
The behaviour of server
clusters for different load

balancing principles

Author: Márton Mészáros
Supervisor: Illés Antal Horváth

Abstract

A server cluster consists of multiple simultaneously operating servers.
Demands arrive to this cluster, which are distributed by a dispatcher be-
tween the queues of the different servers by some load balancing principle.
The demands wait in these queues until they are served by the servers.
These clusters offer an excellent way to model real life systems, like com-
puter servers, the cash registers of shops or transportation networks.

When we examine the performance of these systems, the load balanc-
ing principle is a quite important parameter. We will examine five different
principles in this paper. The Random assignment principle is the most
trivial of them, it simply means that the arriving demands join a queue
at random (uniformly). The Join-Idle-Queue (JIQ) principle means that
the arriving demand joins an empty queue, if there is one, and otherwise
it joins a queue randomly. The Join-Shortest-Queue principle is the most
efficient of the discussed ones, it means that the arriving demand joins
one of the queues with the fewest demands. A modified version of the
previous is the Join-Shortest-Queue(d) (JSQ(d)) principle, which means
that the dispatcher chooses d queues at random, and sends the demand
to the shortest one. The last principle we discuss is Join-Below-Threshold
(JBT), it means that a threshold is assigned to the servers (it may differ
between the different servers), and if there are servers with fewer demands
than the threshold, then the demand is sent to one of these, and otherwise
it is sent randomly.

In this paper we examine a simpler mathematical model of these clus-
ters. We ignore some problems real clusters face, like the cost of com-
munication between the servers and the dispatcher. We also consider the
system to be a continuous Markov chain (where the state space is given
by the queue lengths of the servers), and for that we need that the arrival
and the service of the demands are both Poisson point processes.

It is possible that inside the cluster all the servers have the same
properties (in this case we talk about a homogeneous cluster), or there can
be different server types as well (in this case the cluster is heterogeneous).
The speed of the servers is determined by their service rates, which can
be constant, or it can depend on the length of the queues, and in the case
of heterogeneous clusters they can differ between the server types.

The state of the cluster converges to a given set of functions (in which
the functions represent the number of the servers of a given queue length
in a server type in respect to the number of all servers in the cluster,
depending on the elapsed time). These functions also converge to a sta-
tionary state, as the elapsed time goes to infinity.

In this paper we examine different clusters, especially focusing on their
stationary states, simulating them and also numerically solving the dif-
ferential equations which determine the functions, and this way we can
compare the different load balancing principles.

1

Acknowledgments

I would like to express my deep gratitude to Illés Horváth, my supervisor, for
introducing me to queueing theory, teaching me the concepts and theorems
which form the basis of our research. This paper, based on our common work,
couldn’t be made without his patient guidance, encouragement and constructive
critiques.
I would also like to express my great appreciation to Dr. László Spissich, who
guided me in the field of mathematics while I was a high school student, laid
the foundations to my knowledge of higher mathematics and encouraged me to
pursue higher education in this discipline.
I would also like to extend my thanks to Bálint Vető, who introduced me to the
concept of Markov chains while he was my supervisor in the ÚNKP program,
and also taught me about stochastic processes, a topic essential to this paper.

2

Contents

1 Introduction 4
1.1 Markov chains . 4
1.2 Birth-death processes and queues 5
1.3 Density-dependent population processes 6

2 Server clusters 8
2.1 Mean system time . 12

3 Load balancing principles 13
3.1 Random assignment . 14
3.2 Join-Idle-Queue . 15
3.3 Join-Shortest-Queue . 17
3.4 Join-Shortest-Queue(d) . 19
3.5 Join-Below-Threshold . 20

4 Numerical experiments 21
4.1 Transient mean field diagrams . 22
4.2 Other interesting plots . 29
4.3 Mean system times . 31

5 Conclusion and outlook 32

3

1 Introduction

The topic discussed here falls under a field of mathematics called queueing
theory. It is a fairly recent field, as the first paper on it was published in 1909
by Danish engineer Agner Krarup Erlang [3]. Erlang modelled the number of
telephone calls arriving at an exchange as a Poisson-process. Later he also
solved some simpler queue models, such as the M/D/1 and M/D/k queues.

Queueing theory is the study of waiting lines (queues), systems of queues
and their behaviours. It is often considered to be a part of operations research
as it is often used in business decisions about resources needed to provide a
service, but it has its roots in stochastics.

For large-scale service systems, management of resources, and more specif-
ically, load balancing becomes an important issue that can largely effect the
performance of such systems.

The contributions of the paper are the following:

1. Providing a high-level mathematical framework for modelling load balanc-
ing systems that accommodates several different load balancing principles.

2. Computation of the mean service time in the mean-field limit. Standard
computation techniques need to be adapted for discontinuities for some of
the load balancing principles; these modified formulas are, to the best of
our knowledge, novel.

3. Numerical comparison of the various load balancing principles via simu-
lation and theoretical computations for the mean-field limit.

Certain aspects of load balancing (like the cost of communication overhead
between the servers and the dispatcher) are not included in the modelling and
are subject to further research.

The rest of the paper is structured as follows: the rest of this section is
dedicated to the discussion of mathematical background used in queueing theory
to be utilised in the paper. Section 2 describes the general setup of the server
cluster we are interested in. Section 3 describes the various load balancing
principles. Section 4 contains numerical experiments and comparison of the
various load balancing principles, and Section 5 concludes the work.

1.1 Markov chains

As we mentioned it before in the abstract, the queues we model are continuous
time Markov chains, more specifically continuous time birth-death processes. A
Markov chain is a stochastic model describing a series of events in which the
stochastic distribution of the next event only depends on the current state of the
system. We usually denote the state space by Ω, which consists of the possible
states visited by the chain.

As the next visited state only depends on the current state, for finite state
spaces we can work with the transition probability matrix P (in discrete time),

4

whose (i, j) element P (i, j) is the probability of the chain stepping to state
j from state i, or the infinitesimal generator matrix G, whose element Gi,j
describes the infinitesimal transition rate from i to j. For infinite state spaces,
we have operators instead of matrices. That said, we will stick to finite state
space in this paper.

If the (finite state space and continuous time) Markov-chain is irreducible,
that is, it can get from any state to any state in a finite time, then it has a
stationary distribution π which it converges to as time goes to infinity. This
means that the probability that the chain will be in state i after n steps converges
to π(i) as n→∞.

A continuous Markov chain have its transitions in time as a Poisson point
process. This ensures that even the time until the next transition does not
depend on the time passed since the last one, as this time is exponential (its
parameter can and often does depend on the current space).

