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1
PREL IMINARY

To determine the dimension of the attractor of a general iterated function sys-
tems (IFS) and a general graph-directed iterated function systems (GDIFS) is
an open problem, but with some conditions, we can determine it. For self-similar
separated IFS Hutchinson (showed that, when the cylinder sets are disjoint, then
the Hausdorff dimension of the attractor is equal to the similarity dimension.)
solved the problem, for self-similar separeted GDIFS Mauldin and Williams de-
termined the Hausdorff dimension. Nowadays Bárány, Hochman and Rapaport
determined the dimension of the attractor of self-affine IFS on the plane, when
the matricies of the contracting similarity transformation are strongly irreducible.
Our question is, what can we say about the dimension, when those matricies are
singular?
In this TDK dissertation, we investigate the connection between self-affine IFS

on the plane and GDIFS on the line. Using this connection we would like to state
separation conditions, for which the dimension of the attractor can be defined
with the sub-additive pressure.
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2
INTRODUCTION

2.1 hausdorff-dimension

In this section we collect some basic propertes of the Hausdorff dimension from
the book [BBep] under preparation by Balázs Bárány, Károly Simon and Boris
Solomyak. These properties are crutial tools to study the size of fractal sets.

Definition 2.1. Let E ⊂ Rd and t ≥ 0. Then the collecton of set {Ai}∞i=1 is
a δ-cover of E for δ > 0, if E ⊂ ⋃∞

i=1Ai and |Ai| < δ. We call Ht(E) the
t-dimensional Hausdorff measure of E if,

Ht(E) = lim
δ→0

{
inf

{ ∞∑
i=1
|Ai|t : E ⊂

∞⋃
i=1

Ai, |Ai| ≤ δ

}}
(1)

The measure Ht is a metric outer measure. But if we restrict Ht to the
Ht-measurable sets on the σ-algebra, we get a Borel measure, called the t-
dimensional Hausdorff measure.

Lemma 2.2. For any Borel set E ⊂ Rd and 0 ≤ α < β we obtain the following
implications:

Hα(E) <∞⇒ Hβ(E) = 0 (2)
0 < Hβ(E)⇒ Hα(E) =∞ (3)

The previous lemma heuristically means, that for a given E if we choose t "too
small", then Ht(E) = ∞. Or if we choose t "too large", then Ht(E) = 0. So,
there exists a unique t0, when the t-dimensional Hausdorff measure "drops down"
from infinity to zero. The value of this unique t0 is the Hausdorff dimension of
E.

Definition 2.3. For any E ⊂ Rd Hausdorff-measurable set, the Hausdorff-
dimension of E is the following,

dimH(E) = inf{t : Ht(E) = 0} = sup{t : Ht(E) =∞}. (4)
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0 dimH(E) t

t→ Ht(E)

∞

Figure 1: Hausdorff measure of the set E.

In the following we will see some properties of the Hausdorff dimension.

Lemma 2.4. Some properties of the Hausdorff-dimension.

1. Every countable set has Hausdorff-dimension zero.

2. For every F ⊂ Rd we have dimH(F ) ≤ d.

3. If Ld(E) > 0 then dimH(E) = d.

4. For any k < d the k− dimensional smooth surface in Rd has a Hausdorff
dimension k.

5. For a Lipschitz map f : Rd → Rd and a Borel set E ⊂ Rd we have
dimH(f(E)) ≤ dimH(E).

6. Let E be a Borel set and let f : Rd → Rd be a bi-Lipschitz map. Then
dimH(E) = dimH(f(E)).

7. Let {Ei}∞i=1 be a sequence of Borel sets in Rd. Then

dimH

( ∞⋃
i=1

Ei

)
= sup

i
dimH(Ei).

2.2 graph directed self-similar ifs

Definition 2.5. Let m ≥ 2 and d ≥ 1 be integers, we say S = {S1, . . . ,Sm} is
a self-similar iterated function system (IFS) a collection of contracting similarity
transformations on Rd with contraction ratios 0 < ri < 1, i = 1, . . . ,m, if

‖Si(x)− Si(y)‖ = ri‖x− y‖ for every i ≤ m and for every x, y ∈ Rd. (5)
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Definition 2.6. Let{Ii}Ni=1 be the set of closed intervals of R and let G =
(V , E) be a directed graph, where Ei,j denotes the set of edges from i to j, and
V = (Ij)

N
j=1. Furthermore, a contracting similarity mapping fe : Ij → Ii on the

following metric spaces (Ij , d), j = 1, . . . ,N with contraction ratio re ∈ (0, 1).
Then ,

d(fe(x), fe(y)) = re · d(x, y) for every x, y ∈ Ij . (6)

We call the system (G, {fe, e ∈ E}) as graph directed self-similar IFS (GDSSIFS).

