerous fragments (or packets). The number of these packets is
dependent on the context in which the system is used. Systems designed to
share large data files that are available before the P2P session split the file
into a few thousand pieces, while live streaming services split the actually
available data (a few seconds, at most a few minutes of video streaming) only
into a few dozens or even less packets. The argument for fragmentation of
the file is (as outlined in previous sections) that peers may start acting like
data sources as soon as the first packet has been downloaded, and waiting
for the file to be received in its entirety is not necessary any more. This
way even users are being prompted to contribute to a sustainable session
by allowing a fraction of their upload capacity to be used, since they will
still be downloading when upload starts. The reason why further increasing
the number of pieces is impeded is that this process would involve reducing
the size of individual packets. The smaller the packet is, the greater the
proportion of network headers are when sending the packets through the
internet network. Since upload capacities of users are tightly limited, this
proportion must be kept low.

3.1 Peer group size and number of packets available for down-
load

The previous paragraph outlined some important parameters of BitTorrent
sessions, namely the peer group size, the number of packets available for
download, the fraction of utilisation of end-user capacity. Up to the present
day, many surveys have been conducted on determining the right choice for
these parameters, but some of the results prove to be controversial. For

4



example, the peer group size is proven to have very low impact on the
efficiency of the download process by [1]. The authors of [1] defined the
efficiency of the file exchange (i.e. the fraction of the total peer upload
capacity that can be utilized) as the probability that in a group of k peers
there exists at least one peer that needs one of the fragments which another
peer is has, denoted by η. They computed this value to be:

η = 1−
N−1∑
ni=0

1

N

(
N − ni
N(ni + 1)

)k
where N denotes the number of fragments available for download and k
is the number of peers participating in the file-exchange. Expanding this
equation it can be written that:

η = 1− 1

N
− R

N

where

R =
1

2k

(
1− 1

N

)k
+

1

3k

(
1− 2

N

)k
+ . . .+

1

(N − 1)k

(
2

N

)k
+

1

Nk

(
1

N

)k
With sufficiently large peer groups (k > 10) R/N becomes negligible

compared to 1/N and, therefore, the efficiency can be approximated as:

η ≈ 1− 1

N

Thus paper [1] could prove that the efficiency of file exchange does not
depend on the peer group size on the account of there being at least around
10 clients. Moreover, the dependency on the number of fragments could also
be pointed out. With a fairly large number of packets available, almost the
entire end-user upload capacity could be utilised. Figure 2 plots the effect
of the peer group size on the efficiency of file sharing with different values
of the number of fragments available for downloading. The set of curves
underlines the previous conclusions.

3.2 BitTorrent warming up period

Finally, it is worth mentioning the warming up period reported by BitTorrent-
users mentioned in [10] and [2]. C. Barakat and I. Pratt ([10]) conducted
an experiment on the amount of data received and uploaded during a P2P
session with an instrumented client behind a 10Mb/s campus network access
link. The results are outlined in figure 3. It is obvious that the derivative

5



Figure 2: Variation of the efficiency of file sharing for different quantities of
fragments available for exchanging 2

Figure 3: Download and upload evolution during a session through a 10Mb/s
link. 3

6



of the curve not being constant but increasing, there is a warm up period
preceding the steady state.

In their article, Y. Yue et al. provide a so-called fluid model of P2P
sessions. In their paper the use of a multi-group model is suggested, where
leechers form several little sets without intergroup data exchange and seeders
form a single group maintaining contact with each other. The authors anal-
yse the performance of the system by using a continuous time parameter.
Their main objective is to find the parameters of the system in steady states
and to determine the convergence time of peers to their steady state. This
convergence time is mainly responsible for the aforementioned warming-up
period, when users face low download rates. After examining the unchoking
algorithm used by BitTorrent the explanation is straightforward: until the
given peer can obtain enough data to start uploading, no one will choose
to keep contact with them even after optimistic unchoking. [2] presents a
meticulous mathematical model to prove this.