A quite common model for continuous Markov chains is the racing clocks
model. In this we imagine that when we start at a chain, we start an alarm
clock for each possible transitions, and whichever rings first, its transition is
going to happen (and the process starts all over for the next state). The clock
corresponding to state i will ring in Yi ∼ Exp(µi) time (where µi := 0 if transi-
tion to state i is not possible, which corresponds to Yi =∞, so the clock never
rings). µi is called the transition’s rate. Let us denote the time until the first
ring with Y , so Y = mini∈Ω(Yi). Then it follows that

Y ∼ Exp

Ñ∑
j∈Ω

µj

é
,

and the transition to state i will have a probability

P(Y = Yi) =
µi∑

j∈Ω

µj
.

1.2 Birth-death processes and queues

The demands arriving to and leaving a server’s queue can be modelled with a
birth-death process. A birth-death process is a Markov-chain, in which states
are denoted by nonnegative integers and from each state i besides state 0 (from
which the chain can only transition to state 1) the chain can transition to state
i− 1 or i+ 1.

The rate of transition from state i to i − 1 (a death) is denoted by µi, and
the transition from state i to state i+ 1 (a birth) is denoted by λi. In queueing
theory we often utilise a slightly modified version where there is a maximal
queue length (state) B, such that for every i ≥ B, λi := 0. With this, the state
space becomes finite with Ω = {0, 1, 2, . . . , B}.

Previously we mentioned M/D/1 and M/D/k queues. These are using
Kendall’s notation: the first character (here M) marks the type of the arrival

5

Figure 1: The states and transitions of a birth-death process. [1]

process, the second character (D) marks the serving process, and the third char-
acter (1 or k) marks the number of servers associated to the queue. Sometimes
a fourth character is also included (e.g. M/D/1/B), marking the buffer size or
the maximal queue length (if a demand arrives to a queue with length B, it’s
simply lost). Queues are basically a special case of birth-death processes, where
state transitions are either a demand arriving, making the queue longer by 1,
or a demand leaving, making the queue shorter by 1.

In this paper we will mostly examine queues with the service principle First-
In-First-Out (FIFO), which means that the server always serves the first de-
mand of a queue, while the other demands wait. Whenever the first demand
has finished service, the server immediately starts serving the next demand. An-
other interesting service principle is Limited Processor Sharing (LPS), where the
server can work on multiple demands simultaneously. The maximum number of
demands served simultaneously is called the multi-programming level (MPL).

M as the first or second character of the queue’s type stands for Markov.
If the Markov-property holds for arrivals, then the arrival of the demands is a
Poisson point process with some parameter λ, and if the second character is M,
the service time of a demand is exponential with some parameter µ (or, in case
the service rate depends on the queue length, it’s µi for queue length i).

D stands for deterministic interarrival or service times, and G is also used
for general time distributions. Only the M/M queues are Markov-chains. In
this paper we will focus on clusters of M/M/1/B queues.

1.3 Density-dependent population processes

Our server clusters, which are groups of co-dependent servers with a common
dispatcher, can be best described as density-dependent population processes.
In these the population consists of N interacting components, each of which is
in a state from a finite set of local states S. The global state of the system
is defined as the total number of individuals in each state, that is, a vector
XN ∈ {0, 1, . . . , N}|S| with XN

1 + · · ·+XN
|S| = N . The normalized global state

of the system can be defined as

xN =
XN

N
,

6

so xN ∈ [0, 1]S with xN1 + · · ·+ xN|S| = 1.
Each component acts as a continuous Markov chain. The rate of its transition
from i ∈ S to j ∈ S is rNij (for i 6= j). The rates are assumed to be density
dependent, that is

rNij = rij(x)

for some function rij : [0, 1]|S| → [0,∞]. x is the |S| dimensional vector with
elements xNi for i ∈ {1, 2, . . . , |S|}. In the classic setup defined by Kurtz [7,
8], the functions rij are Lipschitz-continuous and independent of N . With
this setup xN (t) is a continuous time Markov-chain. We define the mean field
equation of the system as the following:

d

dt
vi(t) =

∑
j∈S

vj(t)rji(v(t)), i ∈ S, (1)

where
rii := −

∑
j∈S,j 6=i

rij .

and
xi(0)→ vi(0) (for i ∈ S), in probability.

Lipschitz-continuity guarantees existence and uniqueness of the solution of (1).
The following result of Kurtz states mean field convergence in the transient
regime under the same condition [7, 8, 4]:

Theorem 1 (Transient mean field convergence). Assuming rij (i, j ∈ S), are
Lipschitz-continuous and

xi(0)→ vi(0) i ∈ {0, 1, . . . , |S|}, in probability,

then for any T > 0 we have

lim
N→∞

P

Ç
sup
t∈[0,T]

‖x̄N (t)− v(t)‖ > ε

å
= 0

Kurtz also proved that the standard deviation of xN is of order 1√
N

, which

will be of use later.
We also have stationary mean field convergence.

Theorem 2 (Stationary mean field convergence). Given the following assump-
tions:

• rij are Lipschitz-continuous,

• the Markov process xN (t) has a unique stationary distribution πN for each
N , and

• (1) has a unique stable attractor (ν0, . . . , νB),

7

we have that the probability measure πN on S converges in probability to the
Dirac measure concentrated on ν.

Theorems 1 and 2 have been generalized further in several ways during recent
years. Benäım and Le Boudec elaborated a framework applicable for a wider
range of stochastic processes, which also allows the rij functions to have a mild
dependency on N [2].

The condition on Lipschitz-continuity can also be weakened. For discontin-
uous rij ’s, 1 turns into a differential inclusion. A formal setup for differential
inclusions is quite technical in general, which is omitted from the present paper.
For a fully detailed setup, we refer to [5], specifically Theorems 4 and 5 for the
corresponding version of Theorem 1 for discontinuous drifts, and [13], Theorem
3.5 and Corollary 3.9 for the corresponding version of Theorem 1.

For a corresponding version of Theorem 2, we refer to Gast and Gaujal,
where one additional condition is that the unique attractor lies inside a domain
where rij is continuous [5].

The applicability of Theorems 1 and 2 will be addressed more in Section 2.
From Theorem 2 it also follows that

E(πN)→ ν,

so ν can be used as an approximation for E(πN) for large N . E(πN) here
is basically an |S| dimensional vector of distributions, which converges to a
constant |S| dimensional vector, which can be interpreted as a distribution on
S, and is the stable attractor ν.

2 Server clusters

As it was stated previously, the server clusters we examine in this paper are
systems of N queues of type M/M/1/B with a common dispatcher and service
principle FIFO. The initial state of the observed servers will be assumed to be
empty. In the cases we examine, the arrival rate to the cluster is independent of
its state and is constant, with its value being Nλ (such that the average arrival
rate is λ for every server). The service rate of the servers can be constant or
it can depend on the current queue length of the server. We usually speak of
service rate curves when the service principle is LPS, and the server can serve
batches of demands simultaneously more efficiently than one-by-one.

In this paper, we will discuss server clusters of different sizes and examine
the limit object as N → ∞, referred to as the mean-field limit (in accordance
with Section 1.3).