Remark 2.7. The article by Mauldin and Williams [MW88] call the definition
above a geometric graph directed construction.

Theorem 2.8. Assume that the IFS F = {fi}mi=1 consits of functions fi : R →
R with Lipschitz constants ri < 1. Let bi be the fix point of fi. Then for the
closed ball

B := B(0,R) where R := max
i

{
‖bi‖ ·

1 + ri
1− ri

}
(7)

we have fi(B) ⊂ B for all i = 1, . . . ,m. Furthermore, we call the non-empty
compact set

Λ =
∞⋂
n=1

⋃
(i1,...,in)∈{1,...,m}n

fi1...in(B) (8)

the attractor or invariant set of the IFS F . Then Λ is the unique non-empty
compact set which satisfies

Λ =
m⋃
i=1

fi(Λ). (9)

Theorem 2.9. [MW88, Theorem 1] For each geometric construction, there exists
a unique collection of compact sets, (Λ1, . . . , ΛN ) such that for N ∈N

Λi =
N⋃
j=1

⋃
e∈Ei,j

fe(Λj) for every i = 1, . . . ,N . (10)

The construction object is defined as

Λ :=
N⋃
i=1

Λi (11)

called the attractor.
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Definition 2.10. Let G(V , E) be a graph with the set of verticies V and the set
of edges E . We say that, G is strongly connected if for every i, j ∈ V , there is a
direcetd path in the graph from i to j.

Definition 2.11. Let (B(s)
MW )i, j =

(
b(s)(i, j)

)
be an n× n matrix, where

b(s)(i, j) =


0, if Ei,j = ∅∑
e∈Ei,j

rse, otherwise
, for every s > 0.

Lemma 2.12. Let ρ(B(s)
MW ) be the spectral radius of B(s)

MW . The mapping s 7→
ρ(B

(s)
MW ) is continuous, strictly decreasing, ρ(s) ≥ 1 if s = 0 and ρ(B(s)

MW ) −−−→
s→∞

0. Then, there exists a unique s0 ≥ 0 for which

ρ(B
(s0)
MW ) = 1. (12)

2.3 size of the attractor

Definition 2.13. For every i = 1, . . . ,n the family of sets {fi,j(Λj) : (i, j) ∈
ε} is non-overlapping if the interiors of the sets fi,j(Λj) are pairwise disjoint.

Theorem 2.14. (Mauldin and Williams [MW88]) Consider a GDSSIFS such
that, G is strongly connected and {fi,j(Λj) : (i, j) ∈ E} is a non-overlapping
family of sets, then for every i = 1, . . . ,N we have

dimH Λi = dimB Λi = s0 and 0 < Hs0(Λi) <∞

2.4 self-affine sets

Definition 2.15. Consider the following sets X, Y and vector spaces V , W .
Let (X,V ) and (Y ,W ) be two affine spaces over a same field. We say a map
f : X → Y is an affine map, if there exists a linear map mf : V → W such that,

mf (x− y) = f(x)− f(y) for every x, y ∈ X.

Definition 2.16. Let T be a d× d real valued matrix, then the singular value
function ϕt(T ) of T can be defined,

ϕt(T ) :=

α1 · · ·αk−1 · α
t−(k−1)
k , if k− 1 < t ≤ k ≤ d;

(α1 · · ·αd)
t
d , if t ≥ d,

where α1 ≥ · · · ≥ αd are the singular values of T .
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For a finite word ı̄, denote |ı̄| the length of ı̄.
For any finite word ı̄ = i1 · . . . in we denote by Aı̄ the finite product Ai1 · . . . ·

Ain for every i = 1, . . . ,n and for every n ∈N.

Definition 2.17. We denote s(A1, . . . ,Am) the affinity dimension of the self-
affine IFS F = {Aix+ ti}mi=1 that is,

s(A1, . . . ,Am) = inf

t > 0 :
∞∑
m=0

∑
|ı̄|=m

ϕt(Aı̄) <∞

 .