Let us suppose that the swarm consists of N peers shared between n peer
groups: Gi with the number of participants Ni, where i = 1, n. The main
question is how long it takes for a peer to reach its steady state. In order to
simplify the question, we are going to work in case of n = 2 with group G1

consisting of peers with high upload capacity and G2 consisting of peers with
low upload bandwidth. Let us suppose that peers upload data only to nu
other peers (this number is usually around 3 or 4). A peer reaches its steady
state as soon as it finds nu peers with the help of optimistic unchoking, since
regular unchoking cannot be used due to the lack of network information.
Since optimistic unchoking can be applied every 30s, the question is reduced
to the number of rounds necessary to reach the steady state. Let R denote
the random variable corresponding to the number of optimistic unchoking
rounds necessary for a peer to build up a link to nu different peers. The
probability of finishing after exactly the kth round is:4

Pnu(R = k) = Pnu−1(R ≤ k − 1) · P (leecher finds a G1 leecher in round k)

This can be calculated as following:

Pnu(R = k) =

(
N1−1
nu−1

)(
N2

(k−1)−(nu−1)

)(
N1+N2−1

k−1

) · N1 − nu
N1 +N2 − k

After transforming the formula and calculating the mean of R Yue et al.
found that:

E(R) = nu

(
N1 − 1

nu

)N−N1+nu∑
k=nu

(
N−N1

k−nu
)(

N−1
k

)
2Source: [1]
3Source: [10]
4For a more detailed explanation see [2]

7



According to the established formula, the article plotted the relationship
between E(R) and G1’s portion among all leechers in figure 4. The figure
shows that the convergence time decreases fast with the portion of G1 in-
creasing. For example, with a proportion of 10% the expected number of
rounds is around 20, i.e. the given peer would reach constant state after
around 10 minutes.

Figure 4: Expected number of rounds after which a peer in group G1 reaches
a steady state in function of G1’s portion among all leechers. 5

In conclusion, up till now a massive effort and research have been in-
vested in the investigation of P2P protocols, but there are still some open
questions. These questions are especially important in the advent of 5G
mobile technology, where a large number of users are supposed to have
access to a large amount of data with low latency and at high data speed.
On the one hand, the model proposed in [1] can only handle a system in
steady state without taking serious transient phenomena into consideration,
like the initial formation of the swarm, the gradual convergence of peers to a
steady download state or the way seeders abandon the session. On the other
hand, the model suggested by [2] introduces a reasonable insight into the
calculation of convergence time, but it lacks the simulation of inter-steady
states. The key objective of our work is to provide a stochastic model of
BitTorrent-like systems and to offer a method for performance analysis in
order to address these questions, too. Previous papers in the field would
usually try to estimate the performance in peak situations, characterised as
steady states. The argument against this approach is that many times more
massive performance is needed in case of huge system changes, triggered
by a large peer growth, rather than situations with large peer population.
Informally speaking, points with large deviation, large gradient are just as

5Source: [2]

8



important to discuss as points with “zero” gradient. Our work aims at pro-
moting a model where such changes are handled analytically. The objective
is also to provide numerical results on the minimum required server capacity
that will most likely cope with massive user populations subject to massive
deviations in peer birth rate. Later we will realise that this problem does
not lend itself to straightforward analysis because of the random peer births.

4 General stochastic model of a P2P system

In this chapter we introduce the general stochastic model for P2P systems.
Our approach provides information about the general dynamics of the sys-
tem described by the number of peers in different states of download. In this
case the dynamics of the individual peer download process are of marginal
importance and the main goal is to provide a well-performing design that
will stay robust in the case of massive client populations.

Let us assume that we have a single user cluster (the results obtained
for a single cluster can easily be generalized to multi-clusters), and that the
state of the system evolves on a discrete time scale, where the time variable
is denoted by k. The file to be received is denoted by F and consists of L
packets with the same size, and it is cut into M blocks, where each block is
constructed from K packets. In our work we introduce this smaller but not
packet-level data unit, the block, to provide a segmentation of the original
file, where the segments must be downloaded consecutively, i.e. in case of
videos in the sequence of video snippets. The need for this data unit is to
provide a model for live streaming applications as well, where it is crucial
to download packets within a given latency. The larger a block (the bigger
K) is, the more fragments are available for download for a certain peer, but
then there is an increased latency.

Since blocks ought to be received in their predefined order (even though
packets within a block may still be downloaded in a random sequence), the
state of each peer can be characterized by an index i indicating the last block
it managed to download. Given that 1 ≤ i < M , a peer found in state i is
competing for packets from block i+ 1. Peers in state M have downloaded
the entire file, they are only acting as seeders to support the flow of the
system. Newly born peers are automatically found in state 1 (this could
correspond to the fact that they have recently received the torrentfile from
the server).