The cluster may have K different server types with different service rate

curves, denoted by µ
(k)
i , where i ∈ {0, 1, . . . , B(k)} is the queue length, and

k ∈ {1, 2, . . . ,K} denotes the type of the server. We assume K is independent
from N .

For service rate curves, it is natural to assume that the rate is growing mo-
notonously with the queue length (if not, we can set the MPL at the turning

8

point, so the server does not slow down), and that the per-demand service rate
decreases, so the following holds:

µ
(k)
1 ≤ µ(k)

2 ≤ µ(k)
3 ≤ . . . , µ

(k)
1 ≥ µ

(k)
2

2
≥ µ

(k)
3

3
≥ . . . k ∈ {1, 2, . . . ,K} (2)

As stated before, the server cluster basically functions as a density-dependent
population process, where the current state of a server is simply the number of
the demands in its queue. The global state is usually denoted by the numbers

X
(k),N
i (t),

Ä
0 ≤ i ≤ B(k), 1 ≤ k ≤ K

ä
,

where X
(k),N
i (t) is the number of servers with i demands in its queue at time t.

We will, however use its normalized version

xN (t) = x
(k),N
i (t),

Ä
0 ≤ i ≤ B(k), 1 ≤ k ≤ K

ä
,

where

x
(k),N
i (t) =

X
(k),N
i (t)

N
.

The number of servers of type k is denoted by Nk and the ratio of each server
type is denoted by

γNk =
Nk
N
, k = 1, . . . ,K.

γNk may depend on N , but we will assume they converge to some fixed values
γk as N →∞. We also want the cluster to be stable, so

λ <

K∑
k=1

γNk µ
(k)
B . (3)

(We note that due to the finite buffer size assumption, the cluster is technically
always stable, but we will nevertheless assume (3) holds.)

The evolution of xN (t) can be formally defined using Poisson representation.
Let

Pi→(i+1),k(t), 0 ≤ i ≤ B(k) − 1

Pi→(i−1),k(t), 1 ≤ i ≤ B(k)

denote independent Poisson processes with a rate of 1. Pi→(i+1),k(t) corresponds
the arrival of a new demand to a queue of type k with length i, and Pi→(i−1)(t)
corresponds to a demand leaving a queue of type k with length i. The Poisson

9

representation of xN (t) is then

x
(k),N
i (t) =

1

N
P(i−1)→i,k

Ç
N

∫ t

0

λf
(k)
i−1(xN (s))ds

å
− 1

N
Pi→(i+1),k

Ç
N

∫ t

0

λf
(k)
i (xN (s))ds

å
+

1

N
P(i+1)→i,k

Ç
N

∫ t

0

µ
(k)
i+1x

(k),N
i+1 (s)ds

å
− 1

N
Pi→(i−1),k

Ç
N

∫ t

0

µ
(k)
i x

(k),N
i (s)ds

å
,

(4)

where f
(k)
i (xN (t)) is the probability of a new arriving demand to enter a queue

with length i of type k. The f
(k)
i functions depend on the load-balancing prin-

ciple, which will be described later. Formally, f
(k)
i are functions defined on the

normalized state xN (t), which are all contained in the domain

{x : x ∈ R
∑K

k=1(B(k)+1),

K∑
k=1

B(k)∑
j=0

x
(k)
j = 1}.

The four possible changes in the number of queues with length i which appear
in (4) are:

• A demand arrives to a queue with length i− 1

• A demand arrives to a queue with length i

• A demand leaves a queue with length i+ 1

• A demand leaves a queue with length i

Of course on the border, certain changes can not happen: there is no service in

empty queues, that is, µ
(k)
0 = 0 (k = 1, . . . ,K), and no arrival to full queues,

fB(k)(.) ≡ 0 (k = 1, . . . ,K).
The general mean field equation corresponding to (4) is

v
(k)
i (t) = v

(k)
i (0) +

∫ t

0

λf
(k)
i−1(v(s))ds−

∫ t

0

λf
(k)
i (v(s))ds

+

∫ t

0

µ
(k)
i+1v

(k)
i+1(s)ds−

∫ t

0

µ
(k)
i v

(k)
i (s)ds.

(5)

in integral form, or

d

dt
v

(k)
i (t) = λf

(k)
i−1(v(t))− λf (k)

i (v(t)) + µ
(k)
i+1v

(k)
i+1(t)− µ(k)

i v
(k)
i (t) (6)

10

in differential form. An empty initial cluster corresponds to the initial condition

v
(k)
i (0) =

ß
γk for i = 0,
0 otherwise.

In the integral form, if we assume that we start from an empty cluster, we

can leave v
(k)
i (0) out of the equation, as its value is 0.

Theorem 1 applies to these systems whenever the f
(k)
i functions are Lipschitz-

continuous. It turns out that the conditions of the general version of Theorem
1 are mild enough so that transient mean field convergence holds for all the

discontinuous choices of f
(k)
i in the present paper.

Theorem 2 applies whenever f
(k)
i are Lipschitz-continuous. In the discon-

tinuous setting, the most relevant question is whether the f
(k)
i functions are

continuous at the unique fixed point ν or not. If ν lies inside a region where

f
(k)
i are continuous, then the conclusion of Theorem 1 applies. However, when

the f
(k)
i functions are discontinuous at ν, Theorem 2 does not apply; in fact, lit-

tle is known in this case rigorously. Based on this, it makes sense to distinguish
the following 3 cases that will cover all of the models examined:

1. the functions f
(k)
i are Lipschitz-continuous;

2. the functions f
(k)
i are discontinuous in general, but continuous at ν;

3. the functions f
(k)
i are discontinuous at ν.

When the functions f
(k)
i are Lipschitz-continuous, or discontinuous in gen-

eral, but continuous at ν, the equations for the mean field stationary distribution

can be obtained from (6) by setting d
dtv

(k)
i (t) = 0:

0 = λf
(k)
i−1(v(t))− λf (k)

i (v(t)) + µ
(k)
i+1v

(k)
i+1(t)− µ(k)

i v
(k)
i (t)

i ∈ {0, . . . , B(k)}, k ∈ {1, . . . ,K}

(7)

which are equivalent to the dynamic balance equations

µ
(k)
i ν

(k)
i = λfki−1(ν), i ∈ {1, . . . , B(k)}, k ∈ {1, . . . ,K}. (8)

We also have equations for the ratio of each server type

B(k)∑
i=0

ν
(k)
i = γk k ∈ {1, . . . ,K}, (9)

and the system (8) + (9) can be solved jointly.

When the f
(k)
i are discontinuous at ν, more considerations are needed to

derive the dynamic balance equations. This will be addressed separately for
each load balancing principle.