Falconer defined the sub-additive pressure function P : R+ → R,

P (s) = lim
n→∞

1
n

log
∑
|ı̄|=n

ϕs(Aı̄)

 , (13)

The function system 1
n log(∑|ı̄|=n ϕs(Aı̄)) gives the exponential growth rate of

the sum in the definition of the affinity dimension corresponding to the natural
covering cylinders, see [Fal88]. We know that, for all t the limit of this function
system exists and finite. The affinity dimension s(A1, . . . ,An) what we defined
in Definition is the unique zero of the sub-additive pressure P (s).
In the following we show a few conditon, when the Hausdorff dimension will

equal to the affinity dimension.

Theorem 2.18. ([Fal88]) For m ≥ 2 let {A1, . . . ,Am} be non-singular d× d
matrices, such that their Euklidean norm satisfies,

‖Ai‖ <
1
2, i = 1, . . . ,m.

For t := (t1, . . . , tm) ∈ Rd×· · ·×Rd define the m-parameter family of self-affine
IFS on Rd,

F t := {Aix+ ti}mi=1.

Let Λt be the attractor of F t. Then for Lmd-almost all t we have

dimH(Λ) = dimB(Λ) = min{d, s(A1, . . . ,Am)}.

Definition 2.19. Let F = {f1, . . . , fm} be a contracting IFS and Λ the attrac-
tor, then the Strong Separation Property holds for F if,

fi(Λ) ∩ fj(Λ) = ∅ for all i 6= j.

Definition 2.20. A collection of matricies A = {A1, . . . ,Am} is strongly irre-
ducible, if there is no finite collection of V1, . . . ,Vk of proper subspaces such that

Ai

(
k⋃
j=1

Vj

)
=

k⋃
j=1

Vj for every i = 1, . . . ,m.
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Theorem 2.21. (Bárány, Hochman and Rapaport [BHR17]) Let F = {fi(x) =
Aix+ ti}mi=1 be a planar self-affine IFS, such that F satisfies the strong separation
property and the collection of matrices A = {A1, . . . ,Am} is strongly irreducible.
Then,

dimH(Λ) = dimB(Λ) = s(A1, . . . ,Am).



3
SELF -AFF INE SETS WITH S INGULAR MATRICES ONLY

In this Chapter we show our first results about the connection between self-
affine sets and graph directed iterated function systems. First, let us show an
example for self-affine IFS having singular matrices.

Example 3.1. Let F = {fi(x) = Aix+ ti}2i=1 be an IFS, such that

A1 =

1
2 0
0 0

 , A2 =

0 0
0 1

2

 , t1 =

1
2
0

 , t2 =

0
1
2


and x ∈ [0, 1]2. Denote [0, 1] := I1 and [1, 0] := I2, then

f1(I1) = [
1
2, 1], f1(I2) = {

1
2}

f2(I1) = {
1
2}, f2(I2) = [

1
2, 1].

To determine the attractor, we need to continue applying f1 and f2 on the in-
tervals. By symmetry we can split the attractor into two parts, and we can
investigate how it behaves on each axis. Figure 2 shows this behaviour on the x
axis by each layer means an iteration.

x
0.5 1

Figure 2: Iterates on x axis.

Let Λx and Λy be non-empty compact sets, such that

Λx =
∞⋃
n=1
{(1− 2−n, 0)} ∪ {(1, 0)}

Λy =
∞⋃
n=1
{(0, 1− 2−n)} ∪ {(0, 1)}

(14)

Then by equation (11) the attractor

Λ = Λx

⋃
Λy. (15)

8



3.1 singular case 9

x

y

0 0.5 1

0.5

1

Figure 3: Attractor of IFS

We would like to illustrate the Mauldin Williams theorem, from previous chap-
ter. By Definition 2.11 the B(s)

MW matrix will be

B
(s)
MW =

1
2
s 0

0 1
2
s

 . (16)

Then

ρ
(
B

(s0)
MW

)
= 1 if and only if

(1
2

)s0
= 1 then s0 = 0. (17)

Now we need to apply Mauldin and Williams Theorem 2.14, then we get

dimH(Λ) = s0 = 0. (18)

Unless typical cases the attractor is not a perfect set. Recall Lemma 2.4, prop-
erty 1 says, if the attractor is a countable set, then its Hausdorff dimension is
zero, exacly what we get.