It is important to note that clients tend to emerge according to some
random distributions. It is often assumed that population models are of
Poissonian nature. Nonetheless, we are going to handle a more general
model, in which peers emerge in accordance with a random variable A .
Besides that, it is presumed that peers in state M tend to remain present

9



in the system with a probability of Pstay. Once a seeder has left the system,
it never returns.

The number of peers in a given state i ∈ {1, 2, . . . ,M}, at time instant k
is denoted by ni(k). Therefore, the system is characterized by a state vector
n(k) ∈ NM , n(k) = (n1(k), n2(k), . . . , nM (k)).

The server capacity is denoted by C. This capacity shows how many
download requests can be handled purely by the server at each time instant.
Besides that, each of the peers in the swarm possess the same amount of
cache and use it with the same download storage mechanism, which we are
going to refer to as cache strategy. Different cache strategies are discussed
later.

Consequently, an S file sharing scenario consists of a tuple of a file,
a server capacity, a cache strategy, a peer birth random variable and a
probability of a seeder remaining active for another interval:

S =< F(M,K), C, cache strategy,A , Pstay > (4.1)

Such a file sharing scenario can produce different n(k) state vector evo-
lution due to the random peer birth rate. The set of different dynamics is
denoted by

NS = {n(k) state vector function result of file sharing scenario S}

Our objective is to analytically describe the state transition rule of n(k).
It is assumed that a time interval lasts long enough for peers being able to
download the entire information from a single block. Note that packets are
still received in a random order within a block. However, this assumption
does not restrict our model in any way, since blocks are to be downloaded
in the right order.

At first, let ξi,j(k) ∈ {0, 1} denote whether a peer j found in state i at
time instant k is not able to download the information from block i+1 from
another peer. Secondly, let pi(k) denote the probability that a certain peer
in state i is able to receive the information from block i + 1 purely from
other peers. Consequently, it can be written that

pi(k) = P (ξi,j(k) = 0) and pi(k) = 1− pi(k) = P (ξi,j(k) = 1)

Then, let p̃(k) denote the probability, that a peer at time instant k can
download the relevant information directly from the server. Since the server
has capacity C, one can write that:

p̃(k) = P (

M−1∑
i=1

ni(k)∑
j=1

ξi,j(k) ≤ C) (4.2)

10



Note that the first summation runs up to index M − 1, because peers in
state M will not need downloading packets any more. In order to expand
this probability, we will use the Chernoff bound, which states that given a
random variable Y , then

P (Y > C) = P (esY > esC) <
E(esY )

esC

holds for any s > 0. We apply this inequality for our case. Let Y =∑M−1
i=1

∑ni(k)
j=1 ξi,j(k) and let C denote the server capacity. We find that,

that for any s > 0:

P (

M−1∑
i=1

ni(k)∑
j=1

ξi,j(k) > C) <
E
[
exp(s

∑M−1
i=1

∑ni(k)
j=1 ξi,j(k))

]
esC

(4.3)

Now we expand on the numerator:

E

exp(s
M−1∑
i=1

ni(k)∑
j=1

ξi,j(k))

 = E

M−1∏
i=1

ni(k)∏
j=1

exp(sξi,j(k))


We now assume that the random variables ξi,j(k) are mutually independent
and it can be further deduced that:

E

exp(s

M−1∑
i=1

ni(k)∑
j=1

ξi,j(k))

 =

M−1∏
i=1

ni(k)∏
j=1

E [exp(sξi,j(k))]

=

M−1∏
i=1

ni(k)∏
j=1

(pi(k)es·0 + (1− pi(k))es·1)

=
M−1∏
i=1

ni(k)∏
j=1

(pi(k) + (1− pi(k))es)

We introduce the following notation:

µ
(k)
i (s) = ln(pi(k) + (1− pi(k))es), (4.4)

where µ
(k)
i (s) is called the logarithmic generator function of a peer in state

i at time instant k. Thus, it can be written that:

E

exp(s

M−1∑
i=1

ni(k)∑
j=1

ξi,j(k))

 =

M−1∏
i=1

ni(k)∏
j=1

eµ
(k)
i (s)

= exp

M−1∑
i=1

ni(k)∑
j=1

µ
(k)
i (s)


11



Returning to equation (4.3), we found that:

P (
M−1∑
i=1

ni(k)∑
j=1

ξi,j(k) > C) <
exp

[∑M−1
i=1

∑ni(k)
j=1 µ

(k)
i (s)

]
esC

,

from where finally:

P (
M−1∑
i=1

ni(k)∑
j=1

ξi,j(k) > C) < exp

−sC +
M−1∑
i=1

ni(k)∑
j=1

µ
(k)
i (s)

 (4.5)

holds for any s > 0 numbers. Consequently, it follows that

P (
M−1∑
i=1

ni(k)∑
j=1

ξi,j(k) > C) ≤ min

1,min
s>0

exp

−sC +
M−1∑
i=1

ni(k)∑
j=1

µ
(k)
i (s)




This way the final formula of p̃(k) can be estimated from below as:

p̃(k) > 1−min

1,min
s>0

exp

−sC +

M−1∑
i=1

ni(k)∑
j=1

µ
(k)
i (s)


 (4.6)

Since the logarithmic generator function (4.4) does not depend on index j
of a peer in state i (note that index j only represents the fact that there

may be multiple concurrent users in state i),
∑ni(k)

j=1 µ
(k)
i (s) = ni(k) ·µ(k)

i (s).

Furthermore, since our purpose is to minimise the necessary server ca-
pacity, it is enough to estimate p̃(k) with its lower estimation. In that case
we will estimate the minimal server capacity from above, which will not lead
to a under-performing design. Thus,

p̃(k) ≈ 1−min

1,min
s>0

exp

[
−sC +

M−1∑
i=1

ni(k) · µ(k)
i (s)

]
︸ ︷︷ ︸

Γ(s)



 (4.7)

The argument of the inner exp function is to be denoted by Γ(s), and we
are going to call it the logarithmic generator function of the server upload.
In order to calculate the minimum of Γ(s), when s > 0, we adopted the
Barzilai-Borwein method.

Corollary 1 Let us have a convex, derivable function F : Rm → R with one
single minimum point and with ∇F Lipschitz-function and the vectors x0 6=

12



x1 from Rm. Let us construct the {γn}, n ≥ 1 and {xn}, n ≥ 2 sequences of
vectors from Rm in a such a way that:

γn =
(xn − xn−1)T [∇F (xn)−∇F (xn−1)]

||∇F (xn)−∇F (xn−1)||2
, n ≥ 1

xn+1 = xn − γn · ∇F (xn) n ≥ 2

In this case the number sequence {xn} is convergent to the minimum point
of F:

lim
n→∞

xn = arg min
x∈Rm

F (x) (4.8)

Without entering into details, it can be easily shown that our function
Γ(s) satisfies all the conditions of the corollary. In our simulation package
we modified the algorithm suggested by the theorem in such a way that it
would handle only s positive parameters.

The simplified protocol that is modelled now determines the state tran-
sition as follows: a certain peer in state i first attempts to download the
required information (i.e. information from block i+ 1) from a fellow peer.
The probability for this was denoted by pi(k) 6. Had they not succeeded re-
ceiving information from other clients, the peer tries to download it directly
from the server, for which they stand a chance of p̃(k) estimated previously
at (4.7). Therefore, the probability of a peer in state i at time instant k to
advance to the next state is:

πi(k) = pi(k) + (1− pi(k))p̃(k) (4.9)

With this knowledge and the awareness of the peer birth rate A and the
probability Pstay of seeders (peers in state M) staying in the system for
another time interval, a recursive formula of the change of the state vector

6Calculation of pi(k) depends on the applied cache strategy and is discussed later on
in other subsections.

13



n(k) can be deduced 7:

ni(k + 1) = πi−1(k) · ni−1(k)︸ ︷︷ ︸
peers advancing

from state i− 1 to i

+ (1− πi(k)) · ni(k)︸ ︷︷ ︸
peers remaining

in state i

∀i = 2, . . . ,M − 1

n1(k + 1) = (1− π1(k)) · n1(k) + A︸︷︷︸
new peers

nM (k + 1) = πM−1(k) · nM−1(k) + Pstay · nM (k)︸ ︷︷ ︸
seeders staying

for antoher interval

(4.10)

The only thing that still needs to be calculated is the value pi(k), i.e.
the probability of a peer in state i advancing to state i + 1 by gaining the
information from block i+1 purely from fellow peers. This number, however,
depends on the applied cache strategy. We assume that all of the peers are
equipped by the same storing mechanism, by the same cache strategy8.
In the forthcoming subsections we investigate four major cache strategies,
realising a formula of pi(k):

• deterministic K packet strategy, where the peer only stores the last K
packets (note that K is the size of a single block);

• deterministic V block strategy, where the peer stores the packets from
the last V ∈ {1, 2, . . .} blocks;

• unlimited cache strategy, where peers store all previously received
data;

• random V · K packet strategy, where the peer stores a number of
packets corresponding to V blocks and packets are selected randomly
subject to uniform distribution among the already downloaded pack-
ets.