11

2.1 Mean system time

We can inspect a wide variety of parameters in a server cluster to investigate its
efficiency. One of the most obvious ones is the mean system time: it denotes the
average time a demand spends in the system between its arrival and service. We
aim to calculate the mean system time H in the stationary mean field regime.

Let H
(k)
i,j denote the mean time until service for a demand that is in position i in

a queue with j demands of type k (so 1 ≤ i ≤ j ≤ B(k), 1 ≤ k ≤ K). In the case

of constant service curves, H
(k)
i,j = i

µ(k) holds. For non-constant service rates

curves however, the service rate may change due to later arrivals, so we need
to keep track of both the length of the queue and the position of the demand
within it. We will write a system of linear equations using total expectation and
the Markov property. For simplicity, we assume FIFO service principle, but due
to Little’s law, this assumption does not affect the mean system time.

H
(k)
i,j =

1

λf
(k)
j (ν)/ν

(k)
j + µ

(k)
j

+
λf

(k)
j (ν)/ν

(k)
j

λf
(k)
j (ν)/ν

(k)
j + µ

(k)
j

H
(k)
i,j+1+

µ
(k)
j

λf
(k)
j (ν)/ν

(k)
j + µ

(k)
j

H
(k)
i−1,j−1 (2 ≤ i ≤ j ≤ B(k) − 1),

H
(k)

i,B(k) =
1

µ
(k)

B(k)

+H
(k)

i−1,B(k)−1
(2 ≤ i ≤ B(k)), (10)

H
(k)
1,j =

1

λf
(k)
j (ν)/ν

(k)
j + µ

(k)
j

+
λf

(k)
j (ν)/ν

(k)
j

λf
(k)
j (ν)/ν

(k)
j + µ

(k)
j

H
(k)
1,j+1

(1 ≤ j ≤ B(k) − 1),

H
(k)

1,B(k) =
1

µ
(k)

B(k)

.

This equation system (which can actually be solved individually for each k for
1 ≤ k ≤ K) makes use of the standard one step argument. We focus on a single
queue of a given type k in the mean field limit while assuming the environment
to be stationary, and look for the next possible change in that queue. Demands

arrive to type k servers of queue length j with a rate of λf
(k)
j (ν), and 1/ν

(k)
j of

these will be sent to one specific server, so the arrival rate will be λf
(k)
j (ν)/ν

(k)
j ,

while the service rate is µ
(k)
j , so the rate of any change for a queue of length j

is λf
(k)
j (ν)/ν

(k)
j + µ

(k)
j . The change will either increase or decrease the length

of the queue by 1, and we can apply total expectation.
We first compute ν from either the balance equations (7) when possible, or

by numerically solving the transient mean field equations (6) and setting t large

enough. Then we put ν in (10), which, for ν given, is linear for H
(k)
i,j . Once (10)

is solved, the mean system time H is just a linear combination of the values

H
(k)
j,j according to the probabilities with which a demand will be scheduled to a

12

queue of length j − 1 of a k-type server, that is,

H =

B(k)∑
j=1

K∑
k=1

f
(k)
j−1(ν)H

(k)
j,j . (11)

(10) and (11) are only valid if the functions f
(k)
i are continuous at ν. In other

cases, we may need to tweak the formulas. We will provide the version of (10)

and (11) on a case-by-case basis whenever the functions f
(k)
i are discontinuous

at ν. These versions will be heuristic in the sense that no formal rigorous proof
will be provided, but the results nevertheless agree with the results from the
simulations.

3 Load balancing principles

Load balancing principle describes the method the dispatcher uses to distribute
the arriving demands relatively evenly between the servers. It is quite impor-
tant in large scale systems where the resources such as computing capacity are
distributed between a large number of individual servers, where it can make a
big difference in the efficiency of the system.

The general goal of load balancing is to avoid long queues, directing incoming
jobs to shorter queues instead.

There are several load balancing principles in use. Perhaps the simpler
group of these are static policies which do not consider the state of the system,
they only focus on the incoming demands. One example would be the round-
robin load balancing policy, where incoming demands are directed to the next
server cyclically. These are generally easier to operate, as they require minimal
communication with the servers. Out of the principles observed in this paper,
Random assignment falls into this category.

However, often there is a certain degree of randomness in these chains, so
principles which take into account the current state of the system can be more
efficient. In real clusters, there is a trade-off: complicated policies require more
communication and computation, generating a higher overhead communication
cost, slowing down the entire system. That said, in the mathematical framework
we present, the cost of communication overhead is not modeled. Including the
cost of overhead communication to provide an analytical framework for more
realistic models is subject to further research.

In some systems it is possible to reassign demands that have been already
assigned to new servers. In some systems, it is also possible that several servers
“team up” to serve a single job. In our setting, we do not explore these op-
tions, and stick to a scenario where all demands are assigned to a single server
immediately upon arrival. On the other hand, in addition to the usual FIFO
service principle, the framework does allow for limited processor sharing, where
a single server can serve multiple jobs simultaneously.

In this paper we will examine 5 load balancing principles:

13

• Random assignment, where demands are distributed randomly. With this
principle, there is no actual load balancing. This principle will serve mostly
as a baseline for comparison.

• Join-Idle-Queue, where demands are directed to idle queues if possible. A
relatively recent idea [10], further explored in [12].

• Join-Shortest-Queue, where demands are directed to the server with the
fewest number of jobs waiting in queue. One of the earliest load balanc-
ing policies that has been widely used for decades [9]. It provides very
even balancing, but at the cost of high overhead communication, as the
dispatcher needs to keep track of the queue length in every single server
at all times.

• Join-Shortest-Queue(d), where demands are directed to the server with
the fewest number of jobs waiting in queue from among d servers selected
randomly. Also referred to as power-of-d, this is a version of JSQ that aims
to reduce communication overhead at the cost of less strict balancing. It
has been thoroughly explored, and has certain asymptotical optimality
properties already for d = 2 [11].

• Join-Below-Threshold, where demands are directed to servers with a queue
length below a prescribed threshold [6].

All of the above principles are based on natural intuitions that aim towards
directing demands to shorter queues, but they differ in the details and execution
of doing so. In this section, we overview these load balancing principles from the
literature. We present a high-level mathematical framework based on Poisson
representation that is applicable to all of them, with the only difference being

the f
(k)
i (.) functions. For each load balancing policy, we identify f

(k)
i (.), then

write the mean field equations corresponding to (5), then also identify the mean
field stationary distribution ν whenever available explicitly, and, whenever the

f
(k)
i (.) functions are discontinuous at ν, we also rewrite the formulas (10) and

(11) so that they can be used to compute the mean system time.

3.1 Random assignment

This is the most simple principle that we observe, and it does not lead to
any balancing. With this setup the queues basically operate, and thus can be
analyzed independently of each other. For random assignment,

f
(k)
i (x) = x

(k)
i , k ∈ {1, . . . ,K},

and accordingly, the mean field equation is

v
(k)
i (t) =

∫ t

0

λv
(k)
i−1(s)ds−

∫ t

0

λv
(k)
i (s)ds

+

∫ t

0

µi+1v
(k)
i+1(s)ds−

∫ t

0

µiv
(k)
i (s)ds.