3.1 singular case

In this section we show the dimension of an IFS when all the matrices of
contracting functions are singular. Consider an IFS F = {fi = Aix+ ti}ni=1 and
for every Ai, det(Ai) = 0.
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Definition 3.2. Let A be a singular matrix such that V be a vector space, then

‖A|V ‖ = sup
x∈V

‖Ax‖
‖x‖

Let Ai be a matrix with rank(Ai) = 1 for any i = 1, . . . ,n ∈N and consider
any vector x ∈ R2 such that,

Ai =

ci · ai ci · bi
di · ai di · bi

 =

ci
di

 · (ai bi
)

(19)

for some ci, di constants. Then from equation (19) we easily get

Im(Ai) = span

〈ci
di

〉 and Ker(Ai) = span

〈ai
bi

〉 .

In the following we will se that, the image of a product Aı̄, depends only on the
first factor of the multiplication Ai1 .

Lemma 3.3. Let Aı̄ be an arbitrary product of the matrices Ai1 , . . . ,Ain for
every n ∈N. Then,

Im(Aı̄) = Im(Ai1) or Im(Aı̄) = {0}.

Proof. For n = 1,

Aı̄ = Ai1 then Im(Aı̄) = Im(Ai1).

For n = 2,

Aı̄ = Ai1 ·Ai2 =

=

ci1 · ai2 (ci2 · ai1 + bi1 · di2) ci1 · bi2 (ci2 · ai1 + bi1 · di2)
di1 · ai2 (ci2 · ai1 + bi1 · di2) di1 · bi2 (ai1 · ci2 + bi1 · di2 · ci2)

 .

The image of Aı̄

Aı̄ · x =

ci1 · (ai1 · ci2 + bi1 · di2) · (ai2 · x+ bi2 · y)
di1 · (ai1 · ci2 + bi1 · di2) · (ai2 · x+ bi2 · y)

 =

= (ai1 · ci2 + bi1 · di2) · (ai2 · x+ bi2 · y)

ci1
di1

 .

Then unless Ker(Ai1) = Im(Ai2),

Im(Aı̄) = span

〈ci1
di1

〉 = Im(Ai1).
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For |ı̄| = n we can split the product Aı̄ into two parts

Aı̄ = Ai1 ·A|ı̄|−1.

Then using the case n = 2 and induction we prove the lemma.

Recall the definition of Aı̄ from page 6, but consider every matrix Ai are
singular for every i = 1, . . . ,n.

Definition 3.4. Let
(
B(s)

)
i,j

=
(
b(s)(i, j)

)
be an n×n matrix for every n ∈N,

where

b(s)(i, j) = ‖Ai|Im(Aj)‖s for every i, j = 1, . . . ,n. (20)

Lemma 3.5. For every singular matrices A and B and for every subspace V

‖AB|V ‖ = ‖A|Im(B)‖ · ‖A|V ‖.

In particular for every finite word ı̄ = (i1, . . . , in),

‖Ai1Ai2 . . . Ain−1|Im(Ain)‖ = ‖Ai1|Im(Ai2)‖ . . . ‖Ain−1|Im(Ain)‖.

Proof. For every v ∈ V and ‖v‖ = 1,

‖AB|V ‖ = ‖ABv‖ =

=

0, if Ker(B) = V

‖ABv‖
‖Bv‖ · ‖Bv‖ = ‖A|Im(B)‖ · ‖B|V ‖ if Ker(B) 6= V

(21)

If Ker(B) = V then ‖B|V ‖ = 0 and ‖A|Im(B)‖ · ‖B|V ‖ = 0. In general case,
for every v ∈ Im(Ain) and ‖v‖ if Ai2 · · ·Ain−1v 6= 0,

‖Ai1 · · ·Ain−1|Im(Ain)‖ = ‖Ai1 · · ·Ainv‖ =

= ‖Ai1
Ai2 . . . Ain−1v

‖Ai2 . . . Ain−1v‖
‖ · ‖Ai2 . . . Ain−1v‖

We know that ‖Ai2 . . . Ain−1v‖ ∈ Im(Ai2 . . . Ain−1) by Lemma 3.5 Im(Ai2 . . . Ain−1) =
Im(Ai2) then

‖Ai1
Ai2 . . . Ain−1v

‖Ai2 . . . Ain−1v‖
‖ = ‖Ai1|Im(Ai2)‖.