In the following subsections we denote the distribution function of the
uniform distribution by Ψ:

Ψ(u) =


0, if u < 0
u, if u ∈ [0, 1)
1, if u ≥ 1

7While constructing the formulas, we relied on the following basic idea: given m objects
to sort out and each of the objects are independently chosen to be sorted out with a
probability of p, then on average m · p objects are going to be chosen. In other words, the
mean of binomial random variable with parameters m and p is m · p.

8which should not be the case when size of the playback buffer or cache can be chosen
by clients

14



4.1 Population model for deterministic K packet strategy

On one side, in case of deterministic K packet strategy peers will store the
last K packets that were received, i.e. the information from the last block.
Strictly speaking, a peer in state i at time instant k is going to cache the
information from data block i as long as they advance to the next state.
Should a peer in state i advance to the next state in time instant k′ > k,
they will no longer possess the information from block i at the new time
instant. On the other side, peers in state i may only download information
from block i + 1 until they advance to state i + 1 and in one time interval
they can only download an amount of information corresponding to exactly
one block. Therefore, download can only be made from peers in state i+ 1,
since it is only them that store relevant information for peers in state i.
Consequently, the following formula holds:

pi(k) = P (ξi,j(k) = 0) = Ψ

(
ni+1(k)

ni(k)

)

4.2 Population model for deterministic V block strategy

In this case, peers will store the information from the last V blocks, i.e. they
will keep V ·K packets. According to previous explanations, peers in state i
are now able to download the desired information from peers found in states
i+ 1, i+ 2, . . . , i+ V , if there exist that many peers. Consequently,

pi(k) = P (ξi,j(k) = 0) = Ψ

(∑max{i+V,M}
j=i+1 nj(k)

ni(k)

)

4.3 Population model for unlimited cache strategy

In this case, peers store all previously received data. In that case, peers
in state i may acquire the required information from any peers in a more
advanced state. Consequently,

pi(k) = P (ξi,j(k) = 0) = Ψ

(∑M
j=i+1 nj(k)

ni(k)

)

4.4 Population model for random V block strategy

In this case, peers store exactly V ·K packets from the previously received in-
formation and packets are selected randomly subject to uniform distribution
among the already downloaded packets.

15



Firstly, we calculate the probability that a peer in state j > i has exactly
S ∈ {0, 1, . . . ,K} relevant packets for the peer in state i (see figure 5). The
V · K packets stored by the peer in state j are spread uniformly among
blocks 2, 3, . . . , j, therefore every single combination has the same probabil-
ity to emerge. There is no need to store information from 1, because, as we
previously pointed out, newborn peers arrive immediately in state 1, they
did not need to download actual content by that time.

Let us suppose that j ≥ V + 2. Then peer in state j cannot cache every
information from blocks 2, 3, . . . , j, because there are now j − 1 ≥ V + 1
blocks. There are

((j−1)K
VK

)
possibilities to choose the packets stored by the

peer in state j. Useful combinations are those where exactly S packets are
selected from block i + 1 (since this is the relevant block for peer in state

i). The number of useful cases is:
(
K
S

)
·
((j−2)K
VK−S

)
. Therefore, if we denote

by p
(s)
i←j(k) the probability of the peer in state j having exactly S relevant

packets for the peer in state i and by ωi←j(k) the number of relevant packets
the peer in state j has for the peer in state i, then the following equalities
hold:

p
(s)
i←j(k) =

(
K
S

)
·
((j−2)K
VK−S

)((j−1)K
VK

)
E [ωi←j(k)] =

K∑
S=0

S · p(s)
i←j(k)

Therefore,

E [ωi←j(k)] =
K∑
S=0

S ·
(
K
S

)
·
((j−2)K
VK−S

)((j−1)K
VK

) (4.11)

Figure 5: The bar representing the blocks of the file.