(12)

14

The mean field balance equations, obtained from (8), are

µ
(k)
i ν

(k)
i = λν

(k)
i−1 k ∈ {1, . . . ,K}, i ∈ {1, . . . , B}. (13)

Solving (13) (along with (9)) gives the mean field stationary distribution

ν
(k)
i = cγk

i∏
j=1

λ/µ
(k)
j , i ∈ {0, . . . , B(k)},

which is in accordance with the queues being independent.

Since the rates f
(k)
i are continuous, (10) and (11) can be used to compute

the mean system time H.

3.2 Join-Idle-Queue

For Join-Idle-Queue (JIQ), incoming demands are assigned to an idle server at
random. If none of the servers are idle, a server is selected at random.

For JIQ, using the notation

y0 =

K∑
k=1

x
(k)
0 ,

we have

f
(k)
i (x) =


x
(k)
i

y0
if i = 0, y0 > 0,

0 if i > 0, y0 > 0,

x
(k)
i if y0 = 0.

(14)

This system has been addressed in [12] for constant service rate curve and a
homogeneous cluster.

The structure of the mean field stationary distribution ν depends on the

relation between λ and
∑K
k=1 γkµ

(k)
1 . When λ <

∑K
k=1 γkµ

(k)
1 , there will always

be idle queues in the mean field stationary limit, so all demands will be directed

to idle queues. ν
(k)
0 and ν

(k)
1 will be the only nonzero values in ν (for k ∈

{1, . . . ,K}), and from (8) we have

µ
(k)
1 ν

(k)
1 = λ

ν
(k)
0∑K

k=1 ν
(k)
0

. (15)

We do not have an explicit solution of (15), but it can be solved numerically,
and numerical experiments suggest a single fixed point ν. In this region, the
functions fi are continuous, so (10) and (11) can be used to compute the mean
system time H:

H =

K∑
k=1

ν
(k)
0∑K

k=1 ν
(k)
0

H
(k)
1,1 .

15

For λ =
∑K
k=1 γkµ

(k)
1 , the mean field stationary distribution is concentrated

on queues of length 1, so we simply have

ν
(k)
1 = γk, k ∈ (1, . . . ,K). (16)

The functions f
(k)
i are discontinuous at ν, so (10) and (11) does not apply.

Instead, in the dynamic balance, whenever a queue of length 1 finishes service,
a new demand will enter immediately. With this, we can write the equivalent
of (10) for JIQ:

H
(k)
i,j =

1

µ
(k)
j

+H
(k)
i−1,j−1 (2 ≤ i ≤ j ≤ B(k)),

H
(k)
1,j =

1

µ
(k)
j

(1 ≤ j ≤ B(k) − 1), (17)

As we can see it is basically equivalent with (10) in this case, because the
discontinuity would only affect the arrival rate, and it is multiplied by 0 for
every relevant term. In the mean field limit, all demands go to queues of length
0 (which will then stay at length 1 for a positive amount of time), and there are
no queues with 2 or more demands. Accordingly, instead of (11), we have

H =

K∑
k=1

µ
(k)
1 ν

(k)
1

λ
H

(k)
1,1 . (18)

In case λ >
∑K
k=1 γkµ

(k)
1 , there will be no idle queues, so ν

(k)
0 = 0 for k ∈

(1, . . . ,K). We note that f
(k)
i are discontinuous at any point with

∑K
k=1 ν

(k)
0 = 0

and
∑K
k=1 ν

(k)
1 > 0; an intuitive explanation of this discontinuity is the following.

Whenever a server with a single demand finishes service, it will become idle. In
the mean field limit, a demand will enter the idle queue instantly, so once again,
we do not observe idle queues for any positive amount of time. However, similar

to the λ =
∑K
k=1 γkµ

(k)
1 case, a positive percentage of all incoming demands will

go to an idle queue. To compute this percentage, we once again observe that in
the mean field stationary distribution, service from queues of length 1 has to be
balanced out completely by arrivals to idle queues.

The total service rate in queues of type k of length 1 is µ
(k)
1 ν

(k)
1 , which is

thus completely balanced out by an equal amount of arrivals, and the remaining

arrival rate (λ−
∑K
k=1 µ

(k)
1 ν

(k)
1) is distributed randomly. For longer queues, there

are no discontinuities. Accordingly, the dynamic balance equations are(
λ−

K∑
k=1

µ
(k)
1 ν

(k)
1

)
ν

(k)
i = µ

(k)
i+1ν

(k)
i+1, i ∈ (1, . . . , B(k) − 1). (19)

The system (19) is nonlinear, but can be solved numerically. Then we can write

a modified version of (10) for the calculation of H
(k)
i,j . For this, we introduce z1 =

16

∑K
k=1 µ

(k)
1 ν

(k)
1 , which stands for the portion of arrivals which is balanced out by

the service in servers with queue length 1, thus becoming idle and receiving a
new arrival instantly. According to JIQ policy, the remaining arrival rate λ−z1

is distributed randomly for the rest of the system. Accordingly, (10) becomes

H
(k)
i,j =

1

(λ− z1) + µ
(k)
j

+
(λ− z1)

(λ− z1) + µ
(k)
j

H
(k)
i,j+1+

µ
(k)
j

(λ− z1) + µ
(k)
j

H
(k)
i−1,j−1 (2 ≤ i ≤ j ≤ B(k) − 1),

H
(k)

i,B(k) =
1

µ
(k)

B(k)

+H
(k)

i−1,B(k)−1
(2 ≤ i ≤ B(k)), (20)

H
(k)
1,j =

1

(λ− z1) + µ
(k)
j

+
(λ− z1)

(λ− z1) + µ
(k)
j

H
(k)
1,j+1 (1 ≤ j ≤ B(k) − 1),

H
(k)

1,B(k) =
1

µ
(k)

B(k)

.

To obtain the mean system time H, instead of (11), we now have

H =

K∑
k=1

µ
(k)
1 ν

(k)
1

λ
H

(k)
1,1 +

(
1−

K∑
k=1

µ
(k)
1 ν

(k)
1

λ

)
K∑
k=1

B(k)∑
j=2

ν
(k)
j−1Hj,j (21)

since
∑K

k=1 µ
(k)
1 ν

(k)
1

λ is the portion of the arrival rate that is used to balance out
the service in queues of length 1 and the remaining portion of the incoming rate
is distributed randomly.

3.3 Join-Shortest-Queue

For Join-Shortest-Queue (JSQ), incoming demands are assigned to the shortest
queue from among all queues; in case of multiple shortest queues of the same
length, one is selected randomly.