By induction we use the previous calculation for ‖Ai2 . . . Ain−1v‖.
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Lemma 3.6. Let A1, . . . ,An be singular matrices of an IFS F . Then an elemnt
of the matrix B(s) to the power m > 1 is the following,

((B(s))m)i,j =

 ∑
|̄|=m−1

‖Ai ·Ā|Im(Aj)‖s
 for every i, j = 1, . . . ,n.

(22)

Proof. Using the rule of matrix multiplication and Lemma 3.5.

Proposition 3.7. Let A1, . . . ,An be singular matrices of an IFS F and α(Ai)
be maximum of the singular values of Ai. Then there exists constants m,M > 0
such that for every k ≥ 1,

m · ‖(B(s))k‖1 ≤
∑
|ı̄|=k+1

α(Aı̄)
s ≤M · ‖(B(s))k‖1. (23)

Remark 3.8. In Proposition 3.7 for a matrix A we use

‖A‖1 =
∑
i,j
|aij |.

Proof. Since for every i = 1, . . . ,n the matrices Ai are singular, then α(Ai) =
α1(Ai). We know that, α1(Ai) = ‖Ai‖. Observe that∑

|ı̄|=k+1
α1(Aı̄) =

∑
i,j=1,...,n

∑
|̄|=k−1

‖AiĀ|Im(Aj)‖ · ‖Aj‖. (24)

Then denote M = max
j
{‖Aj‖} and m = min

j
{‖Aj‖}. By using m and M in

equation (24)

m · ‖(B(s))k‖1 ≤
∑
|ı̄|=k+1

α1(Aı̄)
s ≤M · ‖(B(s))k‖1. (25)

Proposition 3.9. Let A1, . . . ,An be singular matrices. Then,

P (s) = log
(
ρ(B(s))

)
for 0 ≤ s ≤ 1. (26)

Proof. By using inequality (23) and taking logarithm and dividing by n we have

1
n

log(ρ(B(s))n) ≤ 1
n

log
 ∑
|ı̄|=n+1

α1(Aı̄)
s

 ≤ 1
n

log(ρ(B(s))n).

Then by Gelfand’s formula ‖Bn‖1/n → ρ(B) as n→∞. Thus, we have

P (s) = log(ρ(B(s))). (27)
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Example 3.10. This example shows a connection between graph directed and
IFS . Consider the following matrices

A1 =

a11 a12

0 0

 , A2 =

 0 0
a21 a22

 , A3 =

b11 b12

0 0


and the following contracting similarity transformations in two different cases.

I.

ϕ1(x) = A1x+

1
2
0

 ;

ϕ2(x) = A2x+

0
1
2

 ;

ϕ3(x) = A3x+

0
1

 ;

II.

ϕ1(x) = A1x+

0
0

 ;

ϕ2(x) = A2x+

0
1
2

 ;

ϕ3(x) = A3x+

δ
0

 ;

for every x ∈ [0, 1]2 and for some 1 > δ > 1
2 . Let F = {ϕi}3i=1 be an IFS. If

we investigate the Image spaces of the transformations, we observe

I.

Im(ϕ1) = span

〈1
0

〉+

1
2
0


Im(ϕ2) = span

〈0
1

〉+

0
1
2


Im(ϕ3) = span

〈1
0

〉+

0
1



II.

Im(ϕ1) = span

〈1
0

〉

Im(ϕ2) = span

〈0
1

〉+

0
1
2


Im(ϕ3) = span

〈1
0

〉+

δ
0


The following figures represent the connection between Graph-directed IFS and
self-similar IFS Maps from the Graph-directed IFS have the form fi,j = ϕi|ϕj([0,1]2)
for every i, j = 1, 2, 3, see in Definition 2.6.
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0 0.5 1
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f1i([0, 1]2)

ϕ1([0, 1]2)
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Figure 4: Graph of IFS in case I.
0 0.5 1
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1

f1i([0, 1]2)

ϕ1([0, 1]2)

ϕ2([0, 1]2)

ϕ3([0, 1]2)
x

y

Figure 5: Graph of IFS in case II.

Investigate in both case the previously defined matrices B(s) see on page 11
and B(s)

MW see on page 5.
I.