16



We may simplify (4.11) this way:

E [ωi←j(k)] =
1((j−1)K
VK

) · K∑
S=0

S ·
(
K

S

)
·
(

(j − 2)K

VK − S

)

=
K((j−1)K
VK

) · K∑
S=1

(
K − 1

S − 1

)
·
(

(j − 2)K

VK − S

)
The sum is equivalent to the following problem: in how many ways we
may choose from two piles of objects, one with K − 1 elements, the other
with (j − 2)K elements, in such a way that we select exactly (S − 1) +
(V K − S) = (V K − 1) elements. The very same result is obtained when
we determine the number of ways, we may select V K − 1 elements from
(K − 1) + (j − 2)K = (j − 1)K − 1 objects. Consequently,

E [ωi←j(k)] =
K((j−1)K
VK

) · ((j − 1)K − 1

V K − 1

)

=
K

(j−1)K
VK ·

((j−1)K−1
V K−1

) · ((j − 1)K − 1

V K − 1

)

=
V

j − 1
·K, ∀j ≥ V + 2

For j ≤ V + 1 peer in state j should keep every single packet till block j.
Therefore, he may serve peer in state i+1 with all the K packets from block
i+ 1. That means, E [ωi←j(k)] = K ∀j ≤ V + 1.

Let Ωi(k) denote the number of blocks that peers in states j + 1, . . . ,M
have for a peer in state i. Then, we find that:

E [Ωi(k)] =
M∑

j=i+1

nj(k) · E [ωi←j(k)]

K

Consequently, the probability of a peer in state i to advance to state i+1
is:

pi(k) = Ψ

(
1

ni(k)
E [Ωi(k)]

)
Due to the complexity of the equations, we resort to numerical methods

in the next section in order to collect statistics illustrating the performance
of the system.

17



5 Numerical results and analysis

In this section we provide an extensive numerical analysis and performance
evaluation of the download process. The simulation package is capable of
analysing the performance in the case of different peer birth rates and cache
strategies. The software calculates the distribution of clients in the system
for the entire time of interest. Besides that, we could plot and analyse the
entropy of peer distribution in different download states, which provides a
major quality characteristic of the system. Our model is once again outlined
here as was detailed in section 4 at 4.1.

S =< F(M,K), C, cache strategy,A , Pstay >

5.1 Comparison of cache strategies

Tables in figure 6 depict the results of our simulation. In all figures we
applied the following choice of parameters: the number of blocks was chosen
to be M = 10, the number of packets within a block K = 20. Seeders (peers
in state M) remain in the system for another time instant with a probability
of Pstay = 0.3. Peer birth rate A was estimated by a Poisson random
variable whose λ parameter was changed during the course of benchmark 9.
Different tables were constructed for different cache strategies.

Our main concern, when experimenting with our model, was to estimate
the required threshold of the server capacity C at the previously given pa-
rameters and at different values of peer birth rate applying different cache
strategies. The tables were constructed according to the followings:

• each of the different cache strategies is associated with different tables;

• within a table the first column represents the λ parameter of the peer
birth rate (which also represents the mean of the Poisson distribution),
varying between values 50, 100, 300;

• the second column illustrates the server capacity. We attempted to
determine the threshold under which the system would collapse with
reasonable chance and above which the system stays robust in all of
the cases;

9A Poisson random variable is a discrete random variable with values falling in
{0, 1, 2, . . .} and with a distribution of the following form: P (k) = λk

k!
· e−λ. It is cru-

cial to note that the mean of such a distribution is λ. This means that when we are
referring to Poisson nature peer birth rate with parameter λ, then we are actually talking
about a birth rate with a mean of λ.

18



(a) (b)

(c) (d)

Figure 6: Results of the simulation for the following parameters: M = 10,
K = 20, Pstay = 0.3, the peer birth rate follows a Poisson distribution.

19



• the following three columns represent the outcome of the benchmark.
Column “out of” shows the number of tests conducted with the given
parameters and column “success” conveys the result, i.e. how many
tests are treated as successful. Soon the definition of a successful test
is described. Column “%” represents the proportion of the previous
columns.

• In the case of the tables 6a, 6b, 6c we calculated the state vector n(k)
of the system for the first I = 500 time instants, in case of the 6d
we have done similarly until I = 200 because of the complexity of the
test.

• We considered a test successful provided the entropy of the state vector
at the last time instant calculated was greater than 0.85. That means
that a test was successful if and only if

H(n(k)) =

M∑
i=1

ni(k)∑M
j=1 nj(k)

· ln

(∑M
j=1 nj(k)

ni(k)

)
> 0.85 (5.1)

where k denotes the last time instant the simulation reached.