For JSQ,

f
(k)
i (x) =


0 if ∃ i′ < i ∃ k′ : x

(k′)
i′ > 0,

0 if
∑K
k=1 x

(k)
i = 0,

x
(k)
i∑K

k=1 x
(k)
i

otherwise.

For the stationary mean field analysis, let i0 denote the smallest i for which

K∑
k=1

γkµ
(k)
i ≥ λ.

17

Such an i exists if the stability condition (3) holds. Then the mean field sta-
tionary distribution ν will be concentrated on queues of length i0 and i0 − 1:
starting from an arbitrary point, queues shorter than i0 − 1 will receive the
entire load of arrivals, which is larger than they can process, so these queues
will “fill up” to level i0− 1, while queues longer than i0 do not receive any load
at all, so these queues will go down, until they reach level i0.

The total service rate in queues of length (i0−1) is
∑K
k=1 µ

(k)
i0−1ν

(k)
i0−1, which is

completely balanced out by an equal amount of arrivals. The remaining arrival

rate (λ−
∑K
k=1 µ

(k)
i0−1ν

(k)
i0−1) goes to queues of length i0− 1, with the queue type

k chosen at random with probabilities proportional to ν
(k)
i0−1. For each server

type k, these arrivals are balanced out by the service in queues of type k and
length i0, leading to the balance equations

µ
(k)
i0
ν

(k)
i0

=

(
λ−

K∑
k=1

µ
(k)
i0−1ν

(k)
i0−1

)
ν

(k)
i0−1∑K

k=1 ν
(k)
i0−1

k ∈ (1, . . . ,K), (22)

which, along with (9), gives a (nonlinear) system of equations for ν, which can
be solved numerically.

To compute the mean system time H, we utilise the following equation

system to compute H
(k)
i,j . Similarly to JIQ, we introduce

zi0−1 =

K∑
k=1

µ
(k)
i0−1ν

(k)
i0−1,

which plays a similar role to its JIQ counterpart, standing for the portion of
arrivals which is balanced out by the service in servers with queue length i0−1.
Whenever a server with queue length i0 − 1 finishes service, it will become the
single shortest queue and receives a new arrival instantly. Rate λ−zi0−1 remains
for the rest of the system, which will be directed entirely to queues of length
i0 − 1. To ease notation, we also introduce

yi0−1 =

K∑
k=1

ν
(k)
i0−1.

18

Then

H
(k)
i,j = H

(k)
i,j+1 (1 ≤ i ≤ j < i0 − 1),

H
(k)
1,i0−1 =

1

((λ− zi0−1)/y
(k)
i0−1) + µ

(k)
i0−1

+

(λ− zi0−1)/y
(k)
i0−1

((λ− zi0−1)/y
(k)
i0−1) + µ

(k)
i0−1

H1,i0

H
(k)
i,i0−1 =

1

((λ− zi0−1)/y
(k)
i0−1) + µ

(k)
i0−1

+

(λ− zi0−1)/y
(k)
i0−1

((λ− zi0−1)/y
(k)
i0−1) + µ

(k)
i0−1

H1,i0+ (23)

µ
(k)
i0−1

((λ− zi0−1)/y
(k)
i0−1) + µ

(k)
i0−1

Hi−1,i0−2 (2 ≤ i ≤ i0 − 1)

H
(k)
1,j =

1

µ
(k)

B(k)

(i0 − 1 < j ≤ B(k)),

H
(k)
i,j =

1

µ
(k)
j

+Hi−1,j−1 (i0 − 1 < j ≤ B(k), 1 ≤ i ≤ j).

The first equation in (23) addresses the fact that if a server has fewer than i0−1
demands in it, it will immediately fill up to i0 − 1 demands. We also adjust

the effective arrival rate to λ − zi0−1, similarly to JIQ. If i0 = 1, the f
(k)
i are

continuous at ν, so we can use (10) instead of (23). If i0 = 2, there will of course
not be any equation with the condition (2 ≤ i ≤ i0 − 1).

If the functions f
(k)
i are continuous at ν, we can use (11) to calculate the mean

system time. In case i0 = 1, ν is in the inside of a continuous domain of the

functions f
(k)
i , so this is the case, and (11) simplifies to

H =

K∑
k=1

ν
(k)
0∑K

k=1 ν
(k)
0

H
(k)
1,1 .

On the other hand, if i0 > 1, the functions fi are not continuous at ν, and (11)
is not applicable; instead, we have

H =

K∑
k=1

µ
(k)
i0−1ν

(k)
i0−1

λ
H

(k)
i0−1,i0−1 +

(
1−

K∑
k=1

µ
(k)
i0−1ν

(k)
i0−1

λ

)
K∑
k=1

ν
(k)
i0−1∑K

k=1 ν
(k)
i0−1

H
(k)
i0,i0

.

3.4 Join-Shortest-Queue(d)

JSQ(d) is a version of JSQ where the dispatcher first selects d servers randomly,
and dispatches the incoming demand to the shortest from among the d queues.
If we set d to 1, we get Random assignment, and if we set d to N , we get the JSQ

19

principle. Of course in the mean field case as N →∞, the f
(k)
i functions we get

with d→∞, will be discontinuous (like for JSQ), although they are continuous
for any finite d. We will show some figures that depicts this convergence of
JSQ(d) to JSQ in Section 4.

For JSQ(d), we introduce the auxiliary variables

y
(k),N
i =

B(k)∑
j=i

x
(k),N
j , zNi =

K∑
k=1

y
(k),N
i ,

and then inclusion-exclusion shows

f
(k),N
i (xN) =

x
(k),N
i∑K

k=1 x
(k),N
i

×ï
zNi

Å
zNi −

1

N

ã
. . .

Å
zNi −

d− 1

N

ã
− zNi+1

Å
zNi+1 −

1

N

ã
. . .

Å
zNi+1 −

d− 1

N

ãò
.

The above version of fNi (.) is N -dependent, but it converges to

f
(k)
i (x) =

x
(k)
i∑K

k=1 x
(k)
i

((zi)
d − (zi+1)d).

Due to the dependency on N , we refer to [2], where this type of depen-

dence on N is allowed. Also, both f
(k),N
i and f

(k)
i are continuous. Overall, the

conclusions of Theorems 1 and 2 apply.
The mean field balance equations are

λν
(k)
i∑K

k=1 ν
(k)
i

ÖÑ
K∑
k=1

B(k)∑
j=i

ν
(k)
j

éd

−

Ñ
K∑
k=1

B(k)∑
j=i+1

ν
(k)
j

éd
è

= µ
(k)
i ν

(k)
i . (24)

Since the rates f
(k)
i are continuous, (10) and (11) can be used to compute

the mean system time H.