B(s) =


as11 as12 as11
as21 as22 as21
bs11 bs12 bs11



B
(s)
MW =


as11 as12 as11
as21 as22 as21
bs11 bs12 bs11



II.

B(s) =


as11 as12 as11
as21 as22 as21
bs11 bs12 bs11


B

(s)
MW =

as11 + bs11 as12 + bs12
as21 as22



The previous example showed that the matrices B(s) and B(s)
MW are not nec-

essarily equals. The difference between the matrices is, B(s)
MW can happen, that

for an arbitrary image space there are more than one transformation. Because
of this in B

(s)
MW the corresponding rows and colums will collapse into a sum.

Then, from B(s) to B(s)
MW we can construct an eigenvector for the same positive

eigenvalue. By Perron-Frobenius theorem this vector is unique and positive, the
spectral radius of the matrices should equal. This is necessary step which allows
us to use the Mauldin-Williams theorem 2.14 for the matrix B(s).
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Lemma 3.11. Let {ϕi(x) = Aix+ ti}mi=1 be an IFS for every x ∈ R2and for
every m > 1. Consider the following matrices B(s)

MW and B(s) for the IFS. Then
the spectral radius of the matrices are equal,

ρ = ρ(B
(s)
MW ) = ρ(B(s)). (28)

Proof. By definition Im(ϕi) = Im(Ai) + ti for every i = 1, . . . ,m. Let I be the
set of all image spaces of ϕi which are distinct. In other words

I = {Im(ϕi)} := {V1, . . . ,VM}.

Furthermore, by definition Ei,j := Ei = {k : Im(ϕk) = Vi}. Since for every i,
Vi is a hyperspace, we need to construct a set with subspaces to determine the
norm of the matrix B(s)

MW . For every Vi there is a unique Wi subspace in R2 such
that for every x, y ∈ Vi, x− y ∈ Wi. Then the elements of the matrix B(s)

MW will
be (

B
(s)
MW

)
i,j

=
∑
k∈Ei

‖Ai|Wj‖s for every i, j = 1, . . . ,M .

On the other hand, the elements of the matrix B(s) will be(
B(s)

)
i,j

= ‖Ai|Im(Aj)‖s for every i, j = 1, . . . ,m.

There exists a unique vector v ∈ Rm such that ‖v‖ = 1 and for every i =
1, . . . ,m, vi > 0. The spectral radius of ρ(B(s)) = ρ and by the Perron Frobenius
theorem,

B(s)v = ρv.

Now we construct a vector, by v then we will see this constructed vector is an
eigenvector of B(s)

MW .
Let z ∈ RM be a vector such that zj =

∑
k∈Ei

vk. Then(
B

(s)
MW v

)
i
=

M∑
j=1

∑
k∈Ei

‖Ak|Wj‖szj =
M∑
j=1

∑
k∈Ei

∑
l∈Ej

‖Ak|Wj‖svl =

M∑
j=1

∑
k∈Ei

∑
l∈Ej

‖Ak|Im(Al)‖svl =
∑
k∈Ei

M∑
j=1

∑
l∈Ej

‖Ak|Im(Al)‖svl =

∑
k∈Ei

m∑
l=1
‖Ak|Im(Al)‖svl =

∑
k∈Ei

ρvk = ρzi.

Then for every zi > 0, z is an eigenvector of B(s)
MW with ρ > 0 eigenvalue. So, by

Perron-Frobenius theorem

ρ = ρ(B
(s)
MW ).
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3.2 separation condition

To proof that, the value of the sub-additive pressure P (s) equals to the
Hausdorff-dimension of the attractor, we need to state a separation condition
for F .

Lemma 3.12. Let F = {ϕi = Aix+ ti}ni=1 be an IFS for every matrix Ai is
singular. If the Strong Separation Property holds then s0 is a unique solution for

ρ(B(s0)) = 1 and dimH(Λ) = s0. (29)

Proof. If ϕi ◦ϕj([0, 1]2)∩ϕk ◦ϕl([0, 1]2) = ∅ if (i, j) 6= (k.l) for every i, j, k, l =
1, . . . ,n. Then by Mauldin-Williams theorem 2.14, s0 is a unique solution for the
equation

ρ(B
(s0)
MW ) = 1.