It should be outlined, that K = 20,M = 10 is a fair choice. BitTorrent-
like protocols use a packet size of 32kB. In that case, the amount of data in
a block is 2.56Mb and the amount of data available in advance is 51.2Mb.
It is assumed that FullHD quality IPTV streams consume around a 10Mbs
network bandwidth. In that case, we could watch our live stream with an
approximately 5 second latency 10.

As far as the results are concerned, we may conclude that cache strategies
using larger cache size will largely outperform strategies making use of less
cache, but after a certain size the performance cannot be further increased.
Comparing 6a and 6c, one can easily observe that while deterministic K
packet strategy easily consumes a 2000-capacity server with a 300-mean
peer birth, the unlimited cache strategy will reduce this bound to 900. This
means a more than 50% reduction in the server load. In case of 100 peers the
necessary capacities are 200 versus 150. Therefore, unlimited cache strategy
performs reasonably well for low peer birth rates, as well.

However, there is astonishing similarity between the unlimited cache
strategy and the deterministic V block strategy with V = 3 blocks. The
two cases produce almost the same result The unlimited cache strategy can
seldom outperform his counterpart. This provides a useful result, since peers
will not need to store the received file in its entirety, but they only need to
allocate a previously known amount of space for caching. Note that real

10Although live streaming and IPTV watching do not necessarily mean the same burden
for the network, this is still the right scale of parameters to discuss.

20



unlimited cache strategy cannot be implemented in any way, but, according
to our findings, it will not need to be.

One can also analyse and compare the results of the deterministic K
packet strategy and deterministic V block strategy. It must be remarked that
the random strategy cannot outperform the deterministic strategies. Even
though consuming a cache size corresponding to three blocks, it produces
almost the same result as the deterministic K packet strategy, staying well
behind the other two storing mechanisms. The problem with the design is
that peers in lower states are served excessively well by advanced peers, who,
in return, however, may be poorly served by seeders who have kept packets
for peers from all age brackets.

5.2 Relationship between peer birth rate and minimum server
capacity needed

Figure 7: Relationship between the λ parameter of the peer birth rate and
the Cmin server capacity in case of three different cache strategies. Param-
eters: K = 20, M = 10, Pstay = 0.3, number of time instants considered:
I = 500, number of tests T = 20

In this subsection we aim to reveal the relationship between the mean

21



of the peer birth rate and the minimum server capacity needed, so that
the server would not collapse being heavily overloaded. Basic parameters
were kept from the previous investigations. The major difference is that
we plotted the minimum server capacities in case of three different cache
strategies (deterministic K packet scenario, deterministic V block scenario
with V=2 and V=3) on the same chart allowing a detailed comparison. The
minimum server capacity represents the estimation of the lowest capacity at
which file sharing scenarios will almost terminate with a fairly large entropy.
In our case we determined Cmin in such a way that it would be the lowest
server capacity where every single test produced a last state of vector with
the entropy greater than 0.85 (see formula at (5.1)).

First and foremost, the advantage of the larger cache strategy becomes
clearly visible in the interval λ ∈ [100, 300], where the minimum server
capacity decreases almost proportionately to the cache size. However, it is
interesting to see that such a relationship is disturbed at larger means: at
λ = 350 the deterministic V block strategies with V=2 and V=3 are almost
of the same quality, and after that none of them can reasonably perform
better than the other one.

Secondly, it is surprising how large the deviation in required server ca-
pacity is, when λ ∈ [100, 150]. With a handful of addition to the mean, the
required server capacity increases beyond one thousand.

6 Conclusion

In this work we studied the performance of P2P-like systems using a general
stochastic model. In the first part we have analysed some already exist-
ing models of P2P protocols. Then our emphasis was focused on how the
different parameter settings affect the performance. The key contribution of
this work is the introduction of a stochastic model, which can capture the
dynamic behaviour of the system. This dynamics describes the peer progress
and is characterised by a state vector the components of which indicate the
peer population in different download stages. After normalisation, the en-
tropy defined over this vector will measure how ”smooth” the download is
or if there is a bottleneck stage, where peers are waiting for new packets
without being served by other peers. This dynamics can shed light on how
the different caching strategies and server capacities will affect the system
performance. A detailed numerical analysis was conducted which gave rise
to the following conclusions: (i) the deterministic K packet caching strategy
(i.e. keeping the last K packet) perform better than random ones (keeping
K packets which are randomly selected subject to uniform distribution), (ii)
if the cache memory size is large, then the performance of the download
process does not depend on the peer population any longer.