3.5 Join-Below-Threshold

Join-Below-Threshold (JBT) sets a threshold Mk which may depend on the
server type k; servers of type k with queue length < Mk are considered available
and servers of type k with queue length ≥Mk are full. Tasks will be dispatched
to a server randomly from among all available servers. If there are no available
servers, tasks will be dispatched at random from among all servers.

JBT is commonly used in accordance with limited processor sharing (LPS)
for servers which can serve multiple tasks simultaneously in an efficient manner.

This is reflected in an increasing service rate curve µ
(k)
i . If µ

(k)
i would start

to decrease for large i, then this is countered by setting a maximum for the
number of tasks served simultaneously in a single server, while further tasks

20

wait in queue (so we set the MPL). Overall, this setup ensures the service rate

curve µ
(k)
i is increasing up to Mk and constant for Mk ≤ i ≤ B(k).

If we set the threshold to 1, we get the JIQ principle, and if we set it to B(k),
we get Random assignment.

We introduce the auxiliary variable

y =

K∑
k=1

Mk−1∑
j=0

x
(k)
j ,

which is the ratio of available servers. For JBT,

f
(k)
i (x) =


0 if y > 0, i ≥M,

x
(k)
i /y if y > 0, i < Mk,

x
(k)
i if y = 0.

The mean field balance equations are

µ
(k)
i ν

(k)
i =

λν
(k)
i−1

y
, i ∈ {1, . . . ,Mk − 1}, k ∈ {1, . . . ,K},

with ν
(k)
i = 0 for i > Mk.

For a full, detailed mean field analysis of JBT, we refer to [6]; it turns out

that if the stability condition (3) holds, then ν is unique, the f
(k)
i are continuous

at ν, and an efficient numerical method to compute ν is also provided in [6]. As
a side note, we mention that [6] also shows examples where (3) does not hold,
and there are multiple attractors in the mean-field system corresponding to
quasi-stationary states of a system with a finite N , and mean field convergence
fails completely.

Once ν is computed, (10) and (11) can be used to compute the mean system
time H.

4 Numerical experiments

We ran several simulations to give an intuition of the behaviour of the server
clusters. We also solved the transient system of equations (6) numerically. All
computations were coded in Python.

In Section 4.1 several plots of these runs are included to display transient
mean field convergence as N is increased. Also, as t is increased, each system
will converge to its stationary state.

In Section 4.2, we focus on a few examples where certain connections between
the various load balancing can be highlighted visually.

In Section 4.3, we compare the mean service times in both simulations and
the mean-field settings.

21

Figures λ µ1 µ2 µ3 µ4 µ5 µ6, . . . , µ20

2, 3, 8 0.95 1 1.1 1.2 1.3 1.4 1.5
4, 5, 6, 7 1.25 1 1.1 1.2 1.3 1.4 1.5

Table 1: Parameter setup for the transient plots

4.1 Transient mean field diagrams

In this section, we plot the solutions of the mean field equations as well as

the corresponding x
(k),N
i curves for N = 1000 and N = 10000, resulting from

simulations. We will focus on homogeneous clusters with K = 1 (also dropping
(k) from the notation). B = B(k), the maximal queue length will be set to
20. The rest of the parameter setup is shown in Table 1. All parameter setups
adhere to the monotonicity assumption (2) and also the stability condition (3)
(in fact, the system load can be computed as λ/µB in a homogeneous cluster).

In Figures 1–8, the solutions of the mean field differential equations are less
saturated smooth lines, while the curves corresponding to the simulation results
are more saturated and have some natural fluctuations. The different color lines
correspond to the ratio of queues of various length. There are two figures for
every setup of parameters, one for N = 1000 and one for N = 10000. We
will use these to compare the simulation with the solutions of the mean field
equations.

In Figure 2 we show a system using Random assignment. We can see that
the quite long queues even with the λ being quite small compared to the µi
values. Overall, this principle is rather inefficient. Later we will see how more
efficient principles handle these conditions.

We can also see the fluctuations of the simulations decrease as N is increased.
Actually, as mentioned after Theorem 1, the fluctuations are guaranteed to be
of order 1√

N
for xN (or, equivalently, order

√
N for XN). However, the constant

factor can be different for the various load balancing principles. For Random
assignment, the fluctuations are relatively mild.

22

Figure 2: Random assignment

Figure 3 shows a system using Join-Idle-Queue. JIQ is more effective than
Random assignment, as most of the queues in the simulation and all of the
queues in the mean field limit have a length of 0 or 1. Due to λ < µ1, the

transient solutions never reach the discontinouity point of the f
(k)
i ’s (see also

Section 3.2), so the solutions of the mean field equations are smooth. We also
note that in the λ < µ1 case, JSQ is effectively identical to JIQ as the shortest
queue in such systems is almost always an idle one.

23

Figure 3: JIQ with λ < µ1

In Figure 4 we show a system also using JIQ, but with λ > µ1, so the system

does reach the discontinuity point of the f
(k)
i ’s, where the proportion of length

1 queues reaches 1. After this point, the behaviour is similar to the system with
Random assignment.

24

Figure 4: JIQ with λ > µ1

In Figure 5 we show a system using Join-Shortest-Queue. As we can see,
this system stabilises with queues of length 3 and 4 due to µ3 < λ < µ4, and
it has 3 discontinuity points before that. Actually, due to λ = (µ3 + µ4)/2,
the mean field stationary distribution is ν3 = ν4 = 0.5. We also note that the
fluctuations are considerably larger then for either Random or JIQ. An intuitive
explanation is that the higher level of control provided by JSQ will generally
focus any fluctuations in either the arrival or service on a single queue length: if
the arrivals outweigh the service for a short period of time, the surplus arrivals
will all go to servers of length i0−1, and if the service outweighs the arrivals, that
will affect queues of length i0. Overall, the strict control introduces a positive
correlation between the length of the queues, resulting in larger fluctuations
(which are, once again, of order 1/

√
N , but with a higher constant factor).

25

Principles with less strict control generally distribute this fluctuation among
several different queue lengths, resulting in smaller fluctuations.

Figure 5: JSQ with µ3 < λ < µ4

26

In Figure 6 we show a system using Join-Shortest-Queue(2). This principle

has continuous f
(k)
i functions, just like Random assignment, so the mean field

transient limit is smooth. We note that already for d = 2, the result is markedly
different from Random assignment. This is a known phenomenon, referred to
as power-of-2 [11].

Figure 6: JSQ(2)

In Figure 7 we show a system using Join-Shortest-Queue(5). As we can see
this bigger d leads to a more efficient server cluster. It is also much further from
a random assignment, and closer to JSQ.

27

Figure 7: JSQ(5)

In Figure 8 we show a system using Join-Below-Threshold with a threshold
of 3. In this setup the cluster reaches stability before filling up to its threshold.
This is the intended usage of this principle, and as we can see, it is a quite
effective principle. With this parameter setup, the mean field system reaches
its attractor before the discontinuity point, so the functions remain continuous.