By Lemma 3.11, ρ = ρ(Bs
MW ) = ρ(B(s)). And using Mauldin-Williams theo-

rem, s0 is the unique solution for the equation ρ(B(s0)) = 1. Then

dimH(Λ) = s0. (30)



4
MIXED CASE

In this section we will work with self-affine IFS which contains singular and
regular matrices. We define the regular pressure Preg and the singular pressure
Psing. The goal of this Chapter to show that the singularity dimension can be
expressed by using Preg and Psing.
We extend the definition of B(s) from page 11, but in this case instead of

singular matrices we have regular and singular too. Let Σ∗reg be the set of all
finite words which corresponds to only regular matrices, and let Σsing be the set
of symbols corresponding to a singular matrices, and similarly let Σ∗ be the set
of every finite word. Let B(s) be an n× n matrix and n = |Σsing|, where

(B(s))i,j =

 ∑
ı̄∈Σ∗

reg

‖AiAı̄|Im(Aj)‖s

i,j∈Σsing

(31)

Definition 4.1. We use the notation of

Psing(s) = log
(
ρ(B(s))

)
(32)

Preg(s) = lim
k→∞

1
k

log
 ∑
̄∈Σ∗

reg

ϕs(Ā)

 , for k ∈N. (33)

Heuristically Preg means we use only the regular matrices, from the definition
of B(s) in equation (31) and Psing(s) is the pressure generated by B(s) from
equation (31).

Definition 4.2. If B(s) is well defined, then ssing will be the solution for the
equation ρ(B(ssing)) = 1 and sreg be the root of Preg(s).

Proposition 4.3. Let Aj be a regular matrix and Ā = Aj1 · . . . ·Ajn for every
j = 1, . . . ,n and n ∈N. Then for every ε > 0 there exists c > 0 such that

c−1 · en(Preg(s)+ε) ≤
∑

ı̄∈Σreg

ϕs(Aı̄) ≤ c · en(Preg(s)+ε). (34)

Proof. By definition of P (s), there exists N ,n > 0, for every ε > 0 if n > N

then, ∣∣∣∣∣∣ 1n log
∑
|ı̄|=n

ϕs(Aı̄)

− P (s)
∣∣∣∣∣∣ < ε. (35)

17
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Lemma 4.4. The matrix B(s) is well defined for every s > sreg.

Proof. ∑
̄∈Σ∗

reg

‖AiĀ|Im(Aj)‖s ≤
∑

̄∈Σ∗
reg

‖AiĀ‖s. (36)

By the sub-additivity of the norm,

(36) ≤
∑

̄∈Σ∗
reg

‖Ai‖ · ‖Ā‖s. (37)

By Proposition 4.3,

(37) ≤ ‖Ai‖s
∞∑
n=0

c · en(Preg(s)+ε) <∞, if Preg(s) + ε < 0. (38)

But there exists such ε if s > sreg.

Lemma 4.5. If the following conditions are holds,

there exists j1 6= j2 and Im(Aj1) 6= Im(Aj2)

there exists i1 6= i2 and Ker(Ai1) 6= Ker(Ai2)

and there exists c > 0 for every ̄ ∈ Σreg, there exists i, j ∈ Σsing

‖AiĀ|Im(Aj)‖ ≥ c · ‖Ā‖. (39)

Proof. For every c > 0 there exists ̄ ∈ Σreg and for every i, j ∈ Σsing then

‖Ai
Ā
‖Ā‖

|Im(Aj)‖ ≤ c. (40)

If we choose c = 1
n −−−→n→∞ 0, then by compactness for ̄n there exists a subse-

quence nk, k ∈N, such that

Ānk

‖Ānk
‖
→ Ã. (41)

Then for every i, j ∈ Σsing such ‖AiÃ|Im(Aj)‖ = 0. If there exists j1 6= j2 and
Im(Aj1) 6= Im(Aj2), then AiÃ = 0. It is possible, when Ker(Ai) = Im(Ã). We
get a contradiction if there exists i1 6= i2 and Ker(Ai1) 6= Ker(Ai2).

By Falconer Theorem2.18 [Fal88]

s0 = inf{s > 0 :
∑
̄∈Σ∗

ϕs(Ā) <∞}. (42)
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Proposition 4.6. Consider s0 = inf{s > 0 :
∑
̄∈Σ∗ ϕ

s(Ā) < ∞}, sreg and
ssing as defined on page 17, then

s0 =

sreg if sreg > 1

min{1, ssing} if sreg ≤ 1.