22



The obtained results can increase the quality of video streaming applications.
Future work in the field will involve establishing the relationship between
the individual peer progress and the peer age. Besides that, it also remains
to be seen how network coding may further enhance the performance.
Finally, let me underline the help of Mr Patirk Braun, PhD student at the
Department of Automation and Applied Informatics whose work has pio-
neered this contribution.

23



References

[1] S. Tewari and L. Kleinrock: Analytical Model for BitTorrent-based Live
Video Streaming, in Consumer Communications and Networking Con-
ference, 2007. CCNC 2007. 4th IEEE

[2] Y. Yue, C. Lin and Z. Tan: Analyzing the Performance and Fairness
of BitTorrent-like Networks Using a General Fluid Model, in Global
Telecommunications Conference, 2006. GLOBECOM ’06. IEEE

[3] X. Hei, C. Liang, J. Liang, Y. Liu and K.W. Ross Insights into PPLive:
A measurement study of a large-scale P2P IPTV system, in Workshop
on Internet Protocol TV (IPTV) services over World Wide Web in
conjunction with WWW2006, May 2006

[4] The Zettabyte Era: Trends and Analysis, in Cisco VNI Global IP Traffic
Forecast, June 2017

[5] PPLive, http://www.pplive.com/en/about.html

[6] BitTorrent, http://www.bittorent.org/protocol.html

[7] B. Cohen, : Incentives Build Robustness in BitTorrent, in IPTPS,
February 2003

[8] Z. Ma, D. Qiu: A Novel Optimistic Unchoking Algorithm for BitTor-
rent, in Consumer Communications and Networking Conference, 2009.
CCNC 2009. 6th IEEE, 10-13 Jan 2009

[9] D. Qiu and R. Srikant: Modeling and Performance Analysis of
BitTorrent-Like Peer-to-Peer Networks, in Proceedings of ACM SIG-
COMM, Aug. 2004

[10] C. Barakat and I. Pratt Passive and Active Network Measurement, in
5th International Workshop, PAM 2004, Antibes Juan-les-Pins, France,
April 19-20, 2004

24



A Appendix: Simulation Package

In order to numerically analyse the stochastic model, we developed a com-
plex simulation package on .NET C# basis. Figure 8 outlines the package
representing the model of the architecture. This architecture includes mostly
the logical view of the software and it does not get involved with showing
data on a user interface (that is the role of the View package). The core
class of the architecture is the AbstractP2PDownloadStateModel, which is re-
sponsible for maintaining the statevector n(k) during the calculations. The
software is still open for other population models, therefore this class is ab-
stract and only its descendent, BirthDeathRateP2PDownloadStateModel im-
plements the usage of the peer birth rate A or the seeder staying probability
Pstay. Here the use of the template method pattern offers us a flexible solu-
tion. The CacheStrategy interface represents an incarnation of the strategy
pattern invoked here, to provide interchangeability of different cache strate-
gies. The AbstractP2PDownloadStateModel is also responsible for maintain-
ing the logarithmic generator function and to calculate the desired minimum
point outlined previously at 1. For implementing this we introduced a sin-
gleton Optimisation class that would support experimenting with different
optimisation algorithm without affecting directly the model logic. Conse-
quently, our model follows some basic object oriented principles for the pure
purpose of providing future extensions, maintainability.

What is more, a view package has been produced to visualise numeri-
cally determined results. Our current version of the software supports set-
ting parameters and analyse the outcome of single session, which is de-
picted in figure 9. The left hand side chart illustrates the state vector
n(k) = (n1(k), n2(k), . . . , nM (k)) at a time instant we set with trackbar
in the middle (gray) section. The right hand side figure plots the change

on entropy during the course of experiment: H(n(k)) =
∑M

i=1
ni(k)∑M
j=1 nj(k)

·

ln

(∑M
j=1 nj(k)

ni(k)

)
. The red bar crossing horizontally the chart represent the

maximum value the entropy can hold, namely Hmax = ln (M).

25



Figure 8: Software architecture of the model of the simulation package

26



Figure 9: User interface of the simulation package
27


	Abstract
	Introduction
	Background and Related Work
	Peer group size and number of packets available for download
	BitTorrent warming up period

	General stochastic model of a P2P system
	Population model for deterministic K packet strategy
	Population model for deterministic V block strategy
	Population model for unlimited cache strategy
	Population model for random V block strategy

	Numerical results and analysis
	Comparison of cache strategies
	Relationship between peer birth rate and minimum server capacity needed

	Conclusion
	Appendix: Simulation Package