28

Figure 8: JBT under threshold

4.2 Other interesting plots

Here we will show several additional diagrams, not crucial to the paper’s main
topic. Figure 9 displays a system with Join-Below-Threshold load balancing
policy, but with the demands overflowing the threshold. This, as we discussed
earlier is no the intended way of utilising this principle, thus it is not very
practical. The µ-curve is the usual one we used for the previous diagrams,
λ = 1.25 and the threshold is set to 3. We also note that this system would be
in the continuous region with the threshold set to 4, but the threshold can be
set all the way up to 6, to the maximum point of the µ curve.

29

Figure 9: JBT above threshold

Figure 10 shows an interesting visualisation of JSQ(d)’s “convergence” to
JSQ as d→∞. As we can see, in practice JSQ(d) is quite close to JSQ already
for moderately large values of d. We also note that the mean field transient
solutions are smooth for JSQ(d), but not for JSQ. Figure 10 only displays the
solutions of the mean field equations, no simulations.

30

Figure 10: JSQ(d)’s ’convergence’

4.3 Mean system times

Table 2 lists the mean system times from both simulations, and calculated from
the mean field limit using equations (10) and (11) (or in the discontinuous cases,
their corresponding versions listed in Section 3). For this table, we use the same
µ-curve from Table 1. JBT’s threshold is set to 3.

31

λ Load balancing N = 100 N = 1000 N = 10000 N =∞

1.05

Random 3.2149 3.1925 3.1764 3.1797
JIQ 1.5526 1.446 1.4301 1.4293
JSQ 1.4769 1.4401 1.4333 1.4286

JSQ(2) 2.2012 2.1784 2.184 2.1835
JSQ(5) 1.8492 1.8187 1.8076 1.8075

JBT 2.0769 2.0755 2.0787 2.076

1.25

Random 4.421 4.6852 4.6859 4.6552
JIQ 3.1856 3.2269 3.2374 3.2452
JSQ 2.7051 2.8124 2.7888 2.8

JSQ(2) 2.9876 2.9741 2.9607 2.9620
JSQ(5) 2.897 2.8328 2.8165 2.8167

Table 2: Mean system time in the stationary mean-field limit

JBT method with λ = 1.25 was left out the table, as that system is over the
threshold.

As expected, JSQ is the most effective principle in both cases. We can also
see that JIQ is very effective with underloaded systems, almost on par with
JSQ. However, with a higher load, JIQ falls behind.

We can also observe that relative to the others, JSQ(d) becomes more effec-
tive as the load increases, getting almost on par with JSQ. As expected, JSQ(d)
is more effective with a higher d. It is also interesting to see that JSQ(2),
which appears to be similar to Random assignment at first sight, is actually
significantly more effective.

As long as N is finite, there are fluctuations which do not vanish even as
time increases and the systems converge to their stationary limit. As expected,
fluctuations are bigger for smaller values of N . For smaller values of N , the mean
system time is generally above the mean field mean system time; an intuitive
explanation for this is that the limited number of servers offers less ‘room’ to
balance out short periods of overflow (coming from the natural fluctuations of
arrivals and service), causing the system to operate with longer queues for said
short periods.

5 Conclusion and outlook

In this paper we examined the mean field transient and stationary convergence of
systems with 5 different load-balancing principles. We can say that without tak-
ing the overhead communication cost into consideration, Join-Shortest-Queue is
the most efficient. However the other methods, which needs much less communi-
cation, can also be quite effective based on the circumstances. The simulations

offered an intuition that the convergences occur even with discontinuous f
(k)
i

functions, and that Theorems 1 and 2 apply. We have also examined the mean
system time, which also served as a good performance measure of the various

32

load balance principles.
Of course there is a lot of room for further work in this topic. For example,

no mathematically rigorous proofs were provided for Theorems 1 and 2 for some
of the discussed systems.

In addition to the mean system time, the entire service time distribution
could also be calculated with the help of the Laplace transform, adapting (10)
and (11) for the Laplace transforms of the system times.

One could also consider other load balancing principles: if some job size
information is available about the demands, that information can be used to
estimate the load of each queue more precisely.

We could also consider adding a geometrical dimension to the server cluster,
with load balancing principle taking into account the distance of the arriving
demand to the queues (similar to a supermarket, where customers are more
likely to choose a queue physically closer to their arrival point).

We could also make the model more realistic, even if more complicated, by
considering the dispatcher’s communication overhead cost, or allowing different
types for the demands which can be served more efficiently by certain server
types.

All in all, this is a vast topic that has a lot of potential for further develop-
ment.

33

References

[1] CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=672872

[2] M. Benäım and J.-Y. Le Boudec. A class of mean field interaction models for
computer and communication systems. Performance Evaluation, 65(11):823-
838, 2008.

[3] A. K. Erlang. Sandsynlighedsregning og Telefonsamtaler, Nyt tidsskrift for
matematik, 20:33-39, 1909.

[4] S. N. Ethier and T. G. Kurtz. Markov Processes: Characterization and
Convergence. Wiley, 2005.

[5] N. Gast and B. Gaujal. Markov chains with discontinuous drifts have differ-
ential inclusion limits. Performance Evaluation, 69(12):623-642, 2012.

[6] I. Antal Horváth, Z. Scully, and B. Van Houdt. Mean field analysis of join-
below-threshold load balancing for resource sharing servers. SIGMETRICS
Perform. Eval. Rev., 48(1):41–42, 2020.

[7] T. Kurtz. Solutions of ordinary differential equations as limits of pure jump
Markov processes. Journal of Applied Probability, 7:49-58, 1970.

[8] T. G. Kurtz. Strong approximation theorems for density dependent Markov
chains. Stochastic Processes and their Applications, 6(3):223-240, 1978.

[9] H.-C. Lin and C. S. Raghavendra. An analysis of the join the shortest
queue (JSQ) policy. Proceedings of the 12th International Conference on
Distributed Computing Systems, 362-366, 1992.

[10] Yi Lu et al. Join-Idle-Queue: A Novel Load Balancing Algorithm for Dy-
namically Scalable Web Services. Performance Evaluation, 68(11):1056-1071,
2011.

[11] D. Mukherjee, S. C. Borst, J. S. H. van Leeuwaarden, P. A. Whiting.
Asymptotic Optimality of Power-of-d Load Balancing in Large-Scale Sys-
tems. Mathematics of Operations ResearchVol. 45(4):1535-1571, 2020.

[12] M. Mitzenmacher. Analyzing distributed Join-Idle-Queue: A fluid limit ap-
proach. In 2016 54th Annual Allerton Conference on Communication, Con-
trol, and Computing (Allerton), pages 312-318, Sept 2016.

[13] G. Roth, W.H. Sandholm. Stochastic approximations with constant step
size and differential inclusions - SIAM Journal on Control and Optimization,
2013 - SIAM

34