Proof. For every s > 1∑
ı̄∈Σ∗

ϕs(Aı̄) =
∑

ı̄∈Σ∗
reg

ϕs(Aı̄)

If s0 > 1 then s0 = sreg.
If s0 ≤ 1 for every s ≤ 1∑

ı̄∈Σ∗

ϕs(Aı̄) ≥
∑

i,j∈Σsing

∑
ı̄∈Σ∗

ϕs(AiAı̄Aj) =

∑
i,j∈Σsing

∑
ı̄∈Σ∗

‖AiAı̄|Im(Aj)‖s · ‖Aj‖s =
∞∑
k=0

∑
i,j∈Σsing

(
(B(s))k

)
i,j
· ‖Aj‖s.

s > s0 then s ≥ sreg and s ≥ ssing.
On the other hand∑

ı̄∈Σ∗

ϕs(Aı̄) =
∑

ı̄∈Σ∗
reg

ϕs(Aı̄) +
∑

i∈Σsing

∑
ı̄1,ı̄2∈Σ∗

reg

ϕs(Aı̄1AiAı̄2)+

∑
i,j∈Σsing

∑
ı̄1,ı̄2∈Σ∗

reg

∑
̄∈Σ∗

ϕs(Aı̄1AiĀAjAı̄2) ≤

≤
∑

ı̄∈Σ∗
reg

ϕs(Aı̄) +
∑

i∈Σsing

∑
ı̄1,ı̄2∈Σ∗

reg

ϕs(Aı̄1)‖Ai‖sϕs(Aı̄2)+

+
∑

i,j∈Σsing

∑
ı̄1,ı̄2∈Σ∗

reg

∑
̄∈Σ∗

ϕs(Aı̄1)‖AiĀ|Im(Aj)‖s · ‖Aj‖sϕs(Aı̄2) ≤

≤
∑

ı̄∈Σ∗
reg

ϕs(Aı̄) +

 ∑
ı̄∈Σ∗

reg

ϕs(Aı̄)

2 ∑
æ∈Σsing

‖Aj‖s
+

+

 ∑
ı̄∈Σ∗

reg

ϕs(Aı̄)

2

·
∞∑
k=0

∑
i,j∈Σsing

(
(B(s))k

)
i,j
· ‖Aj‖s

If s > max{sreg, ssing} then s > s0. In summary if s0 < 1 then

s0 = max{sreg, ssing} = ssing. (43)

If s0 = 1 then ssing ≥ 1.
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4.1 separation condition

In finite regular case, Bárány Hochman and Rapaport proved that, if the
Strong Separation Condition holds, the Hausdorff dimension equal to the affinity
dimension which is the root of the sub-additive pressure. In this section we give
a condition when s > 1 and we have singular and regular matrices.

Lemma 4.7. Assume that s > 1 then

dimH(Λ) = sreg. (44)

Proof. I. dimH(Λ) ≥ sreg
By Bárány, Hochman and Rapaport Theorem 2.21, the Hausdorff dimension
equal to the affinity dimension. By Proposition 4.6 and Falconer Theorem
2.18 the affinity dimension s = sreg if s > 1. Then

s0 ≤ max{sreg, ssing} = sreg.

II. dimH(Λ) ≤ sreg
Let x ∈ Λ be a point. Then we can determine x as

x = lim
n→∞ϕi1 ◦ · · · ◦ ϕin(0). (45)

Then we have those x which can be represented by all regular matrices and those,
which contains at least one singular. So we can define the attractor,

Λ = Λreg

⋃
Λsing. (46)

where, Λsing =
⋃
i∈Sing

⋃
̄∈Reg ϕ̄ ◦ ϕi(Λ). We know that, every ϕi(Λ) is con-

tained in an interval. Let B be a ball as defined in Theorem 2.8, then ϕi(B) ⊂
B. So ϕi(Λ) ⊂ ϕi(B). Since dim ϕi(B) = 1, then

dimH(Λsing) = sup
i,̄∈Reg

dimH ϕ̄ ◦ ϕi(Λ) ≤ 1. (47)

By the 7. property in Lemma 2.4

dimH(Λ) = max{dimH(Λreg), dimH(Λsing)} = max{sreg, 1} = sreg.
(48)
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